summaryrefslogtreecommitdiff
path: root/mm/swapfile.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/swapfile.c')
-rw-r--r--mm/swapfile.c4181
1 files changed, 2831 insertions, 1350 deletions
diff --git a/mm/swapfile.c b/mm/swapfile.c
index 36af6eeaa67e..46d2008e4b99 100644
--- a/mm/swapfile.c
+++ b/mm/swapfile.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/mm/swapfile.c
*
@@ -5,7 +6,10 @@
* Swap reorganised 29.12.95, Stephen Tweedie
*/
+#include <linux/blkdev.h>
#include <linux/mm.h>
+#include <linux/sched/mm.h>
+#include <linux/sched/task.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/slab.h>
@@ -15,7 +19,7 @@
#include <linux/pagemap.h>
#include <linux/namei.h>
#include <linux/shmem_fs.h>
-#include <linux/blkdev.h>
+#include <linux/blk-cgroup.h>
#include <linux/random.h>
#include <linux/writeback.h>
#include <linux/proc_fs.h>
@@ -31,74 +35,265 @@
#include <linux/memcontrol.h>
#include <linux/poll.h>
#include <linux/oom.h>
-#include <linux/frontswap.h>
#include <linux/swapfile.h>
#include <linux/export.h>
+#include <linux/sort.h>
+#include <linux/completion.h>
+#include <linux/suspend.h>
+#include <linux/zswap.h>
+#include <linux/plist.h>
-#include <asm/pgtable.h>
#include <asm/tlbflush.h>
-#include <linux/swapops.h>
-#include <linux/page_cgroup.h>
+#include <linux/leafops.h>
+#include <linux/swap_cgroup.h>
+#include "swap_table.h"
+#include "internal.h"
+#include "swap.h"
static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
unsigned char);
static void free_swap_count_continuations(struct swap_info_struct *);
-static sector_t map_swap_entry(swp_entry_t, struct block_device**);
-
-DEFINE_SPINLOCK(swap_lock);
+static void swap_entries_free(struct swap_info_struct *si,
+ struct swap_cluster_info *ci,
+ swp_entry_t entry, unsigned int nr_pages);
+static void swap_range_alloc(struct swap_info_struct *si,
+ unsigned int nr_entries);
+static bool folio_swapcache_freeable(struct folio *folio);
+static void move_cluster(struct swap_info_struct *si,
+ struct swap_cluster_info *ci, struct list_head *list,
+ enum swap_cluster_flags new_flags);
+
+static DEFINE_SPINLOCK(swap_lock);
static unsigned int nr_swapfiles;
atomic_long_t nr_swap_pages;
+/*
+ * Some modules use swappable objects and may try to swap them out under
+ * memory pressure (via the shrinker). Before doing so, they may wish to
+ * check to see if any swap space is available.
+ */
+EXPORT_SYMBOL_GPL(nr_swap_pages);
/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
long total_swap_pages;
-static int least_priority;
-static atomic_t highest_priority_index = ATOMIC_INIT(-1);
+#define DEF_SWAP_PRIO -1
+unsigned long swapfile_maximum_size;
+#ifdef CONFIG_MIGRATION
+bool swap_migration_ad_supported;
+#endif /* CONFIG_MIGRATION */
static const char Bad_file[] = "Bad swap file entry ";
static const char Unused_file[] = "Unused swap file entry ";
static const char Bad_offset[] = "Bad swap offset entry ";
static const char Unused_offset[] = "Unused swap offset entry ";
-struct swap_list_t swap_list = {-1, -1};
+/*
+ * all active swap_info_structs
+ * protected with swap_lock, and ordered by priority.
+ */
+static PLIST_HEAD(swap_active_head);
+
+/*
+ * all available (active, not full) swap_info_structs
+ * protected with swap_avail_lock, ordered by priority.
+ * This is used by folio_alloc_swap() instead of swap_active_head
+ * because swap_active_head includes all swap_info_structs,
+ * but folio_alloc_swap() doesn't need to look at full ones.
+ * This uses its own lock instead of swap_lock because when a
+ * swap_info_struct changes between not-full/full, it needs to
+ * add/remove itself to/from this list, but the swap_info_struct->lock
+ * is held and the locking order requires swap_lock to be taken
+ * before any swap_info_struct->lock.
+ */
+static PLIST_HEAD(swap_avail_head);
+static DEFINE_SPINLOCK(swap_avail_lock);
struct swap_info_struct *swap_info[MAX_SWAPFILES];
+static struct kmem_cache *swap_table_cachep;
+
static DEFINE_MUTEX(swapon_mutex);
static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
/* Activity counter to indicate that a swapon or swapoff has occurred */
static atomic_t proc_poll_event = ATOMIC_INIT(0);
+atomic_t nr_rotate_swap = ATOMIC_INIT(0);
+
+struct percpu_swap_cluster {
+ struct swap_info_struct *si[SWAP_NR_ORDERS];
+ unsigned long offset[SWAP_NR_ORDERS];
+ local_lock_t lock;
+};
+
+static DEFINE_PER_CPU(struct percpu_swap_cluster, percpu_swap_cluster) = {
+ .si = { NULL },
+ .offset = { SWAP_ENTRY_INVALID },
+ .lock = INIT_LOCAL_LOCK(),
+};
+
+/* May return NULL on invalid type, caller must check for NULL return */
+static struct swap_info_struct *swap_type_to_info(int type)
+{
+ if (type >= MAX_SWAPFILES)
+ return NULL;
+ return READ_ONCE(swap_info[type]); /* rcu_dereference() */
+}
+
+/* May return NULL on invalid entry, caller must check for NULL return */
+static struct swap_info_struct *swap_entry_to_info(swp_entry_t entry)
+{
+ return swap_type_to_info(swp_type(entry));
+}
+
static inline unsigned char swap_count(unsigned char ent)
{
- return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
+ return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
}
-/* returns 1 if swap entry is freed */
-static int
-__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
+/*
+ * Use the second highest bit of inuse_pages counter as the indicator
+ * if one swap device is on the available plist, so the atomic can
+ * still be updated arithmetically while having special data embedded.
+ *
+ * inuse_pages counter is the only thing indicating if a device should
+ * be on avail_lists or not (except swapon / swapoff). By embedding the
+ * off-list bit in the atomic counter, updates no longer need any lock
+ * to check the list status.
+ *
+ * This bit will be set if the device is not on the plist and not
+ * usable, will be cleared if the device is on the plist.
+ */
+#define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2))
+#define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT)
+static long swap_usage_in_pages(struct swap_info_struct *si)
{
- swp_entry_t entry = swp_entry(si->type, offset);
- struct page *page;
- int ret = 0;
+ return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK;
+}
- page = find_get_page(swap_address_space(entry), entry.val);
- if (!page)
+/* Reclaim the swap entry anyway if possible */
+#define TTRS_ANYWAY 0x1
+/*
+ * Reclaim the swap entry if there are no more mappings of the
+ * corresponding page
+ */
+#define TTRS_UNMAPPED 0x2
+/* Reclaim the swap entry if swap is getting full */
+#define TTRS_FULL 0x4
+
+static bool swap_only_has_cache(struct swap_info_struct *si,
+ unsigned long offset, int nr_pages)
+{
+ unsigned char *map = si->swap_map + offset;
+ unsigned char *map_end = map + nr_pages;
+
+ do {
+ VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
+ if (*map != SWAP_HAS_CACHE)
+ return false;
+ } while (++map < map_end);
+
+ return true;
+}
+
+static bool swap_is_last_map(struct swap_info_struct *si,
+ unsigned long offset, int nr_pages, bool *has_cache)
+{
+ unsigned char *map = si->swap_map + offset;
+ unsigned char *map_end = map + nr_pages;
+ unsigned char count = *map;
+
+ if (swap_count(count) != 1 && swap_count(count) != SWAP_MAP_SHMEM)
+ return false;
+
+ while (++map < map_end) {
+ if (*map != count)
+ return false;
+ }
+
+ *has_cache = !!(count & SWAP_HAS_CACHE);
+ return true;
+}
+
+/*
+ * returns number of pages in the folio that backs the swap entry. If positive,
+ * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
+ * folio was associated with the swap entry.
+ */
+static int __try_to_reclaim_swap(struct swap_info_struct *si,
+ unsigned long offset, unsigned long flags)
+{
+ const swp_entry_t entry = swp_entry(si->type, offset);
+ struct swap_cluster_info *ci;
+ struct folio *folio;
+ int ret, nr_pages;
+ bool need_reclaim;
+
+again:
+ folio = swap_cache_get_folio(entry);
+ if (!folio)
return 0;
+
+ nr_pages = folio_nr_pages(folio);
+ ret = -nr_pages;
+
+ /*
+ * We hold a folio lock here. We have to use trylock for
+ * avoiding deadlock. This is a special case and you should
+ * use folio_free_swap() with explicit folio_lock() in usual
+ * operations.
+ */
+ if (!folio_trylock(folio))
+ goto out;
+
/*
- * This function is called from scan_swap_map() and it's called
- * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
- * We have to use trylock for avoiding deadlock. This is a special
- * case and you should use try_to_free_swap() with explicit lock_page()
- * in usual operations.
+ * Offset could point to the middle of a large folio, or folio
+ * may no longer point to the expected offset before it's locked.
*/
- if (trylock_page(page)) {
- ret = try_to_free_swap(page);
- unlock_page(page);
+ if (!folio_matches_swap_entry(folio, entry)) {
+ folio_unlock(folio);
+ folio_put(folio);
+ goto again;
}
- page_cache_release(page);
+ offset = swp_offset(folio->swap);
+
+ need_reclaim = ((flags & TTRS_ANYWAY) ||
+ ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
+ ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
+ if (!need_reclaim || !folio_swapcache_freeable(folio))
+ goto out_unlock;
+
+ /*
+ * It's safe to delete the folio from swap cache only if the folio's
+ * swap_map is HAS_CACHE only, which means the slots have no page table
+ * reference or pending writeback, and can't be allocated to others.
+ */
+ ci = swap_cluster_lock(si, offset);
+ need_reclaim = swap_only_has_cache(si, offset, nr_pages);
+ swap_cluster_unlock(ci);
+ if (!need_reclaim)
+ goto out_unlock;
+
+ swap_cache_del_folio(folio);
+ folio_set_dirty(folio);
+ ret = nr_pages;
+out_unlock:
+ folio_unlock(folio);
+out:
+ folio_put(folio);
return ret;
}
+static inline struct swap_extent *first_se(struct swap_info_struct *sis)
+{
+ struct rb_node *rb = rb_first(&sis->swap_extent_root);
+ return rb_entry(rb, struct swap_extent, rb_node);
+}
+
+static inline struct swap_extent *next_se(struct swap_extent *se)
+{
+ struct rb_node *rb = rb_next(&se->rb_node);
+ return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
+}
+
/*
* swapon tell device that all the old swap contents can be discarded,
* to allow the swap device to optimize its wear-levelling.
@@ -111,23 +306,23 @@ static int discard_swap(struct swap_info_struct *si)
int err = 0;
/* Do not discard the swap header page! */
- se = &si->first_swap_extent;
+ se = first_se(si);
start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
if (nr_blocks) {
err = blkdev_issue_discard(si->bdev, start_block,
- nr_blocks, GFP_KERNEL, 0);
+ nr_blocks, GFP_KERNEL);
if (err)
return err;
cond_resched();
}
- list_for_each_entry(se, &si->first_swap_extent.list, list) {
+ for (se = next_se(se); se; se = next_se(se)) {
start_block = se->start_block << (PAGE_SHIFT - 9);
nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
err = blkdev_issue_discard(si->bdev, start_block,
- nr_blocks, GFP_KERNEL, 0);
+ nr_blocks, GFP_KERNEL);
if (err)
break;
@@ -136,6 +331,39 @@ static int discard_swap(struct swap_info_struct *si)
return err; /* That will often be -EOPNOTSUPP */
}
+static struct swap_extent *
+offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
+{
+ struct swap_extent *se;
+ struct rb_node *rb;
+
+ rb = sis->swap_extent_root.rb_node;
+ while (rb) {
+ se = rb_entry(rb, struct swap_extent, rb_node);
+ if (offset < se->start_page)
+ rb = rb->rb_left;
+ else if (offset >= se->start_page + se->nr_pages)
+ rb = rb->rb_right;
+ else
+ return se;
+ }
+ /* It *must* be present */
+ BUG();
+}
+
+sector_t swap_folio_sector(struct folio *folio)
+{
+ struct swap_info_struct *sis = __swap_entry_to_info(folio->swap);
+ struct swap_extent *se;
+ sector_t sector;
+ pgoff_t offset;
+
+ offset = swp_offset(folio->swap);
+ se = offset_to_swap_extent(sis, offset);
+ sector = se->start_block + (offset - se->start_page);
+ return sector << (PAGE_SHIFT - 9);
+}
+
/*
* swap allocation tell device that a cluster of swap can now be discarded,
* to allow the swap device to optimize its wear-levelling.
@@ -143,433 +371,1152 @@ static int discard_swap(struct swap_info_struct *si)
static void discard_swap_cluster(struct swap_info_struct *si,
pgoff_t start_page, pgoff_t nr_pages)
{
- struct swap_extent *se = si->curr_swap_extent;
- int found_extent = 0;
+ struct swap_extent *se = offset_to_swap_extent(si, start_page);
while (nr_pages) {
- struct list_head *lh;
-
- if (se->start_page <= start_page &&
- start_page < se->start_page + se->nr_pages) {
- pgoff_t offset = start_page - se->start_page;
- sector_t start_block = se->start_block + offset;
- sector_t nr_blocks = se->nr_pages - offset;
-
- if (nr_blocks > nr_pages)
- nr_blocks = nr_pages;
- start_page += nr_blocks;
- nr_pages -= nr_blocks;
-
- if (!found_extent++)
- si->curr_swap_extent = se;
-
- start_block <<= PAGE_SHIFT - 9;
- nr_blocks <<= PAGE_SHIFT - 9;
- if (blkdev_issue_discard(si->bdev, start_block,
- nr_blocks, GFP_NOIO, 0))
- break;
- }
+ pgoff_t offset = start_page - se->start_page;
+ sector_t start_block = se->start_block + offset;
+ sector_t nr_blocks = se->nr_pages - offset;
+
+ if (nr_blocks > nr_pages)
+ nr_blocks = nr_pages;
+ start_page += nr_blocks;
+ nr_pages -= nr_blocks;
+
+ start_block <<= PAGE_SHIFT - 9;
+ nr_blocks <<= PAGE_SHIFT - 9;
+ if (blkdev_issue_discard(si->bdev, start_block,
+ nr_blocks, GFP_NOIO))
+ break;
- lh = se->list.next;
- se = list_entry(lh, struct swap_extent, list);
+ se = next_se(se);
}
}
-static int wait_for_discard(void *word)
+#define LATENCY_LIMIT 256
+
+static inline bool cluster_is_empty(struct swap_cluster_info *info)
{
- schedule();
- return 0;
+ return info->count == 0;
}
-#define SWAPFILE_CLUSTER 256
-#define LATENCY_LIMIT 256
+static inline bool cluster_is_discard(struct swap_cluster_info *info)
+{
+ return info->flags == CLUSTER_FLAG_DISCARD;
+}
-static unsigned long scan_swap_map(struct swap_info_struct *si,
- unsigned char usage)
+static inline bool cluster_table_is_alloced(struct swap_cluster_info *ci)
{
- unsigned long offset;
- unsigned long scan_base;
- unsigned long last_in_cluster = 0;
- int latency_ration = LATENCY_LIMIT;
- int found_free_cluster = 0;
+ return rcu_dereference_protected(ci->table, lockdep_is_held(&ci->lock));
+}
+
+static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order)
+{
+ if (unlikely(ci->flags > CLUSTER_FLAG_USABLE))
+ return false;
+ if (!cluster_table_is_alloced(ci))
+ return false;
+ if (!order)
+ return true;
+ return cluster_is_empty(ci) || order == ci->order;
+}
+
+static inline unsigned int cluster_index(struct swap_info_struct *si,
+ struct swap_cluster_info *ci)
+{
+ return ci - si->cluster_info;
+}
+
+static inline unsigned int cluster_offset(struct swap_info_struct *si,
+ struct swap_cluster_info *ci)
+{
+ return cluster_index(si, ci) * SWAPFILE_CLUSTER;
+}
+
+static struct swap_table *swap_table_alloc(gfp_t gfp)
+{
+ struct folio *folio;
+
+ if (!SWP_TABLE_USE_PAGE)
+ return kmem_cache_zalloc(swap_table_cachep, gfp);
+
+ folio = folio_alloc(gfp | __GFP_ZERO, 0);
+ if (folio)
+ return folio_address(folio);
+ return NULL;
+}
+
+static void swap_table_free_folio_rcu_cb(struct rcu_head *head)
+{
+ struct folio *folio;
+
+ folio = page_folio(container_of(head, struct page, rcu_head));
+ folio_put(folio);
+}
+
+static void swap_table_free(struct swap_table *table)
+{
+ if (!SWP_TABLE_USE_PAGE) {
+ kmem_cache_free(swap_table_cachep, table);
+ return;
+ }
+
+ call_rcu(&(folio_page(virt_to_folio(table), 0)->rcu_head),
+ swap_table_free_folio_rcu_cb);
+}
+
+static void swap_cluster_free_table(struct swap_cluster_info *ci)
+{
+ unsigned int ci_off;
+ struct swap_table *table;
+
+ /* Only empty cluster's table is allow to be freed */
+ lockdep_assert_held(&ci->lock);
+ VM_WARN_ON_ONCE(!cluster_is_empty(ci));
+ for (ci_off = 0; ci_off < SWAPFILE_CLUSTER; ci_off++)
+ VM_WARN_ON_ONCE(!swp_tb_is_null(__swap_table_get(ci, ci_off)));
+ table = (void *)rcu_dereference_protected(ci->table, true);
+ rcu_assign_pointer(ci->table, NULL);
+
+ swap_table_free(table);
+}
+
+/*
+ * Allocate swap table for one cluster. Attempt an atomic allocation first,
+ * then fallback to sleeping allocation.
+ */
+static struct swap_cluster_info *
+swap_cluster_alloc_table(struct swap_info_struct *si,
+ struct swap_cluster_info *ci)
+{
+ struct swap_table *table;
/*
- * We try to cluster swap pages by allocating them sequentially
- * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
- * way, however, we resort to first-free allocation, starting
- * a new cluster. This prevents us from scattering swap pages
- * all over the entire swap partition, so that we reduce
- * overall disk seek times between swap pages. -- sct
- * But we do now try to find an empty cluster. -Andrea
- * And we let swap pages go all over an SSD partition. Hugh
+ * Only cluster isolation from the allocator does table allocation.
+ * Swap allocator uses percpu clusters and holds the local lock.
*/
+ lockdep_assert_held(&ci->lock);
+ lockdep_assert_held(&this_cpu_ptr(&percpu_swap_cluster)->lock);
- si->flags += SWP_SCANNING;
- scan_base = offset = si->cluster_next;
+ /* The cluster must be free and was just isolated from the free list. */
+ VM_WARN_ON_ONCE(ci->flags || !cluster_is_empty(ci));
- if (unlikely(!si->cluster_nr--)) {
- if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
- si->cluster_nr = SWAPFILE_CLUSTER - 1;
- goto checks;
- }
- if (si->flags & SWP_PAGE_DISCARD) {
- /*
- * Start range check on racing allocations, in case
- * they overlap the cluster we eventually decide on
- * (we scan without swap_lock to allow preemption).
- * It's hardly conceivable that cluster_nr could be
- * wrapped during our scan, but don't depend on it.
- */
- if (si->lowest_alloc)
- goto checks;
- si->lowest_alloc = si->max;
- si->highest_alloc = 0;
- }
+ table = swap_table_alloc(__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
+ if (table) {
+ rcu_assign_pointer(ci->table, table);
+ return ci;
+ }
+
+ /*
+ * Try a sleep allocation. Each isolated free cluster may cause
+ * a sleep allocation, but there is a limited number of them, so
+ * the potential recursive allocation is limited.
+ */
+ spin_unlock(&ci->lock);
+ if (!(si->flags & SWP_SOLIDSTATE))
+ spin_unlock(&si->global_cluster_lock);
+ local_unlock(&percpu_swap_cluster.lock);
+
+ table = swap_table_alloc(__GFP_HIGH | __GFP_NOMEMALLOC | GFP_KERNEL);
+
+ /*
+ * Back to atomic context. We might have migrated to a new CPU with a
+ * usable percpu cluster. But just keep using the isolated cluster to
+ * make things easier. Migration indicates a slight change of workload
+ * so using a new free cluster might not be a bad idea, and the worst
+ * could happen with ignoring the percpu cluster is fragmentation,
+ * which is acceptable since this fallback and race is rare.
+ */
+ local_lock(&percpu_swap_cluster.lock);
+ if (!(si->flags & SWP_SOLIDSTATE))
+ spin_lock(&si->global_cluster_lock);
+ spin_lock(&ci->lock);
+
+ /* Nothing except this helper should touch a dangling empty cluster. */
+ if (WARN_ON_ONCE(cluster_table_is_alloced(ci))) {
+ if (table)
+ swap_table_free(table);
+ return ci;
+ }
+
+ if (!table) {
+ move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE);
+ spin_unlock(&ci->lock);
+ return NULL;
+ }
+
+ rcu_assign_pointer(ci->table, table);
+ return ci;
+}
+
+static void move_cluster(struct swap_info_struct *si,
+ struct swap_cluster_info *ci, struct list_head *list,
+ enum swap_cluster_flags new_flags)
+{
+ VM_WARN_ON(ci->flags == new_flags);
+
+ BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX);
+ lockdep_assert_held(&ci->lock);
+
+ spin_lock(&si->lock);
+ if (ci->flags == CLUSTER_FLAG_NONE)
+ list_add_tail(&ci->list, list);
+ else
+ list_move_tail(&ci->list, list);
+ spin_unlock(&si->lock);
+ ci->flags = new_flags;
+}
+
+/* Add a cluster to discard list and schedule it to do discard */
+static void swap_cluster_schedule_discard(struct swap_info_struct *si,
+ struct swap_cluster_info *ci)
+{
+ VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
+ move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD);
+ schedule_work(&si->discard_work);
+}
+
+static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
+{
+ swap_cluster_free_table(ci);
+ move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE);
+ ci->order = 0;
+}
+
+/*
+ * Isolate and lock the first cluster that is not contented on a list,
+ * clean its flag before taken off-list. Cluster flag must be in sync
+ * with list status, so cluster updaters can always know the cluster
+ * list status without touching si lock.
+ *
+ * Note it's possible that all clusters on a list are contented so
+ * this returns NULL for an non-empty list.
+ */
+static struct swap_cluster_info *isolate_lock_cluster(
+ struct swap_info_struct *si, struct list_head *list)
+{
+ struct swap_cluster_info *ci, *found = NULL;
+
+ spin_lock(&si->lock);
+ list_for_each_entry(ci, list, list) {
+ if (!spin_trylock(&ci->lock))
+ continue;
+
+ /* We may only isolate and clear flags of following lists */
+ VM_BUG_ON(!ci->flags);
+ VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE &&
+ ci->flags != CLUSTER_FLAG_FULL);
+
+ list_del(&ci->list);
+ ci->flags = CLUSTER_FLAG_NONE;
+ found = ci;
+ break;
+ }
+ spin_unlock(&si->lock);
+
+ if (found && !cluster_table_is_alloced(found)) {
+ /* Only an empty free cluster's swap table can be freed. */
+ VM_WARN_ON_ONCE(list != &si->free_clusters);
+ VM_WARN_ON_ONCE(!cluster_is_empty(found));
+ return swap_cluster_alloc_table(si, found);
+ }
+
+ return found;
+}
+
+/*
+ * Doing discard actually. After a cluster discard is finished, the cluster
+ * will be added to free cluster list. Discard cluster is a bit special as
+ * they don't participate in allocation or reclaim, so clusters marked as
+ * CLUSTER_FLAG_DISCARD must remain off-list or on discard list.
+ */
+static bool swap_do_scheduled_discard(struct swap_info_struct *si)
+{
+ struct swap_cluster_info *ci;
+ bool ret = false;
+ unsigned int idx;
+
+ spin_lock(&si->lock);
+ while (!list_empty(&si->discard_clusters)) {
+ ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
+ /*
+ * Delete the cluster from list to prepare for discard, but keep
+ * the CLUSTER_FLAG_DISCARD flag, percpu_swap_cluster could be
+ * pointing to it, or ran into by relocate_cluster.
+ */
+ list_del(&ci->list);
+ idx = cluster_index(si, ci);
spin_unlock(&si->lock);
+ discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
+ SWAPFILE_CLUSTER);
+ spin_lock(&ci->lock);
/*
- * If seek is expensive, start searching for new cluster from
- * start of partition, to minimize the span of allocated swap.
- * But if seek is cheap, search from our current position, so
- * that swap is allocated from all over the partition: if the
- * Flash Translation Layer only remaps within limited zones,
- * we don't want to wear out the first zone too quickly.
+ * Discard is done, clear its flags as it's off-list, then
+ * return the cluster to allocation list.
*/
- if (!(si->flags & SWP_SOLIDSTATE))
- scan_base = offset = si->lowest_bit;
- last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
-
- /* Locate the first empty (unaligned) cluster */
- for (; last_in_cluster <= si->highest_bit; offset++) {
- if (si->swap_map[offset])
- last_in_cluster = offset + SWAPFILE_CLUSTER;
- else if (offset == last_in_cluster) {
- spin_lock(&si->lock);
- offset -= SWAPFILE_CLUSTER - 1;
- si->cluster_next = offset;
- si->cluster_nr = SWAPFILE_CLUSTER - 1;
- found_free_cluster = 1;
- goto checks;
- }
- if (unlikely(--latency_ration < 0)) {
- cond_resched();
- latency_ration = LATENCY_LIMIT;
- }
+ ci->flags = CLUSTER_FLAG_NONE;
+ __free_cluster(si, ci);
+ spin_unlock(&ci->lock);
+ ret = true;
+ spin_lock(&si->lock);
+ }
+ spin_unlock(&si->lock);
+ return ret;
+}
+
+static void swap_discard_work(struct work_struct *work)
+{
+ struct swap_info_struct *si;
+
+ si = container_of(work, struct swap_info_struct, discard_work);
+
+ swap_do_scheduled_discard(si);
+}
+
+static void swap_users_ref_free(struct percpu_ref *ref)
+{
+ struct swap_info_struct *si;
+
+ si = container_of(ref, struct swap_info_struct, users);
+ complete(&si->comp);
+}
+
+/*
+ * Must be called after freeing if ci->count == 0, moves the cluster to free
+ * or discard list.
+ */
+static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
+{
+ VM_BUG_ON(ci->count != 0);
+ VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
+ lockdep_assert_held(&ci->lock);
+
+ /*
+ * If the swap is discardable, prepare discard the cluster
+ * instead of free it immediately. The cluster will be freed
+ * after discard.
+ */
+ if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
+ (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
+ swap_cluster_schedule_discard(si, ci);
+ return;
+ }
+
+ __free_cluster(si, ci);
+}
+
+/*
+ * Must be called after freeing if ci->count != 0, moves the cluster to
+ * nonfull list.
+ */
+static void partial_free_cluster(struct swap_info_struct *si,
+ struct swap_cluster_info *ci)
+{
+ VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER);
+ lockdep_assert_held(&ci->lock);
+
+ if (ci->flags != CLUSTER_FLAG_NONFULL)
+ move_cluster(si, ci, &si->nonfull_clusters[ci->order],
+ CLUSTER_FLAG_NONFULL);
+}
+
+/*
+ * Must be called after allocation, moves the cluster to full or frag list.
+ * Note: allocation doesn't acquire si lock, and may drop the ci lock for
+ * reclaim, so the cluster could be any where when called.
+ */
+static void relocate_cluster(struct swap_info_struct *si,
+ struct swap_cluster_info *ci)
+{
+ lockdep_assert_held(&ci->lock);
+
+ /* Discard cluster must remain off-list or on discard list */
+ if (cluster_is_discard(ci))
+ return;
+
+ if (!ci->count) {
+ if (ci->flags != CLUSTER_FLAG_FREE)
+ free_cluster(si, ci);
+ } else if (ci->count != SWAPFILE_CLUSTER) {
+ if (ci->flags != CLUSTER_FLAG_FRAG)
+ move_cluster(si, ci, &si->frag_clusters[ci->order],
+ CLUSTER_FLAG_FRAG);
+ } else {
+ if (ci->flags != CLUSTER_FLAG_FULL)
+ move_cluster(si, ci, &si->full_clusters,
+ CLUSTER_FLAG_FULL);
+ }
+}
+
+/*
+ * The cluster corresponding to @offset will be accounted as having one bad
+ * slot. The cluster will not be added to the free cluster list, and its
+ * usage counter will be increased by 1. Only used for initialization.
+ */
+static int swap_cluster_setup_bad_slot(struct swap_cluster_info *cluster_info,
+ unsigned long offset)
+{
+ unsigned long idx = offset / SWAPFILE_CLUSTER;
+ struct swap_table *table;
+ struct swap_cluster_info *ci;
+
+ ci = cluster_info + idx;
+ if (!ci->table) {
+ table = swap_table_alloc(GFP_KERNEL);
+ if (!table)
+ return -ENOMEM;
+ rcu_assign_pointer(ci->table, table);
+ }
+
+ ci->count++;
+
+ WARN_ON(ci->count > SWAPFILE_CLUSTER);
+ WARN_ON(ci->flags);
+
+ return 0;
+}
+
+static bool cluster_reclaim_range(struct swap_info_struct *si,
+ struct swap_cluster_info *ci,
+ unsigned long start, unsigned long end)
+{
+ unsigned char *map = si->swap_map;
+ unsigned long offset = start;
+ int nr_reclaim;
+
+ spin_unlock(&ci->lock);
+ do {
+ switch (READ_ONCE(map[offset])) {
+ case 0:
+ offset++;
+ break;
+ case SWAP_HAS_CACHE:
+ nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
+ if (nr_reclaim > 0)
+ offset += nr_reclaim;
+ else
+ goto out;
+ break;
+ default:
+ goto out;
}
+ } while (offset < end);
+out:
+ spin_lock(&ci->lock);
+ /*
+ * Recheck the range no matter reclaim succeeded or not, the slot
+ * could have been be freed while we are not holding the lock.
+ */
+ for (offset = start; offset < end; offset++)
+ if (READ_ONCE(map[offset]))
+ return false;
- offset = si->lowest_bit;
- last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
-
- /* Locate the first empty (unaligned) cluster */
- for (; last_in_cluster < scan_base; offset++) {
- if (si->swap_map[offset])
- last_in_cluster = offset + SWAPFILE_CLUSTER;
- else if (offset == last_in_cluster) {
- spin_lock(&si->lock);
- offset -= SWAPFILE_CLUSTER - 1;
- si->cluster_next = offset;
- si->cluster_nr = SWAPFILE_CLUSTER - 1;
- found_free_cluster = 1;
- goto checks;
- }
- if (unlikely(--latency_ration < 0)) {
- cond_resched();
- latency_ration = LATENCY_LIMIT;
- }
+ return true;
+}
+
+static bool cluster_scan_range(struct swap_info_struct *si,
+ struct swap_cluster_info *ci,
+ unsigned long start, unsigned int nr_pages,
+ bool *need_reclaim)
+{
+ unsigned long offset, end = start + nr_pages;
+ unsigned char *map = si->swap_map;
+
+ if (cluster_is_empty(ci))
+ return true;
+
+ for (offset = start; offset < end; offset++) {
+ switch (READ_ONCE(map[offset])) {
+ case 0:
+ continue;
+ case SWAP_HAS_CACHE:
+ if (!vm_swap_full())
+ return false;
+ *need_reclaim = true;
+ continue;
+ default:
+ return false;
}
+ }
- offset = scan_base;
- spin_lock(&si->lock);
- si->cluster_nr = SWAPFILE_CLUSTER - 1;
- si->lowest_alloc = 0;
+ return true;
+}
+
+/*
+ * Currently, the swap table is not used for count tracking, just
+ * do a sanity check here to ensure nothing leaked, so the swap
+ * table should be empty upon freeing.
+ */
+static void swap_cluster_assert_table_empty(struct swap_cluster_info *ci,
+ unsigned int start, unsigned int nr)
+{
+ unsigned int ci_off = start % SWAPFILE_CLUSTER;
+ unsigned int ci_end = ci_off + nr;
+ unsigned long swp_tb;
+
+ if (IS_ENABLED(CONFIG_DEBUG_VM)) {
+ do {
+ swp_tb = __swap_table_get(ci, ci_off);
+ VM_WARN_ON_ONCE(!swp_tb_is_null(swp_tb));
+ } while (++ci_off < ci_end);
}
+}
+
+static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
+ unsigned int start, unsigned char usage,
+ unsigned int order)
+{
+ unsigned int nr_pages = 1 << order;
+
+ lockdep_assert_held(&ci->lock);
-checks:
if (!(si->flags & SWP_WRITEOK))
- goto no_page;
- if (!si->highest_bit)
- goto no_page;
- if (offset > si->highest_bit)
- scan_base = offset = si->lowest_bit;
-
- /* reuse swap entry of cache-only swap if not busy. */
- if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
- int swap_was_freed;
- spin_unlock(&si->lock);
- swap_was_freed = __try_to_reclaim_swap(si, offset);
- spin_lock(&si->lock);
- /* entry was freed successfully, try to use this again */
- if (swap_was_freed)
- goto checks;
- goto scan; /* check next one */
- }
+ return false;
- if (si->swap_map[offset])
- goto scan;
+ /*
+ * The first allocation in a cluster makes the
+ * cluster exclusive to this order
+ */
+ if (cluster_is_empty(ci))
+ ci->order = order;
- if (offset == si->lowest_bit)
- si->lowest_bit++;
- if (offset == si->highest_bit)
- si->highest_bit--;
- si->inuse_pages++;
- if (si->inuse_pages == si->pages) {
- si->lowest_bit = si->max;
- si->highest_bit = 0;
- }
- si->swap_map[offset] = usage;
- si->cluster_next = offset + 1;
- si->flags -= SWP_SCANNING;
+ memset(si->swap_map + start, usage, nr_pages);
+ swap_cluster_assert_table_empty(ci, start, nr_pages);
+ swap_range_alloc(si, nr_pages);
+ ci->count += nr_pages;
- if (si->lowest_alloc) {
- /*
- * Only set when SWP_PAGE_DISCARD, and there's a scan
- * for a free cluster in progress or just completed.
- */
- if (found_free_cluster) {
- /*
- * To optimize wear-levelling, discard the
- * old data of the cluster, taking care not to
- * discard any of its pages that have already
- * been allocated by racing tasks (offset has
- * already stepped over any at the beginning).
- */
- if (offset < si->highest_alloc &&
- si->lowest_alloc <= last_in_cluster)
- last_in_cluster = si->lowest_alloc - 1;
- si->flags |= SWP_DISCARDING;
- spin_unlock(&si->lock);
+ return true;
+}
- if (offset < last_in_cluster)
- discard_swap_cluster(si, offset,
- last_in_cluster - offset + 1);
+/* Try use a new cluster for current CPU and allocate from it. */
+static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si,
+ struct swap_cluster_info *ci,
+ unsigned long offset,
+ unsigned int order,
+ unsigned char usage)
+{
+ unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
+ unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER);
+ unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
+ unsigned int nr_pages = 1 << order;
+ bool need_reclaim, ret;
- spin_lock(&si->lock);
- si->lowest_alloc = 0;
- si->flags &= ~SWP_DISCARDING;
+ lockdep_assert_held(&ci->lock);
- smp_mb(); /* wake_up_bit advises this */
- wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
+ if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER)
+ goto out;
- } else if (si->flags & SWP_DISCARDING) {
- /*
- * Delay using pages allocated by racing tasks
- * until the whole discard has been issued. We
- * could defer that delay until swap_writepage,
- * but it's easier to keep this self-contained.
- */
- spin_unlock(&si->lock);
- wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
- wait_for_discard, TASK_UNINTERRUPTIBLE);
- spin_lock(&si->lock);
- } else {
+ for (end -= nr_pages; offset <= end; offset += nr_pages) {
+ need_reclaim = false;
+ if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim))
+ continue;
+ if (need_reclaim) {
+ ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages);
/*
- * Note pages allocated by racing tasks while
- * scan for a free cluster is in progress, so
- * that its final discard can exclude them.
+ * Reclaim drops ci->lock and cluster could be used
+ * by another order. Not checking flag as off-list
+ * cluster has no flag set, and change of list
+ * won't cause fragmentation.
*/
- if (offset < si->lowest_alloc)
- si->lowest_alloc = offset;
- if (offset > si->highest_alloc)
- si->highest_alloc = offset;
+ if (!cluster_is_usable(ci, order))
+ goto out;
+ if (cluster_is_empty(ci))
+ offset = start;
+ /* Reclaim failed but cluster is usable, try next */
+ if (!ret)
+ continue;
}
+ if (!cluster_alloc_range(si, ci, offset, usage, order))
+ break;
+ found = offset;
+ offset += nr_pages;
+ if (ci->count < SWAPFILE_CLUSTER && offset <= end)
+ next = offset;
+ break;
+ }
+out:
+ relocate_cluster(si, ci);
+ swap_cluster_unlock(ci);
+ if (si->flags & SWP_SOLIDSTATE) {
+ this_cpu_write(percpu_swap_cluster.offset[order], next);
+ this_cpu_write(percpu_swap_cluster.si[order], si);
+ } else {
+ si->global_cluster->next[order] = next;
}
- return offset;
+ return found;
+}
-scan:
- spin_unlock(&si->lock);
- while (++offset <= si->highest_bit) {
- if (!si->swap_map[offset]) {
- spin_lock(&si->lock);
- goto checks;
- }
- if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
- spin_lock(&si->lock);
- goto checks;
- }
- if (unlikely(--latency_ration < 0)) {
- cond_resched();
- latency_ration = LATENCY_LIMIT;
+static unsigned int alloc_swap_scan_list(struct swap_info_struct *si,
+ struct list_head *list,
+ unsigned int order,
+ unsigned char usage,
+ bool scan_all)
+{
+ unsigned int found = SWAP_ENTRY_INVALID;
+
+ do {
+ struct swap_cluster_info *ci = isolate_lock_cluster(si, list);
+ unsigned long offset;
+
+ if (!ci)
+ break;
+ offset = cluster_offset(si, ci);
+ found = alloc_swap_scan_cluster(si, ci, offset, order, usage);
+ if (found)
+ break;
+ } while (scan_all);
+
+ return found;
+}
+
+static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force)
+{
+ long to_scan = 1;
+ unsigned long offset, end;
+ struct swap_cluster_info *ci;
+ unsigned char *map = si->swap_map;
+ int nr_reclaim;
+
+ if (force)
+ to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER;
+
+ while ((ci = isolate_lock_cluster(si, &si->full_clusters))) {
+ offset = cluster_offset(si, ci);
+ end = min(si->max, offset + SWAPFILE_CLUSTER);
+ to_scan--;
+
+ while (offset < end) {
+ if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
+ spin_unlock(&ci->lock);
+ nr_reclaim = __try_to_reclaim_swap(si, offset,
+ TTRS_ANYWAY);
+ spin_lock(&ci->lock);
+ if (nr_reclaim) {
+ offset += abs(nr_reclaim);
+ continue;
+ }
+ }
+ offset++;
}
+
+ /* in case no swap cache is reclaimed */
+ if (ci->flags == CLUSTER_FLAG_NONE)
+ relocate_cluster(si, ci);
+
+ swap_cluster_unlock(ci);
+ if (to_scan <= 0)
+ break;
}
- offset = si->lowest_bit;
- while (++offset < scan_base) {
- if (!si->swap_map[offset]) {
- spin_lock(&si->lock);
- goto checks;
- }
- if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
- spin_lock(&si->lock);
- goto checks;
- }
- if (unlikely(--latency_ration < 0)) {
- cond_resched();
- latency_ration = LATENCY_LIMIT;
+}
+
+static void swap_reclaim_work(struct work_struct *work)
+{
+ struct swap_info_struct *si;
+
+ si = container_of(work, struct swap_info_struct, reclaim_work);
+
+ swap_reclaim_full_clusters(si, true);
+}
+
+/*
+ * Try to allocate swap entries with specified order and try set a new
+ * cluster for current CPU too.
+ */
+static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
+ unsigned char usage)
+{
+ struct swap_cluster_info *ci;
+ unsigned int offset = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
+
+ /*
+ * Swapfile is not block device so unable
+ * to allocate large entries.
+ */
+ if (order && !(si->flags & SWP_BLKDEV))
+ return 0;
+
+ if (!(si->flags & SWP_SOLIDSTATE)) {
+ /* Serialize HDD SWAP allocation for each device. */
+ spin_lock(&si->global_cluster_lock);
+ offset = si->global_cluster->next[order];
+ if (offset == SWAP_ENTRY_INVALID)
+ goto new_cluster;
+
+ ci = swap_cluster_lock(si, offset);
+ /* Cluster could have been used by another order */
+ if (cluster_is_usable(ci, order)) {
+ if (cluster_is_empty(ci))
+ offset = cluster_offset(si, ci);
+ found = alloc_swap_scan_cluster(si, ci, offset,
+ order, usage);
+ } else {
+ swap_cluster_unlock(ci);
}
+ if (found)
+ goto done;
}
- spin_lock(&si->lock);
-no_page:
- si->flags -= SWP_SCANNING;
- return 0;
+new_cluster:
+ /*
+ * If the device need discard, prefer new cluster over nonfull
+ * to spread out the writes.
+ */
+ if (si->flags & SWP_PAGE_DISCARD) {
+ found = alloc_swap_scan_list(si, &si->free_clusters, order, usage,
+ false);
+ if (found)
+ goto done;
+ }
+
+ if (order < PMD_ORDER) {
+ found = alloc_swap_scan_list(si, &si->nonfull_clusters[order],
+ order, usage, true);
+ if (found)
+ goto done;
+ }
+
+ if (!(si->flags & SWP_PAGE_DISCARD)) {
+ found = alloc_swap_scan_list(si, &si->free_clusters, order, usage,
+ false);
+ if (found)
+ goto done;
+ }
+
+ /* Try reclaim full clusters if free and nonfull lists are drained */
+ if (vm_swap_full())
+ swap_reclaim_full_clusters(si, false);
+
+ if (order < PMD_ORDER) {
+ /*
+ * Scan only one fragment cluster is good enough. Order 0
+ * allocation will surely success, and large allocation
+ * failure is not critical. Scanning one cluster still
+ * keeps the list rotated and reclaimed (for HAS_CACHE).
+ */
+ found = alloc_swap_scan_list(si, &si->frag_clusters[order], order,
+ usage, false);
+ if (found)
+ goto done;
+ }
+
+ if (order)
+ goto done;
+
+ /* Order 0 stealing from higher order */
+ for (int o = 1; o < SWAP_NR_ORDERS; o++) {
+ /*
+ * Clusters here have at least one usable slots and can't fail order 0
+ * allocation, but reclaim may drop si->lock and race with another user.
+ */
+ found = alloc_swap_scan_list(si, &si->frag_clusters[o],
+ 0, usage, true);
+ if (found)
+ goto done;
+
+ found = alloc_swap_scan_list(si, &si->nonfull_clusters[o],
+ 0, usage, true);
+ if (found)
+ goto done;
+ }
+done:
+ if (!(si->flags & SWP_SOLIDSTATE))
+ spin_unlock(&si->global_cluster_lock);
+
+ return found;
}
-swp_entry_t get_swap_page(void)
+/* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */
+static void del_from_avail_list(struct swap_info_struct *si, bool swapoff)
{
- struct swap_info_struct *si;
- pgoff_t offset;
- int type, next;
- int wrapped = 0;
- int hp_index;
+ unsigned long pages;
- spin_lock(&swap_lock);
- if (atomic_long_read(&nr_swap_pages) <= 0)
- goto noswap;
- atomic_long_dec(&nr_swap_pages);
+ spin_lock(&swap_avail_lock);
- for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
- hp_index = atomic_xchg(&highest_priority_index, -1);
+ if (swapoff) {
/*
- * highest_priority_index records current highest priority swap
- * type which just frees swap entries. If its priority is
- * higher than that of swap_list.next swap type, we use it. It
- * isn't protected by swap_lock, so it can be an invalid value
- * if the corresponding swap type is swapoff. We double check
- * the flags here. It's even possible the swap type is swapoff
- * and swapon again and its priority is changed. In such rare
- * case, low prority swap type might be used, but eventually
- * high priority swap will be used after several rounds of
- * swap.
+ * Forcefully remove it. Clear the SWP_WRITEOK flags for
+ * swapoff here so it's synchronized by both si->lock and
+ * swap_avail_lock, to ensure the result can be seen by
+ * add_to_avail_list.
*/
- if (hp_index != -1 && hp_index != type &&
- swap_info[type]->prio < swap_info[hp_index]->prio &&
- (swap_info[hp_index]->flags & SWP_WRITEOK)) {
- type = hp_index;
- swap_list.next = type;
- }
+ lockdep_assert_held(&si->lock);
+ si->flags &= ~SWP_WRITEOK;
+ atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
+ } else {
+ /*
+ * If not called by swapoff, take it off-list only if it's
+ * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly
+ * si->inuse_pages == pages), any concurrent slot freeing,
+ * or device already removed from plist by someone else
+ * will make this return false.
+ */
+ pages = si->pages;
+ if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
+ pages | SWAP_USAGE_OFFLIST_BIT))
+ goto skip;
+ }
- si = swap_info[type];
- next = si->next;
- if (next < 0 ||
- (!wrapped && si->prio != swap_info[next]->prio)) {
- next = swap_list.head;
- wrapped++;
- }
+ plist_del(&si->avail_list, &swap_avail_head);
- spin_lock(&si->lock);
- if (!si->highest_bit) {
- spin_unlock(&si->lock);
- continue;
- }
- if (!(si->flags & SWP_WRITEOK)) {
- spin_unlock(&si->lock);
- continue;
+skip:
+ spin_unlock(&swap_avail_lock);
+}
+
+/* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */
+static void add_to_avail_list(struct swap_info_struct *si, bool swapon)
+{
+ long val;
+ unsigned long pages;
+
+ spin_lock(&swap_avail_lock);
+
+ /* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */
+ if (swapon) {
+ lockdep_assert_held(&si->lock);
+ si->flags |= SWP_WRITEOK;
+ } else {
+ if (!(READ_ONCE(si->flags) & SWP_WRITEOK))
+ goto skip;
+ }
+
+ if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT))
+ goto skip;
+
+ val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
+
+ /*
+ * When device is full and device is on the plist, only one updater will
+ * see (inuse_pages == si->pages) and will call del_from_avail_list. If
+ * that updater happen to be here, just skip adding.
+ */
+ pages = si->pages;
+ if (val == pages) {
+ /* Just like the cmpxchg in del_from_avail_list */
+ if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
+ pages | SWAP_USAGE_OFFLIST_BIT))
+ goto skip;
+ }
+
+ plist_add(&si->avail_list, &swap_avail_head);
+
+skip:
+ spin_unlock(&swap_avail_lock);
+}
+
+/*
+ * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock
+ * within each cluster, so the total contribution to the global counter should
+ * always be positive and cannot exceed the total number of usable slots.
+ */
+static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries)
+{
+ long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages);
+
+ /*
+ * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set,
+ * remove it from the plist.
+ */
+ if (unlikely(val == si->pages)) {
+ del_from_avail_list(si, false);
+ return true;
+ }
+
+ return false;
+}
+
+static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries)
+{
+ long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages);
+
+ /*
+ * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set,
+ * add it to the plist.
+ */
+ if (unlikely(val & SWAP_USAGE_OFFLIST_BIT))
+ add_to_avail_list(si, false);
+}
+
+static void swap_range_alloc(struct swap_info_struct *si,
+ unsigned int nr_entries)
+{
+ if (swap_usage_add(si, nr_entries)) {
+ if (vm_swap_full())
+ schedule_work(&si->reclaim_work);
+ }
+ atomic_long_sub(nr_entries, &nr_swap_pages);
+}
+
+static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
+ unsigned int nr_entries)
+{
+ unsigned long begin = offset;
+ unsigned long end = offset + nr_entries - 1;
+ void (*swap_slot_free_notify)(struct block_device *, unsigned long);
+ unsigned int i;
+
+ /*
+ * Use atomic clear_bit operations only on zeromap instead of non-atomic
+ * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
+ */
+ for (i = 0; i < nr_entries; i++) {
+ clear_bit(offset + i, si->zeromap);
+ zswap_invalidate(swp_entry(si->type, offset + i));
+ }
+
+ if (si->flags & SWP_BLKDEV)
+ swap_slot_free_notify =
+ si->bdev->bd_disk->fops->swap_slot_free_notify;
+ else
+ swap_slot_free_notify = NULL;
+ while (offset <= end) {
+ arch_swap_invalidate_page(si->type, offset);
+ if (swap_slot_free_notify)
+ swap_slot_free_notify(si->bdev, offset);
+ offset++;
+ }
+ __swap_cache_clear_shadow(swp_entry(si->type, begin), nr_entries);
+
+ /*
+ * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
+ * only after the above cleanups are done.
+ */
+ smp_wmb();
+ atomic_long_add(nr_entries, &nr_swap_pages);
+ swap_usage_sub(si, nr_entries);
+}
+
+static bool get_swap_device_info(struct swap_info_struct *si)
+{
+ if (!percpu_ref_tryget_live(&si->users))
+ return false;
+ /*
+ * Guarantee the si->users are checked before accessing other
+ * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is
+ * up to dated.
+ *
+ * Paired with the spin_unlock() after setup_swap_info() in
+ * enable_swap_info(), and smp_wmb() in swapoff.
+ */
+ smp_rmb();
+ return true;
+}
+
+/*
+ * Fast path try to get swap entries with specified order from current
+ * CPU's swap entry pool (a cluster).
+ */
+static bool swap_alloc_fast(swp_entry_t *entry,
+ int order)
+{
+ struct swap_cluster_info *ci;
+ struct swap_info_struct *si;
+ unsigned int offset, found = SWAP_ENTRY_INVALID;
+
+ /*
+ * Once allocated, swap_info_struct will never be completely freed,
+ * so checking it's liveness by get_swap_device_info is enough.
+ */
+ si = this_cpu_read(percpu_swap_cluster.si[order]);
+ offset = this_cpu_read(percpu_swap_cluster.offset[order]);
+ if (!si || !offset || !get_swap_device_info(si))
+ return false;
+
+ ci = swap_cluster_lock(si, offset);
+ if (cluster_is_usable(ci, order)) {
+ if (cluster_is_empty(ci))
+ offset = cluster_offset(si, ci);
+ found = alloc_swap_scan_cluster(si, ci, offset, order, SWAP_HAS_CACHE);
+ if (found)
+ *entry = swp_entry(si->type, found);
+ } else {
+ swap_cluster_unlock(ci);
+ }
+
+ put_swap_device(si);
+ return !!found;
+}
+
+/* Rotate the device and switch to a new cluster */
+static void swap_alloc_slow(swp_entry_t *entry,
+ int order)
+{
+ unsigned long offset;
+ struct swap_info_struct *si, *next;
+
+ spin_lock(&swap_avail_lock);
+start_over:
+ plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
+ /* Rotate the device and switch to a new cluster */
+ plist_requeue(&si->avail_list, &swap_avail_head);
+ spin_unlock(&swap_avail_lock);
+ if (get_swap_device_info(si)) {
+ offset = cluster_alloc_swap_entry(si, order, SWAP_HAS_CACHE);
+ put_swap_device(si);
+ if (offset) {
+ *entry = swp_entry(si->type, offset);
+ return;
+ }
+ if (order)
+ return;
}
- swap_list.next = next;
+ spin_lock(&swap_avail_lock);
+ /*
+ * if we got here, it's likely that si was almost full before,
+ * multiple callers probably all tried to get a page from the
+ * same si and it filled up before we could get one; or, the si
+ * filled up between us dropping swap_avail_lock.
+ * Since we dropped the swap_avail_lock, the swap_avail_list
+ * may have been modified; so if next is still in the
+ * swap_avail_head list then try it, otherwise start over if we
+ * have not gotten any slots.
+ */
+ if (plist_node_empty(&next->avail_list))
+ goto start_over;
+ }
+ spin_unlock(&swap_avail_lock);
+}
+
+/*
+ * Discard pending clusters in a synchronized way when under high pressure.
+ * Return: true if any cluster is discarded.
+ */
+static bool swap_sync_discard(void)
+{
+ bool ret = false;
+ struct swap_info_struct *si, *next;
+ spin_lock(&swap_lock);
+start_over:
+ plist_for_each_entry_safe(si, next, &swap_active_head, list) {
spin_unlock(&swap_lock);
- /* This is called for allocating swap entry for cache */
- offset = scan_swap_map(si, SWAP_HAS_CACHE);
- spin_unlock(&si->lock);
- if (offset)
- return swp_entry(type, offset);
+ if (get_swap_device_info(si)) {
+ if (si->flags & SWP_PAGE_DISCARD)
+ ret = swap_do_scheduled_discard(si);
+ put_swap_device(si);
+ }
+ if (ret)
+ return true;
+
spin_lock(&swap_lock);
- next = swap_list.next;
+ if (plist_node_empty(&next->list))
+ goto start_over;
}
-
- atomic_long_inc(&nr_swap_pages);
-noswap:
spin_unlock(&swap_lock);
- return (swp_entry_t) {0};
+
+ return false;
}
-/* The only caller of this function is now susupend routine */
-swp_entry_t get_swap_page_of_type(int type)
+/**
+ * folio_alloc_swap - allocate swap space for a folio
+ * @folio: folio we want to move to swap
+ *
+ * Allocate swap space for the folio and add the folio to the
+ * swap cache.
+ *
+ * Context: Caller needs to hold the folio lock.
+ * Return: Whether the folio was added to the swap cache.
+ */
+int folio_alloc_swap(struct folio *folio)
{
- struct swap_info_struct *si;
- pgoff_t offset;
+ unsigned int order = folio_order(folio);
+ unsigned int size = 1 << order;
+ swp_entry_t entry = {};
- si = swap_info[type];
- spin_lock(&si->lock);
- if (si && (si->flags & SWP_WRITEOK)) {
- atomic_long_dec(&nr_swap_pages);
- /* This is called for allocating swap entry, not cache */
- offset = scan_swap_map(si, 1);
- if (offset) {
- spin_unlock(&si->lock);
- return swp_entry(type, offset);
+ VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
+ VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
+
+ if (order) {
+ /*
+ * Reject large allocation when THP_SWAP is disabled,
+ * the caller should split the folio and try again.
+ */
+ if (!IS_ENABLED(CONFIG_THP_SWAP))
+ return -EAGAIN;
+
+ /*
+ * Allocation size should never exceed cluster size
+ * (HPAGE_PMD_SIZE).
+ */
+ if (size > SWAPFILE_CLUSTER) {
+ VM_WARN_ON_ONCE(1);
+ return -EINVAL;
}
- atomic_long_inc(&nr_swap_pages);
}
- spin_unlock(&si->lock);
- return (swp_entry_t) {0};
+
+again:
+ local_lock(&percpu_swap_cluster.lock);
+ if (!swap_alloc_fast(&entry, order))
+ swap_alloc_slow(&entry, order);
+ local_unlock(&percpu_swap_cluster.lock);
+
+ if (unlikely(!order && !entry.val)) {
+ if (swap_sync_discard())
+ goto again;
+ }
+
+ /* Need to call this even if allocation failed, for MEMCG_SWAP_FAIL. */
+ if (mem_cgroup_try_charge_swap(folio, entry))
+ goto out_free;
+
+ if (!entry.val)
+ return -ENOMEM;
+
+ swap_cache_add_folio(folio, entry, NULL);
+
+ return 0;
+
+out_free:
+ put_swap_folio(folio, entry);
+ return -ENOMEM;
}
-static struct swap_info_struct *swap_info_get(swp_entry_t entry)
+static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
{
- struct swap_info_struct *p;
- unsigned long offset, type;
+ struct swap_info_struct *si;
+ unsigned long offset;
if (!entry.val)
goto out;
- type = swp_type(entry);
- if (type >= nr_swapfiles)
+ si = swap_entry_to_info(entry);
+ if (!si)
goto bad_nofile;
- p = swap_info[type];
- if (!(p->flags & SWP_USED))
+ if (data_race(!(si->flags & SWP_USED)))
goto bad_device;
offset = swp_offset(entry);
- if (offset >= p->max)
+ if (offset >= si->max)
goto bad_offset;
- if (!p->swap_map[offset])
+ if (data_race(!si->swap_map[swp_offset(entry)]))
goto bad_free;
- spin_lock(&p->lock);
- return p;
+ return si;
bad_free:
- printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
+ pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
goto out;
bad_offset:
- printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
+ pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
goto out;
bad_device:
- printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
+ pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
goto out;
bad_nofile:
- printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
+ pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
out:
return NULL;
}
-/*
- * This swap type frees swap entry, check if it is the highest priority swap
- * type which just frees swap entry. get_swap_page() uses
- * highest_priority_index to search highest priority swap type. The
- * swap_info_struct.lock can't protect us if there are multiple swap types
- * active, so we use atomic_cmpxchg.
- */
-static void set_highest_priority_index(int type)
-{
- int old_hp_index, new_hp_index;
-
- do {
- old_hp_index = atomic_read(&highest_priority_index);
- if (old_hp_index != -1 &&
- swap_info[old_hp_index]->prio >= swap_info[type]->prio)
- break;
- new_hp_index = type;
- } while (atomic_cmpxchg(&highest_priority_index,
- old_hp_index, new_hp_index) != old_hp_index);
-}
-
-static unsigned char swap_entry_free(struct swap_info_struct *p,
- swp_entry_t entry, unsigned char usage)
+static unsigned char swap_entry_put_locked(struct swap_info_struct *si,
+ struct swap_cluster_info *ci,
+ swp_entry_t entry,
+ unsigned char usage)
{
unsigned long offset = swp_offset(entry);
unsigned char count;
unsigned char has_cache;
- count = p->swap_map[offset];
+ count = si->swap_map[offset];
+
has_cache = count & SWAP_HAS_CACHE;
count &= ~SWAP_HAS_CACHE;
@@ -584,7 +1531,7 @@ static unsigned char swap_entry_free(struct swap_info_struct *p,
count = 0;
} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
if (count == COUNT_CONTINUED) {
- if (swap_count_continued(p, offset, count))
+ if (swap_count_continued(si, offset, count))
count = SWAP_MAP_MAX | COUNT_CONTINUED;
else
count = SWAP_MAP_MAX;
@@ -592,188 +1539,500 @@ static unsigned char swap_entry_free(struct swap_info_struct *p,
count--;
}
- if (!count)
- mem_cgroup_uncharge_swap(entry);
-
usage = count | has_cache;
- p->swap_map[offset] = usage;
-
- /* free if no reference */
- if (!usage) {
- if (offset < p->lowest_bit)
- p->lowest_bit = offset;
- if (offset > p->highest_bit)
- p->highest_bit = offset;
- set_highest_priority_index(p->type);
- atomic_long_inc(&nr_swap_pages);
- p->inuse_pages--;
- frontswap_invalidate_page(p->type, offset);
- if (p->flags & SWP_BLKDEV) {
- struct gendisk *disk = p->bdev->bd_disk;
- if (disk->fops->swap_slot_free_notify)
- disk->fops->swap_slot_free_notify(p->bdev,
- offset);
- }
- }
+ if (usage)
+ WRITE_ONCE(si->swap_map[offset], usage);
+ else
+ swap_entries_free(si, ci, entry, 1);
return usage;
}
/*
- * Caller has made sure that the swapdevice corresponding to entry
+ * When we get a swap entry, if there aren't some other ways to
+ * prevent swapoff, such as the folio in swap cache is locked, RCU
+ * reader side is locked, etc., the swap entry may become invalid
+ * because of swapoff. Then, we need to enclose all swap related
+ * functions with get_swap_device() and put_swap_device(), unless the
+ * swap functions call get/put_swap_device() by themselves.
+ *
+ * RCU reader side lock (including any spinlock) is sufficient to
+ * prevent swapoff, because synchronize_rcu() is called in swapoff()
+ * before freeing data structures.
+ *
+ * Check whether swap entry is valid in the swap device. If so,
+ * return pointer to swap_info_struct, and keep the swap entry valid
+ * via preventing the swap device from being swapoff, until
+ * put_swap_device() is called. Otherwise return NULL.
+ *
+ * Notice that swapoff or swapoff+swapon can still happen before the
+ * percpu_ref_tryget_live() in get_swap_device() or after the
+ * percpu_ref_put() in put_swap_device() if there isn't any other way
+ * to prevent swapoff. The caller must be prepared for that. For
+ * example, the following situation is possible.
+ *
+ * CPU1 CPU2
+ * do_swap_page()
+ * ... swapoff+swapon
+ * __read_swap_cache_async()
+ * swapcache_prepare()
+ * __swap_duplicate()
+ * // check swap_map
+ * // verify PTE not changed
+ *
+ * In __swap_duplicate(), the swap_map need to be checked before
+ * changing partly because the specified swap entry may be for another
+ * swap device which has been swapoff. And in do_swap_page(), after
+ * the page is read from the swap device, the PTE is verified not
+ * changed with the page table locked to check whether the swap device
+ * has been swapoff or swapoff+swapon.
+ */
+struct swap_info_struct *get_swap_device(swp_entry_t entry)
+{
+ struct swap_info_struct *si;
+ unsigned long offset;
+
+ if (!entry.val)
+ goto out;
+ si = swap_entry_to_info(entry);
+ if (!si)
+ goto bad_nofile;
+ if (!get_swap_device_info(si))
+ goto out;
+ offset = swp_offset(entry);
+ if (offset >= si->max)
+ goto put_out;
+
+ return si;
+bad_nofile:
+ pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
+out:
+ return NULL;
+put_out:
+ pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
+ percpu_ref_put(&si->users);
+ return NULL;
+}
+
+static void swap_entries_put_cache(struct swap_info_struct *si,
+ swp_entry_t entry, int nr)
+{
+ unsigned long offset = swp_offset(entry);
+ struct swap_cluster_info *ci;
+
+ ci = swap_cluster_lock(si, offset);
+ if (swap_only_has_cache(si, offset, nr)) {
+ swap_entries_free(si, ci, entry, nr);
+ } else {
+ for (int i = 0; i < nr; i++, entry.val++)
+ swap_entry_put_locked(si, ci, entry, SWAP_HAS_CACHE);
+ }
+ swap_cluster_unlock(ci);
+}
+
+static bool swap_entries_put_map(struct swap_info_struct *si,
+ swp_entry_t entry, int nr)
+{
+ unsigned long offset = swp_offset(entry);
+ struct swap_cluster_info *ci;
+ bool has_cache = false;
+ unsigned char count;
+ int i;
+
+ if (nr <= 1)
+ goto fallback;
+ count = swap_count(data_race(si->swap_map[offset]));
+ if (count != 1 && count != SWAP_MAP_SHMEM)
+ goto fallback;
+
+ ci = swap_cluster_lock(si, offset);
+ if (!swap_is_last_map(si, offset, nr, &has_cache)) {
+ goto locked_fallback;
+ }
+ if (!has_cache)
+ swap_entries_free(si, ci, entry, nr);
+ else
+ for (i = 0; i < nr; i++)
+ WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
+ swap_cluster_unlock(ci);
+
+ return has_cache;
+
+fallback:
+ ci = swap_cluster_lock(si, offset);
+locked_fallback:
+ for (i = 0; i < nr; i++, entry.val++) {
+ count = swap_entry_put_locked(si, ci, entry, 1);
+ if (count == SWAP_HAS_CACHE)
+ has_cache = true;
+ }
+ swap_cluster_unlock(ci);
+ return has_cache;
+}
+
+/*
+ * Only functions with "_nr" suffix are able to free entries spanning
+ * cross multi clusters, so ensure the range is within a single cluster
+ * when freeing entries with functions without "_nr" suffix.
+ */
+static bool swap_entries_put_map_nr(struct swap_info_struct *si,
+ swp_entry_t entry, int nr)
+{
+ int cluster_nr, cluster_rest;
+ unsigned long offset = swp_offset(entry);
+ bool has_cache = false;
+
+ cluster_rest = SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER;
+ while (nr) {
+ cluster_nr = min(nr, cluster_rest);
+ has_cache |= swap_entries_put_map(si, entry, cluster_nr);
+ cluster_rest = SWAPFILE_CLUSTER;
+ nr -= cluster_nr;
+ entry.val += cluster_nr;
+ }
+
+ return has_cache;
+}
+
+/*
+ * Check if it's the last ref of swap entry in the freeing path.
+ * Qualified value includes 1, SWAP_HAS_CACHE or SWAP_MAP_SHMEM.
+ */
+static inline bool __maybe_unused swap_is_last_ref(unsigned char count)
+{
+ return (count == SWAP_HAS_CACHE) || (count == 1) ||
+ (count == SWAP_MAP_SHMEM);
+}
+
+/*
+ * Drop the last ref of swap entries, caller have to ensure all entries
+ * belong to the same cgroup and cluster.
+ */
+static void swap_entries_free(struct swap_info_struct *si,
+ struct swap_cluster_info *ci,
+ swp_entry_t entry, unsigned int nr_pages)
+{
+ unsigned long offset = swp_offset(entry);
+ unsigned char *map = si->swap_map + offset;
+ unsigned char *map_end = map + nr_pages;
+
+ /* It should never free entries across different clusters */
+ VM_BUG_ON(ci != __swap_offset_to_cluster(si, offset + nr_pages - 1));
+ VM_BUG_ON(cluster_is_empty(ci));
+ VM_BUG_ON(ci->count < nr_pages);
+
+ ci->count -= nr_pages;
+ do {
+ VM_BUG_ON(!swap_is_last_ref(*map));
+ *map = 0;
+ } while (++map < map_end);
+
+ mem_cgroup_uncharge_swap(entry, nr_pages);
+ swap_range_free(si, offset, nr_pages);
+ swap_cluster_assert_table_empty(ci, offset, nr_pages);
+
+ if (!ci->count)
+ free_cluster(si, ci);
+ else
+ partial_free_cluster(si, ci);
+}
+
+/*
+ * Caller has made sure that the swap device corresponding to entry
* is still around or has not been recycled.
*/
-void swap_free(swp_entry_t entry)
+void swap_free_nr(swp_entry_t entry, int nr_pages)
{
- struct swap_info_struct *p;
+ int nr;
+ struct swap_info_struct *sis;
+ unsigned long offset = swp_offset(entry);
+
+ sis = _swap_info_get(entry);
+ if (!sis)
+ return;
- p = swap_info_get(entry);
- if (p) {
- swap_entry_free(p, entry, 1);
- spin_unlock(&p->lock);
+ while (nr_pages) {
+ nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
+ swap_entries_put_map(sis, swp_entry(sis->type, offset), nr);
+ offset += nr;
+ nr_pages -= nr;
}
}
/*
* Called after dropping swapcache to decrease refcnt to swap entries.
*/
-void swapcache_free(swp_entry_t entry, struct page *page)
+void put_swap_folio(struct folio *folio, swp_entry_t entry)
{
- struct swap_info_struct *p;
- unsigned char count;
+ struct swap_info_struct *si;
+ int size = 1 << swap_entry_order(folio_order(folio));
- p = swap_info_get(entry);
- if (p) {
- count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
- if (page)
- mem_cgroup_uncharge_swapcache(page, entry, count != 0);
- spin_unlock(&p->lock);
- }
+ si = _swap_info_get(entry);
+ if (!si)
+ return;
+
+ swap_entries_put_cache(si, entry, size);
+}
+
+int __swap_count(swp_entry_t entry)
+{
+ struct swap_info_struct *si = __swap_entry_to_info(entry);
+ pgoff_t offset = swp_offset(entry);
+
+ return swap_count(si->swap_map[offset]);
}
/*
- * How many references to page are currently swapped out?
+ * How many references to @entry are currently swapped out?
* This does not give an exact answer when swap count is continued,
* but does include the high COUNT_CONTINUED flag to allow for that.
*/
-int page_swapcount(struct page *page)
+bool swap_entry_swapped(struct swap_info_struct *si, swp_entry_t entry)
{
- int count = 0;
- struct swap_info_struct *p;
- swp_entry_t entry;
+ pgoff_t offset = swp_offset(entry);
+ struct swap_cluster_info *ci;
+ int count;
- entry.val = page_private(page);
- p = swap_info_get(entry);
- if (p) {
- count = swap_count(p->swap_map[swp_offset(entry)]);
- spin_unlock(&p->lock);
- }
- return count;
+ ci = swap_cluster_lock(si, offset);
+ count = swap_count(si->swap_map[offset]);
+ swap_cluster_unlock(ci);
+ return !!count;
}
/*
- * We can write to an anon page without COW if there are no other references
- * to it. And as a side-effect, free up its swap: because the old content
- * on disk will never be read, and seeking back there to write new content
- * later would only waste time away from clustering.
+ * How many references to @entry are currently swapped out?
+ * This considers COUNT_CONTINUED so it returns exact answer.
*/
-int reuse_swap_page(struct page *page)
+int swp_swapcount(swp_entry_t entry)
{
- int count;
+ int count, tmp_count, n;
+ struct swap_info_struct *si;
+ struct swap_cluster_info *ci;
+ struct page *page;
+ pgoff_t offset;
+ unsigned char *map;
- VM_BUG_ON(!PageLocked(page));
- if (unlikely(PageKsm(page)))
+ si = _swap_info_get(entry);
+ if (!si)
return 0;
- count = page_mapcount(page);
- if (count <= 1 && PageSwapCache(page)) {
- count += page_swapcount(page);
- if (count == 1 && !PageWriteback(page)) {
- delete_from_swap_cache(page);
- SetPageDirty(page);
+
+ offset = swp_offset(entry);
+
+ ci = swap_cluster_lock(si, offset);
+
+ count = swap_count(si->swap_map[offset]);
+ if (!(count & COUNT_CONTINUED))
+ goto out;
+
+ count &= ~COUNT_CONTINUED;
+ n = SWAP_MAP_MAX + 1;
+
+ page = vmalloc_to_page(si->swap_map + offset);
+ offset &= ~PAGE_MASK;
+ VM_BUG_ON(page_private(page) != SWP_CONTINUED);
+
+ do {
+ page = list_next_entry(page, lru);
+ map = kmap_local_page(page);
+ tmp_count = map[offset];
+ kunmap_local(map);
+
+ count += (tmp_count & ~COUNT_CONTINUED) * n;
+ n *= (SWAP_CONT_MAX + 1);
+ } while (tmp_count & COUNT_CONTINUED);
+out:
+ swap_cluster_unlock(ci);
+ return count;
+}
+
+static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
+ swp_entry_t entry, int order)
+{
+ struct swap_cluster_info *ci;
+ unsigned char *map = si->swap_map;
+ unsigned int nr_pages = 1 << order;
+ unsigned long roffset = swp_offset(entry);
+ unsigned long offset = round_down(roffset, nr_pages);
+ int i;
+ bool ret = false;
+
+ ci = swap_cluster_lock(si, offset);
+ if (nr_pages == 1) {
+ if (swap_count(map[roffset]))
+ ret = true;
+ goto unlock_out;
+ }
+ for (i = 0; i < nr_pages; i++) {
+ if (swap_count(map[offset + i])) {
+ ret = true;
+ break;
}
}
- return count <= 1;
+unlock_out:
+ swap_cluster_unlock(ci);
+ return ret;
}
-/*
- * If swap is getting full, or if there are no more mappings of this page,
- * then try_to_free_swap is called to free its swap space.
- */
-int try_to_free_swap(struct page *page)
+static bool folio_swapped(struct folio *folio)
{
- VM_BUG_ON(!PageLocked(page));
+ swp_entry_t entry = folio->swap;
+ struct swap_info_struct *si = _swap_info_get(entry);
- if (!PageSwapCache(page))
- return 0;
- if (PageWriteback(page))
- return 0;
- if (page_swapcount(page))
- return 0;
+ if (!si)
+ return false;
+
+ if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
+ return swap_entry_swapped(si, entry);
+
+ return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
+}
+
+static bool folio_swapcache_freeable(struct folio *folio)
+{
+ VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
+
+ if (!folio_test_swapcache(folio))
+ return false;
+ if (folio_test_writeback(folio))
+ return false;
/*
* Once hibernation has begun to create its image of memory,
- * there's a danger that one of the calls to try_to_free_swap()
+ * there's a danger that one of the calls to folio_free_swap()
* - most probably a call from __try_to_reclaim_swap() while
* hibernation is allocating its own swap pages for the image,
* but conceivably even a call from memory reclaim - will free
- * the swap from a page which has already been recorded in the
- * image as a clean swapcache page, and then reuse its swap for
+ * the swap from a folio which has already been recorded in the
+ * image as a clean swapcache folio, and then reuse its swap for
* another page of the image. On waking from hibernation, the
- * original page might be freed under memory pressure, then
+ * original folio might be freed under memory pressure, then
* later read back in from swap, now with the wrong data.
*
- * Hibration suspends storage while it is writing the image
+ * Hibernation suspends storage while it is writing the image
* to disk so check that here.
*/
if (pm_suspended_storage())
- return 0;
+ return false;
- delete_from_swap_cache(page);
- SetPageDirty(page);
- return 1;
+ return true;
}
-/*
- * Free the swap entry like above, but also try to
- * free the page cache entry if it is the last user.
+/**
+ * folio_free_swap() - Free the swap space used for this folio.
+ * @folio: The folio to remove.
+ *
+ * If swap is getting full, or if there are no more mappings of this folio,
+ * then call folio_free_swap to free its swap space.
+ *
+ * Return: true if we were able to release the swap space.
*/
-int free_swap_and_cache(swp_entry_t entry)
+bool folio_free_swap(struct folio *folio)
{
- struct swap_info_struct *p;
- struct page *page = NULL;
-
- if (non_swap_entry(entry))
- return 1;
-
- p = swap_info_get(entry);
- if (p) {
- if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
- page = find_get_page(swap_address_space(entry),
- entry.val);
- if (page && !trylock_page(page)) {
- page_cache_release(page);
- page = NULL;
- }
+ if (!folio_swapcache_freeable(folio))
+ return false;
+ if (folio_swapped(folio))
+ return false;
+
+ swap_cache_del_folio(folio);
+ folio_set_dirty(folio);
+ return true;
+}
+
+/**
+ * free_swap_and_cache_nr() - Release reference on range of swap entries and
+ * reclaim their cache if no more references remain.
+ * @entry: First entry of range.
+ * @nr: Number of entries in range.
+ *
+ * For each swap entry in the contiguous range, release a reference. If any swap
+ * entries become free, try to reclaim their underlying folios, if present. The
+ * offset range is defined by [entry.offset, entry.offset + nr).
+ */
+void free_swap_and_cache_nr(swp_entry_t entry, int nr)
+{
+ const unsigned long start_offset = swp_offset(entry);
+ const unsigned long end_offset = start_offset + nr;
+ struct swap_info_struct *si;
+ bool any_only_cache = false;
+ unsigned long offset;
+
+ si = get_swap_device(entry);
+ if (!si)
+ return;
+
+ if (WARN_ON(end_offset > si->max))
+ goto out;
+
+ /*
+ * First free all entries in the range.
+ */
+ any_only_cache = swap_entries_put_map_nr(si, entry, nr);
+
+ /*
+ * Short-circuit the below loop if none of the entries had their
+ * reference drop to zero.
+ */
+ if (!any_only_cache)
+ goto out;
+
+ /*
+ * Now go back over the range trying to reclaim the swap cache.
+ */
+ for (offset = start_offset; offset < end_offset; offset += nr) {
+ nr = 1;
+ if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
+ /*
+ * Folios are always naturally aligned in swap so
+ * advance forward to the next boundary. Zero means no
+ * folio was found for the swap entry, so advance by 1
+ * in this case. Negative value means folio was found
+ * but could not be reclaimed. Here we can still advance
+ * to the next boundary.
+ */
+ nr = __try_to_reclaim_swap(si, offset,
+ TTRS_UNMAPPED | TTRS_FULL);
+ if (nr == 0)
+ nr = 1;
+ else if (nr < 0)
+ nr = -nr;
+ nr = ALIGN(offset + 1, nr) - offset;
}
- spin_unlock(&p->lock);
}
- if (page) {
- /*
- * Not mapped elsewhere, or swap space full? Free it!
- * Also recheck PageSwapCache now page is locked (above).
- */
- if (PageSwapCache(page) && !PageWriteback(page) &&
- (!page_mapped(page) || vm_swap_full())) {
- delete_from_swap_cache(page);
- SetPageDirty(page);
+
+out:
+ put_swap_device(si);
+}
+
+#ifdef CONFIG_HIBERNATION
+
+swp_entry_t get_swap_page_of_type(int type)
+{
+ struct swap_info_struct *si = swap_type_to_info(type);
+ unsigned long offset;
+ swp_entry_t entry = {0};
+
+ if (!si)
+ goto fail;
+
+ /* This is called for allocating swap entry, not cache */
+ if (get_swap_device_info(si)) {
+ if (si->flags & SWP_WRITEOK) {
+ /*
+ * Grab the local lock to be complaint
+ * with swap table allocation.
+ */
+ local_lock(&percpu_swap_cluster.lock);
+ offset = cluster_alloc_swap_entry(si, 0, 1);
+ local_unlock(&percpu_swap_cluster.lock);
+ if (offset)
+ entry = swp_entry(si->type, offset);
}
- unlock_page(page);
- page_cache_release(page);
+ put_swap_device(si);
}
- return p != NULL;
+fail:
+ return entry;
}
-#ifdef CONFIG_HIBERNATION
/*
* Find the swap type that corresponds to given device (if any).
*
@@ -782,13 +2041,12 @@ int free_swap_and_cache(swp_entry_t entry)
*
* This is needed for the suspend to disk (aka swsusp).
*/
-int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
+int swap_type_of(dev_t device, sector_t offset)
{
- struct block_device *bdev = NULL;
int type;
- if (device)
- bdev = bdget(device);
+ if (!device)
+ return -1;
spin_lock(&swap_lock);
for (type = 0; type < nr_swapfiles; type++) {
@@ -797,30 +2055,34 @@ int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
if (!(sis->flags & SWP_WRITEOK))
continue;
- if (!bdev) {
- if (bdev_p)
- *bdev_p = bdgrab(sis->bdev);
-
- spin_unlock(&swap_lock);
- return type;
- }
- if (bdev == sis->bdev) {
- struct swap_extent *se = &sis->first_swap_extent;
+ if (device == sis->bdev->bd_dev) {
+ struct swap_extent *se = first_se(sis);
if (se->start_block == offset) {
- if (bdev_p)
- *bdev_p = bdgrab(sis->bdev);
-
spin_unlock(&swap_lock);
- bdput(bdev);
return type;
}
}
}
spin_unlock(&swap_lock);
- if (bdev)
- bdput(bdev);
+ return -ENODEV;
+}
+
+int find_first_swap(dev_t *device)
+{
+ int type;
+
+ spin_lock(&swap_lock);
+ for (type = 0; type < nr_swapfiles; type++) {
+ struct swap_info_struct *sis = swap_info[type];
+ if (!(sis->flags & SWP_WRITEOK))
+ continue;
+ *device = sis->bdev->bd_dev;
+ spin_unlock(&swap_lock);
+ return type;
+ }
+ spin_unlock(&swap_lock);
return -ENODEV;
}
@@ -830,13 +2092,13 @@ int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
*/
sector_t swapdev_block(int type, pgoff_t offset)
{
- struct block_device *bdev;
+ struct swap_info_struct *si = swap_type_to_info(type);
+ struct swap_extent *se;
- if ((unsigned int)type >= nr_swapfiles)
- return 0;
- if (!(swap_info[type]->flags & SWP_WRITEOK))
+ if (!si || !(si->flags & SWP_WRITEOK))
return 0;
- return map_swap_entry(swp_entry(type, offset), &bdev);
+ se = offset_to_swap_extent(si, offset);
+ return se->start_block + (offset - se->start_page);
}
/*
@@ -857,7 +2119,7 @@ unsigned int count_swap_pages(int type, int free)
if (sis->flags & SWP_WRITEOK) {
n = sis->pages;
if (free)
- n -= sis->inuse_pages;
+ n -= swap_usage_in_pages(sis);
}
spin_unlock(&sis->lock);
}
@@ -866,103 +2128,199 @@ unsigned int count_swap_pages(int type, int free)
}
#endif /* CONFIG_HIBERNATION */
+static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
+{
+ return pte_same(pte_swp_clear_flags(pte), swp_pte);
+}
+
/*
* No need to decide whether this PTE shares the swap entry with others,
* just let do_wp_page work it out if a write is requested later - to
* force COW, vm_page_prot omits write permission from any private vma.
*/
static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
- unsigned long addr, swp_entry_t entry, struct page *page)
+ unsigned long addr, swp_entry_t entry, struct folio *folio)
{
- struct page *swapcache;
- struct mem_cgroup *memcg;
+ struct page *page;
+ struct folio *swapcache;
spinlock_t *ptl;
- pte_t *pte;
+ pte_t *pte, new_pte, old_pte;
+ bool hwpoisoned = false;
int ret = 1;
- swapcache = page;
- page = ksm_might_need_to_copy(page, vma, addr);
- if (unlikely(!page))
- return -ENOMEM;
+ /*
+ * If the folio is removed from swap cache by others, continue to
+ * unuse other PTEs. try_to_unuse may try again if we missed this one.
+ */
+ if (!folio_matches_swap_entry(folio, entry))
+ return 0;
- if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
- GFP_KERNEL, &memcg)) {
- ret = -ENOMEM;
- goto out_nolock;
+ swapcache = folio;
+ folio = ksm_might_need_to_copy(folio, vma, addr);
+ if (unlikely(!folio))
+ return -ENOMEM;
+ else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
+ hwpoisoned = true;
+ folio = swapcache;
}
+ page = folio_file_page(folio, swp_offset(entry));
+ if (PageHWPoison(page))
+ hwpoisoned = true;
+
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
- if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
- mem_cgroup_cancel_charge_swapin(memcg);
+ if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
+ swp_entry_to_pte(entry)))) {
ret = 0;
goto out;
}
+ old_pte = ptep_get(pte);
+
+ if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
+ swp_entry_t swp_entry;
+
+ dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
+ if (hwpoisoned) {
+ swp_entry = make_hwpoison_entry(page);
+ } else {
+ swp_entry = make_poisoned_swp_entry();
+ }
+ new_pte = swp_entry_to_pte(swp_entry);
+ ret = 0;
+ goto setpte;
+ }
+
+ /*
+ * Some architectures may have to restore extra metadata to the page
+ * when reading from swap. This metadata may be indexed by swap entry
+ * so this must be called before swap_free().
+ */
+ arch_swap_restore(folio_swap(entry, folio), folio);
+
dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
- get_page(page);
- set_pte_at(vma->vm_mm, addr, pte,
- pte_mkold(mk_pte(page, vma->vm_page_prot)));
- if (page == swapcache)
- page_add_anon_rmap(page, vma, addr);
- else /* ksm created a completely new copy */
- page_add_new_anon_rmap(page, vma, addr);
- mem_cgroup_commit_charge_swapin(page, memcg);
+ folio_get(folio);
+ if (folio == swapcache) {
+ rmap_t rmap_flags = RMAP_NONE;
+
+ /*
+ * See do_swap_page(): writeback would be problematic.
+ * However, we do a folio_wait_writeback() just before this
+ * call and have the folio locked.
+ */
+ VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
+ if (pte_swp_exclusive(old_pte))
+ rmap_flags |= RMAP_EXCLUSIVE;
+ /*
+ * We currently only expect small !anon folios, which are either
+ * fully exclusive or fully shared. If we ever get large folios
+ * here, we have to be careful.
+ */
+ if (!folio_test_anon(folio)) {
+ VM_WARN_ON_ONCE(folio_test_large(folio));
+ VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
+ folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
+ } else {
+ folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
+ }
+ } else { /* ksm created a completely new copy */
+ folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
+ folio_add_lru_vma(folio, vma);
+ }
+ new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
+ if (pte_swp_soft_dirty(old_pte))
+ new_pte = pte_mksoft_dirty(new_pte);
+ if (pte_swp_uffd_wp(old_pte))
+ new_pte = pte_mkuffd_wp(new_pte);
+setpte:
+ set_pte_at(vma->vm_mm, addr, pte, new_pte);
swap_free(entry);
- /*
- * Move the page to the active list so it is not
- * immediately swapped out again after swapon.
- */
- activate_page(page);
out:
- pte_unmap_unlock(pte, ptl);
-out_nolock:
- if (page != swapcache) {
- unlock_page(page);
- put_page(page);
+ if (pte)
+ pte_unmap_unlock(pte, ptl);
+ if (folio != swapcache) {
+ folio_unlock(folio);
+ folio_put(folio);
}
return ret;
}
static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
- unsigned long addr, unsigned long end,
- swp_entry_t entry, struct page *page)
+ unsigned long addr, unsigned long end,
+ unsigned int type)
{
- pte_t swp_pte = swp_entry_to_pte(entry);
- pte_t *pte;
- int ret = 0;
+ pte_t *pte = NULL;
+ struct swap_info_struct *si;
- /*
- * We don't actually need pte lock while scanning for swp_pte: since
- * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
- * page table while we're scanning; though it could get zapped, and on
- * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
- * of unmatched parts which look like swp_pte, so unuse_pte must
- * recheck under pte lock. Scanning without pte lock lets it be
- * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
- */
- pte = pte_offset_map(pmd, addr);
+ si = swap_info[type];
do {
- /*
- * swapoff spends a _lot_ of time in this loop!
- * Test inline before going to call unuse_pte.
- */
- if (unlikely(pte_same(*pte, swp_pte))) {
- pte_unmap(pte);
- ret = unuse_pte(vma, pmd, addr, entry, page);
- if (ret)
- goto out;
+ struct folio *folio;
+ unsigned long offset;
+ unsigned char swp_count;
+ softleaf_t entry;
+ int ret;
+ pte_t ptent;
+
+ if (!pte++) {
pte = pte_offset_map(pmd, addr);
+ if (!pte)
+ break;
}
- } while (pte++, addr += PAGE_SIZE, addr != end);
- pte_unmap(pte - 1);
-out:
- return ret;
+
+ ptent = ptep_get_lockless(pte);
+ entry = softleaf_from_pte(ptent);
+
+ if (!softleaf_is_swap(entry))
+ continue;
+ if (swp_type(entry) != type)
+ continue;
+
+ offset = swp_offset(entry);
+ pte_unmap(pte);
+ pte = NULL;
+
+ folio = swap_cache_get_folio(entry);
+ if (!folio) {
+ struct vm_fault vmf = {
+ .vma = vma,
+ .address = addr,
+ .real_address = addr,
+ .pmd = pmd,
+ };
+
+ folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
+ &vmf);
+ }
+ if (!folio) {
+ swp_count = READ_ONCE(si->swap_map[offset]);
+ if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
+ continue;
+ return -ENOMEM;
+ }
+
+ folio_lock(folio);
+ folio_wait_writeback(folio);
+ ret = unuse_pte(vma, pmd, addr, entry, folio);
+ if (ret < 0) {
+ folio_unlock(folio);
+ folio_put(folio);
+ return ret;
+ }
+
+ folio_free_swap(folio);
+ folio_unlock(folio);
+ folio_put(folio);
+ } while (addr += PAGE_SIZE, addr != end);
+
+ if (pte)
+ pte_unmap(pte);
+ return 0;
}
static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
unsigned long addr, unsigned long end,
- swp_entry_t entry, struct page *page)
+ unsigned int type)
{
pmd_t *pmd;
unsigned long next;
@@ -970,100 +2328,108 @@ static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
pmd = pmd_offset(pud, addr);
do {
+ cond_resched();
next = pmd_addr_end(addr, end);
- if (pmd_none_or_trans_huge_or_clear_bad(pmd))
- continue;
- ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
+ ret = unuse_pte_range(vma, pmd, addr, next, type);
if (ret)
return ret;
} while (pmd++, addr = next, addr != end);
return 0;
}
-static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
+static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
unsigned long addr, unsigned long end,
- swp_entry_t entry, struct page *page)
+ unsigned int type)
{
pud_t *pud;
unsigned long next;
int ret;
- pud = pud_offset(pgd, addr);
+ pud = pud_offset(p4d, addr);
do {
next = pud_addr_end(addr, end);
if (pud_none_or_clear_bad(pud))
continue;
- ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
+ ret = unuse_pmd_range(vma, pud, addr, next, type);
if (ret)
return ret;
} while (pud++, addr = next, addr != end);
return 0;
}
-static int unuse_vma(struct vm_area_struct *vma,
- swp_entry_t entry, struct page *page)
+static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
+ unsigned long addr, unsigned long end,
+ unsigned int type)
+{
+ p4d_t *p4d;
+ unsigned long next;
+ int ret;
+
+ p4d = p4d_offset(pgd, addr);
+ do {
+ next = p4d_addr_end(addr, end);
+ if (p4d_none_or_clear_bad(p4d))
+ continue;
+ ret = unuse_pud_range(vma, p4d, addr, next, type);
+ if (ret)
+ return ret;
+ } while (p4d++, addr = next, addr != end);
+ return 0;
+}
+
+static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
{
pgd_t *pgd;
unsigned long addr, end, next;
int ret;
- if (page_anon_vma(page)) {
- addr = page_address_in_vma(page, vma);
- if (addr == -EFAULT)
- return 0;
- else
- end = addr + PAGE_SIZE;
- } else {
- addr = vma->vm_start;
- end = vma->vm_end;
- }
+ addr = vma->vm_start;
+ end = vma->vm_end;
pgd = pgd_offset(vma->vm_mm, addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd))
continue;
- ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
+ ret = unuse_p4d_range(vma, pgd, addr, next, type);
if (ret)
return ret;
} while (pgd++, addr = next, addr != end);
return 0;
}
-static int unuse_mm(struct mm_struct *mm,
- swp_entry_t entry, struct page *page)
+static int unuse_mm(struct mm_struct *mm, unsigned int type)
{
struct vm_area_struct *vma;
int ret = 0;
+ VMA_ITERATOR(vmi, mm, 0);
+
+ mmap_read_lock(mm);
+ if (check_stable_address_space(mm))
+ goto unlock;
+ for_each_vma(vmi, vma) {
+ if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
+ ret = unuse_vma(vma, type);
+ if (ret)
+ break;
+ }
- if (!down_read_trylock(&mm->mmap_sem)) {
- /*
- * Activate page so shrink_inactive_list is unlikely to unmap
- * its ptes while lock is dropped, so swapoff can make progress.
- */
- activate_page(page);
- unlock_page(page);
- down_read(&mm->mmap_sem);
- lock_page(page);
- }
- for (vma = mm->mmap; vma; vma = vma->vm_next) {
- if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
- break;
+ cond_resched();
}
- up_read(&mm->mmap_sem);
- return (ret < 0)? ret: 0;
+unlock:
+ mmap_read_unlock(mm);
+ return ret;
}
/*
- * Scan swap_map (or frontswap_map if frontswap parameter is true)
- * from current position to next entry still in use.
- * Recycle to start on reaching the end, returning 0 when empty.
+ * Scan swap_map from current position to next entry still in use.
+ * Return 0 if there are no inuse entries after prev till end of
+ * the map.
*/
static unsigned int find_next_to_unuse(struct swap_info_struct *si,
- unsigned int prev, bool frontswap)
+ unsigned int prev)
{
- unsigned int max = si->max;
- unsigned int i = prev;
+ unsigned int i;
unsigned char count;
/*
@@ -1072,250 +2438,120 @@ static unsigned int find_next_to_unuse(struct swap_info_struct *si,
* hits are okay, and sys_swapoff() has already prevented new
* allocations from this area (while holding swap_lock).
*/
- for (;;) {
- if (++i >= max) {
- if (!prev) {
- i = 0;
- break;
- }
- /*
- * No entries in use at top of swap_map,
- * loop back to start and recheck there.
- */
- max = prev + 1;
- prev = 0;
- i = 1;
- }
- if (frontswap) {
- if (frontswap_test(si, i))
- break;
- else
- continue;
- }
- count = si->swap_map[i];
+ for (i = prev + 1; i < si->max; i++) {
+ count = READ_ONCE(si->swap_map[i]);
if (count && swap_count(count) != SWAP_MAP_BAD)
break;
+ if ((i % LATENCY_LIMIT) == 0)
+ cond_resched();
}
+
+ if (i == si->max)
+ i = 0;
+
return i;
}
-/*
- * We completely avoid races by reading each swap page in advance,
- * and then search for the process using it. All the necessary
- * page table adjustments can then be made atomically.
- *
- * if the boolean frontswap is true, only unuse pages_to_unuse pages;
- * pages_to_unuse==0 means all pages; ignored if frontswap is false
- */
-int try_to_unuse(unsigned int type, bool frontswap,
- unsigned long pages_to_unuse)
+static int try_to_unuse(unsigned int type)
{
+ struct mm_struct *prev_mm;
+ struct mm_struct *mm;
+ struct list_head *p;
+ int retval = 0;
struct swap_info_struct *si = swap_info[type];
- struct mm_struct *start_mm;
- unsigned char *swap_map;
- unsigned char swcount;
- struct page *page;
+ struct folio *folio;
swp_entry_t entry;
- unsigned int i = 0;
- int retval = 0;
+ unsigned int i;
- /*
- * When searching mms for an entry, a good strategy is to
- * start at the first mm we freed the previous entry from
- * (though actually we don't notice whether we or coincidence
- * freed the entry). Initialize this start_mm with a hold.
- *
- * A simpler strategy would be to start at the last mm we
- * freed the previous entry from; but that would take less
- * advantage of mmlist ordering, which clusters forked mms
- * together, child after parent. If we race with dup_mmap(), we
- * prefer to resolve parent before child, lest we miss entries
- * duplicated after we scanned child: using last mm would invert
- * that.
- */
- start_mm = &init_mm;
- atomic_inc(&init_mm.mm_users);
+ if (!swap_usage_in_pages(si))
+ goto success;
- /*
- * Keep on scanning until all entries have gone. Usually,
- * one pass through swap_map is enough, but not necessarily:
- * there are races when an instance of an entry might be missed.
- */
- while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
- if (signal_pending(current)) {
- retval = -EINTR;
- break;
- }
+retry:
+ retval = shmem_unuse(type);
+ if (retval)
+ return retval;
- /*
- * Get a page for the entry, using the existing swap
- * cache page if there is one. Otherwise, get a clean
- * page and read the swap into it.
- */
- swap_map = &si->swap_map[i];
- entry = swp_entry(type, i);
- page = read_swap_cache_async(entry,
- GFP_HIGHUSER_MOVABLE, NULL, 0);
- if (!page) {
- /*
- * Either swap_duplicate() failed because entry
- * has been freed independently, and will not be
- * reused since sys_swapoff() already disabled
- * allocation from here, or alloc_page() failed.
- */
- if (!*swap_map)
- continue;
- retval = -ENOMEM;
- break;
- }
+ prev_mm = &init_mm;
+ mmget(prev_mm);
- /*
- * Don't hold on to start_mm if it looks like exiting.
- */
- if (atomic_read(&start_mm->mm_users) == 1) {
- mmput(start_mm);
- start_mm = &init_mm;
- atomic_inc(&init_mm.mm_users);
- }
-
- /*
- * Wait for and lock page. When do_swap_page races with
- * try_to_unuse, do_swap_page can handle the fault much
- * faster than try_to_unuse can locate the entry. This
- * apparently redundant "wait_on_page_locked" lets try_to_unuse
- * defer to do_swap_page in such a case - in some tests,
- * do_swap_page and try_to_unuse repeatedly compete.
- */
- wait_on_page_locked(page);
- wait_on_page_writeback(page);
- lock_page(page);
- wait_on_page_writeback(page);
+ spin_lock(&mmlist_lock);
+ p = &init_mm.mmlist;
+ while (swap_usage_in_pages(si) &&
+ !signal_pending(current) &&
+ (p = p->next) != &init_mm.mmlist) {
- /*
- * Remove all references to entry.
- */
- swcount = *swap_map;
- if (swap_count(swcount) == SWAP_MAP_SHMEM) {
- retval = shmem_unuse(entry, page);
- /* page has already been unlocked and released */
- if (retval < 0)
- break;
+ mm = list_entry(p, struct mm_struct, mmlist);
+ if (!mmget_not_zero(mm))
continue;
- }
- if (swap_count(swcount) && start_mm != &init_mm)
- retval = unuse_mm(start_mm, entry, page);
-
- if (swap_count(*swap_map)) {
- int set_start_mm = (*swap_map >= swcount);
- struct list_head *p = &start_mm->mmlist;
- struct mm_struct *new_start_mm = start_mm;
- struct mm_struct *prev_mm = start_mm;
- struct mm_struct *mm;
-
- atomic_inc(&new_start_mm->mm_users);
- atomic_inc(&prev_mm->mm_users);
- spin_lock(&mmlist_lock);
- while (swap_count(*swap_map) && !retval &&
- (p = p->next) != &start_mm->mmlist) {
- mm = list_entry(p, struct mm_struct, mmlist);
- if (!atomic_inc_not_zero(&mm->mm_users))
- continue;
- spin_unlock(&mmlist_lock);
- mmput(prev_mm);
- prev_mm = mm;
-
- cond_resched();
-
- swcount = *swap_map;
- if (!swap_count(swcount)) /* any usage ? */
- ;
- else if (mm == &init_mm)
- set_start_mm = 1;
- else
- retval = unuse_mm(mm, entry, page);
-
- if (set_start_mm && *swap_map < swcount) {
- mmput(new_start_mm);
- atomic_inc(&mm->mm_users);
- new_start_mm = mm;
- set_start_mm = 0;
- }
- spin_lock(&mmlist_lock);
- }
- spin_unlock(&mmlist_lock);
- mmput(prev_mm);
- mmput(start_mm);
- start_mm = new_start_mm;
- }
+ spin_unlock(&mmlist_lock);
+ mmput(prev_mm);
+ prev_mm = mm;
+ retval = unuse_mm(mm, type);
if (retval) {
- unlock_page(page);
- page_cache_release(page);
- break;
+ mmput(prev_mm);
+ return retval;
}
/*
- * If a reference remains (rare), we would like to leave
- * the page in the swap cache; but try_to_unmap could
- * then re-duplicate the entry once we drop page lock,
- * so we might loop indefinitely; also, that page could
- * not be swapped out to other storage meanwhile. So:
- * delete from cache even if there's another reference,
- * after ensuring that the data has been saved to disk -
- * since if the reference remains (rarer), it will be
- * read from disk into another page. Splitting into two
- * pages would be incorrect if swap supported "shared
- * private" pages, but they are handled by tmpfs files.
- *
- * Given how unuse_vma() targets one particular offset
- * in an anon_vma, once the anon_vma has been determined,
- * this splitting happens to be just what is needed to
- * handle where KSM pages have been swapped out: re-reading
- * is unnecessarily slow, but we can fix that later on.
+ * Make sure that we aren't completely killing
+ * interactive performance.
*/
- if (swap_count(*swap_map) &&
- PageDirty(page) && PageSwapCache(page)) {
- struct writeback_control wbc = {
- .sync_mode = WB_SYNC_NONE,
- };
+ cond_resched();
+ spin_lock(&mmlist_lock);
+ }
+ spin_unlock(&mmlist_lock);
- swap_writepage(page, &wbc);
- lock_page(page);
- wait_on_page_writeback(page);
- }
+ mmput(prev_mm);
- /*
- * It is conceivable that a racing task removed this page from
- * swap cache just before we acquired the page lock at the top,
- * or while we dropped it in unuse_mm(). The page might even
- * be back in swap cache on another swap area: that we must not
- * delete, since it may not have been written out to swap yet.
- */
- if (PageSwapCache(page) &&
- likely(page_private(page) == entry.val))
- delete_from_swap_cache(page);
+ i = 0;
+ while (swap_usage_in_pages(si) &&
+ !signal_pending(current) &&
+ (i = find_next_to_unuse(si, i)) != 0) {
- /*
- * So we could skip searching mms once swap count went
- * to 1, we did not mark any present ptes as dirty: must
- * mark page dirty so shrink_page_list will preserve it.
- */
- SetPageDirty(page);
- unlock_page(page);
- page_cache_release(page);
+ entry = swp_entry(type, i);
+ folio = swap_cache_get_folio(entry);
+ if (!folio)
+ continue;
/*
- * Make sure that we aren't completely killing
- * interactive performance.
+ * It is conceivable that a racing task removed this folio from
+ * swap cache just before we acquired the page lock. The folio
+ * might even be back in swap cache on another swap area. But
+ * that is okay, folio_free_swap() only removes stale folios.
*/
- cond_resched();
- if (frontswap && pages_to_unuse > 0) {
- if (!--pages_to_unuse)
- break;
- }
+ folio_lock(folio);
+ folio_wait_writeback(folio);
+ folio_free_swap(folio);
+ folio_unlock(folio);
+ folio_put(folio);
+ }
+
+ /*
+ * Lets check again to see if there are still swap entries in the map.
+ * If yes, we would need to do retry the unuse logic again.
+ * Under global memory pressure, swap entries can be reinserted back
+ * into process space after the mmlist loop above passes over them.
+ *
+ * Limit the number of retries? No: when mmget_not_zero()
+ * above fails, that mm is likely to be freeing swap from
+ * exit_mmap(), which proceeds at its own independent pace;
+ * and even shmem_writeout() could have been preempted after
+ * folio_alloc_swap(), temporarily hiding that swap. It's easy
+ * and robust (though cpu-intensive) just to keep retrying.
+ */
+ if (swap_usage_in_pages(si)) {
+ if (!signal_pending(current))
+ goto retry;
+ return -EINTR;
}
- mmput(start_mm);
- return retval;
+success:
+ /*
+ * Make sure that further cleanups after try_to_unuse() returns happen
+ * after swap_range_free() reduces si->inuse_pages to 0.
+ */
+ smp_mb();
+ return 0;
}
/*
@@ -1330,7 +2566,7 @@ static void drain_mmlist(void)
unsigned int type;
for (type = 0; type < nr_swapfiles; type++)
- if (swap_info[type]->inuse_pages)
+ if (swap_usage_in_pages(swap_info[type]))
return;
spin_lock(&mmlist_lock);
list_for_each_safe(p, next, &init_mm.mmlist)
@@ -1339,75 +2575,31 @@ static void drain_mmlist(void)
}
/*
- * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
- * corresponds to page offset for the specified swap entry.
- * Note that the type of this function is sector_t, but it returns page offset
- * into the bdev, not sector offset.
- */
-static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
-{
- struct swap_info_struct *sis;
- struct swap_extent *start_se;
- struct swap_extent *se;
- pgoff_t offset;
-
- sis = swap_info[swp_type(entry)];
- *bdev = sis->bdev;
-
- offset = swp_offset(entry);
- start_se = sis->curr_swap_extent;
- se = start_se;
-
- for ( ; ; ) {
- struct list_head *lh;
-
- if (se->start_page <= offset &&
- offset < (se->start_page + se->nr_pages)) {
- return se->start_block + (offset - se->start_page);
- }
- lh = se->list.next;
- se = list_entry(lh, struct swap_extent, list);
- sis->curr_swap_extent = se;
- BUG_ON(se == start_se); /* It *must* be present */
- }
-}
-
-/*
- * Returns the page offset into bdev for the specified page's swap entry.
- */
-sector_t map_swap_page(struct page *page, struct block_device **bdev)
-{
- swp_entry_t entry;
- entry.val = page_private(page);
- return map_swap_entry(entry, bdev);
-}
-
-/*
* Free all of a swapdev's extent information
*/
static void destroy_swap_extents(struct swap_info_struct *sis)
{
- while (!list_empty(&sis->first_swap_extent.list)) {
- struct swap_extent *se;
+ while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
+ struct rb_node *rb = sis->swap_extent_root.rb_node;
+ struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
- se = list_entry(sis->first_swap_extent.list.next,
- struct swap_extent, list);
- list_del(&se->list);
+ rb_erase(rb, &sis->swap_extent_root);
kfree(se);
}
- if (sis->flags & SWP_FILE) {
+ if (sis->flags & SWP_ACTIVATED) {
struct file *swap_file = sis->swap_file;
struct address_space *mapping = swap_file->f_mapping;
- sis->flags &= ~SWP_FILE;
- mapping->a_ops->swap_deactivate(swap_file);
+ sis->flags &= ~SWP_ACTIVATED;
+ if (mapping->a_ops->swap_deactivate)
+ mapping->a_ops->swap_deactivate(swap_file);
}
}
/*
* Add a block range (and the corresponding page range) into this swapdev's
- * extent list. The extent list is kept sorted in page order.
+ * extent tree.
*
* This function rather assumes that it is called in ascending page order.
*/
@@ -1415,20 +2607,21 @@ int
add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
unsigned long nr_pages, sector_t start_block)
{
+ struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
struct swap_extent *se;
struct swap_extent *new_se;
- struct list_head *lh;
-
- if (start_page == 0) {
- se = &sis->first_swap_extent;
- sis->curr_swap_extent = se;
- se->start_page = 0;
- se->nr_pages = nr_pages;
- se->start_block = start_block;
- return 1;
- } else {
- lh = sis->first_swap_extent.list.prev; /* Highest extent */
- se = list_entry(lh, struct swap_extent, list);
+
+ /*
+ * place the new node at the right most since the
+ * function is called in ascending page order.
+ */
+ while (*link) {
+ parent = *link;
+ link = &parent->rb_right;
+ }
+
+ if (parent) {
+ se = rb_entry(parent, struct swap_extent, rb_node);
BUG_ON(se->start_page + se->nr_pages != start_page);
if (se->start_block + se->nr_pages == start_block) {
/* Merge it */
@@ -1437,9 +2630,7 @@ add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
}
}
- /*
- * No merge. Insert a new extent, preserving ordering.
- */
+ /* No merge, insert a new extent. */
new_se = kmalloc(sizeof(*se), GFP_KERNEL);
if (new_se == NULL)
return -ENOMEM;
@@ -1447,14 +2638,16 @@ add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
new_se->nr_pages = nr_pages;
new_se->start_block = start_block;
- list_add_tail(&new_se->list, &sis->first_swap_extent.list);
+ rb_link_node(&new_se->rb_node, parent, link);
+ rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
return 1;
}
+EXPORT_SYMBOL_GPL(add_swap_extent);
/*
* A `swap extent' is a simple thing which maps a contiguous range of pages
- * onto a contiguous range of disk blocks. An ordered list of swap extents
- * is built at swapon time and is then used at swap_writepage/swap_readpage
+ * onto a contiguous range of disk blocks. A rbtree of swap extents is
+ * built at swapon time and is then used at swap_writepage/swap_read_folio
* time for locating where on disk a page belongs.
*
* If the swapfile is an S_ISBLK block device, a single extent is installed.
@@ -1462,25 +2655,21 @@ add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
* swap files identically.
*
* Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
- * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
+ * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
* swapfiles are handled *identically* after swapon time.
*
* For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
- * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
- * some stray blocks are found which do not fall within the PAGE_SIZE alignment
+ * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
+ * blocks are found which do not fall within the PAGE_SIZE alignment
* requirements, they are simply tossed out - we will never use those blocks
* for swapping.
*
- * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
- * prevents root from shooting her foot off by ftruncating an in-use swapfile,
- * which will scribble on the fs.
+ * For all swap devices we set S_SWAPFILE across the life of the swapon. This
+ * prevents users from writing to the swap device, which will corrupt memory.
*
* The amount of disk space which a single swap extent represents varies.
* Typically it is in the 1-4 megabyte range. So we can have hundreds of
- * extents in the list. To avoid much list walking, we cache the previous
- * search location in `curr_swap_extent', and start new searches from there.
- * This is extremely effective. The average number of iterations in
- * map_swap_page() has been measured at about 0.3 per page. - akpm.
+ * extents in the rbtree. - akpm.
*/
static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
{
@@ -1497,10 +2686,13 @@ static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
if (mapping->a_ops->swap_activate) {
ret = mapping->a_ops->swap_activate(sis, swap_file, span);
- if (!ret) {
- sis->flags |= SWP_FILE;
- ret = add_swap_extent(sis, 0, sis->max, 0);
- *span = sis->pages;
+ if (ret < 0)
+ return ret;
+ sis->flags |= SWP_ACTIVATED;
+ if ((sis->flags & SWP_FS_OPS) &&
+ sio_pool_init() != 0) {
+ destroy_swap_extents(sis);
+ return -ENOMEM;
}
return ret;
}
@@ -1508,66 +2700,140 @@ static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
return generic_swapfile_activate(sis, swap_file, span);
}
-static void _enable_swap_info(struct swap_info_struct *p, int prio,
- unsigned char *swap_map)
+static void setup_swap_info(struct swap_info_struct *si, int prio,
+ unsigned char *swap_map,
+ struct swap_cluster_info *cluster_info,
+ unsigned long *zeromap)
+{
+ si->prio = prio;
+ /*
+ * the plist prio is negated because plist ordering is
+ * low-to-high, while swap ordering is high-to-low
+ */
+ si->list.prio = -si->prio;
+ si->avail_list.prio = -si->prio;
+ si->swap_map = swap_map;
+ si->cluster_info = cluster_info;
+ si->zeromap = zeromap;
+}
+
+static void _enable_swap_info(struct swap_info_struct *si)
{
- int i, prev;
+ atomic_long_add(si->pages, &nr_swap_pages);
+ total_swap_pages += si->pages;
- if (prio >= 0)
- p->prio = prio;
- else
- p->prio = --least_priority;
- p->swap_map = swap_map;
- p->flags |= SWP_WRITEOK;
- atomic_long_add(p->pages, &nr_swap_pages);
- total_swap_pages += p->pages;
-
- /* insert swap space into swap_list: */
- prev = -1;
- for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
- if (p->prio >= swap_info[i]->prio)
- break;
- prev = i;
- }
- p->next = i;
- if (prev < 0)
- swap_list.head = swap_list.next = p->type;
- else
- swap_info[prev]->next = p->type;
+ assert_spin_locked(&swap_lock);
+
+ plist_add(&si->list, &swap_active_head);
+
+ /* Add back to available list */
+ add_to_avail_list(si, true);
}
-static void enable_swap_info(struct swap_info_struct *p, int prio,
+static void enable_swap_info(struct swap_info_struct *si, int prio,
unsigned char *swap_map,
- unsigned long *frontswap_map)
+ struct swap_cluster_info *cluster_info,
+ unsigned long *zeromap)
{
- frontswap_init(p->type, frontswap_map);
spin_lock(&swap_lock);
- spin_lock(&p->lock);
- _enable_swap_info(p, prio, swap_map);
- spin_unlock(&p->lock);
+ spin_lock(&si->lock);
+ setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
+ spin_unlock(&si->lock);
+ spin_unlock(&swap_lock);
+ /*
+ * Finished initializing swap device, now it's safe to reference it.
+ */
+ percpu_ref_resurrect(&si->users);
+ spin_lock(&swap_lock);
+ spin_lock(&si->lock);
+ _enable_swap_info(si);
+ spin_unlock(&si->lock);
spin_unlock(&swap_lock);
}
-static void reinsert_swap_info(struct swap_info_struct *p)
+static void reinsert_swap_info(struct swap_info_struct *si)
{
spin_lock(&swap_lock);
- spin_lock(&p->lock);
- _enable_swap_info(p, p->prio, p->swap_map);
- spin_unlock(&p->lock);
+ spin_lock(&si->lock);
+ setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
+ _enable_swap_info(si);
+ spin_unlock(&si->lock);
spin_unlock(&swap_lock);
}
+/*
+ * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range
+ * see the updated flags, so there will be no more allocations.
+ */
+static void wait_for_allocation(struct swap_info_struct *si)
+{
+ unsigned long offset;
+ unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER);
+ struct swap_cluster_info *ci;
+
+ BUG_ON(si->flags & SWP_WRITEOK);
+
+ for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) {
+ ci = swap_cluster_lock(si, offset);
+ swap_cluster_unlock(ci);
+ }
+}
+
+static void free_cluster_info(struct swap_cluster_info *cluster_info,
+ unsigned long maxpages)
+{
+ struct swap_cluster_info *ci;
+ int i, nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
+
+ if (!cluster_info)
+ return;
+ for (i = 0; i < nr_clusters; i++) {
+ ci = cluster_info + i;
+ /* Cluster with bad marks count will have a remaining table */
+ spin_lock(&ci->lock);
+ if (rcu_dereference_protected(ci->table, true)) {
+ ci->count = 0;
+ swap_cluster_free_table(ci);
+ }
+ spin_unlock(&ci->lock);
+ }
+ kvfree(cluster_info);
+}
+
+/*
+ * Called after swap device's reference count is dead, so
+ * neither scan nor allocation will use it.
+ */
+static void flush_percpu_swap_cluster(struct swap_info_struct *si)
+{
+ int cpu, i;
+ struct swap_info_struct **pcp_si;
+
+ for_each_possible_cpu(cpu) {
+ pcp_si = per_cpu_ptr(percpu_swap_cluster.si, cpu);
+ /*
+ * Invalidate the percpu swap cluster cache, si->users
+ * is dead, so no new user will point to it, just flush
+ * any existing user.
+ */
+ for (i = 0; i < SWAP_NR_ORDERS; i++)
+ cmpxchg(&pcp_si[i], si, NULL);
+ }
+}
+
+
SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
{
struct swap_info_struct *p = NULL;
unsigned char *swap_map;
- unsigned long *frontswap_map;
+ unsigned long *zeromap;
+ struct swap_cluster_info *cluster_info;
struct file *swap_file, *victim;
struct address_space *mapping;
struct inode *inode;
struct filename *pathname;
- int i, type, prev;
- int err;
+ unsigned int maxpages;
+ int err, found = 0;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
@@ -1584,17 +2850,16 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
goto out;
mapping = victim->f_mapping;
- prev = -1;
spin_lock(&swap_lock);
- for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
- p = swap_info[type];
+ plist_for_each_entry(p, &swap_active_head, list) {
if (p->flags & SWP_WRITEOK) {
- if (p->swap_file->f_mapping == mapping)
+ if (p->swap_file->f_mapping == mapping) {
+ found = 1;
break;
+ }
}
- prev = type;
}
- if (type < 0) {
+ if (!found) {
err = -EINVAL;
spin_unlock(&swap_lock);
goto out_dput;
@@ -1606,28 +2871,18 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
spin_unlock(&swap_lock);
goto out_dput;
}
- if (prev < 0)
- swap_list.head = p->next;
- else
- swap_info[prev]->next = p->next;
- if (type == swap_list.next) {
- /* just pick something that's safe... */
- swap_list.next = swap_list.head;
- }
spin_lock(&p->lock);
- if (p->prio < 0) {
- for (i = p->next; i >= 0; i = swap_info[i]->next)
- swap_info[i]->prio = p->prio--;
- least_priority++;
- }
+ del_from_avail_list(p, true);
+ plist_del(&p->list, &swap_active_head);
atomic_long_sub(p->pages, &nr_swap_pages);
total_swap_pages -= p->pages;
- p->flags &= ~SWP_WRITEOK;
spin_unlock(&p->lock);
spin_unlock(&swap_lock);
+ wait_for_allocation(p);
+
set_current_oom_origin();
- err = try_to_unuse(type, false, 0); /* force all pages to be unused */
+ err = try_to_unuse(p->type);
clear_current_oom_origin();
if (err) {
@@ -1636,53 +2891,73 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
goto out_dput;
}
+ /*
+ * Wait for swap operations protected by get/put_swap_device()
+ * to complete. Because of synchronize_rcu() here, all swap
+ * operations protected by RCU reader side lock (including any
+ * spinlock) will be waited too. This makes it easy to
+ * prevent folio_test_swapcache() and the following swap cache
+ * operations from racing with swapoff.
+ */
+ percpu_ref_kill(&p->users);
+ synchronize_rcu();
+ wait_for_completion(&p->comp);
+
+ flush_work(&p->discard_work);
+ flush_work(&p->reclaim_work);
+ flush_percpu_swap_cluster(p);
+
destroy_swap_extents(p);
if (p->flags & SWP_CONTINUED)
free_swap_count_continuations(p);
+ if (!(p->flags & SWP_SOLIDSTATE))
+ atomic_dec(&nr_rotate_swap);
+
mutex_lock(&swapon_mutex);
spin_lock(&swap_lock);
spin_lock(&p->lock);
drain_mmlist();
- /* wait for anyone still in scan_swap_map */
- p->highest_bit = 0; /* cuts scans short */
- while (p->flags >= SWP_SCANNING) {
- spin_unlock(&p->lock);
- spin_unlock(&swap_lock);
- schedule_timeout_uninterruptible(1);
- spin_lock(&swap_lock);
- spin_lock(&p->lock);
- }
-
swap_file = p->swap_file;
p->swap_file = NULL;
- p->max = 0;
swap_map = p->swap_map;
p->swap_map = NULL;
- p->flags = 0;
- frontswap_map = frontswap_map_get(p);
- frontswap_map_set(p, NULL);
+ zeromap = p->zeromap;
+ p->zeromap = NULL;
+ maxpages = p->max;
+ cluster_info = p->cluster_info;
+ p->max = 0;
+ p->cluster_info = NULL;
spin_unlock(&p->lock);
spin_unlock(&swap_lock);
- frontswap_invalidate_area(type);
+ arch_swap_invalidate_area(p->type);
+ zswap_swapoff(p->type);
mutex_unlock(&swapon_mutex);
+ kfree(p->global_cluster);
+ p->global_cluster = NULL;
vfree(swap_map);
- vfree(frontswap_map);
- /* Destroy swap account informatin */
- swap_cgroup_swapoff(type);
+ kvfree(zeromap);
+ free_cluster_info(cluster_info, maxpages);
+ /* Destroy swap account information */
+ swap_cgroup_swapoff(p->type);
inode = mapping->host;
- if (S_ISBLK(inode->i_mode)) {
- struct block_device *bdev = I_BDEV(inode);
- set_blocksize(bdev, p->old_block_size);
- blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
- } else {
- mutex_lock(&inode->i_mutex);
- inode->i_flags &= ~S_SWAPFILE;
- mutex_unlock(&inode->i_mutex);
- }
+
+ inode_lock(inode);
+ inode->i_flags &= ~S_SWAPFILE;
+ inode_unlock(inode);
filp_close(swap_file, NULL);
+
+ /*
+ * Clear the SWP_USED flag after all resources are freed so that swapon
+ * can reuse this swap_info in alloc_swap_info() safely. It is ok to
+ * not hold p->lock after we cleared its SWP_WRITEOK.
+ */
+ spin_lock(&swap_lock);
+ p->flags = 0;
+ spin_unlock(&swap_lock);
+
err = 0;
atomic_inc(&proc_poll_event);
wake_up_interruptible(&proc_poll_wait);
@@ -1695,7 +2970,7 @@ out:
}
#ifdef CONFIG_PROC_FS
-static unsigned swaps_poll(struct file *file, poll_table *wait)
+static __poll_t swaps_poll(struct file *file, poll_table *wait)
{
struct seq_file *seq = file->private_data;
@@ -1703,10 +2978,10 @@ static unsigned swaps_poll(struct file *file, poll_table *wait)
if (seq->poll_event != atomic_read(&proc_poll_event)) {
seq->poll_event = atomic_read(&proc_poll_event);
- return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
+ return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
}
- return POLLIN | POLLRDNORM;
+ return EPOLLIN | EPOLLRDNORM;
}
/* iterator */
@@ -1721,9 +2996,7 @@ static void *swap_start(struct seq_file *swap, loff_t *pos)
if (!l)
return SEQ_START_TOKEN;
- for (type = 0; type < nr_swapfiles; type++) {
- smp_rmb(); /* read nr_swapfiles before swap_info[type] */
- si = swap_info[type];
+ for (type = 0; (si = swap_type_to_info(type)); type++) {
if (!(si->flags & SWP_USED) || !si->swap_map)
continue;
if (!--l)
@@ -1743,12 +3016,10 @@ static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
else
type = si->type + 1;
- for (; type < nr_swapfiles; type++) {
- smp_rmb(); /* read nr_swapfiles before swap_info[type] */
- si = swap_info[type];
+ ++(*pos);
+ for (; (si = swap_type_to_info(type)); type++) {
if (!(si->flags & SWP_USED) || !si->swap_map)
continue;
- ++*pos;
return si;
}
@@ -1765,20 +3036,24 @@ static int swap_show(struct seq_file *swap, void *v)
struct swap_info_struct *si = v;
struct file *file;
int len;
+ unsigned long bytes, inuse;
if (si == SEQ_START_TOKEN) {
- seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
+ seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
return 0;
}
+ bytes = K(si->pages);
+ inuse = K(swap_usage_in_pages(si));
+
file = si->swap_file;
- len = seq_path(swap, &file->f_path, " \t\n\\");
- seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
+ len = seq_file_path(swap, file, " \t\n\\");
+ seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
len < 40 ? 40 - len : 1, " ",
S_ISBLK(file_inode(file)->i_mode) ?
"partition" : "file\t",
- si->pages << (PAGE_SHIFT - 10),
- si->inuse_pages << (PAGE_SHIFT - 10),
+ bytes, bytes < 10000000 ? "\t" : "",
+ inuse, inuse < 10000000 ? "\t" : "",
si->prio);
return 0;
}
@@ -1804,17 +3079,18 @@ static int swaps_open(struct inode *inode, struct file *file)
return 0;
}
-static const struct file_operations proc_swaps_operations = {
- .open = swaps_open,
- .read = seq_read,
- .llseek = seq_lseek,
- .release = seq_release,
- .poll = swaps_poll,
+static const struct proc_ops swaps_proc_ops = {
+ .proc_flags = PROC_ENTRY_PERMANENT,
+ .proc_open = swaps_open,
+ .proc_read = seq_read,
+ .proc_lseek = seq_lseek,
+ .proc_release = seq_release,
+ .proc_poll = swaps_poll,
};
static int __init procswaps_init(void)
{
- proc_create("swaps", 0, NULL, &proc_swaps_operations);
+ proc_create("swaps", 0, NULL, &swaps_proc_ops);
return 0;
}
__initcall(procswaps_init);
@@ -1832,12 +3108,19 @@ late_initcall(max_swapfiles_check);
static struct swap_info_struct *alloc_swap_info(void)
{
struct swap_info_struct *p;
+ struct swap_info_struct *defer = NULL;
unsigned int type;
- p = kzalloc(sizeof(*p), GFP_KERNEL);
+ p = kvzalloc(sizeof(struct swap_info_struct), GFP_KERNEL);
if (!p)
return ERR_PTR(-ENOMEM);
+ if (percpu_ref_init(&p->users, swap_users_ref_free,
+ PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
+ kvfree(p);
+ return ERR_PTR(-ENOMEM);
+ }
+
spin_lock(&swap_lock);
for (type = 0; type < nr_swapfiles; type++) {
if (!(swap_info[type]->flags & SWP_USED))
@@ -1845,128 +3128,153 @@ static struct swap_info_struct *alloc_swap_info(void)
}
if (type >= MAX_SWAPFILES) {
spin_unlock(&swap_lock);
- kfree(p);
+ percpu_ref_exit(&p->users);
+ kvfree(p);
return ERR_PTR(-EPERM);
}
if (type >= nr_swapfiles) {
p->type = type;
- swap_info[type] = p;
/*
- * Write swap_info[type] before nr_swapfiles, in case a
- * racing procfs swap_start() or swap_next() is reading them.
- * (We never shrink nr_swapfiles, we never free this entry.)
+ * Publish the swap_info_struct after initializing it.
+ * Note that kvzalloc() above zeroes all its fields.
*/
- smp_wmb();
+ smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
nr_swapfiles++;
} else {
- kfree(p);
+ defer = p;
p = swap_info[type];
/*
* Do not memset this entry: a racing procfs swap_next()
* would be relying on p->type to remain valid.
*/
}
- INIT_LIST_HEAD(&p->first_swap_extent.list);
+ p->swap_extent_root = RB_ROOT;
+ plist_node_init(&p->list, 0);
+ plist_node_init(&p->avail_list, 0);
p->flags = SWP_USED;
- p->next = -1;
spin_unlock(&swap_lock);
+ if (defer) {
+ percpu_ref_exit(&defer->users);
+ kvfree(defer);
+ }
spin_lock_init(&p->lock);
+ spin_lock_init(&p->cont_lock);
+ atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT);
+ init_completion(&p->comp);
return p;
}
-static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
+static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
{
- int error;
-
if (S_ISBLK(inode->i_mode)) {
- p->bdev = bdgrab(I_BDEV(inode));
- error = blkdev_get(p->bdev,
- FMODE_READ | FMODE_WRITE | FMODE_EXCL,
- sys_swapon);
- if (error < 0) {
- p->bdev = NULL;
+ si->bdev = I_BDEV(inode);
+ /*
+ * Zoned block devices contain zones that have a sequential
+ * write only restriction. Hence zoned block devices are not
+ * suitable for swapping. Disallow them here.
+ */
+ if (bdev_is_zoned(si->bdev))
return -EINVAL;
- }
- p->old_block_size = block_size(p->bdev);
- error = set_blocksize(p->bdev, PAGE_SIZE);
- if (error < 0)
- return error;
- p->flags |= SWP_BLKDEV;
+ si->flags |= SWP_BLKDEV;
} else if (S_ISREG(inode->i_mode)) {
- p->bdev = inode->i_sb->s_bdev;
- mutex_lock(&inode->i_mutex);
- if (IS_SWAPFILE(inode))
- return -EBUSY;
- } else
- return -EINVAL;
+ si->bdev = inode->i_sb->s_bdev;
+ }
return 0;
}
-static unsigned long read_swap_header(struct swap_info_struct *p,
+
+/*
+ * Find out how many pages are allowed for a single swap device. There
+ * are two limiting factors:
+ * 1) the number of bits for the swap offset in the swp_entry_t type, and
+ * 2) the number of bits in the swap pte, as defined by the different
+ * architectures.
+ *
+ * In order to find the largest possible bit mask, a swap entry with
+ * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
+ * decoded to a swp_entry_t again, and finally the swap offset is
+ * extracted.
+ *
+ * This will mask all the bits from the initial ~0UL mask that can't
+ * be encoded in either the swp_entry_t or the architecture definition
+ * of a swap pte.
+ */
+unsigned long generic_max_swapfile_size(void)
+{
+ swp_entry_t entry = swp_entry(0, ~0UL);
+ const pte_t pte = softleaf_to_pte(entry);
+
+ /*
+ * Since the PTE can be an invalid softleaf entry (e.g. the none PTE),
+ * we need to do this manually.
+ */
+ entry = __pte_to_swp_entry(pte);
+ entry = swp_entry(__swp_type(entry), __swp_offset(entry));
+
+ return swp_offset(entry) + 1;
+}
+
+/* Can be overridden by an architecture for additional checks. */
+__weak unsigned long arch_max_swapfile_size(void)
+{
+ return generic_max_swapfile_size();
+}
+
+static unsigned long read_swap_header(struct swap_info_struct *si,
union swap_header *swap_header,
struct inode *inode)
{
int i;
unsigned long maxpages;
unsigned long swapfilepages;
+ unsigned long last_page;
if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
- printk(KERN_ERR "Unable to find swap-space signature\n");
+ pr_err("Unable to find swap-space signature\n");
return 0;
}
- /* swap partition endianess hack... */
+ /* swap partition endianness hack... */
if (swab32(swap_header->info.version) == 1) {
swab32s(&swap_header->info.version);
swab32s(&swap_header->info.last_page);
swab32s(&swap_header->info.nr_badpages);
+ if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
+ return 0;
for (i = 0; i < swap_header->info.nr_badpages; i++)
swab32s(&swap_header->info.badpages[i]);
}
/* Check the swap header's sub-version */
if (swap_header->info.version != 1) {
- printk(KERN_WARNING
- "Unable to handle swap header version %d\n",
- swap_header->info.version);
+ pr_warn("Unable to handle swap header version %d\n",
+ swap_header->info.version);
return 0;
}
- p->lowest_bit = 1;
- p->cluster_next = 1;
- p->cluster_nr = 0;
-
- /*
- * Find out how many pages are allowed for a single swap
- * device. There are two limiting factors: 1) the number
- * of bits for the swap offset in the swp_entry_t type, and
- * 2) the number of bits in the swap pte as defined by the
- * different architectures. In order to find the
- * largest possible bit mask, a swap entry with swap type 0
- * and swap offset ~0UL is created, encoded to a swap pte,
- * decoded to a swp_entry_t again, and finally the swap
- * offset is extracted. This will mask all the bits from
- * the initial ~0UL mask that can't be encoded in either
- * the swp_entry_t or the architecture definition of a
- * swap pte.
- */
- maxpages = swp_offset(pte_to_swp_entry(
- swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
- if (maxpages > swap_header->info.last_page) {
- maxpages = swap_header->info.last_page + 1;
+ maxpages = swapfile_maximum_size;
+ last_page = swap_header->info.last_page;
+ if (!last_page) {
+ pr_warn("Empty swap-file\n");
+ return 0;
+ }
+ if (last_page > maxpages) {
+ pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
+ K(maxpages), K(last_page));
+ }
+ if (maxpages > last_page) {
+ maxpages = last_page + 1;
/* p->max is an unsigned int: don't overflow it */
if ((unsigned int)maxpages == 0)
maxpages = UINT_MAX;
}
- p->highest_bit = maxpages - 1;
if (!maxpages)
return 0;
swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
if (swapfilepages && maxpages > swapfilepages) {
- printk(KERN_WARNING
- "Swap area shorter than signature indicates\n");
+ pr_warn("Swap area shorter than signature indicates\n");
return 0;
}
if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
@@ -1977,66 +3285,117 @@ static unsigned long read_swap_header(struct swap_info_struct *p,
return maxpages;
}
-static int setup_swap_map_and_extents(struct swap_info_struct *p,
- union swap_header *swap_header,
- unsigned char *swap_map,
- unsigned long maxpages,
- sector_t *span)
+static int setup_swap_map(struct swap_info_struct *si,
+ union swap_header *swap_header,
+ unsigned char *swap_map,
+ unsigned long maxpages)
{
- int i;
- unsigned int nr_good_pages;
- int nr_extents;
-
- nr_good_pages = maxpages - 1; /* omit header page */
+ unsigned long i;
+ swap_map[0] = SWAP_MAP_BAD; /* omit header page */
for (i = 0; i < swap_header->info.nr_badpages; i++) {
unsigned int page_nr = swap_header->info.badpages[i];
if (page_nr == 0 || page_nr > swap_header->info.last_page)
return -EINVAL;
if (page_nr < maxpages) {
swap_map[page_nr] = SWAP_MAP_BAD;
- nr_good_pages--;
+ si->pages--;
}
}
- if (nr_good_pages) {
- swap_map[0] = SWAP_MAP_BAD;
- p->max = maxpages;
- p->pages = nr_good_pages;
- nr_extents = setup_swap_extents(p, span);
- if (nr_extents < 0)
- return nr_extents;
- nr_good_pages = p->pages;
- }
- if (!nr_good_pages) {
- printk(KERN_WARNING "Empty swap-file\n");
+ if (!si->pages) {
+ pr_warn("Empty swap-file\n");
return -EINVAL;
}
- return nr_extents;
+ return 0;
}
-/*
- * Helper to sys_swapon determining if a given swap
- * backing device queue supports DISCARD operations.
- */
-static bool swap_discardable(struct swap_info_struct *si)
+static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
+ union swap_header *swap_header,
+ unsigned long maxpages)
{
- struct request_queue *q = bdev_get_queue(si->bdev);
+ unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
+ struct swap_cluster_info *cluster_info;
+ int err = -ENOMEM;
+ unsigned long i;
- if (!q || !blk_queue_discard(q))
- return false;
+ cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
+ if (!cluster_info)
+ goto err;
- return true;
+ for (i = 0; i < nr_clusters; i++)
+ spin_lock_init(&cluster_info[i].lock);
+
+ if (!(si->flags & SWP_SOLIDSTATE)) {
+ si->global_cluster = kmalloc(sizeof(*si->global_cluster),
+ GFP_KERNEL);
+ if (!si->global_cluster)
+ goto err;
+ for (i = 0; i < SWAP_NR_ORDERS; i++)
+ si->global_cluster->next[i] = SWAP_ENTRY_INVALID;
+ spin_lock_init(&si->global_cluster_lock);
+ }
+
+ /*
+ * Mark unusable pages as unavailable. The clusters aren't
+ * marked free yet, so no list operations are involved yet.
+ *
+ * See setup_swap_map(): header page, bad pages,
+ * and the EOF part of the last cluster.
+ */
+ err = swap_cluster_setup_bad_slot(cluster_info, 0);
+ if (err)
+ goto err;
+ for (i = 0; i < swap_header->info.nr_badpages; i++) {
+ unsigned int page_nr = swap_header->info.badpages[i];
+
+ if (page_nr >= maxpages)
+ continue;
+ err = swap_cluster_setup_bad_slot(cluster_info, page_nr);
+ if (err)
+ goto err;
+ }
+ for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) {
+ err = swap_cluster_setup_bad_slot(cluster_info, i);
+ if (err)
+ goto err;
+ }
+
+ INIT_LIST_HEAD(&si->free_clusters);
+ INIT_LIST_HEAD(&si->full_clusters);
+ INIT_LIST_HEAD(&si->discard_clusters);
+
+ for (i = 0; i < SWAP_NR_ORDERS; i++) {
+ INIT_LIST_HEAD(&si->nonfull_clusters[i]);
+ INIT_LIST_HEAD(&si->frag_clusters[i]);
+ }
+
+ for (i = 0; i < nr_clusters; i++) {
+ struct swap_cluster_info *ci = &cluster_info[i];
+
+ if (ci->count) {
+ ci->flags = CLUSTER_FLAG_NONFULL;
+ list_add_tail(&ci->list, &si->nonfull_clusters[0]);
+ } else {
+ ci->flags = CLUSTER_FLAG_FREE;
+ list_add_tail(&ci->list, &si->free_clusters);
+ }
+ }
+
+ return cluster_info;
+err:
+ free_cluster_info(cluster_info, maxpages);
+ return ERR_PTR(err);
}
SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
{
- struct swap_info_struct *p;
+ struct swap_info_struct *si;
struct filename *name;
struct file *swap_file = NULL;
struct address_space *mapping;
- int i;
+ struct dentry *dentry;
int prio;
int error;
union swap_header *swap_header;
@@ -2044,9 +3403,11 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
sector_t span;
unsigned long maxpages;
unsigned char *swap_map = NULL;
- unsigned long *frontswap_map = NULL;
- struct page *page = NULL;
+ unsigned long *zeromap = NULL;
+ struct swap_cluster_info *cluster_info = NULL;
+ struct folio *folio = NULL;
struct inode *inode = NULL;
+ bool inced_nr_rotate_swap = false;
if (swap_flags & ~SWAP_FLAGS_VALID)
return -EINVAL;
@@ -2054,9 +3415,12 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
- p = alloc_swap_info();
- if (IS_ERR(p))
- return PTR_ERR(p);
+ si = alloc_swap_info();
+ if (IS_ERR(si))
+ return PTR_ERR(si);
+
+ INIT_WORK(&si->discard_work, swap_discard_work);
+ INIT_WORK(&si->reclaim_work, swap_reclaim_work);
name = getname(specialfile);
if (IS_ERR(name)) {
@@ -2064,165 +3428,217 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
name = NULL;
goto bad_swap;
}
- swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
+ swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
if (IS_ERR(swap_file)) {
error = PTR_ERR(swap_file);
swap_file = NULL;
goto bad_swap;
}
- p->swap_file = swap_file;
+ si->swap_file = swap_file;
mapping = swap_file->f_mapping;
+ dentry = swap_file->f_path.dentry;
+ inode = mapping->host;
- for (i = 0; i < nr_swapfiles; i++) {
- struct swap_info_struct *q = swap_info[i];
+ error = claim_swapfile(si, inode);
+ if (unlikely(error))
+ goto bad_swap;
- if (q == p || !q->swap_file)
- continue;
- if (mapping == q->swap_file->f_mapping) {
- error = -EBUSY;
- goto bad_swap;
- }
+ inode_lock(inode);
+ if (d_unlinked(dentry) || cant_mount(dentry)) {
+ error = -ENOENT;
+ goto bad_swap_unlock_inode;
+ }
+ if (IS_SWAPFILE(inode)) {
+ error = -EBUSY;
+ goto bad_swap_unlock_inode;
}
- inode = mapping->host;
- /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
- error = claim_swapfile(p, inode);
- if (unlikely(error))
- goto bad_swap;
+ /*
+ * The swap subsystem needs a major overhaul to support this.
+ * It doesn't work yet so just disable it for now.
+ */
+ if (mapping_min_folio_order(mapping) > 0) {
+ error = -EINVAL;
+ goto bad_swap_unlock_inode;
+ }
/*
* Read the swap header.
*/
- if (!mapping->a_ops->readpage) {
+ if (!mapping->a_ops->read_folio) {
error = -EINVAL;
- goto bad_swap;
+ goto bad_swap_unlock_inode;
}
- page = read_mapping_page(mapping, 0, swap_file);
- if (IS_ERR(page)) {
- error = PTR_ERR(page);
- goto bad_swap;
+ folio = read_mapping_folio(mapping, 0, swap_file);
+ if (IS_ERR(folio)) {
+ error = PTR_ERR(folio);
+ goto bad_swap_unlock_inode;
}
- swap_header = kmap(page);
+ swap_header = kmap_local_folio(folio, 0);
- maxpages = read_swap_header(p, swap_header, inode);
+ maxpages = read_swap_header(si, swap_header, inode);
if (unlikely(!maxpages)) {
error = -EINVAL;
- goto bad_swap;
+ goto bad_swap_unlock_inode;
+ }
+
+ si->max = maxpages;
+ si->pages = maxpages - 1;
+ nr_extents = setup_swap_extents(si, &span);
+ if (nr_extents < 0) {
+ error = nr_extents;
+ goto bad_swap_unlock_inode;
}
+ if (si->pages != si->max - 1) {
+ pr_err("swap:%u != (max:%u - 1)\n", si->pages, si->max);
+ error = -EINVAL;
+ goto bad_swap_unlock_inode;
+ }
+
+ maxpages = si->max;
/* OK, set up the swap map and apply the bad block list */
swap_map = vzalloc(maxpages);
if (!swap_map) {
error = -ENOMEM;
- goto bad_swap;
+ goto bad_swap_unlock_inode;
}
- error = swap_cgroup_swapon(p->type, maxpages);
+ error = swap_cgroup_swapon(si->type, maxpages);
if (error)
- goto bad_swap;
+ goto bad_swap_unlock_inode;
- nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
- maxpages, &span);
- if (unlikely(nr_extents < 0)) {
- error = nr_extents;
- goto bad_swap;
+ error = setup_swap_map(si, swap_header, swap_map, maxpages);
+ if (error)
+ goto bad_swap_unlock_inode;
+
+ /*
+ * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
+ * be above MAX_PAGE_ORDER incase of a large swap file.
+ */
+ zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
+ GFP_KERNEL | __GFP_ZERO);
+ if (!zeromap) {
+ error = -ENOMEM;
+ goto bad_swap_unlock_inode;
}
- /* frontswap enabled? set up bit-per-page map for frontswap */
- if (frontswap_enabled)
- frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
- if (p->bdev) {
- if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
- p->flags |= SWP_SOLIDSTATE;
- p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
- }
+ if (si->bdev && bdev_stable_writes(si->bdev))
+ si->flags |= SWP_STABLE_WRITES;
- if ((swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
- /*
- * When discard is enabled for swap with no particular
- * policy flagged, we set all swap discard flags here in
- * order to sustain backward compatibility with older
- * swapon(8) releases.
- */
- p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
- SWP_PAGE_DISCARD);
+ if (si->bdev && bdev_synchronous(si->bdev))
+ si->flags |= SWP_SYNCHRONOUS_IO;
- /*
- * By flagging sys_swapon, a sysadmin can tell us to
- * either do single-time area discards only, or to just
- * perform discards for released swap page-clusters.
- * Now it's time to adjust the p->flags accordingly.
- */
- if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
- p->flags &= ~SWP_PAGE_DISCARD;
- else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
- p->flags &= ~SWP_AREA_DISCARD;
-
- /* issue a swapon-time discard if it's still required */
- if (p->flags & SWP_AREA_DISCARD) {
- int err = discard_swap(p);
- if (unlikely(err))
- printk(KERN_ERR
- "swapon: discard_swap(%p): %d\n",
- p, err);
- }
+ if (si->bdev && bdev_nonrot(si->bdev)) {
+ si->flags |= SWP_SOLIDSTATE;
+ } else {
+ atomic_inc(&nr_rotate_swap);
+ inced_nr_rotate_swap = true;
+ }
+
+ cluster_info = setup_clusters(si, swap_header, maxpages);
+ if (IS_ERR(cluster_info)) {
+ error = PTR_ERR(cluster_info);
+ cluster_info = NULL;
+ goto bad_swap_unlock_inode;
+ }
+
+ if ((swap_flags & SWAP_FLAG_DISCARD) &&
+ si->bdev && bdev_max_discard_sectors(si->bdev)) {
+ /*
+ * When discard is enabled for swap with no particular
+ * policy flagged, we set all swap discard flags here in
+ * order to sustain backward compatibility with older
+ * swapon(8) releases.
+ */
+ si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
+ SWP_PAGE_DISCARD);
+
+ /*
+ * By flagging sys_swapon, a sysadmin can tell us to
+ * either do single-time area discards only, or to just
+ * perform discards for released swap page-clusters.
+ * Now it's time to adjust the p->flags accordingly.
+ */
+ if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
+ si->flags &= ~SWP_PAGE_DISCARD;
+ else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
+ si->flags &= ~SWP_AREA_DISCARD;
+
+ /* issue a swapon-time discard if it's still required */
+ if (si->flags & SWP_AREA_DISCARD) {
+ int err = discard_swap(si);
+ if (unlikely(err))
+ pr_err("swapon: discard_swap(%p): %d\n",
+ si, err);
}
}
+ error = zswap_swapon(si->type, maxpages);
+ if (error)
+ goto bad_swap_unlock_inode;
+
+ /*
+ * Flush any pending IO and dirty mappings before we start using this
+ * swap device.
+ */
+ inode->i_flags |= S_SWAPFILE;
+ error = inode_drain_writes(inode);
+ if (error) {
+ inode->i_flags &= ~S_SWAPFILE;
+ goto free_swap_zswap;
+ }
+
mutex_lock(&swapon_mutex);
- prio = -1;
+ prio = DEF_SWAP_PRIO;
if (swap_flags & SWAP_FLAG_PREFER)
- prio =
- (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
- enable_swap_info(p, prio, swap_map, frontswap_map);
-
- printk(KERN_INFO "Adding %uk swap on %s. "
- "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
- p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
- nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
- (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
- (p->flags & SWP_DISCARDABLE) ? "D" : "",
- (p->flags & SWP_AREA_DISCARD) ? "s" : "",
- (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
- (frontswap_map) ? "FS" : "");
+ prio = swap_flags & SWAP_FLAG_PRIO_MASK;
+ enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
+
+ pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n",
+ K(si->pages), name->name, si->prio, nr_extents,
+ K((unsigned long long)span),
+ (si->flags & SWP_SOLIDSTATE) ? "SS" : "",
+ (si->flags & SWP_DISCARDABLE) ? "D" : "",
+ (si->flags & SWP_AREA_DISCARD) ? "s" : "",
+ (si->flags & SWP_PAGE_DISCARD) ? "c" : "");
mutex_unlock(&swapon_mutex);
atomic_inc(&proc_poll_event);
wake_up_interruptible(&proc_poll_wait);
- if (S_ISREG(inode->i_mode))
- inode->i_flags |= S_SWAPFILE;
error = 0;
goto out;
+free_swap_zswap:
+ zswap_swapoff(si->type);
+bad_swap_unlock_inode:
+ inode_unlock(inode);
bad_swap:
- if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
- set_blocksize(p->bdev, p->old_block_size);
- blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
- }
- destroy_swap_extents(p);
- swap_cgroup_swapoff(p->type);
+ kfree(si->global_cluster);
+ si->global_cluster = NULL;
+ inode = NULL;
+ destroy_swap_extents(si);
+ swap_cgroup_swapoff(si->type);
spin_lock(&swap_lock);
- p->swap_file = NULL;
- p->flags = 0;
+ si->swap_file = NULL;
+ si->flags = 0;
spin_unlock(&swap_lock);
vfree(swap_map);
- if (swap_file) {
- if (inode && S_ISREG(inode->i_mode)) {
- mutex_unlock(&inode->i_mutex);
- inode = NULL;
- }
+ kvfree(zeromap);
+ if (cluster_info)
+ free_cluster_info(cluster_info, maxpages);
+ if (inced_nr_rotate_swap)
+ atomic_dec(&nr_rotate_swap);
+ if (swap_file)
filp_close(swap_file, NULL);
- }
out:
- if (page && !IS_ERR(page)) {
- kunmap(page);
- page_cache_release(page);
- }
+ if (!IS_ERR_OR_NULL(folio))
+ folio_release_kmap(folio, swap_header);
if (name)
putname(name);
- if (inode && S_ISREG(inode->i_mode))
- mutex_unlock(&inode->i_mutex);
+ if (inode)
+ inode_unlock(inode);
return error;
}
@@ -2236,7 +3652,7 @@ void si_swapinfo(struct sysinfo *val)
struct swap_info_struct *si = swap_info[type];
if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
- nr_to_be_unused += si->inuse_pages;
+ nr_to_be_unused += swap_usage_in_pages(si);
}
val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
val->totalswap = total_swap_pages + nr_to_be_unused;
@@ -2244,84 +3660,99 @@ void si_swapinfo(struct sysinfo *val)
}
/*
- * Verify that a swap entry is valid and increment its swap map count.
+ * Verify that nr swap entries are valid and increment their swap map counts.
*
* Returns error code in following case.
* - success -> 0
* - swp_entry is invalid -> EINVAL
- * - swp_entry is migration entry -> EINVAL
* - swap-cache reference is requested but there is already one. -> EEXIST
* - swap-cache reference is requested but the entry is not used. -> ENOENT
* - swap-mapped reference requested but needs continued swap count. -> ENOMEM
*/
-static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
+static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
{
- struct swap_info_struct *p;
- unsigned long offset, type;
+ struct swap_info_struct *si;
+ struct swap_cluster_info *ci;
+ unsigned long offset;
unsigned char count;
unsigned char has_cache;
- int err = -EINVAL;
+ int err, i;
- if (non_swap_entry(entry))
- goto out;
+ si = swap_entry_to_info(entry);
+ if (WARN_ON_ONCE(!si)) {
+ pr_err("%s%08lx\n", Bad_file, entry.val);
+ return -EINVAL;
+ }
- type = swp_type(entry);
- if (type >= nr_swapfiles)
- goto bad_file;
- p = swap_info[type];
offset = swp_offset(entry);
+ VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
+ VM_WARN_ON(usage == 1 && nr > 1);
+ ci = swap_cluster_lock(si, offset);
- spin_lock(&p->lock);
- if (unlikely(offset >= p->max))
- goto unlock_out;
-
- count = p->swap_map[offset];
- has_cache = count & SWAP_HAS_CACHE;
- count &= ~SWAP_HAS_CACHE;
err = 0;
+ for (i = 0; i < nr; i++) {
+ count = si->swap_map[offset + i];
- if (usage == SWAP_HAS_CACHE) {
+ /*
+ * swapin_readahead() doesn't check if a swap entry is valid, so the
+ * swap entry could be SWAP_MAP_BAD. Check here with lock held.
+ */
+ if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
+ err = -ENOENT;
+ goto unlock_out;
+ }
- /* set SWAP_HAS_CACHE if there is no cache and entry is used */
- if (!has_cache && count)
- has_cache = SWAP_HAS_CACHE;
- else if (has_cache) /* someone else added cache */
- err = -EEXIST;
- else /* no users remaining */
+ has_cache = count & SWAP_HAS_CACHE;
+ count &= ~SWAP_HAS_CACHE;
+
+ if (!count && !has_cache) {
err = -ENOENT;
+ } else if (usage == SWAP_HAS_CACHE) {
+ if (has_cache)
+ err = -EEXIST;
+ } else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
+ err = -EINVAL;
+ }
- } else if (count || has_cache) {
+ if (err)
+ goto unlock_out;
+ }
- if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
+ for (i = 0; i < nr; i++) {
+ count = si->swap_map[offset + i];
+ has_cache = count & SWAP_HAS_CACHE;
+ count &= ~SWAP_HAS_CACHE;
+
+ if (usage == SWAP_HAS_CACHE)
+ has_cache = SWAP_HAS_CACHE;
+ else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
count += usage;
- else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
- err = -EINVAL;
- else if (swap_count_continued(p, offset, count))
+ else if (swap_count_continued(si, offset + i, count))
count = COUNT_CONTINUED;
- else
+ else {
+ /*
+ * Don't need to rollback changes, because if
+ * usage == 1, there must be nr == 1.
+ */
err = -ENOMEM;
- } else
- err = -ENOENT; /* unused swap entry */
+ goto unlock_out;
+ }
- p->swap_map[offset] = count | has_cache;
+ WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
+ }
unlock_out:
- spin_unlock(&p->lock);
-out:
+ swap_cluster_unlock(ci);
return err;
-
-bad_file:
- printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
- goto out;
}
/*
* Help swapoff by noting that swap entry belongs to shmem/tmpfs
* (in which case its reference count is never incremented).
*/
-void swap_shmem_alloc(swp_entry_t entry)
+void swap_shmem_alloc(swp_entry_t entry, int nr)
{
- __swap_duplicate(entry, SWAP_MAP_SHMEM);
+ __swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
}
/*
@@ -2335,48 +3766,32 @@ int swap_duplicate(swp_entry_t entry)
{
int err = 0;
- while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
+ while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
err = add_swap_count_continuation(entry, GFP_ATOMIC);
return err;
}
/*
- * @entry: swap entry for which we allocate swap cache.
+ * @entry: first swap entry from which we allocate nr swap cache.
*
- * Called when allocating swap cache for existing swap entry,
+ * Called when allocating swap cache for existing swap entries,
* This can return error codes. Returns 0 at success.
- * -EBUSY means there is a swap cache.
+ * -EEXIST means there is a swap cache.
* Note: return code is different from swap_duplicate().
*/
-int swapcache_prepare(swp_entry_t entry)
+int swapcache_prepare(swp_entry_t entry, int nr)
{
- return __swap_duplicate(entry, SWAP_HAS_CACHE);
-}
-
-struct swap_info_struct *page_swap_info(struct page *page)
-{
- swp_entry_t swap = { .val = page_private(page) };
- BUG_ON(!PageSwapCache(page));
- return swap_info[swp_type(swap)];
+ return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
}
/*
- * out-of-line __page_file_ methods to avoid include hell.
+ * Caller should ensure entries belong to the same folio so
+ * the entries won't span cross cluster boundary.
*/
-struct address_space *__page_file_mapping(struct page *page)
-{
- VM_BUG_ON(!PageSwapCache(page));
- return page_swap_info(page)->swap_file->f_mapping;
-}
-EXPORT_SYMBOL_GPL(__page_file_mapping);
-
-pgoff_t __page_file_index(struct page *page)
+void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
{
- swp_entry_t swap = { .val = page_private(page) };
- VM_BUG_ON(!PageSwapCache(page));
- return swp_offset(swap);
+ swap_entries_put_cache(si, entry, nr);
}
-EXPORT_SYMBOL_GPL(__page_file_index);
/*
* add_swap_count_continuation - called when a swap count is duplicated
@@ -2396,11 +3811,13 @@ EXPORT_SYMBOL_GPL(__page_file_index);
int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
{
struct swap_info_struct *si;
+ struct swap_cluster_info *ci;
struct page *head;
struct page *page;
struct page *list_page;
pgoff_t offset;
unsigned char count;
+ int ret = 0;
/*
* When debugging, it's easier to use __GFP_ZERO here; but it's better
@@ -2408,18 +3825,20 @@ int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
*/
page = alloc_page(gfp_mask | __GFP_HIGHMEM);
- si = swap_info_get(entry);
+ si = get_swap_device(entry);
if (!si) {
/*
* An acceptable race has occurred since the failing
- * __swap_duplicate(): the swap entry has been freed,
- * perhaps even the whole swap_map cleared for swapoff.
+ * __swap_duplicate(): the swap device may be swapoff
*/
goto outer;
}
offset = swp_offset(entry);
- count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
+
+ ci = swap_cluster_lock(si, offset);
+
+ count = swap_count(si->swap_map[offset]);
if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
/*
@@ -2431,18 +3850,14 @@ int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
}
if (!page) {
- spin_unlock(&si->lock);
- return -ENOMEM;
+ ret = -ENOMEM;
+ goto out;
}
- /*
- * We are fortunate that although vmalloc_to_page uses pte_offset_map,
- * no architecture is using highmem pages for kernel pagetables: so it
- * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
- */
head = vmalloc_to_page(si->swap_map + offset);
offset &= ~PAGE_MASK;
+ spin_lock(&si->cont_lock);
/*
* Page allocation does not initialize the page's lru field,
* but it does always reset its private field.
@@ -2462,28 +3877,31 @@ int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
* a continuation page, free our allocation and use this one.
*/
if (!(count & COUNT_CONTINUED))
- goto out;
+ goto out_unlock_cont;
- map = kmap_atomic(list_page) + offset;
+ map = kmap_local_page(list_page) + offset;
count = *map;
- kunmap_atomic(map);
+ kunmap_local(map);
/*
* If this continuation count now has some space in it,
* free our allocation and use this one.
*/
if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
- goto out;
+ goto out_unlock_cont;
}
list_add_tail(&page->lru, &head->lru);
page = NULL; /* now it's attached, don't free it */
+out_unlock_cont:
+ spin_unlock(&si->cont_lock);
out:
- spin_unlock(&si->lock);
+ swap_cluster_unlock(ci);
+ put_swap_device(si);
outer:
if (page)
__free_page(page);
- return 0;
+ return ret;
}
/*
@@ -2492,7 +3910,8 @@ outer:
* into, carry if so, or else fail until a new continuation page is allocated;
* when the original swap_map count is decremented from 0 with continuation,
* borrow from the continuation and report whether it still holds more.
- * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
+ * Called while __swap_duplicate() or caller of swap_entry_put_locked()
+ * holds cluster lock.
*/
static bool swap_count_continued(struct swap_info_struct *si,
pgoff_t offset, unsigned char count)
@@ -2500,6 +3919,7 @@ static bool swap_count_continued(struct swap_info_struct *si,
struct page *head;
struct page *page;
unsigned char *map;
+ bool ret;
head = vmalloc_to_page(si->swap_map + offset);
if (page_private(head) != SWP_CONTINUED) {
@@ -2507,9 +3927,10 @@ static bool swap_count_continued(struct swap_info_struct *si,
return false; /* need to add count continuation */
}
+ spin_lock(&si->cont_lock);
offset &= ~PAGE_MASK;
- page = list_entry(head->lru.next, struct page, lru);
- map = kmap_atomic(page) + offset;
+ page = list_next_entry(head, lru);
+ map = kmap_local_page(page) + offset;
if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
goto init_map; /* jump over SWAP_CONT_MAX checks */
@@ -2519,29 +3940,29 @@ static bool swap_count_continued(struct swap_info_struct *si,
* Think of how you add 1 to 999
*/
while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
- kunmap_atomic(map);
- page = list_entry(page->lru.next, struct page, lru);
+ kunmap_local(map);
+ page = list_next_entry(page, lru);
BUG_ON(page == head);
- map = kmap_atomic(page) + offset;
+ map = kmap_local_page(page) + offset;
}
if (*map == SWAP_CONT_MAX) {
- kunmap_atomic(map);
- page = list_entry(page->lru.next, struct page, lru);
- if (page == head)
- return false; /* add count continuation */
- map = kmap_atomic(page) + offset;
+ kunmap_local(map);
+ page = list_next_entry(page, lru);
+ if (page == head) {
+ ret = false; /* add count continuation */
+ goto out;
+ }
+ map = kmap_local_page(page) + offset;
init_map: *map = 0; /* we didn't zero the page */
}
*map += 1;
- kunmap_atomic(map);
- page = list_entry(page->lru.prev, struct page, lru);
- while (page != head) {
- map = kmap_atomic(page) + offset;
+ kunmap_local(map);
+ while ((page = list_prev_entry(page, lru)) != head) {
+ map = kmap_local_page(page) + offset;
*map = COUNT_CONTINUED;
- kunmap_atomic(map);
- page = list_entry(page->lru.prev, struct page, lru);
+ kunmap_local(map);
}
- return true; /* incremented */
+ ret = true; /* incremented */
} else { /* decrementing */
/*
@@ -2549,26 +3970,27 @@ init_map: *map = 0; /* we didn't zero the page */
*/
BUG_ON(count != COUNT_CONTINUED);
while (*map == COUNT_CONTINUED) {
- kunmap_atomic(map);
- page = list_entry(page->lru.next, struct page, lru);
+ kunmap_local(map);
+ page = list_next_entry(page, lru);
BUG_ON(page == head);
- map = kmap_atomic(page) + offset;
+ map = kmap_local_page(page) + offset;
}
BUG_ON(*map == 0);
*map -= 1;
if (*map == 0)
count = 0;
- kunmap_atomic(map);
- page = list_entry(page->lru.prev, struct page, lru);
- while (page != head) {
- map = kmap_atomic(page) + offset;
+ kunmap_local(map);
+ while ((page = list_prev_entry(page, lru)) != head) {
+ map = kmap_local_page(page) + offset;
*map = SWAP_CONT_MAX | count;
count = COUNT_CONTINUED;
- kunmap_atomic(map);
- page = list_entry(page->lru.prev, struct page, lru);
+ kunmap_local(map);
}
- return count == COUNT_CONTINUED;
+ ret = count == COUNT_CONTINUED;
}
+out:
+ spin_unlock(&si->cont_lock);
+ return ret;
}
/*
@@ -2583,13 +4005,72 @@ static void free_swap_count_continuations(struct swap_info_struct *si)
struct page *head;
head = vmalloc_to_page(si->swap_map + offset);
if (page_private(head)) {
- struct list_head *this, *next;
- list_for_each_safe(this, next, &head->lru) {
- struct page *page;
- page = list_entry(this, struct page, lru);
- list_del(this);
+ struct page *page, *next;
+
+ list_for_each_entry_safe(page, next, &head->lru, lru) {
+ list_del(&page->lru);
__free_page(page);
}
}
}
}
+
+#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
+static bool __has_usable_swap(void)
+{
+ return !plist_head_empty(&swap_active_head);
+}
+
+void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
+{
+ struct swap_info_struct *si;
+
+ if (!(gfp & __GFP_IO))
+ return;
+
+ if (!__has_usable_swap())
+ return;
+
+ if (!blk_cgroup_congested())
+ return;
+
+ /*
+ * We've already scheduled a throttle, avoid taking the global swap
+ * lock.
+ */
+ if (current->throttle_disk)
+ return;
+
+ spin_lock(&swap_avail_lock);
+ plist_for_each_entry(si, &swap_avail_head, avail_list) {
+ if (si->bdev) {
+ blkcg_schedule_throttle(si->bdev->bd_disk, true);
+ break;
+ }
+ }
+ spin_unlock(&swap_avail_lock);
+}
+#endif
+
+static int __init swapfile_init(void)
+{
+ swapfile_maximum_size = arch_max_swapfile_size();
+
+ /*
+ * Once a cluster is freed, it's swap table content is read
+ * only, and all swap cache readers (swap_cache_*) verifies
+ * the content before use. So it's safe to use RCU slab here.
+ */
+ if (!SWP_TABLE_USE_PAGE)
+ swap_table_cachep = kmem_cache_create("swap_table",
+ sizeof(struct swap_table),
+ 0, SLAB_PANIC | SLAB_TYPESAFE_BY_RCU, NULL);
+
+#ifdef CONFIG_MIGRATION
+ if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
+ swap_migration_ad_supported = true;
+#endif /* CONFIG_MIGRATION */
+
+ return 0;
+}
+subsys_initcall(swapfile_init);