diff options
Diffstat (limited to 'mm/vmalloc.c')
| -rw-r--r-- | mm/vmalloc.c | 5650 |
1 files changed, 4200 insertions, 1450 deletions
diff --git a/mm/vmalloc.c b/mm/vmalloc.c index 13a54953a273..ecbac900c35f 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c @@ -1,36 +1,88 @@ +// SPDX-License-Identifier: GPL-2.0-only /* - * linux/mm/vmalloc.c - * * Copyright (C) 1993 Linus Torvalds * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 * Numa awareness, Christoph Lameter, SGI, June 2005 + * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 */ #include <linux/vmalloc.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/highmem.h> -#include <linux/sched.h> +#include <linux/sched/signal.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> +#include <linux/set_memory.h> #include <linux/debugobjects.h> #include <linux/kallsyms.h> #include <linux/list.h> +#include <linux/notifier.h> #include <linux/rbtree.h> -#include <linux/radix-tree.h> +#include <linux/xarray.h> +#include <linux/io.h> #include <linux/rcupdate.h> #include <linux/pfn.h> #include <linux/kmemleak.h> #include <linux/atomic.h> +#include <linux/compiler.h> +#include <linux/memcontrol.h> #include <linux/llist.h> -#include <asm/uaccess.h> +#include <linux/uio.h> +#include <linux/bitops.h> +#include <linux/rbtree_augmented.h> +#include <linux/overflow.h> +#include <linux/pgtable.h> +#include <linux/hugetlb.h> +#include <linux/sched/mm.h> #include <asm/tlbflush.h> #include <asm/shmparam.h> +#include <linux/page_owner.h> + +#define CREATE_TRACE_POINTS +#include <trace/events/vmalloc.h> + +#include "internal.h" +#include "pgalloc-track.h" + +#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP +static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; + +static int __init set_nohugeiomap(char *str) +{ + ioremap_max_page_shift = PAGE_SHIFT; + return 0; +} +early_param("nohugeiomap", set_nohugeiomap); +#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ +static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; +#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ + +#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC +static bool __ro_after_init vmap_allow_huge = true; + +static int __init set_nohugevmalloc(char *str) +{ + vmap_allow_huge = false; + return 0; +} +early_param("nohugevmalloc", set_nohugevmalloc); +#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ +static const bool vmap_allow_huge = false; +#endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ + +bool is_vmalloc_addr(const void *x) +{ + unsigned long addr = (unsigned long)kasan_reset_tag(x); + + return addr >= VMALLOC_START && addr < VMALLOC_END; +} +EXPORT_SYMBOL(is_vmalloc_addr); struct vfree_deferred { struct llist_head list; @@ -38,78 +90,438 @@ struct vfree_deferred { }; static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); -static void __vunmap(const void *, int); +/*** Page table manipulation functions ***/ +static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, + phys_addr_t phys_addr, pgprot_t prot, + unsigned int max_page_shift, pgtbl_mod_mask *mask) +{ + pte_t *pte; + u64 pfn; + struct page *page; + unsigned long size = PAGE_SIZE; + + if (WARN_ON_ONCE(!PAGE_ALIGNED(end - addr))) + return -EINVAL; -static void free_work(struct work_struct *w) + pfn = phys_addr >> PAGE_SHIFT; + pte = pte_alloc_kernel_track(pmd, addr, mask); + if (!pte) + return -ENOMEM; + + arch_enter_lazy_mmu_mode(); + + do { + if (unlikely(!pte_none(ptep_get(pte)))) { + if (pfn_valid(pfn)) { + page = pfn_to_page(pfn); + dump_page(page, "remapping already mapped page"); + } + BUG(); + } + +#ifdef CONFIG_HUGETLB_PAGE + size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); + if (size != PAGE_SIZE) { + pte_t entry = pfn_pte(pfn, prot); + + entry = arch_make_huge_pte(entry, ilog2(size), 0); + set_huge_pte_at(&init_mm, addr, pte, entry, size); + pfn += PFN_DOWN(size); + continue; + } +#endif + set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); + pfn++; + } while (pte += PFN_DOWN(size), addr += size, addr != end); + + arch_leave_lazy_mmu_mode(); + *mask |= PGTBL_PTE_MODIFIED; + return 0; +} + +static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, + phys_addr_t phys_addr, pgprot_t prot, + unsigned int max_page_shift) { - struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); - struct llist_node *llnode = llist_del_all(&p->list); - while (llnode) { - void *p = llnode; - llnode = llist_next(llnode); - __vunmap(p, 1); - } + if (max_page_shift < PMD_SHIFT) + return 0; + + if (!arch_vmap_pmd_supported(prot)) + return 0; + + if ((end - addr) != PMD_SIZE) + return 0; + + if (!IS_ALIGNED(addr, PMD_SIZE)) + return 0; + + if (!IS_ALIGNED(phys_addr, PMD_SIZE)) + return 0; + + if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) + return 0; + + return pmd_set_huge(pmd, phys_addr, prot); } -/*** Page table manipulation functions ***/ +static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, + phys_addr_t phys_addr, pgprot_t prot, + unsigned int max_page_shift, pgtbl_mod_mask *mask) +{ + pmd_t *pmd; + unsigned long next; + int err = 0; + + pmd = pmd_alloc_track(&init_mm, pud, addr, mask); + if (!pmd) + return -ENOMEM; + do { + next = pmd_addr_end(addr, end); + + if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, + max_page_shift)) { + *mask |= PGTBL_PMD_MODIFIED; + continue; + } + + err = vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask); + if (err) + break; + } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); + return err; +} + +static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, + phys_addr_t phys_addr, pgprot_t prot, + unsigned int max_page_shift) +{ + if (max_page_shift < PUD_SHIFT) + return 0; + + if (!arch_vmap_pud_supported(prot)) + return 0; + + if ((end - addr) != PUD_SIZE) + return 0; + + if (!IS_ALIGNED(addr, PUD_SIZE)) + return 0; + + if (!IS_ALIGNED(phys_addr, PUD_SIZE)) + return 0; + + if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) + return 0; + + return pud_set_huge(pud, phys_addr, prot); +} + +static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, + phys_addr_t phys_addr, pgprot_t prot, + unsigned int max_page_shift, pgtbl_mod_mask *mask) +{ + pud_t *pud; + unsigned long next; + int err = 0; + + pud = pud_alloc_track(&init_mm, p4d, addr, mask); + if (!pud) + return -ENOMEM; + do { + next = pud_addr_end(addr, end); + + if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, + max_page_shift)) { + *mask |= PGTBL_PUD_MODIFIED; + continue; + } + + err = vmap_pmd_range(pud, addr, next, phys_addr, prot, max_page_shift, mask); + if (err) + break; + } while (pud++, phys_addr += (next - addr), addr = next, addr != end); + return err; +} + +static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, + phys_addr_t phys_addr, pgprot_t prot, + unsigned int max_page_shift) +{ + if (max_page_shift < P4D_SHIFT) + return 0; + + if (!arch_vmap_p4d_supported(prot)) + return 0; + + if ((end - addr) != P4D_SIZE) + return 0; + + if (!IS_ALIGNED(addr, P4D_SIZE)) + return 0; + + if (!IS_ALIGNED(phys_addr, P4D_SIZE)) + return 0; + + if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) + return 0; -static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) + return p4d_set_huge(p4d, phys_addr, prot); +} + +static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, + phys_addr_t phys_addr, pgprot_t prot, + unsigned int max_page_shift, pgtbl_mod_mask *mask) +{ + p4d_t *p4d; + unsigned long next; + int err = 0; + + p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); + if (!p4d) + return -ENOMEM; + do { + next = p4d_addr_end(addr, end); + + if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, + max_page_shift)) { + *mask |= PGTBL_P4D_MODIFIED; + continue; + } + + err = vmap_pud_range(p4d, addr, next, phys_addr, prot, max_page_shift, mask); + if (err) + break; + } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); + return err; +} + +static int vmap_range_noflush(unsigned long addr, unsigned long end, + phys_addr_t phys_addr, pgprot_t prot, + unsigned int max_page_shift) +{ + pgd_t *pgd; + unsigned long start; + unsigned long next; + int err; + pgtbl_mod_mask mask = 0; + + might_sleep(); + BUG_ON(addr >= end); + + start = addr; + pgd = pgd_offset_k(addr); + do { + next = pgd_addr_end(addr, end); + err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, + max_page_shift, &mask); + if (err) + break; + } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); + + if (mask & ARCH_PAGE_TABLE_SYNC_MASK) + arch_sync_kernel_mappings(start, end); + + return err; +} + +int vmap_page_range(unsigned long addr, unsigned long end, + phys_addr_t phys_addr, pgprot_t prot) +{ + int err; + + err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), + ioremap_max_page_shift); + flush_cache_vmap(addr, end); + if (!err) + err = kmsan_ioremap_page_range(addr, end, phys_addr, prot, + ioremap_max_page_shift); + return err; +} + +int ioremap_page_range(unsigned long addr, unsigned long end, + phys_addr_t phys_addr, pgprot_t prot) +{ + struct vm_struct *area; + + area = find_vm_area((void *)addr); + if (!area || !(area->flags & VM_IOREMAP)) { + WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr); + return -EINVAL; + } + if (addr != (unsigned long)area->addr || + (void *)end != area->addr + get_vm_area_size(area)) { + WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n", + addr, end, (long)area->addr, + (long)area->addr + get_vm_area_size(area)); + return -ERANGE; + } + return vmap_page_range(addr, end, phys_addr, prot); +} + +static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, + pgtbl_mod_mask *mask) { pte_t *pte; + pte_t ptent; + unsigned long size = PAGE_SIZE; pte = pte_offset_kernel(pmd, addr); + arch_enter_lazy_mmu_mode(); + do { - pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); +#ifdef CONFIG_HUGETLB_PAGE + size = arch_vmap_pte_range_unmap_size(addr, pte); + if (size != PAGE_SIZE) { + if (WARN_ON(!IS_ALIGNED(addr, size))) { + addr = ALIGN_DOWN(addr, size); + pte = PTR_ALIGN_DOWN(pte, sizeof(*pte) * (size >> PAGE_SHIFT)); + } + ptent = huge_ptep_get_and_clear(&init_mm, addr, pte, size); + if (WARN_ON(end - addr < size)) + size = end - addr; + } else +#endif + ptent = ptep_get_and_clear(&init_mm, addr, pte); WARN_ON(!pte_none(ptent) && !pte_present(ptent)); - } while (pte++, addr += PAGE_SIZE, addr != end); + } while (pte += (size >> PAGE_SHIFT), addr += size, addr != end); + + arch_leave_lazy_mmu_mode(); + *mask |= PGTBL_PTE_MODIFIED; } -static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) +static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, + pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; + int cleared; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); + + cleared = pmd_clear_huge(pmd); + if (cleared || pmd_bad(*pmd)) + *mask |= PGTBL_PMD_MODIFIED; + + if (cleared) { + WARN_ON(next - addr < PMD_SIZE); + continue; + } if (pmd_none_or_clear_bad(pmd)) continue; - vunmap_pte_range(pmd, addr, next); + vunmap_pte_range(pmd, addr, next, mask); + + cond_resched(); } while (pmd++, addr = next, addr != end); } -static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) +static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, + pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; + int cleared; - pud = pud_offset(pgd, addr); + pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); + + cleared = pud_clear_huge(pud); + if (cleared || pud_bad(*pud)) + *mask |= PGTBL_PUD_MODIFIED; + + if (cleared) { + WARN_ON(next - addr < PUD_SIZE); + continue; + } if (pud_none_or_clear_bad(pud)) continue; - vunmap_pmd_range(pud, addr, next); + vunmap_pmd_range(pud, addr, next, mask); } while (pud++, addr = next, addr != end); } -static void vunmap_page_range(unsigned long addr, unsigned long end) +static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, + pgtbl_mod_mask *mask) { - pgd_t *pgd; + p4d_t *p4d; unsigned long next; + p4d = p4d_offset(pgd, addr); + do { + next = p4d_addr_end(addr, end); + + p4d_clear_huge(p4d); + if (p4d_bad(*p4d)) + *mask |= PGTBL_P4D_MODIFIED; + + if (p4d_none_or_clear_bad(p4d)) + continue; + vunmap_pud_range(p4d, addr, next, mask); + } while (p4d++, addr = next, addr != end); +} + +/* + * vunmap_range_noflush is similar to vunmap_range, but does not + * flush caches or TLBs. + * + * The caller is responsible for calling flush_cache_vmap() before calling + * this function, and flush_tlb_kernel_range after it has returned + * successfully (and before the addresses are expected to cause a page fault + * or be re-mapped for something else, if TLB flushes are being delayed or + * coalesced). + * + * This is an internal function only. Do not use outside mm/. + */ +void __vunmap_range_noflush(unsigned long start, unsigned long end) +{ + unsigned long next; + pgd_t *pgd; + unsigned long addr = start; + pgtbl_mod_mask mask = 0; + BUG_ON(addr >= end); pgd = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); + if (pgd_bad(*pgd)) + mask |= PGTBL_PGD_MODIFIED; if (pgd_none_or_clear_bad(pgd)) continue; - vunmap_pud_range(pgd, addr, next); + vunmap_p4d_range(pgd, addr, next, &mask); } while (pgd++, addr = next, addr != end); + + if (mask & ARCH_PAGE_TABLE_SYNC_MASK) + arch_sync_kernel_mappings(start, end); +} + +void vunmap_range_noflush(unsigned long start, unsigned long end) +{ + kmsan_vunmap_range_noflush(start, end); + __vunmap_range_noflush(start, end); +} + +/** + * vunmap_range - unmap kernel virtual addresses + * @addr: start of the VM area to unmap + * @end: end of the VM area to unmap (non-inclusive) + * + * Clears any present PTEs in the virtual address range, flushes TLBs and + * caches. Any subsequent access to the address before it has been re-mapped + * is a kernel bug. + */ +void vunmap_range(unsigned long addr, unsigned long end) +{ + flush_cache_vunmap(addr, end); + vunmap_range_noflush(addr, end); + flush_tlb_kernel_range(addr, end); } -static int vmap_pte_range(pmd_t *pmd, unsigned long addr, - unsigned long end, pgprot_t prot, struct page **pages, int *nr) +static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, + unsigned long end, pgprot_t prot, struct page **pages, int *nr, + pgtbl_mod_mask *mask) { + int err = 0; pte_t *pte; /* @@ -117,91 +529,245 @@ static int vmap_pte_range(pmd_t *pmd, unsigned long addr, * callers keep track of where we're up to. */ - pte = pte_alloc_kernel(pmd, addr); + pte = pte_alloc_kernel_track(pmd, addr, mask); if (!pte) return -ENOMEM; + + arch_enter_lazy_mmu_mode(); + do { struct page *page = pages[*nr]; - if (WARN_ON(!pte_none(*pte))) - return -EBUSY; - if (WARN_ON(!page)) - return -ENOMEM; + if (WARN_ON(!pte_none(ptep_get(pte)))) { + err = -EBUSY; + break; + } + if (WARN_ON(!page)) { + err = -ENOMEM; + break; + } + if (WARN_ON(!pfn_valid(page_to_pfn(page)))) { + err = -EINVAL; + break; + } + set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); (*nr)++; } while (pte++, addr += PAGE_SIZE, addr != end); - return 0; + + arch_leave_lazy_mmu_mode(); + *mask |= PGTBL_PTE_MODIFIED; + + return err; } -static int vmap_pmd_range(pud_t *pud, unsigned long addr, - unsigned long end, pgprot_t prot, struct page **pages, int *nr) +static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, + unsigned long end, pgprot_t prot, struct page **pages, int *nr, + pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; - pmd = pmd_alloc(&init_mm, pud, addr); + pmd = pmd_alloc_track(&init_mm, pud, addr, mask); if (!pmd) return -ENOMEM; do { next = pmd_addr_end(addr, end); - if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) + if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) return -ENOMEM; } while (pmd++, addr = next, addr != end); return 0; } -static int vmap_pud_range(pgd_t *pgd, unsigned long addr, - unsigned long end, pgprot_t prot, struct page **pages, int *nr) +static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, + unsigned long end, pgprot_t prot, struct page **pages, int *nr, + pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; - pud = pud_alloc(&init_mm, pgd, addr); + pud = pud_alloc_track(&init_mm, p4d, addr, mask); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); - if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) + if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) return -ENOMEM; } while (pud++, addr = next, addr != end); return 0; } -/* - * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and - * will have pfns corresponding to the "pages" array. - * - * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] - */ -static int vmap_page_range_noflush(unsigned long start, unsigned long end, - pgprot_t prot, struct page **pages) +static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, + unsigned long end, pgprot_t prot, struct page **pages, int *nr, + pgtbl_mod_mask *mask) +{ + p4d_t *p4d; + unsigned long next; + + p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); + if (!p4d) + return -ENOMEM; + do { + next = p4d_addr_end(addr, end); + if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) + return -ENOMEM; + } while (p4d++, addr = next, addr != end); + return 0; +} + +static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, + pgprot_t prot, struct page **pages) { + unsigned long start = addr; pgd_t *pgd; unsigned long next; - unsigned long addr = start; int err = 0; int nr = 0; + pgtbl_mod_mask mask = 0; BUG_ON(addr >= end); pgd = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); - err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); + if (pgd_bad(*pgd)) + mask |= PGTBL_PGD_MODIFIED; + err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); if (err) - return err; + break; } while (pgd++, addr = next, addr != end); - return nr; + if (mask & ARCH_PAGE_TABLE_SYNC_MASK) + arch_sync_kernel_mappings(start, end); + + return err; } -static int vmap_page_range(unsigned long start, unsigned long end, - pgprot_t prot, struct page **pages) +/* + * vmap_pages_range_noflush is similar to vmap_pages_range, but does not + * flush caches. + * + * The caller is responsible for calling flush_cache_vmap() after this + * function returns successfully and before the addresses are accessed. + * + * This is an internal function only. Do not use outside mm/. + */ +int __vmap_pages_range_noflush(unsigned long addr, unsigned long end, + pgprot_t prot, struct page **pages, unsigned int page_shift) { - int ret; + unsigned int i, nr = (end - addr) >> PAGE_SHIFT; + + WARN_ON(page_shift < PAGE_SHIFT); + + if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || + page_shift == PAGE_SHIFT) + return vmap_small_pages_range_noflush(addr, end, prot, pages); - ret = vmap_page_range_noflush(start, end, prot, pages); - flush_cache_vmap(start, end); - return ret; + for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { + int err; + + err = vmap_range_noflush(addr, addr + (1UL << page_shift), + page_to_phys(pages[i]), prot, + page_shift); + if (err) + return err; + + addr += 1UL << page_shift; + } + + return 0; +} + +int vmap_pages_range_noflush(unsigned long addr, unsigned long end, + pgprot_t prot, struct page **pages, unsigned int page_shift, + gfp_t gfp_mask) +{ + int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages, + page_shift, gfp_mask); + + if (ret) + return ret; + return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift); +} + +static int __vmap_pages_range(unsigned long addr, unsigned long end, + pgprot_t prot, struct page **pages, unsigned int page_shift, + gfp_t gfp_mask) +{ + int err; + + err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift, gfp_mask); + flush_cache_vmap(addr, end); + return err; +} + +/** + * vmap_pages_range - map pages to a kernel virtual address + * @addr: start of the VM area to map + * @end: end of the VM area to map (non-inclusive) + * @prot: page protection flags to use + * @pages: pages to map (always PAGE_SIZE pages) + * @page_shift: maximum shift that the pages may be mapped with, @pages must + * be aligned and contiguous up to at least this shift. + * + * RETURNS: + * 0 on success, -errno on failure. + */ +int vmap_pages_range(unsigned long addr, unsigned long end, + pgprot_t prot, struct page **pages, unsigned int page_shift) +{ + return __vmap_pages_range(addr, end, prot, pages, page_shift, GFP_KERNEL); +} + +static int check_sparse_vm_area(struct vm_struct *area, unsigned long start, + unsigned long end) +{ + might_sleep(); + if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS)) + return -EINVAL; + if (WARN_ON_ONCE(area->flags & VM_NO_GUARD)) + return -EINVAL; + if (WARN_ON_ONCE(!(area->flags & VM_SPARSE))) + return -EINVAL; + if ((end - start) >> PAGE_SHIFT > totalram_pages()) + return -E2BIG; + if (start < (unsigned long)area->addr || + (void *)end > area->addr + get_vm_area_size(area)) + return -ERANGE; + return 0; +} + +/** + * vm_area_map_pages - map pages inside given sparse vm_area + * @area: vm_area + * @start: start address inside vm_area + * @end: end address inside vm_area + * @pages: pages to map (always PAGE_SIZE pages) + */ +int vm_area_map_pages(struct vm_struct *area, unsigned long start, + unsigned long end, struct page **pages) +{ + int err; + + err = check_sparse_vm_area(area, start, end); + if (err) + return err; + + return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT); +} + +/** + * vm_area_unmap_pages - unmap pages inside given sparse vm_area + * @area: vm_area + * @start: start address inside vm_area + * @end: end address inside vm_area + */ +void vm_area_unmap_pages(struct vm_struct *area, unsigned long start, + unsigned long end) +{ + if (check_sparse_vm_area(area, start, end)) + return; + + vunmap_range(start, end); } int is_vmalloc_or_module_addr(const void *x) @@ -211,22 +777,29 @@ int is_vmalloc_or_module_addr(const void *x) * and fall back on vmalloc() if that fails. Others * just put it in the vmalloc space. */ -#if defined(CONFIG_MODULES) && defined(MODULES_VADDR) - unsigned long addr = (unsigned long)x; +#if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR) + unsigned long addr = (unsigned long)kasan_reset_tag(x); if (addr >= MODULES_VADDR && addr < MODULES_END) return 1; #endif return is_vmalloc_addr(x); } +EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr); /* - * Walk a vmap address to the struct page it maps. + * Walk a vmap address to the struct page it maps. Huge vmap mappings will + * return the tail page that corresponds to the base page address, which + * matches small vmap mappings. */ struct page *vmalloc_to_page(const void *vmalloc_addr) { unsigned long addr = (unsigned long) vmalloc_addr; struct page *page = NULL; pgd_t *pgd = pgd_offset_k(addr); + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd; + pte_t *ptep, pte; /* * XXX we might need to change this if we add VIRTUAL_BUG_ON for @@ -234,21 +807,42 @@ struct page *vmalloc_to_page(const void *vmalloc_addr) */ VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); - if (!pgd_none(*pgd)) { - pud_t *pud = pud_offset(pgd, addr); - if (!pud_none(*pud)) { - pmd_t *pmd = pmd_offset(pud, addr); - if (!pmd_none(*pmd)) { - pte_t *ptep, pte; - - ptep = pte_offset_map(pmd, addr); - pte = *ptep; - if (pte_present(pte)) - page = pte_page(pte); - pte_unmap(ptep); - } - } - } + if (pgd_none(*pgd)) + return NULL; + if (WARN_ON_ONCE(pgd_leaf(*pgd))) + return NULL; /* XXX: no allowance for huge pgd */ + if (WARN_ON_ONCE(pgd_bad(*pgd))) + return NULL; + + p4d = p4d_offset(pgd, addr); + if (p4d_none(*p4d)) + return NULL; + if (p4d_leaf(*p4d)) + return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); + if (WARN_ON_ONCE(p4d_bad(*p4d))) + return NULL; + + pud = pud_offset(p4d, addr); + if (pud_none(*pud)) + return NULL; + if (pud_leaf(*pud)) + return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); + if (WARN_ON_ONCE(pud_bad(*pud))) + return NULL; + + pmd = pmd_offset(pud, addr); + if (pmd_none(*pmd)) + return NULL; + if (pmd_leaf(*pmd)) + return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); + if (WARN_ON_ONCE(pmd_bad(*pmd))) + return NULL; + + ptep = pte_offset_kernel(pmd, addr); + pte = ptep_get(ptep); + if (pte_present(pte)) + page = pte_page(pte); + return page; } EXPORT_SYMBOL(vmalloc_to_page); @@ -265,26 +859,223 @@ EXPORT_SYMBOL(vmalloc_to_pfn); /*** Global kva allocator ***/ -#define VM_LAZY_FREE 0x01 -#define VM_LAZY_FREEING 0x02 -#define VM_VM_AREA 0x04 +#define DEBUG_AUGMENT_PROPAGATE_CHECK 0 +#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 + + +static DEFINE_SPINLOCK(free_vmap_area_lock); +static bool vmap_initialized __read_mostly; + +/* + * This kmem_cache is used for vmap_area objects. Instead of + * allocating from slab we reuse an object from this cache to + * make things faster. Especially in "no edge" splitting of + * free block. + */ +static struct kmem_cache *vmap_area_cachep; + +/* + * This linked list is used in pair with free_vmap_area_root. + * It gives O(1) access to prev/next to perform fast coalescing. + */ +static LIST_HEAD(free_vmap_area_list); + +/* + * This augment red-black tree represents the free vmap space. + * All vmap_area objects in this tree are sorted by va->va_start + * address. It is used for allocation and merging when a vmap + * object is released. + * + * Each vmap_area node contains a maximum available free block + * of its sub-tree, right or left. Therefore it is possible to + * find a lowest match of free area. + */ +static struct rb_root free_vmap_area_root = RB_ROOT; + +/* + * Preload a CPU with one object for "no edge" split case. The + * aim is to get rid of allocations from the atomic context, thus + * to use more permissive allocation masks. + */ +static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); + +/* + * This structure defines a single, solid model where a list and + * rb-tree are part of one entity protected by the lock. Nodes are + * sorted in ascending order, thus for O(1) access to left/right + * neighbors a list is used as well as for sequential traversal. + */ +struct rb_list { + struct rb_root root; + struct list_head head; + spinlock_t lock; +}; + +/* + * A fast size storage contains VAs up to 1M size. A pool consists + * of linked between each other ready to go VAs of certain sizes. + * An index in the pool-array corresponds to number of pages + 1. + */ +#define MAX_VA_SIZE_PAGES 256 + +struct vmap_pool { + struct list_head head; + unsigned long len; +}; + +/* + * An effective vmap-node logic. Users make use of nodes instead + * of a global heap. It allows to balance an access and mitigate + * contention. + */ +static struct vmap_node { + /* Simple size segregated storage. */ + struct vmap_pool pool[MAX_VA_SIZE_PAGES]; + spinlock_t pool_lock; + bool skip_populate; + + /* Bookkeeping data of this node. */ + struct rb_list busy; + struct rb_list lazy; + + /* + * Ready-to-free areas. + */ + struct list_head purge_list; + struct work_struct purge_work; + unsigned long nr_purged; +} single; + +/* + * Initial setup consists of one single node, i.e. a balancing + * is fully disabled. Later on, after vmap is initialized these + * parameters are updated based on a system capacity. + */ +static struct vmap_node *vmap_nodes = &single; +static __read_mostly unsigned int nr_vmap_nodes = 1; +static __read_mostly unsigned int vmap_zone_size = 1; + +/* A simple iterator over all vmap-nodes. */ +#define for_each_vmap_node(vn) \ + for ((vn) = &vmap_nodes[0]; \ + (vn) < &vmap_nodes[nr_vmap_nodes]; (vn)++) + +static inline unsigned int +addr_to_node_id(unsigned long addr) +{ + return (addr / vmap_zone_size) % nr_vmap_nodes; +} + +static inline struct vmap_node * +addr_to_node(unsigned long addr) +{ + return &vmap_nodes[addr_to_node_id(addr)]; +} + +static inline struct vmap_node * +id_to_node(unsigned int id) +{ + return &vmap_nodes[id % nr_vmap_nodes]; +} + +static inline unsigned int +node_to_id(struct vmap_node *node) +{ + /* Pointer arithmetic. */ + unsigned int id = node - vmap_nodes; + + if (likely(id < nr_vmap_nodes)) + return id; + + WARN_ONCE(1, "An address 0x%p is out-of-bounds.\n", node); + return 0; +} -static DEFINE_SPINLOCK(vmap_area_lock); -/* Export for kexec only */ -LIST_HEAD(vmap_area_list); -static struct rb_root vmap_area_root = RB_ROOT; +/* + * We use the value 0 to represent "no node", that is why + * an encoded value will be the node-id incremented by 1. + * It is always greater then 0. A valid node_id which can + * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id + * is not valid 0 is returned. + */ +static unsigned int +encode_vn_id(unsigned int node_id) +{ + /* Can store U8_MAX [0:254] nodes. */ + if (node_id < nr_vmap_nodes) + return (node_id + 1) << BITS_PER_BYTE; -/* The vmap cache globals are protected by vmap_area_lock */ -static struct rb_node *free_vmap_cache; -static unsigned long cached_hole_size; -static unsigned long cached_vstart; -static unsigned long cached_align; + /* Warn and no node encoded. */ + WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id); + return 0; +} -static unsigned long vmap_area_pcpu_hole; +/* + * Returns an encoded node-id, the valid range is within + * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is + * returned if extracted data is wrong. + */ +static unsigned int +decode_vn_id(unsigned int val) +{ + unsigned int node_id = (val >> BITS_PER_BYTE) - 1; + + /* Can store U8_MAX [0:254] nodes. */ + if (node_id < nr_vmap_nodes) + return node_id; + + /* If it was _not_ zero, warn. */ + WARN_ONCE(node_id != UINT_MAX, + "Decode wrong node id (%d)\n", node_id); -static struct vmap_area *__find_vmap_area(unsigned long addr) + return nr_vmap_nodes; +} + +static bool +is_vn_id_valid(unsigned int node_id) { - struct rb_node *n = vmap_area_root.rb_node; + if (node_id < nr_vmap_nodes) + return true; + + return false; +} + +static __always_inline unsigned long +va_size(struct vmap_area *va) +{ + return (va->va_end - va->va_start); +} + +static __always_inline unsigned long +get_subtree_max_size(struct rb_node *node) +{ + struct vmap_area *va; + + va = rb_entry_safe(node, struct vmap_area, rb_node); + return va ? va->subtree_max_size : 0; +} + +RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, + struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) + +static void reclaim_and_purge_vmap_areas(void); +static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); +static void drain_vmap_area_work(struct work_struct *work); +static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); + +static __cacheline_aligned_in_smp atomic_long_t nr_vmalloc_pages; +static __cacheline_aligned_in_smp atomic_long_t vmap_lazy_nr; + +unsigned long vmalloc_nr_pages(void) +{ + return atomic_long_read(&nr_vmalloc_pages); +} + +static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root) +{ + struct rb_node *n = root->rb_node; + + addr = (unsigned long)kasan_reset_tag((void *)addr); while (n) { struct vmap_area *va; @@ -301,200 +1092,775 @@ static struct vmap_area *__find_vmap_area(unsigned long addr) return NULL; } -static void __insert_vmap_area(struct vmap_area *va) +/* Look up the first VA which satisfies addr < va_end, NULL if none. */ +static struct vmap_area * +__find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root) { - struct rb_node **p = &vmap_area_root.rb_node; - struct rb_node *parent = NULL; - struct rb_node *tmp; + struct vmap_area *va = NULL; + struct rb_node *n = root->rb_node; - while (*p) { - struct vmap_area *tmp_va; + addr = (unsigned long)kasan_reset_tag((void *)addr); - parent = *p; - tmp_va = rb_entry(parent, struct vmap_area, rb_node); - if (va->va_start < tmp_va->va_end) - p = &(*p)->rb_left; - else if (va->va_end > tmp_va->va_start) - p = &(*p)->rb_right; - else - BUG(); + while (n) { + struct vmap_area *tmp; + + tmp = rb_entry(n, struct vmap_area, rb_node); + if (tmp->va_end > addr) { + va = tmp; + if (tmp->va_start <= addr) + break; + + n = n->rb_left; + } else + n = n->rb_right; } - rb_link_node(&va->rb_node, parent, p); - rb_insert_color(&va->rb_node, &vmap_area_root); + return va; +} - /* address-sort this list */ - tmp = rb_prev(&va->rb_node); - if (tmp) { - struct vmap_area *prev; - prev = rb_entry(tmp, struct vmap_area, rb_node); - list_add_rcu(&va->list, &prev->list); - } else - list_add_rcu(&va->list, &vmap_area_list); +/* + * Returns a node where a first VA, that satisfies addr < va_end, resides. + * If success, a node is locked. A user is responsible to unlock it when a + * VA is no longer needed to be accessed. + * + * Returns NULL if nothing found. + */ +static struct vmap_node * +find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va) +{ + unsigned long va_start_lowest; + struct vmap_node *vn; + +repeat: + va_start_lowest = 0; + + for_each_vmap_node(vn) { + spin_lock(&vn->busy.lock); + *va = __find_vmap_area_exceed_addr(addr, &vn->busy.root); + + if (*va) + if (!va_start_lowest || (*va)->va_start < va_start_lowest) + va_start_lowest = (*va)->va_start; + spin_unlock(&vn->busy.lock); + } + + /* + * Check if found VA exists, it might have gone away. In this case we + * repeat the search because a VA has been removed concurrently and we + * need to proceed to the next one, which is a rare case. + */ + if (va_start_lowest) { + vn = addr_to_node(va_start_lowest); + + spin_lock(&vn->busy.lock); + *va = __find_vmap_area(va_start_lowest, &vn->busy.root); + + if (*va) + return vn; + + spin_unlock(&vn->busy.lock); + goto repeat; + } + + return NULL; +} + +/* + * This function returns back addresses of parent node + * and its left or right link for further processing. + * + * Otherwise NULL is returned. In that case all further + * steps regarding inserting of conflicting overlap range + * have to be declined and actually considered as a bug. + */ +static __always_inline struct rb_node ** +find_va_links(struct vmap_area *va, + struct rb_root *root, struct rb_node *from, + struct rb_node **parent) +{ + struct vmap_area *tmp_va; + struct rb_node **link; + + if (root) { + link = &root->rb_node; + if (unlikely(!*link)) { + *parent = NULL; + return link; + } + } else { + link = &from; + } + + /* + * Go to the bottom of the tree. When we hit the last point + * we end up with parent rb_node and correct direction, i name + * it link, where the new va->rb_node will be attached to. + */ + do { + tmp_va = rb_entry(*link, struct vmap_area, rb_node); + + /* + * During the traversal we also do some sanity check. + * Trigger the BUG() if there are sides(left/right) + * or full overlaps. + */ + if (va->va_end <= tmp_va->va_start) + link = &(*link)->rb_left; + else if (va->va_start >= tmp_va->va_end) + link = &(*link)->rb_right; + else { + WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", + va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); + + return NULL; + } + } while (*link); + + *parent = &tmp_va->rb_node; + return link; +} + +static __always_inline struct list_head * +get_va_next_sibling(struct rb_node *parent, struct rb_node **link) +{ + struct list_head *list; + + if (unlikely(!parent)) + /* + * The red-black tree where we try to find VA neighbors + * before merging or inserting is empty, i.e. it means + * there is no free vmap space. Normally it does not + * happen but we handle this case anyway. + */ + return NULL; + + list = &rb_entry(parent, struct vmap_area, rb_node)->list; + return (&parent->rb_right == link ? list->next : list); +} + +static __always_inline void +__link_va(struct vmap_area *va, struct rb_root *root, + struct rb_node *parent, struct rb_node **link, + struct list_head *head, bool augment) +{ + /* + * VA is still not in the list, but we can + * identify its future previous list_head node. + */ + if (likely(parent)) { + head = &rb_entry(parent, struct vmap_area, rb_node)->list; + if (&parent->rb_right != link) + head = head->prev; + } + + /* Insert to the rb-tree */ + rb_link_node(&va->rb_node, parent, link); + if (augment) { + /* + * Some explanation here. Just perform simple insertion + * to the tree. We do not set va->subtree_max_size to + * its current size before calling rb_insert_augmented(). + * It is because we populate the tree from the bottom + * to parent levels when the node _is_ in the tree. + * + * Therefore we set subtree_max_size to zero after insertion, + * to let __augment_tree_propagate_from() puts everything to + * the correct order later on. + */ + rb_insert_augmented(&va->rb_node, + root, &free_vmap_area_rb_augment_cb); + va->subtree_max_size = 0; + } else { + rb_insert_color(&va->rb_node, root); + } + + /* Address-sort this list */ + list_add(&va->list, head); } -static void purge_vmap_area_lazy(void); +static __always_inline void +link_va(struct vmap_area *va, struct rb_root *root, + struct rb_node *parent, struct rb_node **link, + struct list_head *head) +{ + __link_va(va, root, parent, link, head, false); +} + +static __always_inline void +link_va_augment(struct vmap_area *va, struct rb_root *root, + struct rb_node *parent, struct rb_node **link, + struct list_head *head) +{ + __link_va(va, root, parent, link, head, true); +} + +static __always_inline void +__unlink_va(struct vmap_area *va, struct rb_root *root, bool augment) +{ + if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) + return; + + if (augment) + rb_erase_augmented(&va->rb_node, + root, &free_vmap_area_rb_augment_cb); + else + rb_erase(&va->rb_node, root); + + list_del_init(&va->list); + RB_CLEAR_NODE(&va->rb_node); +} + +static __always_inline void +unlink_va(struct vmap_area *va, struct rb_root *root) +{ + __unlink_va(va, root, false); +} + +static __always_inline void +unlink_va_augment(struct vmap_area *va, struct rb_root *root) +{ + __unlink_va(va, root, true); +} +#if DEBUG_AUGMENT_PROPAGATE_CHECK /* - * Allocate a region of KVA of the specified size and alignment, within the - * vstart and vend. + * Gets called when remove the node and rotate. */ -static struct vmap_area *alloc_vmap_area(unsigned long size, - unsigned long align, - unsigned long vstart, unsigned long vend, - int node, gfp_t gfp_mask) +static __always_inline unsigned long +compute_subtree_max_size(struct vmap_area *va) +{ + return max3(va_size(va), + get_subtree_max_size(va->rb_node.rb_left), + get_subtree_max_size(va->rb_node.rb_right)); +} + +static void +augment_tree_propagate_check(void) { struct vmap_area *va; - struct rb_node *n; - unsigned long addr; - int purged = 0; - struct vmap_area *first; + unsigned long computed_size; - BUG_ON(!size); - BUG_ON(size & ~PAGE_MASK); - BUG_ON(!is_power_of_2(align)); + list_for_each_entry(va, &free_vmap_area_list, list) { + computed_size = compute_subtree_max_size(va); + if (computed_size != va->subtree_max_size) + pr_emerg("tree is corrupted: %lu, %lu\n", + va_size(va), va->subtree_max_size); + } +} +#endif - va = kmalloc_node(sizeof(struct vmap_area), - gfp_mask & GFP_RECLAIM_MASK, node); - if (unlikely(!va)) - return ERR_PTR(-ENOMEM); +/* + * This function populates subtree_max_size from bottom to upper + * levels starting from VA point. The propagation must be done + * when VA size is modified by changing its va_start/va_end. Or + * in case of newly inserting of VA to the tree. + * + * It means that __augment_tree_propagate_from() must be called: + * - After VA has been inserted to the tree(free path); + * - After VA has been shrunk(allocation path); + * - After VA has been increased(merging path). + * + * Please note that, it does not mean that upper parent nodes + * and their subtree_max_size are recalculated all the time up + * to the root node. + * + * 4--8 + * /\ + * / \ + * / \ + * 2--2 8--8 + * + * For example if we modify the node 4, shrinking it to 2, then + * no any modification is required. If we shrink the node 2 to 1 + * its subtree_max_size is updated only, and set to 1. If we shrink + * the node 8 to 6, then its subtree_max_size is set to 6 and parent + * node becomes 4--6. + */ +static __always_inline void +augment_tree_propagate_from(struct vmap_area *va) +{ + /* + * Populate the tree from bottom towards the root until + * the calculated maximum available size of checked node + * is equal to its current one. + */ + free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); + +#if DEBUG_AUGMENT_PROPAGATE_CHECK + augment_tree_propagate_check(); +#endif +} + +static void +insert_vmap_area(struct vmap_area *va, + struct rb_root *root, struct list_head *head) +{ + struct rb_node **link; + struct rb_node *parent; + + link = find_va_links(va, root, NULL, &parent); + if (link) + link_va(va, root, parent, link, head); +} + +static void +insert_vmap_area_augment(struct vmap_area *va, + struct rb_node *from, struct rb_root *root, + struct list_head *head) +{ + struct rb_node **link; + struct rb_node *parent; + + if (from) + link = find_va_links(va, NULL, from, &parent); + else + link = find_va_links(va, root, NULL, &parent); + + if (link) { + link_va_augment(va, root, parent, link, head); + augment_tree_propagate_from(va); + } +} + +/* + * Merge de-allocated chunk of VA memory with previous + * and next free blocks. If coalesce is not done a new + * free area is inserted. If VA has been merged, it is + * freed. + * + * Please note, it can return NULL in case of overlap + * ranges, followed by WARN() report. Despite it is a + * buggy behaviour, a system can be alive and keep + * ongoing. + */ +static __always_inline struct vmap_area * +__merge_or_add_vmap_area(struct vmap_area *va, + struct rb_root *root, struct list_head *head, bool augment) +{ + struct vmap_area *sibling; + struct list_head *next; + struct rb_node **link; + struct rb_node *parent; + bool merged = false; -retry: - spin_lock(&vmap_area_lock); /* - * Invalidate cache if we have more permissive parameters. - * cached_hole_size notes the largest hole noticed _below_ - * the vmap_area cached in free_vmap_cache: if size fits - * into that hole, we want to scan from vstart to reuse - * the hole instead of allocating above free_vmap_cache. - * Note that __free_vmap_area may update free_vmap_cache - * without updating cached_hole_size or cached_align. + * Find a place in the tree where VA potentially will be + * inserted, unless it is merged with its sibling/siblings. */ - if (!free_vmap_cache || - size < cached_hole_size || - vstart < cached_vstart || - align < cached_align) { -nocache: - cached_hole_size = 0; - free_vmap_cache = NULL; - } - /* record if we encounter less permissive parameters */ - cached_vstart = vstart; - cached_align = align; - - /* find starting point for our search */ - if (free_vmap_cache) { - first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); - addr = ALIGN(first->va_end, align); - if (addr < vstart) - goto nocache; - if (addr + size < addr) - goto overflow; + link = find_va_links(va, root, NULL, &parent); + if (!link) + return NULL; - } else { - addr = ALIGN(vstart, align); - if (addr + size < addr) - goto overflow; + /* + * Get next node of VA to check if merging can be done. + */ + next = get_va_next_sibling(parent, link); + if (unlikely(next == NULL)) + goto insert; - n = vmap_area_root.rb_node; - first = NULL; + /* + * start end + * | | + * |<------VA------>|<-----Next----->| + * | | + * start end + */ + if (next != head) { + sibling = list_entry(next, struct vmap_area, list); + if (sibling->va_start == va->va_end) { + sibling->va_start = va->va_start; - while (n) { - struct vmap_area *tmp; - tmp = rb_entry(n, struct vmap_area, rb_node); - if (tmp->va_end >= addr) { - first = tmp; - if (tmp->va_start <= addr) - break; - n = n->rb_left; - } else - n = n->rb_right; - } + /* Free vmap_area object. */ + kmem_cache_free(vmap_area_cachep, va); - if (!first) - goto found; + /* Point to the new merged area. */ + va = sibling; + merged = true; + } } - /* from the starting point, walk areas until a suitable hole is found */ - while (addr + size > first->va_start && addr + size <= vend) { - if (addr + cached_hole_size < first->va_start) - cached_hole_size = first->va_start - addr; - addr = ALIGN(first->va_end, align); - if (addr + size < addr) - goto overflow; + /* + * start end + * | | + * |<-----Prev----->|<------VA------>| + * | | + * start end + */ + if (next->prev != head) { + sibling = list_entry(next->prev, struct vmap_area, list); + if (sibling->va_end == va->va_start) { + /* + * If both neighbors are coalesced, it is important + * to unlink the "next" node first, followed by merging + * with "previous" one. Otherwise the tree might not be + * fully populated if a sibling's augmented value is + * "normalized" because of rotation operations. + */ + if (merged) + __unlink_va(va, root, augment); + + sibling->va_end = va->va_end; - if (list_is_last(&first->list, &vmap_area_list)) - goto found; + /* Free vmap_area object. */ + kmem_cache_free(vmap_area_cachep, va); - first = list_entry(first->list.next, - struct vmap_area, list); + /* Point to the new merged area. */ + va = sibling; + merged = true; + } } -found: - if (addr + size > vend) - goto overflow; +insert: + if (!merged) + __link_va(va, root, parent, link, head, augment); - va->va_start = addr; - va->va_end = addr + size; - va->flags = 0; - __insert_vmap_area(va); - free_vmap_cache = &va->rb_node; - spin_unlock(&vmap_area_lock); + return va; +} - BUG_ON(va->va_start & (align-1)); - BUG_ON(va->va_start < vstart); - BUG_ON(va->va_end > vend); +static __always_inline struct vmap_area * +merge_or_add_vmap_area(struct vmap_area *va, + struct rb_root *root, struct list_head *head) +{ + return __merge_or_add_vmap_area(va, root, head, false); +} + +static __always_inline struct vmap_area * +merge_or_add_vmap_area_augment(struct vmap_area *va, + struct rb_root *root, struct list_head *head) +{ + va = __merge_or_add_vmap_area(va, root, head, true); + if (va) + augment_tree_propagate_from(va); return va; +} -overflow: - spin_unlock(&vmap_area_lock); - if (!purged) { - purge_vmap_area_lazy(); - purged = 1; - goto retry; - } - if (printk_ratelimit()) - printk(KERN_WARNING - "vmap allocation for size %lu failed: " - "use vmalloc=<size> to increase size.\n", size); - kfree(va); - return ERR_PTR(-EBUSY); +static __always_inline bool +is_within_this_va(struct vmap_area *va, unsigned long size, + unsigned long align, unsigned long vstart) +{ + unsigned long nva_start_addr; + + if (va->va_start > vstart) + nva_start_addr = ALIGN(va->va_start, align); + else + nva_start_addr = ALIGN(vstart, align); + + /* Can be overflowed due to big size or alignment. */ + if (nva_start_addr + size < nva_start_addr || + nva_start_addr < vstart) + return false; + + return (nva_start_addr + size <= va->va_end); } -static void __free_vmap_area(struct vmap_area *va) +/* + * Find the first free block(lowest start address) in the tree, + * that will accomplish the request corresponding to passing + * parameters. Please note, with an alignment bigger than PAGE_SIZE, + * a search length is adjusted to account for worst case alignment + * overhead. + */ +static __always_inline struct vmap_area * +find_vmap_lowest_match(struct rb_root *root, unsigned long size, + unsigned long align, unsigned long vstart, bool adjust_search_size) { - BUG_ON(RB_EMPTY_NODE(&va->rb_node)); + struct vmap_area *va; + struct rb_node *node; + unsigned long length; + + /* Start from the root. */ + node = root->rb_node; + + /* Adjust the search size for alignment overhead. */ + length = adjust_search_size ? size + align - 1 : size; + + while (node) { + va = rb_entry(node, struct vmap_area, rb_node); - if (free_vmap_cache) { - if (va->va_end < cached_vstart) { - free_vmap_cache = NULL; + if (get_subtree_max_size(node->rb_left) >= length && + vstart < va->va_start) { + node = node->rb_left; } else { - struct vmap_area *cache; - cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); - if (va->va_start <= cache->va_start) { - free_vmap_cache = rb_prev(&va->rb_node); - /* - * We don't try to update cached_hole_size or - * cached_align, but it won't go very wrong. - */ + if (is_within_this_va(va, size, align, vstart)) + return va; + + /* + * Does not make sense to go deeper towards the right + * sub-tree if it does not have a free block that is + * equal or bigger to the requested search length. + */ + if (get_subtree_max_size(node->rb_right) >= length) { + node = node->rb_right; + continue; + } + + /* + * OK. We roll back and find the first right sub-tree, + * that will satisfy the search criteria. It can happen + * due to "vstart" restriction or an alignment overhead + * that is bigger then PAGE_SIZE. + */ + while ((node = rb_parent(node))) { + va = rb_entry(node, struct vmap_area, rb_node); + if (is_within_this_va(va, size, align, vstart)) + return va; + + if (get_subtree_max_size(node->rb_right) >= length && + vstart <= va->va_start) { + /* + * Shift the vstart forward. Please note, we update it with + * parent's start address adding "1" because we do not want + * to enter same sub-tree after it has already been checked + * and no suitable free block found there. + */ + vstart = va->va_start + 1; + node = node->rb_right; + break; + } } } } - rb_erase(&va->rb_node, &vmap_area_root); - RB_CLEAR_NODE(&va->rb_node); - list_del_rcu(&va->list); + + return NULL; +} + +#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK +#include <linux/random.h> + +static struct vmap_area * +find_vmap_lowest_linear_match(struct list_head *head, unsigned long size, + unsigned long align, unsigned long vstart) +{ + struct vmap_area *va; + + list_for_each_entry(va, head, list) { + if (!is_within_this_va(va, size, align, vstart)) + continue; + + return va; + } + + return NULL; +} + +static void +find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head, + unsigned long size, unsigned long align) +{ + struct vmap_area *va_1, *va_2; + unsigned long vstart; + unsigned int rnd; + + get_random_bytes(&rnd, sizeof(rnd)); + vstart = VMALLOC_START + rnd; + + va_1 = find_vmap_lowest_match(root, size, align, vstart, false); + va_2 = find_vmap_lowest_linear_match(head, size, align, vstart); + + if (va_1 != va_2) + pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", + va_1, va_2, vstart); +} +#endif + +enum fit_type { + NOTHING_FIT = 0, + FL_FIT_TYPE = 1, /* full fit */ + LE_FIT_TYPE = 2, /* left edge fit */ + RE_FIT_TYPE = 3, /* right edge fit */ + NE_FIT_TYPE = 4 /* no edge fit */ +}; + +static __always_inline enum fit_type +classify_va_fit_type(struct vmap_area *va, + unsigned long nva_start_addr, unsigned long size) +{ + enum fit_type type; + + /* Check if it is within VA. */ + if (nva_start_addr < va->va_start || + nva_start_addr + size > va->va_end) + return NOTHING_FIT; + + /* Now classify. */ + if (va->va_start == nva_start_addr) { + if (va->va_end == nva_start_addr + size) + type = FL_FIT_TYPE; + else + type = LE_FIT_TYPE; + } else if (va->va_end == nva_start_addr + size) { + type = RE_FIT_TYPE; + } else { + type = NE_FIT_TYPE; + } + + return type; +} + +static __always_inline int +va_clip(struct rb_root *root, struct list_head *head, + struct vmap_area *va, unsigned long nva_start_addr, + unsigned long size) +{ + struct vmap_area *lva = NULL; + enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); + + if (type == FL_FIT_TYPE) { + /* + * No need to split VA, it fully fits. + * + * | | + * V NVA V + * |---------------| + */ + unlink_va_augment(va, root); + kmem_cache_free(vmap_area_cachep, va); + } else if (type == LE_FIT_TYPE) { + /* + * Split left edge of fit VA. + * + * | | + * V NVA V R + * |-------|-------| + */ + va->va_start += size; + } else if (type == RE_FIT_TYPE) { + /* + * Split right edge of fit VA. + * + * | | + * L V NVA V + * |-------|-------| + */ + va->va_end = nva_start_addr; + } else if (type == NE_FIT_TYPE) { + /* + * Split no edge of fit VA. + * + * | | + * L V NVA V R + * |---|-------|---| + */ + lva = __this_cpu_xchg(ne_fit_preload_node, NULL); + if (unlikely(!lva)) { + /* + * For percpu allocator we do not do any pre-allocation + * and leave it as it is. The reason is it most likely + * never ends up with NE_FIT_TYPE splitting. In case of + * percpu allocations offsets and sizes are aligned to + * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE + * are its main fitting cases. + * + * There are a few exceptions though, as an example it is + * a first allocation (early boot up) when we have "one" + * big free space that has to be split. + * + * Also we can hit this path in case of regular "vmap" + * allocations, if "this" current CPU was not preloaded. + * See the comment in alloc_vmap_area() why. If so, then + * GFP_NOWAIT is used instead to get an extra object for + * split purpose. That is rare and most time does not + * occur. + * + * What happens if an allocation gets failed. Basically, + * an "overflow" path is triggered to purge lazily freed + * areas to free some memory, then, the "retry" path is + * triggered to repeat one more time. See more details + * in alloc_vmap_area() function. + */ + lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); + if (!lva) + return -ENOMEM; + } + + /* + * Build the remainder. + */ + lva->va_start = va->va_start; + lva->va_end = nva_start_addr; + + /* + * Shrink this VA to remaining size. + */ + va->va_start = nva_start_addr + size; + } else { + return -EINVAL; + } + + if (type != FL_FIT_TYPE) { + augment_tree_propagate_from(va); + + if (lva) /* type == NE_FIT_TYPE */ + insert_vmap_area_augment(lva, &va->rb_node, root, head); + } + + return 0; +} + +static unsigned long +va_alloc(struct vmap_area *va, + struct rb_root *root, struct list_head *head, + unsigned long size, unsigned long align, + unsigned long vstart, unsigned long vend) +{ + unsigned long nva_start_addr; + int ret; + + if (va->va_start > vstart) + nva_start_addr = ALIGN(va->va_start, align); + else + nva_start_addr = ALIGN(vstart, align); + + /* Check the "vend" restriction. */ + if (nva_start_addr + size > vend) + return -ERANGE; + + /* Update the free vmap_area. */ + ret = va_clip(root, head, va, nva_start_addr, size); + if (WARN_ON_ONCE(ret)) + return ret; + + return nva_start_addr; +} + +/* + * Returns a start address of the newly allocated area, if success. + * Otherwise an error value is returned that indicates failure. + */ +static __always_inline unsigned long +__alloc_vmap_area(struct rb_root *root, struct list_head *head, + unsigned long size, unsigned long align, + unsigned long vstart, unsigned long vend) +{ + bool adjust_search_size = true; + unsigned long nva_start_addr; + struct vmap_area *va; /* - * Track the highest possible candidate for pcpu area - * allocation. Areas outside of vmalloc area can be returned - * here too, consider only end addresses which fall inside - * vmalloc area proper. + * Do not adjust when: + * a) align <= PAGE_SIZE, because it does not make any sense. + * All blocks(their start addresses) are at least PAGE_SIZE + * aligned anyway; + * b) a short range where a requested size corresponds to exactly + * specified [vstart:vend] interval and an alignment > PAGE_SIZE. + * With adjusted search length an allocation would not succeed. */ - if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) - vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); + if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) + adjust_search_size = false; + + va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size); + if (unlikely(!va)) + return -ENOENT; - kfree_rcu(va, rcu_head); + nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend); + +#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK + if (!IS_ERR_VALUE(nva_start_addr)) + find_vmap_lowest_match_check(root, head, size, align); +#endif + + return nva_start_addr; } /* @@ -502,39 +1868,302 @@ static void __free_vmap_area(struct vmap_area *va) */ static void free_vmap_area(struct vmap_area *va) { - spin_lock(&vmap_area_lock); - __free_vmap_area(va); - spin_unlock(&vmap_area_lock); + struct vmap_node *vn = addr_to_node(va->va_start); + + /* + * Remove from the busy tree/list. + */ + spin_lock(&vn->busy.lock); + unlink_va(va, &vn->busy.root); + spin_unlock(&vn->busy.lock); + + /* + * Insert/Merge it back to the free tree/list. + */ + spin_lock(&free_vmap_area_lock); + merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); + spin_unlock(&free_vmap_area_lock); +} + +static inline void +preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) +{ + struct vmap_area *va = NULL, *tmp; + + /* + * Preload this CPU with one extra vmap_area object. It is used + * when fit type of free area is NE_FIT_TYPE. It guarantees that + * a CPU that does an allocation is preloaded. + * + * We do it in non-atomic context, thus it allows us to use more + * permissive allocation masks to be more stable under low memory + * condition and high memory pressure. + */ + if (!this_cpu_read(ne_fit_preload_node)) + va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); + + spin_lock(lock); + + tmp = NULL; + if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va)) + kmem_cache_free(vmap_area_cachep, va); } -/* - * Clear the pagetable entries of a given vmap_area - */ -static void unmap_vmap_area(struct vmap_area *va) +static struct vmap_pool * +size_to_va_pool(struct vmap_node *vn, unsigned long size) +{ + unsigned int idx = (size - 1) / PAGE_SIZE; + + if (idx < MAX_VA_SIZE_PAGES) + return &vn->pool[idx]; + + return NULL; +} + +static bool +node_pool_add_va(struct vmap_node *n, struct vmap_area *va) +{ + struct vmap_pool *vp; + + vp = size_to_va_pool(n, va_size(va)); + if (!vp) + return false; + + spin_lock(&n->pool_lock); + list_add(&va->list, &vp->head); + WRITE_ONCE(vp->len, vp->len + 1); + spin_unlock(&n->pool_lock); + + return true; +} + +static struct vmap_area * +node_pool_del_va(struct vmap_node *vn, unsigned long size, + unsigned long align, unsigned long vstart, + unsigned long vend) +{ + struct vmap_area *va = NULL; + struct vmap_pool *vp; + int err = 0; + + vp = size_to_va_pool(vn, size); + if (!vp || list_empty(&vp->head)) + return NULL; + + spin_lock(&vn->pool_lock); + if (!list_empty(&vp->head)) { + va = list_first_entry(&vp->head, struct vmap_area, list); + + if (IS_ALIGNED(va->va_start, align)) { + /* + * Do some sanity check and emit a warning + * if one of below checks detects an error. + */ + err |= (va_size(va) != size); + err |= (va->va_start < vstart); + err |= (va->va_end > vend); + + if (!WARN_ON_ONCE(err)) { + list_del_init(&va->list); + WRITE_ONCE(vp->len, vp->len - 1); + } else { + va = NULL; + } + } else { + list_move_tail(&va->list, &vp->head); + va = NULL; + } + } + spin_unlock(&vn->pool_lock); + + return va; +} + +static struct vmap_area * +node_alloc(unsigned long size, unsigned long align, + unsigned long vstart, unsigned long vend, + unsigned long *addr, unsigned int *vn_id) { - vunmap_page_range(va->va_start, va->va_end); + struct vmap_area *va; + + *vn_id = 0; + *addr = -EINVAL; + + /* + * Fallback to a global heap if not vmalloc or there + * is only one node. + */ + if (vstart != VMALLOC_START || vend != VMALLOC_END || + nr_vmap_nodes == 1) + return NULL; + + *vn_id = raw_smp_processor_id() % nr_vmap_nodes; + va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend); + *vn_id = encode_vn_id(*vn_id); + + if (va) + *addr = va->va_start; + + return va; } -static void vmap_debug_free_range(unsigned long start, unsigned long end) +static inline void setup_vmalloc_vm(struct vm_struct *vm, + struct vmap_area *va, unsigned long flags, const void *caller) { + vm->flags = flags; + vm->addr = (void *)va->va_start; + vm->size = vm->requested_size = va_size(va); + vm->caller = caller; + va->vm = vm; +} + +/* + * Allocate a region of KVA of the specified size and alignment, within the + * vstart and vend. If vm is passed in, the two will also be bound. + */ +static struct vmap_area *alloc_vmap_area(unsigned long size, + unsigned long align, + unsigned long vstart, unsigned long vend, + int node, gfp_t gfp_mask, + unsigned long va_flags, struct vm_struct *vm) +{ + struct vmap_node *vn; + struct vmap_area *va; + unsigned long freed; + unsigned long addr; + unsigned int vn_id; + bool allow_block; + int purged = 0; + int ret; + + if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align))) + return ERR_PTR(-EINVAL); + + if (unlikely(!vmap_initialized)) + return ERR_PTR(-EBUSY); + + /* Only reclaim behaviour flags are relevant. */ + gfp_mask = gfp_mask & GFP_RECLAIM_MASK; + allow_block = gfpflags_allow_blocking(gfp_mask); + might_sleep_if(allow_block); + /* - * Unmap page tables and force a TLB flush immediately if - * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free - * bugs similarly to those in linear kernel virtual address - * space after a page has been freed. + * If a VA is obtained from a global heap(if it fails here) + * it is anyway marked with this "vn_id" so it is returned + * to this pool's node later. Such way gives a possibility + * to populate pools based on users demand. * - * All the lazy freeing logic is still retained, in order to - * minimise intrusiveness of this debugging feature. - * - * This is going to be *slow* (linear kernel virtual address - * debugging doesn't do a broadcast TLB flush so it is a lot - * faster). + * On success a ready to go VA is returned. */ -#ifdef CONFIG_DEBUG_PAGEALLOC - vunmap_page_range(start, end); - flush_tlb_kernel_range(start, end); -#endif + va = node_alloc(size, align, vstart, vend, &addr, &vn_id); + if (!va) { + va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); + if (unlikely(!va)) + return ERR_PTR(-ENOMEM); + + /* + * Only scan the relevant parts containing pointers to other objects + * to avoid false negatives. + */ + kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); + } + +retry: + if (IS_ERR_VALUE(addr)) { + preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); + addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list, + size, align, vstart, vend); + spin_unlock(&free_vmap_area_lock); + + /* + * This is not a fast path. Check if yielding is needed. This + * is the only reschedule point in the vmalloc() path. + */ + if (allow_block) + cond_resched(); + } + + trace_alloc_vmap_area(addr, size, align, vstart, vend, IS_ERR_VALUE(addr)); + + /* + * If an allocation fails, the error value is + * returned. Therefore trigger the overflow path. + */ + if (IS_ERR_VALUE(addr)) { + if (allow_block) + goto overflow; + + /* + * We can not trigger any reclaim logic because + * sleeping is not allowed, thus fail an allocation. + */ + goto out_free_va; + } + + va->va_start = addr; + va->va_end = addr + size; + va->vm = NULL; + va->flags = (va_flags | vn_id); + + if (vm) { + vm->addr = (void *)va->va_start; + vm->size = va_size(va); + va->vm = vm; + } + + vn = addr_to_node(va->va_start); + + spin_lock(&vn->busy.lock); + insert_vmap_area(va, &vn->busy.root, &vn->busy.head); + spin_unlock(&vn->busy.lock); + + BUG_ON(!IS_ALIGNED(va->va_start, align)); + BUG_ON(va->va_start < vstart); + BUG_ON(va->va_end > vend); + + ret = kasan_populate_vmalloc(addr, size, gfp_mask); + if (ret) { + free_vmap_area(va); + return ERR_PTR(ret); + } + + return va; + +overflow: + if (!purged) { + reclaim_and_purge_vmap_areas(); + purged = 1; + goto retry; + } + + freed = 0; + blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); + + if (freed > 0) { + purged = 0; + goto retry; + } + + if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) + pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n", + size, vstart, vend); + +out_free_va: + kmem_cache_free(vmap_area_cachep, va); + return ERR_PTR(-EBUSY); +} + +int register_vmap_purge_notifier(struct notifier_block *nb) +{ + return blocking_notifier_chain_register(&vmap_notify_list, nb); +} +EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); + +int unregister_vmap_purge_notifier(struct notifier_block *nb) +{ + return blocking_notifier_chain_unregister(&vmap_notify_list, nb); } +EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); /* * lazy_max_pages is the maximum amount of virtual address space we gather up @@ -561,125 +2190,275 @@ static unsigned long lazy_max_pages(void) return log * (32UL * 1024 * 1024 / PAGE_SIZE); } -static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); +/* + * Serialize vmap purging. There is no actual critical section protected + * by this lock, but we want to avoid concurrent calls for performance + * reasons and to make the pcpu_get_vm_areas more deterministic. + */ +static DEFINE_MUTEX(vmap_purge_lock); /* for per-CPU blocks */ static void purge_fragmented_blocks_allcpus(void); -/* - * called before a call to iounmap() if the caller wants vm_area_struct's - * immediately freed. - */ -void set_iounmap_nonlazy(void) +static void +reclaim_list_global(struct list_head *head) { - atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); + struct vmap_area *va, *n; + + if (list_empty(head)) + return; + + spin_lock(&free_vmap_area_lock); + list_for_each_entry_safe(va, n, head, list) + merge_or_add_vmap_area_augment(va, + &free_vmap_area_root, &free_vmap_area_list); + spin_unlock(&free_vmap_area_lock); } -/* - * Purges all lazily-freed vmap areas. - * - * If sync is 0 then don't purge if there is already a purge in progress. - * If force_flush is 1, then flush kernel TLBs between *start and *end even - * if we found no lazy vmap areas to unmap (callers can use this to optimise - * their own TLB flushing). - * Returns with *start = min(*start, lowest purged address) - * *end = max(*end, highest purged address) - */ -static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, - int sync, int force_flush) +static void +decay_va_pool_node(struct vmap_node *vn, bool full_decay) { - static DEFINE_SPINLOCK(purge_lock); - LIST_HEAD(valist); - struct vmap_area *va; - struct vmap_area *n_va; - int nr = 0; + LIST_HEAD(decay_list); + struct rb_root decay_root = RB_ROOT; + struct vmap_area *va, *nva; + unsigned long n_decay, pool_len; + int i; - /* - * If sync is 0 but force_flush is 1, we'll go sync anyway but callers - * should not expect such behaviour. This just simplifies locking for - * the case that isn't actually used at the moment anyway. - */ - if (!sync && !force_flush) { - if (!spin_trylock(&purge_lock)) - return; - } else - spin_lock(&purge_lock); + for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { + LIST_HEAD(tmp_list); + + if (list_empty(&vn->pool[i].head)) + continue; - if (sync) - purge_fragmented_blocks_allcpus(); + /* Detach the pool, so no-one can access it. */ + spin_lock(&vn->pool_lock); + list_replace_init(&vn->pool[i].head, &tmp_list); + spin_unlock(&vn->pool_lock); - rcu_read_lock(); - list_for_each_entry_rcu(va, &vmap_area_list, list) { - if (va->flags & VM_LAZY_FREE) { - if (va->va_start < *start) - *start = va->va_start; - if (va->va_end > *end) - *end = va->va_end; - nr += (va->va_end - va->va_start) >> PAGE_SHIFT; - list_add_tail(&va->purge_list, &valist); - va->flags |= VM_LAZY_FREEING; - va->flags &= ~VM_LAZY_FREE; + pool_len = n_decay = vn->pool[i].len; + WRITE_ONCE(vn->pool[i].len, 0); + + /* Decay a pool by ~25% out of left objects. */ + if (!full_decay) + n_decay >>= 2; + pool_len -= n_decay; + + list_for_each_entry_safe(va, nva, &tmp_list, list) { + if (!n_decay--) + break; + + list_del_init(&va->list); + merge_or_add_vmap_area(va, &decay_root, &decay_list); + } + + /* + * Attach the pool back if it has been partly decayed. + * Please note, it is supposed that nobody(other contexts) + * can populate the pool therefore a simple list replace + * operation takes place here. + */ + if (!list_empty(&tmp_list)) { + spin_lock(&vn->pool_lock); + list_replace_init(&tmp_list, &vn->pool[i].head); + WRITE_ONCE(vn->pool[i].len, pool_len); + spin_unlock(&vn->pool_lock); } } - rcu_read_unlock(); - if (nr) - atomic_sub(nr, &vmap_lazy_nr); + reclaim_list_global(&decay_list); +} + +static void +kasan_release_vmalloc_node(struct vmap_node *vn) +{ + struct vmap_area *va; + unsigned long start, end; - if (nr || force_flush) - flush_tlb_kernel_range(*start, *end); + start = list_first_entry(&vn->purge_list, struct vmap_area, list)->va_start; + end = list_last_entry(&vn->purge_list, struct vmap_area, list)->va_end; - if (nr) { - spin_lock(&vmap_area_lock); - list_for_each_entry_safe(va, n_va, &valist, purge_list) - __free_vmap_area(va); - spin_unlock(&vmap_area_lock); + list_for_each_entry(va, &vn->purge_list, list) { + if (is_vmalloc_or_module_addr((void *) va->va_start)) + kasan_release_vmalloc(va->va_start, va->va_end, + va->va_start, va->va_end, + KASAN_VMALLOC_PAGE_RANGE); } - spin_unlock(&purge_lock); + + kasan_release_vmalloc(start, end, start, end, KASAN_VMALLOC_TLB_FLUSH); } -/* - * Kick off a purge of the outstanding lazy areas. Don't bother if somebody - * is already purging. - */ -static void try_purge_vmap_area_lazy(void) +static void purge_vmap_node(struct work_struct *work) { - unsigned long start = ULONG_MAX, end = 0; + struct vmap_node *vn = container_of(work, + struct vmap_node, purge_work); + unsigned long nr_purged_pages = 0; + struct vmap_area *va, *n_va; + LIST_HEAD(local_list); + + if (IS_ENABLED(CONFIG_KASAN_VMALLOC)) + kasan_release_vmalloc_node(vn); - __purge_vmap_area_lazy(&start, &end, 0, 0); + vn->nr_purged = 0; + + list_for_each_entry_safe(va, n_va, &vn->purge_list, list) { + unsigned long nr = va_size(va) >> PAGE_SHIFT; + unsigned int vn_id = decode_vn_id(va->flags); + + list_del_init(&va->list); + + nr_purged_pages += nr; + vn->nr_purged++; + + if (is_vn_id_valid(vn_id) && !vn->skip_populate) + if (node_pool_add_va(vn, va)) + continue; + + /* Go back to global. */ + list_add(&va->list, &local_list); + } + + atomic_long_sub(nr_purged_pages, &vmap_lazy_nr); + + reclaim_list_global(&local_list); } /* - * Kick off a purge of the outstanding lazy areas. + * Purges all lazily-freed vmap areas. */ -static void purge_vmap_area_lazy(void) +static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end, + bool full_pool_decay) { - unsigned long start = ULONG_MAX, end = 0; + unsigned long nr_purged_areas = 0; + unsigned int nr_purge_helpers; + static cpumask_t purge_nodes; + unsigned int nr_purge_nodes; + struct vmap_node *vn; + int i; + + lockdep_assert_held(&vmap_purge_lock); + + /* + * Use cpumask to mark which node has to be processed. + */ + purge_nodes = CPU_MASK_NONE; + + for_each_vmap_node(vn) { + INIT_LIST_HEAD(&vn->purge_list); + vn->skip_populate = full_pool_decay; + decay_va_pool_node(vn, full_pool_decay); + + if (RB_EMPTY_ROOT(&vn->lazy.root)) + continue; + + spin_lock(&vn->lazy.lock); + WRITE_ONCE(vn->lazy.root.rb_node, NULL); + list_replace_init(&vn->lazy.head, &vn->purge_list); + spin_unlock(&vn->lazy.lock); + + start = min(start, list_first_entry(&vn->purge_list, + struct vmap_area, list)->va_start); + + end = max(end, list_last_entry(&vn->purge_list, + struct vmap_area, list)->va_end); - __purge_vmap_area_lazy(&start, &end, 1, 0); + cpumask_set_cpu(node_to_id(vn), &purge_nodes); + } + + nr_purge_nodes = cpumask_weight(&purge_nodes); + if (nr_purge_nodes > 0) { + flush_tlb_kernel_range(start, end); + + /* One extra worker is per a lazy_max_pages() full set minus one. */ + nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages(); + nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1; + + for_each_cpu(i, &purge_nodes) { + vn = &vmap_nodes[i]; + + if (nr_purge_helpers > 0) { + INIT_WORK(&vn->purge_work, purge_vmap_node); + + if (cpumask_test_cpu(i, cpu_online_mask)) + schedule_work_on(i, &vn->purge_work); + else + schedule_work(&vn->purge_work); + + nr_purge_helpers--; + } else { + vn->purge_work.func = NULL; + purge_vmap_node(&vn->purge_work); + nr_purged_areas += vn->nr_purged; + } + } + + for_each_cpu(i, &purge_nodes) { + vn = &vmap_nodes[i]; + + if (vn->purge_work.func) { + flush_work(&vn->purge_work); + nr_purged_areas += vn->nr_purged; + } + } + } + + trace_purge_vmap_area_lazy(start, end, nr_purged_areas); + return nr_purged_areas > 0; } /* - * Free a vmap area, caller ensuring that the area has been unmapped - * and flush_cache_vunmap had been called for the correct range - * previously. + * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list. */ -static void free_vmap_area_noflush(struct vmap_area *va) +static void reclaim_and_purge_vmap_areas(void) + +{ + mutex_lock(&vmap_purge_lock); + purge_fragmented_blocks_allcpus(); + __purge_vmap_area_lazy(ULONG_MAX, 0, true); + mutex_unlock(&vmap_purge_lock); +} + +static void drain_vmap_area_work(struct work_struct *work) { - va->flags |= VM_LAZY_FREE; - atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); - if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) - try_purge_vmap_area_lazy(); + mutex_lock(&vmap_purge_lock); + __purge_vmap_area_lazy(ULONG_MAX, 0, false); + mutex_unlock(&vmap_purge_lock); } /* - * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been - * called for the correct range previously. + * Free a vmap area, caller ensuring that the area has been unmapped, + * unlinked and flush_cache_vunmap had been called for the correct + * range previously. */ -static void free_unmap_vmap_area_noflush(struct vmap_area *va) +static void free_vmap_area_noflush(struct vmap_area *va) { - unmap_vmap_area(va); - free_vmap_area_noflush(va); + unsigned long nr_lazy_max = lazy_max_pages(); + unsigned long va_start = va->va_start; + unsigned int vn_id = decode_vn_id(va->flags); + struct vmap_node *vn; + unsigned long nr_lazy; + + if (WARN_ON_ONCE(!list_empty(&va->list))) + return; + + nr_lazy = atomic_long_add_return_relaxed(va_size(va) >> PAGE_SHIFT, + &vmap_lazy_nr); + + /* + * If it was request by a certain node we would like to + * return it to that node, i.e. its pool for later reuse. + */ + vn = is_vn_id_valid(vn_id) ? + id_to_node(vn_id):addr_to_node(va->va_start); + + spin_lock(&vn->lazy.lock); + insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head); + spin_unlock(&vn->lazy.lock); + + trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max); + + /* After this point, we may free va at any time */ + if (unlikely(nr_lazy > nr_lazy_max)) + schedule_work(&drain_vmap_work); } /* @@ -688,29 +2467,75 @@ static void free_unmap_vmap_area_noflush(struct vmap_area *va) static void free_unmap_vmap_area(struct vmap_area *va) { flush_cache_vunmap(va->va_start, va->va_end); - free_unmap_vmap_area_noflush(va); + vunmap_range_noflush(va->va_start, va->va_end); + if (debug_pagealloc_enabled_static()) + flush_tlb_kernel_range(va->va_start, va->va_end); + + free_vmap_area_noflush(va); } -static struct vmap_area *find_vmap_area(unsigned long addr) +struct vmap_area *find_vmap_area(unsigned long addr) { + struct vmap_node *vn; struct vmap_area *va; + int i, j; - spin_lock(&vmap_area_lock); - va = __find_vmap_area(addr); - spin_unlock(&vmap_area_lock); + if (unlikely(!vmap_initialized)) + return NULL; - return va; + /* + * An addr_to_node_id(addr) converts an address to a node index + * where a VA is located. If VA spans several zones and passed + * addr is not the same as va->va_start, what is not common, we + * may need to scan extra nodes. See an example: + * + * <----va----> + * -|-----|-----|-----|-----|- + * 1 2 0 1 + * + * VA resides in node 1 whereas it spans 1, 2 an 0. If passed + * addr is within 2 or 0 nodes we should do extra work. + */ + i = j = addr_to_node_id(addr); + do { + vn = &vmap_nodes[i]; + + spin_lock(&vn->busy.lock); + va = __find_vmap_area(addr, &vn->busy.root); + spin_unlock(&vn->busy.lock); + + if (va) + return va; + } while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j); + + return NULL; } -static void free_unmap_vmap_area_addr(unsigned long addr) +static struct vmap_area *find_unlink_vmap_area(unsigned long addr) { + struct vmap_node *vn; struct vmap_area *va; + int i, j; - va = find_vmap_area(addr); - BUG_ON(!va); - free_unmap_vmap_area(va); -} + /* + * Check the comment in the find_vmap_area() about the loop. + */ + i = j = addr_to_node_id(addr); + do { + vn = &vmap_nodes[i]; + spin_lock(&vn->busy.lock); + va = __find_vmap_area(addr, &vn->busy.root); + if (va) + unlink_va(va, &vn->busy.root); + spin_unlock(&vn->busy.lock); + + if (va) + return va; + } while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j); + + return NULL; +} /*** Per cpu kva allocator ***/ @@ -742,34 +2567,94 @@ static void free_unmap_vmap_area_addr(unsigned long addr) #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) -static bool vmap_initialized __read_mostly = false; +/* + * Purge threshold to prevent overeager purging of fragmented blocks for + * regular operations: Purge if vb->free is less than 1/4 of the capacity. + */ +#define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4) + +#define VMAP_RAM 0x1 /* indicates vm_map_ram area*/ +#define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/ +#define VMAP_FLAGS_MASK 0x3 struct vmap_block_queue { spinlock_t lock; struct list_head free; + + /* + * An xarray requires an extra memory dynamically to + * be allocated. If it is an issue, we can use rb-tree + * instead. + */ + struct xarray vmap_blocks; }; struct vmap_block { spinlock_t lock; struct vmap_area *va; - struct vmap_block_queue *vbq; unsigned long free, dirty; - DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); + DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS); + unsigned long dirty_min, dirty_max; /*< dirty range */ struct list_head free_list; struct rcu_head rcu_head; struct list_head purge; + unsigned int cpu; }; /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); /* - * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block - * in the free path. Could get rid of this if we change the API to return a - * "cookie" from alloc, to be passed to free. But no big deal yet. + * In order to fast access to any "vmap_block" associated with a + * specific address, we use a hash. + * + * A per-cpu vmap_block_queue is used in both ways, to serialize + * an access to free block chains among CPUs(alloc path) and it + * also acts as a vmap_block hash(alloc/free paths). It means we + * overload it, since we already have the per-cpu array which is + * used as a hash table. When used as a hash a 'cpu' passed to + * per_cpu() is not actually a CPU but rather a hash index. + * + * A hash function is addr_to_vb_xa() which hashes any address + * to a specific index(in a hash) it belongs to. This then uses a + * per_cpu() macro to access an array with generated index. + * + * An example: + * + * CPU_1 CPU_2 CPU_0 + * | | | + * V V V + * 0 10 20 30 40 50 60 + * |------|------|------|------|------|------|...<vmap address space> + * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2 + * + * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus + * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock; + * + * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus + * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock; + * + * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus + * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock. + * + * This technique almost always avoids lock contention on insert/remove, + * however xarray spinlocks protect against any contention that remains. */ -static DEFINE_SPINLOCK(vmap_block_tree_lock); -static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); +static struct xarray * +addr_to_vb_xa(unsigned long addr) +{ + int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids; + + /* + * Please note, nr_cpu_ids points on a highest set + * possible bit, i.e. we never invoke cpumask_next() + * if an index points on it which is nr_cpu_ids - 1. + */ + if (!cpu_possible(index)) + index = cpumask_next(index, cpu_possible_mask); + + return &per_cpu(vmap_block_queue, index).vmap_blocks; +} /* * We should probably have a fallback mechanism to allocate virtual memory @@ -785,107 +2670,161 @@ static unsigned long addr_to_vb_idx(unsigned long addr) return addr; } -static struct vmap_block *new_vmap_block(gfp_t gfp_mask) +static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) +{ + unsigned long addr; + + addr = va_start + (pages_off << PAGE_SHIFT); + BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); + return (void *)addr; +} + +/** + * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this + * block. Of course pages number can't exceed VMAP_BBMAP_BITS + * @order: how many 2^order pages should be occupied in newly allocated block + * @gfp_mask: flags for the page level allocator + * + * Return: virtual address in a newly allocated block or ERR_PTR(-errno) + */ +static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) { struct vmap_block_queue *vbq; struct vmap_block *vb; struct vmap_area *va; + struct xarray *xa; unsigned long vb_idx; int node, err; + void *vaddr; node = numa_node_id(); - vb = kmalloc_node(sizeof(struct vmap_block), - gfp_mask & GFP_RECLAIM_MASK, node); + vb = kmalloc_node(sizeof(struct vmap_block), gfp_mask, node); if (unlikely(!vb)) return ERR_PTR(-ENOMEM); va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, VMALLOC_START, VMALLOC_END, - node, gfp_mask); + node, gfp_mask, + VMAP_RAM|VMAP_BLOCK, NULL); if (IS_ERR(va)) { kfree(vb); return ERR_CAST(va); } - err = radix_tree_preload(gfp_mask); - if (unlikely(err)) { - kfree(vb); - free_vmap_area(va); - return ERR_PTR(err); - } - + vaddr = vmap_block_vaddr(va->va_start, 0); spin_lock_init(&vb->lock); vb->va = va; - vb->free = VMAP_BBMAP_BITS; + /* At least something should be left free */ + BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); + bitmap_zero(vb->used_map, VMAP_BBMAP_BITS); + vb->free = VMAP_BBMAP_BITS - (1UL << order); vb->dirty = 0; - bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); + vb->dirty_min = VMAP_BBMAP_BITS; + vb->dirty_max = 0; + bitmap_set(vb->used_map, 0, (1UL << order)); INIT_LIST_HEAD(&vb->free_list); + vb->cpu = raw_smp_processor_id(); + xa = addr_to_vb_xa(va->va_start); vb_idx = addr_to_vb_idx(va->va_start); - spin_lock(&vmap_block_tree_lock); - err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); - spin_unlock(&vmap_block_tree_lock); - BUG_ON(err); - radix_tree_preload_end(); - - vbq = &get_cpu_var(vmap_block_queue); - vb->vbq = vbq; + err = xa_insert(xa, vb_idx, vb, gfp_mask); + if (err) { + kfree(vb); + free_vmap_area(va); + return ERR_PTR(err); + } + /* + * list_add_tail_rcu could happened in another core + * rather than vb->cpu due to task migration, which + * is safe as list_add_tail_rcu will ensure the list's + * integrity together with list_for_each_rcu from read + * side. + */ + vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu); spin_lock(&vbq->lock); - list_add_rcu(&vb->free_list, &vbq->free); + list_add_tail_rcu(&vb->free_list, &vbq->free); spin_unlock(&vbq->lock); - put_cpu_var(vmap_block_queue); - return vb; + return vaddr; } static void free_vmap_block(struct vmap_block *vb) { + struct vmap_node *vn; struct vmap_block *tmp; - unsigned long vb_idx; + struct xarray *xa; - vb_idx = addr_to_vb_idx(vb->va->va_start); - spin_lock(&vmap_block_tree_lock); - tmp = radix_tree_delete(&vmap_block_tree, vb_idx); - spin_unlock(&vmap_block_tree_lock); + xa = addr_to_vb_xa(vb->va->va_start); + tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start)); BUG_ON(tmp != vb); + vn = addr_to_node(vb->va->va_start); + spin_lock(&vn->busy.lock); + unlink_va(vb->va, &vn->busy.root); + spin_unlock(&vn->busy.lock); + free_vmap_area_noflush(vb->va); kfree_rcu(vb, rcu_head); } +static bool purge_fragmented_block(struct vmap_block *vb, + struct list_head *purge_list, bool force_purge) +{ + struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu); + + if (vb->free + vb->dirty != VMAP_BBMAP_BITS || + vb->dirty == VMAP_BBMAP_BITS) + return false; + + /* Don't overeagerly purge usable blocks unless requested */ + if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD)) + return false; + + /* prevent further allocs after releasing lock */ + WRITE_ONCE(vb->free, 0); + /* prevent purging it again */ + WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS); + vb->dirty_min = 0; + vb->dirty_max = VMAP_BBMAP_BITS; + spin_lock(&vbq->lock); + list_del_rcu(&vb->free_list); + spin_unlock(&vbq->lock); + list_add_tail(&vb->purge, purge_list); + return true; +} + +static void free_purged_blocks(struct list_head *purge_list) +{ + struct vmap_block *vb, *n_vb; + + list_for_each_entry_safe(vb, n_vb, purge_list, purge) { + list_del(&vb->purge); + free_vmap_block(vb); + } +} + static void purge_fragmented_blocks(int cpu) { LIST_HEAD(purge); struct vmap_block *vb; - struct vmap_block *n_vb; struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); rcu_read_lock(); list_for_each_entry_rcu(vb, &vbq->free, free_list) { + unsigned long free = READ_ONCE(vb->free); + unsigned long dirty = READ_ONCE(vb->dirty); - if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) + if (free + dirty != VMAP_BBMAP_BITS || + dirty == VMAP_BBMAP_BITS) continue; spin_lock(&vb->lock); - if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { - vb->free = 0; /* prevent further allocs after releasing lock */ - vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ - bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); - spin_lock(&vbq->lock); - list_del_rcu(&vb->free_list); - spin_unlock(&vbq->lock); - spin_unlock(&vb->lock); - list_add_tail(&vb->purge, &purge); - } else - spin_unlock(&vb->lock); + purge_fragmented_block(vb, &purge, true); + spin_unlock(&vb->lock); } rcu_read_unlock(); - - list_for_each_entry_safe(vb, n_vb, &purge, purge) { - list_del(&vb->purge); - free_vmap_block(vb); - } + free_purged_blocks(&purge); } static void purge_fragmented_blocks_allcpus(void) @@ -900,10 +2839,10 @@ static void *vb_alloc(unsigned long size, gfp_t gfp_mask) { struct vmap_block_queue *vbq; struct vmap_block *vb; - unsigned long addr = 0; + void *vaddr = NULL; unsigned int order; - BUG_ON(size & ~PAGE_MASK); + BUG_ON(offset_in_page(size)); BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); if (WARN_ON(size == 0)) { /* @@ -911,77 +2850,81 @@ static void *vb_alloc(unsigned long size, gfp_t gfp_mask) * get_order(0) returns funny result. Just warn and terminate * early. */ - return NULL; + return ERR_PTR(-EINVAL); } order = get_order(size); -again: rcu_read_lock(); - vbq = &get_cpu_var(vmap_block_queue); + vbq = raw_cpu_ptr(&vmap_block_queue); list_for_each_entry_rcu(vb, &vbq->free, free_list) { - int i; + unsigned long pages_off; + + if (READ_ONCE(vb->free) < (1UL << order)) + continue; spin_lock(&vb->lock); - if (vb->free < 1UL << order) - goto next; - - i = VMAP_BBMAP_BITS - vb->free; - addr = vb->va->va_start + (i << PAGE_SHIFT); - BUG_ON(addr_to_vb_idx(addr) != - addr_to_vb_idx(vb->va->va_start)); - vb->free -= 1UL << order; + if (vb->free < (1UL << order)) { + spin_unlock(&vb->lock); + continue; + } + + pages_off = VMAP_BBMAP_BITS - vb->free; + vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); + WRITE_ONCE(vb->free, vb->free - (1UL << order)); + bitmap_set(vb->used_map, pages_off, (1UL << order)); if (vb->free == 0) { spin_lock(&vbq->lock); list_del_rcu(&vb->free_list); spin_unlock(&vbq->lock); } + spin_unlock(&vb->lock); break; -next: - spin_unlock(&vb->lock); } - put_cpu_var(vmap_block_queue); rcu_read_unlock(); - if (!addr) { - vb = new_vmap_block(gfp_mask); - if (IS_ERR(vb)) - return vb; - goto again; - } + /* Allocate new block if nothing was found */ + if (!vaddr) + vaddr = new_vmap_block(order, gfp_mask); - return (void *)addr; + return vaddr; } -static void vb_free(const void *addr, unsigned long size) +static void vb_free(unsigned long addr, unsigned long size) { unsigned long offset; - unsigned long vb_idx; unsigned int order; struct vmap_block *vb; + struct xarray *xa; - BUG_ON(size & ~PAGE_MASK); + BUG_ON(offset_in_page(size)); BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); - flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); + flush_cache_vunmap(addr, addr + size); order = get_order(size); + offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; - offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); + xa = addr_to_vb_xa(addr); + vb = xa_load(xa, addr_to_vb_idx(addr)); - vb_idx = addr_to_vb_idx((unsigned long)addr); - rcu_read_lock(); - vb = radix_tree_lookup(&vmap_block_tree, vb_idx); - rcu_read_unlock(); - BUG_ON(!vb); + spin_lock(&vb->lock); + bitmap_clear(vb->used_map, offset, (1UL << order)); + spin_unlock(&vb->lock); + + vunmap_range_noflush(addr, addr + size); - vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); + if (debug_pagealloc_enabled_static()) + flush_tlb_kernel_range(addr, addr + size); spin_lock(&vb->lock); - BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); - vb->dirty += 1UL << order; + /* Expand the not yet TLB flushed dirty range */ + vb->dirty_min = min(vb->dirty_min, offset); + vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); + + WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order)); if (vb->dirty == VMAP_BBMAP_BITS) { BUG_ON(vb->free); spin_unlock(&vb->lock); @@ -990,63 +2933,74 @@ static void vb_free(const void *addr, unsigned long size) spin_unlock(&vb->lock); } -/** - * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer - * - * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily - * to amortize TLB flushing overheads. What this means is that any page you - * have now, may, in a former life, have been mapped into kernel virtual - * address by the vmap layer and so there might be some CPUs with TLB entries - * still referencing that page (additional to the regular 1:1 kernel mapping). - * - * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can - * be sure that none of the pages we have control over will have any aliases - * from the vmap layer. - */ -void vm_unmap_aliases(void) +static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) { - unsigned long start = ULONG_MAX, end = 0; + LIST_HEAD(purge_list); int cpu; - int flush = 0; if (unlikely(!vmap_initialized)) return; + mutex_lock(&vmap_purge_lock); + for_each_possible_cpu(cpu) { struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); struct vmap_block *vb; + unsigned long idx; rcu_read_lock(); - list_for_each_entry_rcu(vb, &vbq->free, free_list) { - int i; - + xa_for_each(&vbq->vmap_blocks, idx, vb) { spin_lock(&vb->lock); - i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); - while (i < VMAP_BBMAP_BITS) { + + /* + * Try to purge a fragmented block first. If it's + * not purgeable, check whether there is dirty + * space to be flushed. + */ + if (!purge_fragmented_block(vb, &purge_list, false) && + vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) { + unsigned long va_start = vb->va->va_start; unsigned long s, e; - int j; - j = find_next_zero_bit(vb->dirty_map, - VMAP_BBMAP_BITS, i); - s = vb->va->va_start + (i << PAGE_SHIFT); - e = vb->va->va_start + (j << PAGE_SHIFT); - flush = 1; + s = va_start + (vb->dirty_min << PAGE_SHIFT); + e = va_start + (vb->dirty_max << PAGE_SHIFT); - if (s < start) - start = s; - if (e > end) - end = e; + start = min(s, start); + end = max(e, end); - i = j; - i = find_next_bit(vb->dirty_map, - VMAP_BBMAP_BITS, i); + /* Prevent that this is flushed again */ + vb->dirty_min = VMAP_BBMAP_BITS; + vb->dirty_max = 0; + + flush = 1; } spin_unlock(&vb->lock); } rcu_read_unlock(); } + free_purged_blocks(&purge_list); - __purge_vmap_area_lazy(&start, &end, 1, flush); + if (!__purge_vmap_area_lazy(start, end, false) && flush) + flush_tlb_kernel_range(start, end); + mutex_unlock(&vmap_purge_lock); +} + +/** + * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer + * + * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily + * to amortize TLB flushing overheads. What this means is that any page you + * have now, may, in a former life, have been mapped into kernel virtual + * address by the vmap layer and so there might be some CPUs with TLB entries + * still referencing that page (additional to the regular 1:1 kernel mapping). + * + * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can + * be sure that none of the pages we have control over will have any aliases + * from the vmap layer. + */ +void vm_unmap_aliases(void) +{ + _vm_unmap_aliases(ULONG_MAX, 0, 0); } EXPORT_SYMBOL_GPL(vm_unmap_aliases); @@ -1057,21 +3011,30 @@ EXPORT_SYMBOL_GPL(vm_unmap_aliases); */ void vm_unmap_ram(const void *mem, unsigned int count) { - unsigned long size = count << PAGE_SHIFT; - unsigned long addr = (unsigned long)mem; + unsigned long size = (unsigned long)count << PAGE_SHIFT; + unsigned long addr = (unsigned long)kasan_reset_tag(mem); + struct vmap_area *va; + might_sleep(); BUG_ON(!addr); BUG_ON(addr < VMALLOC_START); BUG_ON(addr > VMALLOC_END); - BUG_ON(addr & (PAGE_SIZE-1)); + BUG_ON(!PAGE_ALIGNED(addr)); - debug_check_no_locks_freed(mem, size); - vmap_debug_free_range(addr, addr+size); + kasan_poison_vmalloc(mem, size); - if (likely(count <= VMAP_MAX_ALLOC)) - vb_free(mem, size); - else - free_unmap_vmap_area_addr(addr); + if (likely(count <= VMAP_MAX_ALLOC)) { + debug_check_no_locks_freed(mem, size); + vb_free(addr, size); + return; + } + + va = find_unlink_vmap_area(addr); + if (WARN_ON_ONCE(!va)) + return; + + debug_check_no_locks_freed((void *)va->va_start, va_size(va)); + free_unmap_vmap_area(va); } EXPORT_SYMBOL(vm_unmap_ram); @@ -1080,13 +3043,18 @@ EXPORT_SYMBOL(vm_unmap_ram); * @pages: an array of pointers to the pages to be mapped * @count: number of pages * @node: prefer to allocate data structures on this node - * @prot: memory protection to use. PAGE_KERNEL for regular RAM + * + * If you use this function for less than VMAP_MAX_ALLOC pages, it could be + * faster than vmap so it's good. But if you mix long-life and short-life + * objects with vm_map_ram(), it could consume lots of address space through + * fragmentation (especially on a 32bit machine). You could see failures in + * the end. Please use this function for short-lived objects. * * Returns: a pointer to the address that has been mapped, or %NULL on failure */ -void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) +void *vm_map_ram(struct page **pages, unsigned int count, int node) { - unsigned long size = count << PAGE_SHIFT; + unsigned long size = (unsigned long)count << PAGE_SHIFT; unsigned long addr; void *mem; @@ -1098,22 +3066,58 @@ void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t pro } else { struct vmap_area *va; va = alloc_vmap_area(size, PAGE_SIZE, - VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); + VMALLOC_START, VMALLOC_END, + node, GFP_KERNEL, VMAP_RAM, + NULL); if (IS_ERR(va)) return NULL; addr = va->va_start; mem = (void *)addr; } - if (vmap_page_range(addr, addr + size, prot, pages) < 0) { + + if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, + pages, PAGE_SHIFT) < 0) { vm_unmap_ram(mem, count); return NULL; } + + /* + * Mark the pages as accessible, now that they are mapped. + * With hardware tag-based KASAN, marking is skipped for + * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). + */ + mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); + return mem; } EXPORT_SYMBOL(vm_map_ram); static struct vm_struct *vmlist __initdata; + +static inline unsigned int vm_area_page_order(struct vm_struct *vm) +{ +#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC + return vm->page_order; +#else + return 0; +#endif +} + +unsigned int get_vm_area_page_order(struct vm_struct *vm) +{ + return vm_area_page_order(vm); +} + +static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) +{ +#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC + vm->page_order = order; +#else + BUG_ON(order != 0); +#endif +} + /** * vm_area_add_early - add vmap area early during boot * @vm: vm_struct to add @@ -1154,139 +3158,22 @@ void __init vm_area_add_early(struct vm_struct *vm) */ void __init vm_area_register_early(struct vm_struct *vm, size_t align) { - static size_t vm_init_off __initdata; - unsigned long addr; - - addr = ALIGN(VMALLOC_START + vm_init_off, align); - vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; - - vm->addr = (void *)addr; - - vm_area_add_early(vm); -} - -void __init vmalloc_init(void) -{ - struct vmap_area *va; - struct vm_struct *tmp; - int i; - - for_each_possible_cpu(i) { - struct vmap_block_queue *vbq; - struct vfree_deferred *p; - - vbq = &per_cpu(vmap_block_queue, i); - spin_lock_init(&vbq->lock); - INIT_LIST_HEAD(&vbq->free); - p = &per_cpu(vfree_deferred, i); - init_llist_head(&p->list); - INIT_WORK(&p->wq, free_work); - } - - /* Import existing vmlist entries. */ - for (tmp = vmlist; tmp; tmp = tmp->next) { - va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); - va->flags = VM_VM_AREA; - va->va_start = (unsigned long)tmp->addr; - va->va_end = va->va_start + tmp->size; - va->vm = tmp; - __insert_vmap_area(va); - } + unsigned long addr = ALIGN(VMALLOC_START, align); + struct vm_struct *cur, **p; - vmap_area_pcpu_hole = VMALLOC_END; - - vmap_initialized = true; -} - -/** - * map_kernel_range_noflush - map kernel VM area with the specified pages - * @addr: start of the VM area to map - * @size: size of the VM area to map - * @prot: page protection flags to use - * @pages: pages to map - * - * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size - * specify should have been allocated using get_vm_area() and its - * friends. - * - * NOTE: - * This function does NOT do any cache flushing. The caller is - * responsible for calling flush_cache_vmap() on to-be-mapped areas - * before calling this function. - * - * RETURNS: - * The number of pages mapped on success, -errno on failure. - */ -int map_kernel_range_noflush(unsigned long addr, unsigned long size, - pgprot_t prot, struct page **pages) -{ - return vmap_page_range_noflush(addr, addr + size, prot, pages); -} - -/** - * unmap_kernel_range_noflush - unmap kernel VM area - * @addr: start of the VM area to unmap - * @size: size of the VM area to unmap - * - * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size - * specify should have been allocated using get_vm_area() and its - * friends. - * - * NOTE: - * This function does NOT do any cache flushing. The caller is - * responsible for calling flush_cache_vunmap() on to-be-mapped areas - * before calling this function and flush_tlb_kernel_range() after. - */ -void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) -{ - vunmap_page_range(addr, addr + size); -} -EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); - -/** - * unmap_kernel_range - unmap kernel VM area and flush cache and TLB - * @addr: start of the VM area to unmap - * @size: size of the VM area to unmap - * - * Similar to unmap_kernel_range_noflush() but flushes vcache before - * the unmapping and tlb after. - */ -void unmap_kernel_range(unsigned long addr, unsigned long size) -{ - unsigned long end = addr + size; - - flush_cache_vunmap(addr, end); - vunmap_page_range(addr, end); - flush_tlb_kernel_range(addr, end); -} - -int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) -{ - unsigned long addr = (unsigned long)area->addr; - unsigned long end = addr + area->size - PAGE_SIZE; - int err; + BUG_ON(vmap_initialized); - err = vmap_page_range(addr, end, prot, *pages); - if (err > 0) { - *pages += err; - err = 0; + for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { + if ((unsigned long)cur->addr - addr >= vm->size) + break; + addr = ALIGN((unsigned long)cur->addr + cur->size, align); } - return err; -} -EXPORT_SYMBOL_GPL(map_vm_area); - -static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, - unsigned long flags, const void *caller) -{ - spin_lock(&vmap_area_lock); - vm->flags = flags; - vm->addr = (void *)va->va_start; - vm->size = va->va_end - va->va_start; - vm->caller = caller; - va->vm = vm; - va->flags |= VM_VM_AREA; - spin_unlock(&vmap_area_lock); + BUG_ON(addr > VMALLOC_END - vm->size); + vm->addr = (void *)addr; + vm->next = *p; + *p = vm; + kasan_populate_early_vm_area_shadow(vm->addr, vm->size); } static void clear_vm_uninitialized_flag(struct vm_struct *vm) @@ -1294,75 +3181,85 @@ static void clear_vm_uninitialized_flag(struct vm_struct *vm) /* * Before removing VM_UNINITIALIZED, * we should make sure that vm has proper values. - * Pair with smp_rmb() in show_numa_info(). + * Pair with smp_rmb() in vread_iter() and vmalloc_info_show(). */ smp_wmb(); vm->flags &= ~VM_UNINITIALIZED; } -static struct vm_struct *__get_vm_area_node(unsigned long size, - unsigned long align, unsigned long flags, unsigned long start, - unsigned long end, int node, gfp_t gfp_mask, const void *caller) +struct vm_struct *__get_vm_area_node(unsigned long size, + unsigned long align, unsigned long shift, unsigned long flags, + unsigned long start, unsigned long end, int node, + gfp_t gfp_mask, const void *caller) { struct vmap_area *va; struct vm_struct *area; + unsigned long requested_size = size; BUG_ON(in_interrupt()); - if (flags & VM_IOREMAP) - align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER); - - size = PAGE_ALIGN(size); + size = ALIGN(size, 1ul << shift); if (unlikely(!size)) return NULL; + if (flags & VM_IOREMAP) + align = 1ul << clamp_t(int, get_count_order_long(size), + PAGE_SHIFT, IOREMAP_MAX_ORDER); + area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); if (unlikely(!area)) return NULL; - /* - * We always allocate a guard page. - */ - size += PAGE_SIZE; + if (!(flags & VM_NO_GUARD)) + size += PAGE_SIZE; + + area->flags = flags; + area->caller = caller; + area->requested_size = requested_size; - va = alloc_vmap_area(size, align, start, end, node, gfp_mask); + va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area); if (IS_ERR(va)) { kfree(area); return NULL; } - setup_vmalloc_vm(area, va, flags, caller); + /* + * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a + * best-effort approach, as they can be mapped outside of vmalloc code. + * For VM_ALLOC mappings, the pages are marked as accessible after + * getting mapped in __vmalloc_node_range(). + * With hardware tag-based KASAN, marking is skipped for + * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). + */ + if (!(flags & VM_ALLOC)) + area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, + KASAN_VMALLOC_PROT_NORMAL); return area; } -struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, - unsigned long start, unsigned long end) -{ - return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, - GFP_KERNEL, __builtin_return_address(0)); -} -EXPORT_SYMBOL_GPL(__get_vm_area); - struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, unsigned long start, unsigned long end, const void *caller) { - return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, - GFP_KERNEL, caller); + return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, + NUMA_NO_NODE, GFP_KERNEL, caller); } /** - * get_vm_area - reserve a contiguous kernel virtual area - * @size: size of the area - * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC + * get_vm_area - reserve a contiguous kernel virtual area + * @size: size of the area + * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC * - * Search an area of @size in the kernel virtual mapping area, - * and reserved it for out purposes. Returns the area descriptor - * on success or %NULL on failure. + * Search an area of @size in the kernel virtual mapping area, + * and reserved it for out purposes. Returns the area descriptor + * on success or %NULL on failure. + * + * Return: the area descriptor on success or %NULL on failure. */ struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) { - return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, + return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, + VMALLOC_START, VMALLOC_END, NUMA_NO_NODE, GFP_KERNEL, __builtin_return_address(0)); } @@ -1370,369 +3267,929 @@ struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, const void *caller) { - return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, + return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, + VMALLOC_START, VMALLOC_END, NUMA_NO_NODE, GFP_KERNEL, caller); } /** - * find_vm_area - find a continuous kernel virtual area - * @addr: base address + * find_vm_area - find a continuous kernel virtual area + * @addr: base address + * + * Search for the kernel VM area starting at @addr, and return it. + * It is up to the caller to do all required locking to keep the returned + * pointer valid. * - * Search for the kernel VM area starting at @addr, and return it. - * It is up to the caller to do all required locking to keep the returned - * pointer valid. + * Return: the area descriptor on success or %NULL on failure. */ struct vm_struct *find_vm_area(const void *addr) { struct vmap_area *va; va = find_vmap_area((unsigned long)addr); - if (va && va->flags & VM_VM_AREA) - return va->vm; + if (!va) + return NULL; - return NULL; + return va->vm; } /** - * remove_vm_area - find and remove a continuous kernel virtual area - * @addr: base address + * remove_vm_area - find and remove a continuous kernel virtual area + * @addr: base address + * + * Search for the kernel VM area starting at @addr, and remove it. + * This function returns the found VM area, but using it is NOT safe + * on SMP machines, except for its size or flags. * - * Search for the kernel VM area starting at @addr, and remove it. - * This function returns the found VM area, but using it is NOT safe - * on SMP machines, except for its size or flags. + * Return: the area descriptor on success or %NULL on failure. */ struct vm_struct *remove_vm_area(const void *addr) { struct vmap_area *va; + struct vm_struct *vm; - va = find_vmap_area((unsigned long)addr); - if (va && va->flags & VM_VM_AREA) { - struct vm_struct *vm = va->vm; + might_sleep(); - spin_lock(&vmap_area_lock); - va->vm = NULL; - va->flags &= ~VM_VM_AREA; - spin_unlock(&vmap_area_lock); + if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", + addr)) + return NULL; + + va = find_unlink_vmap_area((unsigned long)addr); + if (!va || !va->vm) + return NULL; + vm = va->vm; - vmap_debug_free_range(va->va_start, va->va_end); - free_unmap_vmap_area(va); - vm->size -= PAGE_SIZE; + debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm)); + debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm)); + kasan_free_module_shadow(vm); + kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm)); - return vm; - } - return NULL; + free_unmap_vmap_area(va); + return vm; } -static void __vunmap(const void *addr, int deallocate_pages) +static inline void set_area_direct_map(const struct vm_struct *area, + int (*set_direct_map)(struct page *page)) { - struct vm_struct *area; + int i; - if (!addr) - return; + /* HUGE_VMALLOC passes small pages to set_direct_map */ + for (i = 0; i < area->nr_pages; i++) + if (page_address(area->pages[i])) + set_direct_map(area->pages[i]); +} - if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", - addr)) - return; +/* + * Flush the vm mapping and reset the direct map. + */ +static void vm_reset_perms(struct vm_struct *area) +{ + unsigned long start = ULONG_MAX, end = 0; + unsigned int page_order = vm_area_page_order(area); + int flush_dmap = 0; + int i; - area = remove_vm_area(addr); - if (unlikely(!area)) { - WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", - addr); - return; + /* + * Find the start and end range of the direct mappings to make sure that + * the vm_unmap_aliases() flush includes the direct map. + */ + for (i = 0; i < area->nr_pages; i += 1U << page_order) { + unsigned long addr = (unsigned long)page_address(area->pages[i]); + + if (addr) { + unsigned long page_size; + + page_size = PAGE_SIZE << page_order; + start = min(addr, start); + end = max(addr + page_size, end); + flush_dmap = 1; + } } - debug_check_no_locks_freed(addr, area->size); - debug_check_no_obj_freed(addr, area->size); + /* + * Set direct map to something invalid so that it won't be cached if + * there are any accesses after the TLB flush, then flush the TLB and + * reset the direct map permissions to the default. + */ + set_area_direct_map(area, set_direct_map_invalid_noflush); + _vm_unmap_aliases(start, end, flush_dmap); + set_area_direct_map(area, set_direct_map_default_noflush); +} - if (deallocate_pages) { - int i; +static void delayed_vfree_work(struct work_struct *w) +{ + struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); + struct llist_node *t, *llnode; - for (i = 0; i < area->nr_pages; i++) { - struct page *page = area->pages[i]; + llist_for_each_safe(llnode, t, llist_del_all(&p->list)) + vfree(llnode); +} - BUG_ON(!page); - __free_page(page); - } +/** + * vfree_atomic - release memory allocated by vmalloc() + * @addr: memory base address + * + * This one is just like vfree() but can be called in any atomic context + * except NMIs. + */ +void vfree_atomic(const void *addr) +{ + struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); - if (area->flags & VM_VPAGES) - vfree(area->pages); - else - kfree(area->pages); - } + BUG_ON(in_nmi()); + kmemleak_free(addr); - kfree(area); - return; + /* + * Use raw_cpu_ptr() because this can be called from preemptible + * context. Preemption is absolutely fine here, because the llist_add() + * implementation is lockless, so it works even if we are adding to + * another cpu's list. schedule_work() should be fine with this too. + */ + if (addr && llist_add((struct llist_node *)addr, &p->list)) + schedule_work(&p->wq); } - + /** - * vfree - release memory allocated by vmalloc() - * @addr: memory base address + * vfree - Release memory allocated by vmalloc() + * @addr: Memory base address * - * Free the virtually continuous memory area starting at @addr, as - * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is - * NULL, no operation is performed. + * Free the virtually continuous memory area starting at @addr, as obtained + * from one of the vmalloc() family of APIs. This will usually also free the + * physical memory underlying the virtual allocation, but that memory is + * reference counted, so it will not be freed until the last user goes away. * - * Must not be called in NMI context (strictly speaking, only if we don't - * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling - * conventions for vfree() arch-depenedent would be a really bad idea) + * If @addr is NULL, no operation is performed. * - * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node) + * Context: + * May sleep if called *not* from interrupt context. + * Must not be called in NMI context (strictly speaking, it could be + * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling + * conventions for vfree() arch-dependent would be a really bad idea). */ void vfree(const void *addr) { - BUG_ON(in_nmi()); + struct vm_struct *vm; + int i; + if (unlikely(in_interrupt())) { + vfree_atomic(addr); + return; + } + + BUG_ON(in_nmi()); kmemleak_free(addr); + might_sleep(); if (!addr) return; - if (unlikely(in_interrupt())) { - struct vfree_deferred *p = &__get_cpu_var(vfree_deferred); - if (llist_add((struct llist_node *)addr, &p->list)) - schedule_work(&p->wq); - } else - __vunmap(addr, 1); + + vm = remove_vm_area(addr); + if (unlikely(!vm)) { + WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", + addr); + return; + } + + if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS)) + vm_reset_perms(vm); + /* All pages of vm should be charged to same memcg, so use first one. */ + if (vm->nr_pages && !(vm->flags & VM_MAP_PUT_PAGES)) + mod_memcg_page_state(vm->pages[0], MEMCG_VMALLOC, -vm->nr_pages); + for (i = 0; i < vm->nr_pages; i++) { + struct page *page = vm->pages[i]; + + BUG_ON(!page); + /* + * High-order allocs for huge vmallocs are split, so + * can be freed as an array of order-0 allocations + */ + __free_page(page); + cond_resched(); + } + if (!(vm->flags & VM_MAP_PUT_PAGES)) + atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages); + kvfree(vm->pages); + kfree(vm); } EXPORT_SYMBOL(vfree); /** - * vunmap - release virtual mapping obtained by vmap() - * @addr: memory base address + * vunmap - release virtual mapping obtained by vmap() + * @addr: memory base address * - * Free the virtually contiguous memory area starting at @addr, - * which was created from the page array passed to vmap(). + * Free the virtually contiguous memory area starting at @addr, + * which was created from the page array passed to vmap(). * - * Must not be called in interrupt context. + * Must not be called in interrupt context. */ void vunmap(const void *addr) { + struct vm_struct *vm; + BUG_ON(in_interrupt()); might_sleep(); - if (addr) - __vunmap(addr, 0); + + if (!addr) + return; + vm = remove_vm_area(addr); + if (unlikely(!vm)) { + WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n", + addr); + return; + } + kfree(vm); } EXPORT_SYMBOL(vunmap); /** - * vmap - map an array of pages into virtually contiguous space - * @pages: array of page pointers - * @count: number of pages to map - * @flags: vm_area->flags - * @prot: page protection for the mapping + * vmap - map an array of pages into virtually contiguous space + * @pages: array of page pointers + * @count: number of pages to map + * @flags: vm_area->flags + * @prot: page protection for the mapping * - * Maps @count pages from @pages into contiguous kernel virtual - * space. + * Maps @count pages from @pages into contiguous kernel virtual space. + * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself + * (which must be kmalloc or vmalloc memory) and one reference per pages in it + * are transferred from the caller to vmap(), and will be freed / dropped when + * vfree() is called on the return value. + * + * Return: the address of the area or %NULL on failure */ void *vmap(struct page **pages, unsigned int count, - unsigned long flags, pgprot_t prot) + unsigned long flags, pgprot_t prot) { struct vm_struct *area; + unsigned long addr; + unsigned long size; /* In bytes */ might_sleep(); - if (count > totalram_pages) + if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS)) return NULL; - area = get_vm_area_caller((count << PAGE_SHIFT), flags, - __builtin_return_address(0)); + /* + * Your top guard is someone else's bottom guard. Not having a top + * guard compromises someone else's mappings too. + */ + if (WARN_ON_ONCE(flags & VM_NO_GUARD)) + flags &= ~VM_NO_GUARD; + + if (count > totalram_pages()) + return NULL; + + size = (unsigned long)count << PAGE_SHIFT; + area = get_vm_area_caller(size, flags, __builtin_return_address(0)); if (!area) return NULL; - if (map_vm_area(area, prot, &pages)) { + addr = (unsigned long)area->addr; + if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), + pages, PAGE_SHIFT) < 0) { vunmap(area->addr); return NULL; } + if (flags & VM_MAP_PUT_PAGES) { + area->pages = pages; + area->nr_pages = count; + } return area->addr; } EXPORT_SYMBOL(vmap); -static void *__vmalloc_node(unsigned long size, unsigned long align, - gfp_t gfp_mask, pgprot_t prot, - int node, const void *caller); +#ifdef CONFIG_VMAP_PFN +struct vmap_pfn_data { + unsigned long *pfns; + pgprot_t prot; + unsigned int idx; +}; + +static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) +{ + struct vmap_pfn_data *data = private; + unsigned long pfn = data->pfns[data->idx]; + pte_t ptent; + + if (WARN_ON_ONCE(pfn_valid(pfn))) + return -EINVAL; + + ptent = pte_mkspecial(pfn_pte(pfn, data->prot)); + set_pte_at(&init_mm, addr, pte, ptent); + + data->idx++; + return 0; +} + +/** + * vmap_pfn - map an array of PFNs into virtually contiguous space + * @pfns: array of PFNs + * @count: number of pages to map + * @prot: page protection for the mapping + * + * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns + * the start address of the mapping. + */ +void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) +{ + struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; + struct vm_struct *area; + + area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, + __builtin_return_address(0)); + if (!area) + return NULL; + if (apply_to_page_range(&init_mm, (unsigned long)area->addr, + count * PAGE_SIZE, vmap_pfn_apply, &data)) { + free_vm_area(area); + return NULL; + } + + flush_cache_vmap((unsigned long)area->addr, + (unsigned long)area->addr + count * PAGE_SIZE); + + return area->addr; +} +EXPORT_SYMBOL_GPL(vmap_pfn); +#endif /* CONFIG_VMAP_PFN */ + +/* + * Helper for vmalloc to adjust the gfp flags for certain allocations. + */ +static inline gfp_t vmalloc_gfp_adjust(gfp_t flags, const bool large) +{ + flags |= __GFP_NOWARN; + if (large) + flags &= ~__GFP_NOFAIL; + return flags; +} + +static inline unsigned int +vm_area_alloc_pages(gfp_t gfp, int nid, + unsigned int order, unsigned int nr_pages, struct page **pages) +{ + unsigned int nr_allocated = 0; + unsigned int nr_remaining = nr_pages; + unsigned int max_attempt_order = MAX_PAGE_ORDER; + struct page *page; + int i; + unsigned int large_order = ilog2(nr_remaining); + gfp_t large_gfp = vmalloc_gfp_adjust(gfp, large_order) & ~__GFP_DIRECT_RECLAIM; + + large_order = min(max_attempt_order, large_order); + + /* + * Initially, attempt to have the page allocator give us large order + * pages. Do not attempt allocating smaller than order chunks since + * __vmap_pages_range() expects physically contigous pages of exactly + * order long chunks. + */ + while (large_order > order && nr_remaining) { + if (nid == NUMA_NO_NODE) + page = alloc_pages_noprof(large_gfp, large_order); + else + page = alloc_pages_node_noprof(nid, large_gfp, large_order); + + if (unlikely(!page)) { + max_attempt_order = --large_order; + continue; + } + + split_page(page, large_order); + for (i = 0; i < (1U << large_order); i++) + pages[nr_allocated + i] = page + i; + + nr_allocated += 1U << large_order; + nr_remaining = nr_pages - nr_allocated; + + large_order = ilog2(nr_remaining); + large_order = min(max_attempt_order, large_order); + } + + /* + * For order-0 pages we make use of bulk allocator, if + * the page array is partly or not at all populated due + * to fails, fallback to a single page allocator that is + * more permissive. + */ + if (!order) { + while (nr_allocated < nr_pages) { + unsigned int nr, nr_pages_request; + + /* + * A maximum allowed request is hard-coded and is 100 + * pages per call. That is done in order to prevent a + * long preemption off scenario in the bulk-allocator + * so the range is [1:100]. + */ + nr_pages_request = min(100U, nr_pages - nr_allocated); + + /* memory allocation should consider mempolicy, we can't + * wrongly use nearest node when nid == NUMA_NO_NODE, + * otherwise memory may be allocated in only one node, + * but mempolicy wants to alloc memory by interleaving. + */ + if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) + nr = alloc_pages_bulk_mempolicy_noprof(gfp, + nr_pages_request, + pages + nr_allocated); + else + nr = alloc_pages_bulk_node_noprof(gfp, nid, + nr_pages_request, + pages + nr_allocated); + + nr_allocated += nr; + + /* + * If zero or pages were obtained partly, + * fallback to a single page allocator. + */ + if (nr != nr_pages_request) + break; + } + } + + /* High-order pages or fallback path if "bulk" fails. */ + while (nr_allocated < nr_pages) { + if (!(gfp & __GFP_NOFAIL) && fatal_signal_pending(current)) + break; + + if (nid == NUMA_NO_NODE) + page = alloc_pages_noprof(gfp, order); + else + page = alloc_pages_node_noprof(nid, gfp, order); + + if (unlikely(!page)) + break; + + /* + * High-order allocations must be able to be treated as + * independent small pages by callers (as they can with + * small-page vmallocs). Some drivers do their own refcounting + * on vmalloc_to_page() pages, some use page->mapping, + * page->lru, etc. + */ + if (order) + split_page(page, order); + + /* + * Careful, we allocate and map page-order pages, but + * tracking is done per PAGE_SIZE page so as to keep the + * vm_struct APIs independent of the physical/mapped size. + */ + for (i = 0; i < (1U << order); i++) + pages[nr_allocated + i] = page + i; + + nr_allocated += 1U << order; + } + + return nr_allocated; +} + +static LLIST_HEAD(pending_vm_area_cleanup); +static void cleanup_vm_area_work(struct work_struct *work) +{ + struct vm_struct *area, *tmp; + struct llist_node *head; + + head = llist_del_all(&pending_vm_area_cleanup); + if (!head) + return; + + llist_for_each_entry_safe(area, tmp, head, llnode) { + if (!area->pages) + free_vm_area(area); + else + vfree(area->addr); + } +} + +/* + * Helper for __vmalloc_area_node() to defer cleanup + * of partially initialized vm_struct in error paths. + */ +static DECLARE_WORK(cleanup_vm_area, cleanup_vm_area_work); +static void defer_vm_area_cleanup(struct vm_struct *area) +{ + if (llist_add(&area->llnode, &pending_vm_area_cleanup)) + schedule_work(&cleanup_vm_area); +} + +/* + * Page tables allocations ignore external GFP. Enforces it by + * the memalloc scope API. It is used by vmalloc internals and + * KASAN shadow population only. + * + * GFP to scope mapping: + * + * non-blocking (no __GFP_DIRECT_RECLAIM) - memalloc_noreclaim_save() + * GFP_NOFS - memalloc_nofs_save() + * GFP_NOIO - memalloc_noio_save() + * + * Returns a flag cookie to pair with restore. + */ +unsigned int +memalloc_apply_gfp_scope(gfp_t gfp_mask) +{ + unsigned int flags = 0; + + if (!gfpflags_allow_blocking(gfp_mask)) + flags = memalloc_noreclaim_save(); + else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) + flags = memalloc_nofs_save(); + else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) + flags = memalloc_noio_save(); + + /* 0 - no scope applied. */ + return flags; +} + +void +memalloc_restore_scope(unsigned int flags) +{ + if (flags) + memalloc_flags_restore(flags); +} + static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, - pgprot_t prot, int node, const void *caller) + pgprot_t prot, unsigned int page_shift, + int node) { - const int order = 0; - struct page **pages; - unsigned int nr_pages, array_size, i; - gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; + const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; + bool nofail = gfp_mask & __GFP_NOFAIL; + unsigned long addr = (unsigned long)area->addr; + unsigned long size = get_vm_area_size(area); + unsigned long array_size; + unsigned int nr_small_pages = size >> PAGE_SHIFT; + unsigned int page_order; + unsigned int flags; + int ret; + + array_size = (unsigned long)nr_small_pages * sizeof(struct page *); - nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; - array_size = (nr_pages * sizeof(struct page *)); + /* __GFP_NOFAIL and "noblock" flags are mutually exclusive. */ + if (!gfpflags_allow_blocking(gfp_mask)) + nofail = false; + + if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) + gfp_mask |= __GFP_HIGHMEM; - area->nr_pages = nr_pages; /* Please note that the recursion is strictly bounded. */ if (array_size > PAGE_SIZE) { - pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, - PAGE_KERNEL, node, caller); - area->flags |= VM_VPAGES; + area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node, + area->caller); } else { - pages = kmalloc_node(array_size, nested_gfp, node); + area->pages = kmalloc_node_noprof(array_size, nested_gfp, node); } - area->pages = pages; - area->caller = caller; + if (!area->pages) { - remove_vm_area(area->addr); - kfree(area); - return NULL; + warn_alloc(gfp_mask, NULL, + "vmalloc error: size %lu, failed to allocated page array size %lu", + nr_small_pages * PAGE_SIZE, array_size); + goto fail; } - for (i = 0; i < area->nr_pages; i++) { - struct page *page; - gfp_t tmp_mask = gfp_mask | __GFP_NOWARN; + set_vm_area_page_order(area, page_shift - PAGE_SHIFT); + page_order = vm_area_page_order(area); - if (node < 0) - page = alloc_page(tmp_mask); - else - page = alloc_pages_node(node, tmp_mask, order); + /* + * High-order nofail allocations are really expensive and + * potentially dangerous (pre-mature OOM, disruptive reclaim + * and compaction etc. + * + * Please note, the __vmalloc_node_range_noprof() falls-back + * to order-0 pages if high-order attempt is unsuccessful. + */ + area->nr_pages = vm_area_alloc_pages( + vmalloc_gfp_adjust(gfp_mask, page_order), node, + page_order, nr_small_pages, area->pages); - if (unlikely(!page)) { - /* Successfully allocated i pages, free them in __vunmap() */ - area->nr_pages = i; - goto fail; - } - area->pages[i] = page; + atomic_long_add(area->nr_pages, &nr_vmalloc_pages); + /* All pages of vm should be charged to same memcg, so use first one. */ + if (gfp_mask & __GFP_ACCOUNT && area->nr_pages) + mod_memcg_page_state(area->pages[0], MEMCG_VMALLOC, + area->nr_pages); + + /* + * If not enough pages were obtained to accomplish an + * allocation request, free them via vfree() if any. + */ + if (area->nr_pages != nr_small_pages) { + /* + * vm_area_alloc_pages() can fail due to insufficient memory but + * also:- + * + * - a pending fatal signal + * - insufficient huge page-order pages + * + * Since we always retry allocations at order-0 in the huge page + * case a warning for either is spurious. + */ + if (!fatal_signal_pending(current) && page_order == 0) + warn_alloc(gfp_mask, NULL, + "vmalloc error: size %lu, failed to allocate pages", + area->nr_pages * PAGE_SIZE); + goto fail; } - if (map_vm_area(area, prot, &pages)) + /* + * page tables allocations ignore external gfp mask, enforce it + * by the scope API + */ + flags = memalloc_apply_gfp_scope(gfp_mask); + do { + ret = __vmap_pages_range(addr, addr + size, prot, area->pages, + page_shift, nested_gfp); + if (nofail && (ret < 0)) + schedule_timeout_uninterruptible(1); + } while (nofail && (ret < 0)); + memalloc_restore_scope(flags); + + if (ret < 0) { + warn_alloc(gfp_mask, NULL, + "vmalloc error: size %lu, failed to map pages", + area->nr_pages * PAGE_SIZE); goto fail; + } + return area->addr; fail: - warn_alloc_failed(gfp_mask, order, - "vmalloc: allocation failure, allocated %ld of %ld bytes\n", - (area->nr_pages*PAGE_SIZE), area->size); - vfree(area->addr); + defer_vm_area_cleanup(area); return NULL; } +/* + * See __vmalloc_node_range() for a clear list of supported vmalloc flags. + * This gfp lists all flags currently passed through vmalloc. Currently, + * __GFP_ZERO is used by BPF and __GFP_NORETRY is used by percpu. Both drm + * and BPF also use GFP_USER. Additionally, various users pass + * GFP_KERNEL_ACCOUNT. Xfs uses __GFP_NOLOCKDEP. + */ +#define GFP_VMALLOC_SUPPORTED (GFP_KERNEL | GFP_ATOMIC | GFP_NOWAIT |\ + __GFP_NOFAIL | __GFP_ZERO | __GFP_NORETRY |\ + GFP_NOFS | GFP_NOIO | GFP_KERNEL_ACCOUNT |\ + GFP_USER | __GFP_NOLOCKDEP) + +static gfp_t vmalloc_fix_flags(gfp_t flags) +{ + gfp_t invalid_mask = flags & ~GFP_VMALLOC_SUPPORTED; + + flags &= GFP_VMALLOC_SUPPORTED; + WARN_ONCE(1, "Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", + invalid_mask, &invalid_mask, flags, &flags); + return flags; +} + /** - * __vmalloc_node_range - allocate virtually contiguous memory - * @size: allocation size - * @align: desired alignment - * @start: vm area range start - * @end: vm area range end - * @gfp_mask: flags for the page level allocator - * @prot: protection mask for the allocated pages - * @node: node to use for allocation or NUMA_NO_NODE - * @caller: caller's return address - * - * Allocate enough pages to cover @size from the page level - * allocator with @gfp_mask flags. Map them into contiguous - * kernel virtual space, using a pagetable protection of @prot. - */ -void *__vmalloc_node_range(unsigned long size, unsigned long align, + * __vmalloc_node_range - allocate virtually contiguous memory + * @size: allocation size + * @align: desired alignment + * @start: vm area range start + * @end: vm area range end + * @gfp_mask: flags for the page level allocator + * @prot: protection mask for the allocated pages + * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) + * @node: node to use for allocation or NUMA_NO_NODE + * @caller: caller's return address + * + * Allocate enough pages to cover @size from the page level + * allocator with @gfp_mask flags and map them into contiguous + * virtual range with protection @prot. + * + * Supported GFP classes: %GFP_KERNEL, %GFP_ATOMIC, %GFP_NOWAIT, + * %GFP_NOFS and %GFP_NOIO. Zone modifiers are not supported. + * Please note %GFP_ATOMIC and %GFP_NOWAIT are supported only + * by __vmalloc(). + * + * Retry modifiers: only %__GFP_NOFAIL is supported; %__GFP_NORETRY + * and %__GFP_RETRY_MAYFAIL are not supported. + * + * %__GFP_NOWARN can be used to suppress failure messages. + * + * Can not be called from interrupt nor NMI contexts. + * Return: the address of the area or %NULL on failure + */ +void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align, unsigned long start, unsigned long end, gfp_t gfp_mask, - pgprot_t prot, int node, const void *caller) + pgprot_t prot, unsigned long vm_flags, int node, + const void *caller) { struct vm_struct *area; - void *addr; - unsigned long real_size = size; + void *ret; + kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; + unsigned long original_align = align; + unsigned int shift = PAGE_SHIFT; - size = PAGE_ALIGN(size); - if (!size || (size >> PAGE_SHIFT) > totalram_pages) - goto fail; + if (WARN_ON_ONCE(!size)) + return NULL; - area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED, - start, end, node, gfp_mask, caller); - if (!area) + if ((size >> PAGE_SHIFT) > totalram_pages()) { + warn_alloc(gfp_mask, NULL, + "vmalloc error: size %lu, exceeds total pages", + size); + return NULL; + } + + if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { + /* + * Try huge pages. Only try for PAGE_KERNEL allocations, + * others like modules don't yet expect huge pages in + * their allocations due to apply_to_page_range not + * supporting them. + */ + + if (arch_vmap_pmd_supported(prot) && size >= PMD_SIZE) + shift = PMD_SHIFT; + else + shift = arch_vmap_pte_supported_shift(size); + + align = max(original_align, 1UL << shift); + } + +again: + area = __get_vm_area_node(size, align, shift, VM_ALLOC | + VM_UNINITIALIZED | vm_flags, start, end, node, + gfp_mask, caller); + if (!area) { + bool nofail = gfp_mask & __GFP_NOFAIL; + warn_alloc(gfp_mask, NULL, + "vmalloc error: size %lu, vm_struct allocation failed%s", + size, (nofail) ? ". Retrying." : ""); + if (nofail) { + schedule_timeout_uninterruptible(1); + goto again; + } goto fail; + } - addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); - if (!addr) + /* + * Prepare arguments for __vmalloc_area_node() and + * kasan_unpoison_vmalloc(). + */ + if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { + if (kasan_hw_tags_enabled()) { + /* + * Modify protection bits to allow tagging. + * This must be done before mapping. + */ + prot = arch_vmap_pgprot_tagged(prot); + + /* + * Skip page_alloc poisoning and zeroing for physical + * pages backing VM_ALLOC mapping. Memory is instead + * poisoned and zeroed by kasan_unpoison_vmalloc(). + */ + gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO; + } + + /* Take note that the mapping is PAGE_KERNEL. */ + kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; + } + + /* Allocate physical pages and map them into vmalloc space. */ + ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); + if (!ret) goto fail; /* + * Mark the pages as accessible, now that they are mapped. + * The condition for setting KASAN_VMALLOC_INIT should complement the + * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check + * to make sure that memory is initialized under the same conditions. + * Tag-based KASAN modes only assign tags to normal non-executable + * allocations, see __kasan_unpoison_vmalloc(). + */ + kasan_flags |= KASAN_VMALLOC_VM_ALLOC; + if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && + (gfp_mask & __GFP_SKIP_ZERO)) + kasan_flags |= KASAN_VMALLOC_INIT; + /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ + area->addr = kasan_unpoison_vmalloc(area->addr, size, kasan_flags); + + /* * In this function, newly allocated vm_struct has VM_UNINITIALIZED * flag. It means that vm_struct is not fully initialized. * Now, it is fully initialized, so remove this flag here. */ clear_vm_uninitialized_flag(area); - /* - * A ref_count = 3 is needed because the vm_struct and vmap_area - * structures allocated in the __get_vm_area_node() function contain - * references to the virtual address of the vmalloc'ed block. - */ - kmemleak_alloc(addr, real_size, 3, gfp_mask); + if (!(vm_flags & VM_DEFER_KMEMLEAK)) + kmemleak_vmalloc(area, PAGE_ALIGN(size), gfp_mask); - return addr; + return area->addr; fail: - warn_alloc_failed(gfp_mask, 0, - "vmalloc: allocation failure: %lu bytes\n", - real_size); + if (shift > PAGE_SHIFT) { + shift = PAGE_SHIFT; + align = original_align; + goto again; + } + return NULL; } /** - * __vmalloc_node - allocate virtually contiguous memory - * @size: allocation size - * @align: desired alignment - * @gfp_mask: flags for the page level allocator - * @prot: protection mask for the allocated pages - * @node: node to use for allocation or NUMA_NO_NODE - * @caller: caller's return address + * __vmalloc_node - allocate virtually contiguous memory + * @size: allocation size + * @align: desired alignment + * @gfp_mask: flags for the page level allocator + * @node: node to use for allocation or NUMA_NO_NODE + * @caller: caller's return address + * + * Allocate enough pages to cover @size from the page level allocator with + * @gfp_mask flags. Map them into contiguous kernel virtual space. + * + * Semantics of @gfp_mask (including reclaim/retry modifiers such as + * __GFP_NOFAIL) are the same as in __vmalloc_node_range_noprof(). * - * Allocate enough pages to cover @size from the page level - * allocator with @gfp_mask flags. Map them into contiguous - * kernel virtual space, using a pagetable protection of @prot. + * Return: pointer to the allocated memory or %NULL on error */ -static void *__vmalloc_node(unsigned long size, unsigned long align, - gfp_t gfp_mask, pgprot_t prot, - int node, const void *caller) +void *__vmalloc_node_noprof(unsigned long size, unsigned long align, + gfp_t gfp_mask, int node, const void *caller) { - return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, - gfp_mask, prot, node, caller); + return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END, + gfp_mask, PAGE_KERNEL, 0, node, caller); } +/* + * This is only for performance analysis of vmalloc and stress purpose. + * It is required by vmalloc test module, therefore do not use it other + * than that. + */ +#ifdef CONFIG_TEST_VMALLOC_MODULE +EXPORT_SYMBOL_GPL(__vmalloc_node_noprof); +#endif -void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) +void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask) { - return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, + if (unlikely(gfp_mask & ~GFP_VMALLOC_SUPPORTED)) + gfp_mask = vmalloc_fix_flags(gfp_mask); + return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE, __builtin_return_address(0)); } -EXPORT_SYMBOL(__vmalloc); +EXPORT_SYMBOL(__vmalloc_noprof); -static inline void *__vmalloc_node_flags(unsigned long size, - int node, gfp_t flags) +/** + * vmalloc - allocate virtually contiguous memory + * @size: allocation size + * + * Allocate enough pages to cover @size from the page level + * allocator and map them into contiguous kernel virtual space. + * + * For tight control over page level allocator and protection flags + * use __vmalloc() instead. + * + * Return: pointer to the allocated memory or %NULL on error + */ +void *vmalloc_noprof(unsigned long size) { - return __vmalloc_node(size, 1, flags, PAGE_KERNEL, - node, __builtin_return_address(0)); + return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE, + __builtin_return_address(0)); } +EXPORT_SYMBOL(vmalloc_noprof); /** - * vmalloc - allocate virtually contiguous memory - * @size: allocation size - * Allocate enough pages to cover @size from the page level - * allocator and map them into contiguous kernel virtual space. + * vmalloc_huge_node - allocate virtually contiguous memory, allow huge pages + * @size: allocation size + * @gfp_mask: flags for the page level allocator + * @node: node to use for allocation or NUMA_NO_NODE + * + * Allocate enough pages to cover @size from the page level + * allocator and map them into contiguous kernel virtual space. + * If @size is greater than or equal to PMD_SIZE, allow using + * huge pages for the memory * - * For tight control over page level allocator and protection flags - * use __vmalloc() instead. + * Return: pointer to the allocated memory or %NULL on error */ -void *vmalloc(unsigned long size) +void *vmalloc_huge_node_noprof(unsigned long size, gfp_t gfp_mask, int node) { - return __vmalloc_node_flags(size, NUMA_NO_NODE, - GFP_KERNEL | __GFP_HIGHMEM); + if (unlikely(gfp_mask & ~GFP_VMALLOC_SUPPORTED)) + gfp_mask = vmalloc_fix_flags(gfp_mask); + return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, + gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, + node, __builtin_return_address(0)); } -EXPORT_SYMBOL(vmalloc); +EXPORT_SYMBOL_GPL(vmalloc_huge_node_noprof); /** - * vzalloc - allocate virtually contiguous memory with zero fill - * @size: allocation size - * Allocate enough pages to cover @size from the page level - * allocator and map them into contiguous kernel virtual space. - * The memory allocated is set to zero. + * vzalloc - allocate virtually contiguous memory with zero fill + * @size: allocation size * - * For tight control over page level allocator and protection flags - * use __vmalloc() instead. + * Allocate enough pages to cover @size from the page level + * allocator and map them into contiguous kernel virtual space. + * The memory allocated is set to zero. + * + * For tight control over page level allocator and protection flags + * use __vmalloc() instead. + * + * Return: pointer to the allocated memory or %NULL on error */ -void *vzalloc(unsigned long size) +void *vzalloc_noprof(unsigned long size) { - return __vmalloc_node_flags(size, NUMA_NO_NODE, - GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); + return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, + __builtin_return_address(0)); } -EXPORT_SYMBOL(vzalloc); +EXPORT_SYMBOL(vzalloc_noprof); /** * vmalloc_user - allocate zeroed virtually contiguous memory for userspace @@ -1740,41 +4197,37 @@ EXPORT_SYMBOL(vzalloc); * * The resulting memory area is zeroed so it can be mapped to userspace * without leaking data. + * + * Return: pointer to the allocated memory or %NULL on error */ -void *vmalloc_user(unsigned long size) +void *vmalloc_user_noprof(unsigned long size) { - struct vm_struct *area; - void *ret; - - ret = __vmalloc_node(size, SHMLBA, - GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, - PAGE_KERNEL, NUMA_NO_NODE, - __builtin_return_address(0)); - if (ret) { - area = find_vm_area(ret); - area->flags |= VM_USERMAP; - } - return ret; + return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, + GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, + VM_USERMAP, NUMA_NO_NODE, + __builtin_return_address(0)); } -EXPORT_SYMBOL(vmalloc_user); +EXPORT_SYMBOL(vmalloc_user_noprof); /** - * vmalloc_node - allocate memory on a specific node - * @size: allocation size - * @node: numa node + * vmalloc_node - allocate memory on a specific node + * @size: allocation size + * @node: numa node + * + * Allocate enough pages to cover @size from the page level + * allocator and map them into contiguous kernel virtual space. * - * Allocate enough pages to cover @size from the page level - * allocator and map them into contiguous kernel virtual space. + * For tight control over page level allocator and protection flags + * use __vmalloc() instead. * - * For tight control over page level allocator and protection flags - * use __vmalloc() instead. + * Return: pointer to the allocated memory or %NULL on error */ -void *vmalloc_node(unsigned long size, int node) +void *vmalloc_node_noprof(unsigned long size, int node) { - return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, - node, __builtin_return_address(0)); + return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node, + __builtin_return_address(0)); } -EXPORT_SYMBOL(vmalloc_node); +EXPORT_SYMBOL(vmalloc_node_noprof); /** * vzalloc_node - allocate memory on a specific node with zero fill @@ -1785,340 +4238,475 @@ EXPORT_SYMBOL(vmalloc_node); * allocator and map them into contiguous kernel virtual space. * The memory allocated is set to zero. * - * For tight control over page level allocator and protection flags - * use __vmalloc_node() instead. + * Return: pointer to the allocated memory or %NULL on error */ -void *vzalloc_node(unsigned long size, int node) +void *vzalloc_node_noprof(unsigned long size, int node) { - return __vmalloc_node_flags(size, node, - GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); + return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node, + __builtin_return_address(0)); } -EXPORT_SYMBOL(vzalloc_node); - -#ifndef PAGE_KERNEL_EXEC -# define PAGE_KERNEL_EXEC PAGE_KERNEL -#endif +EXPORT_SYMBOL(vzalloc_node_noprof); /** - * vmalloc_exec - allocate virtually contiguous, executable memory - * @size: allocation size + * vrealloc_node_align_noprof - reallocate virtually contiguous memory; contents + * remain unchanged + * @p: object to reallocate memory for + * @size: the size to reallocate + * @align: requested alignment + * @flags: the flags for the page level allocator + * @nid: node number of the target node + * + * If @p is %NULL, vrealloc_XXX() behaves exactly like vmalloc_XXX(). If @size + * is 0 and @p is not a %NULL pointer, the object pointed to is freed. + * + * If the caller wants the new memory to be on specific node *only*, + * __GFP_THISNODE flag should be set, otherwise the function will try to avoid + * reallocation and possibly disregard the specified @nid. + * + * If __GFP_ZERO logic is requested, callers must ensure that, starting with the + * initial memory allocation, every subsequent call to this API for the same + * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that + * __GFP_ZERO is not fully honored by this API. * - * Kernel-internal function to allocate enough pages to cover @size - * the page level allocator and map them into contiguous and - * executable kernel virtual space. + * Requesting an alignment that is bigger than the alignment of the existing + * allocation will fail. * - * For tight control over page level allocator and protection flags - * use __vmalloc() instead. + * In any case, the contents of the object pointed to are preserved up to the + * lesser of the new and old sizes. + * + * This function must not be called concurrently with itself or vfree() for the + * same memory allocation. + * + * Return: pointer to the allocated memory; %NULL if @size is zero or in case of + * failure */ - -void *vmalloc_exec(unsigned long size) +void *vrealloc_node_align_noprof(const void *p, size_t size, unsigned long align, + gfp_t flags, int nid) { - return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, - NUMA_NO_NODE, __builtin_return_address(0)); + struct vm_struct *vm = NULL; + size_t alloced_size = 0; + size_t old_size = 0; + void *n; + + if (!size) { + vfree(p); + return NULL; + } + + if (p) { + vm = find_vm_area(p); + if (unlikely(!vm)) { + WARN(1, "Trying to vrealloc() nonexistent vm area (%p)\n", p); + return NULL; + } + + alloced_size = get_vm_area_size(vm); + old_size = vm->requested_size; + if (WARN(alloced_size < old_size, + "vrealloc() has mismatched area vs requested sizes (%p)\n", p)) + return NULL; + if (WARN(!IS_ALIGNED((unsigned long)p, align), + "will not reallocate with a bigger alignment (0x%lx)\n", align)) + return NULL; + if (unlikely(flags & __GFP_THISNODE) && nid != NUMA_NO_NODE && + nid != page_to_nid(vmalloc_to_page(p))) + goto need_realloc; + } + + /* + * TODO: Shrink the vm_area, i.e. unmap and free unused pages. What + * would be a good heuristic for when to shrink the vm_area? + */ + if (size <= old_size) { + /* Zero out "freed" memory, potentially for future realloc. */ + if (want_init_on_free() || want_init_on_alloc(flags)) + memset((void *)p + size, 0, old_size - size); + vm->requested_size = size; + kasan_poison_vmalloc(p + size, old_size - size); + return (void *)p; + } + + /* + * We already have the bytes available in the allocation; use them. + */ + if (size <= alloced_size) { + kasan_unpoison_vmalloc(p + old_size, size - old_size, + KASAN_VMALLOC_PROT_NORMAL); + /* + * No need to zero memory here, as unused memory will have + * already been zeroed at initial allocation time or during + * realloc shrink time. + */ + vm->requested_size = size; + return (void *)p; + } + +need_realloc: + /* TODO: Grow the vm_area, i.e. allocate and map additional pages. */ + n = __vmalloc_node_noprof(size, align, flags, nid, __builtin_return_address(0)); + + if (!n) + return NULL; + + if (p) { + memcpy(n, p, old_size); + vfree(p); + } + + return n; } #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) -#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL +#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) -#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL +#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) #else -#define GFP_VMALLOC32 GFP_KERNEL +/* + * 64b systems should always have either DMA or DMA32 zones. For others + * GFP_DMA32 should do the right thing and use the normal zone. + */ +#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) #endif /** - * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) - * @size: allocation size + * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) + * @size: allocation size + * + * Allocate enough 32bit PA addressable pages to cover @size from the + * page level allocator and map them into contiguous kernel virtual space. * - * Allocate enough 32bit PA addressable pages to cover @size from the - * page level allocator and map them into contiguous kernel virtual space. + * Return: pointer to the allocated memory or %NULL on error */ -void *vmalloc_32(unsigned long size) +void *vmalloc_32_noprof(unsigned long size) { - return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, - NUMA_NO_NODE, __builtin_return_address(0)); + return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, + __builtin_return_address(0)); } -EXPORT_SYMBOL(vmalloc_32); +EXPORT_SYMBOL(vmalloc_32_noprof); /** * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory - * @size: allocation size + * @size: allocation size * * The resulting memory area is 32bit addressable and zeroed so it can be * mapped to userspace without leaking data. + * + * Return: pointer to the allocated memory or %NULL on error */ -void *vmalloc_32_user(unsigned long size) +void *vmalloc_32_user_noprof(unsigned long size) { - struct vm_struct *area; - void *ret; - - ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, - NUMA_NO_NODE, __builtin_return_address(0)); - if (ret) { - area = find_vm_area(ret); - area->flags |= VM_USERMAP; - } - return ret; + return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, + GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, + VM_USERMAP, NUMA_NO_NODE, + __builtin_return_address(0)); } -EXPORT_SYMBOL(vmalloc_32_user); +EXPORT_SYMBOL(vmalloc_32_user_noprof); /* - * small helper routine , copy contents to buf from addr. - * If the page is not present, fill zero. + * Atomically zero bytes in the iterator. + * + * Returns the number of zeroed bytes. */ - -static int aligned_vread(char *buf, char *addr, unsigned long count) +static size_t zero_iter(struct iov_iter *iter, size_t count) { - struct page *p; - int copied = 0; + size_t remains = count; - while (count) { - unsigned long offset, length; + while (remains > 0) { + size_t num, copied; - offset = (unsigned long)addr & ~PAGE_MASK; - length = PAGE_SIZE - offset; - if (length > count) - length = count; - p = vmalloc_to_page(addr); - /* - * To do safe access to this _mapped_ area, we need - * lock. But adding lock here means that we need to add - * overhead of vmalloc()/vfree() calles for this _debug_ - * interface, rarely used. Instead of that, we'll use - * kmap() and get small overhead in this access function. - */ - if (p) { - /* - * we can expect USER0 is not used (see vread/vwrite's - * function description) - */ - void *map = kmap_atomic(p); - memcpy(buf, map + offset, length); - kunmap_atomic(map); - } else - memset(buf, 0, length); + num = min_t(size_t, remains, PAGE_SIZE); + copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter); + remains -= copied; - addr += length; - buf += length; - copied += length; - count -= length; + if (copied < num) + break; } - return copied; + + return count - remains; } -static int aligned_vwrite(char *buf, char *addr, unsigned long count) +/* + * small helper routine, copy contents to iter from addr. + * If the page is not present, fill zero. + * + * Returns the number of copied bytes. + */ +static size_t aligned_vread_iter(struct iov_iter *iter, + const char *addr, size_t count) { - struct page *p; - int copied = 0; + size_t remains = count; + struct page *page; - while (count) { + while (remains > 0) { unsigned long offset, length; + size_t copied = 0; - offset = (unsigned long)addr & ~PAGE_MASK; + offset = offset_in_page(addr); length = PAGE_SIZE - offset; - if (length > count) - length = count; - p = vmalloc_to_page(addr); + if (length > remains) + length = remains; + page = vmalloc_to_page(addr); /* - * To do safe access to this _mapped_ area, we need - * lock. But adding lock here means that we need to add - * overhead of vmalloc()/vfree() calles for this _debug_ - * interface, rarely used. Instead of that, we'll use - * kmap() and get small overhead in this access function. + * To do safe access to this _mapped_ area, we need lock. But + * adding lock here means that we need to add overhead of + * vmalloc()/vfree() calls for this _debug_ interface, rarely + * used. Instead of that, we'll use an local mapping via + * copy_page_to_iter_nofault() and accept a small overhead in + * this access function. */ - if (p) { - /* - * we can expect USER0 is not used (see vread/vwrite's - * function description) - */ - void *map = kmap_atomic(p); - memcpy(map + offset, buf, length); - kunmap_atomic(map); - } - addr += length; - buf += length; - copied += length; - count -= length; + if (page) + copied = copy_page_to_iter_nofault(page, offset, + length, iter); + else + copied = zero_iter(iter, length); + + addr += copied; + remains -= copied; + + if (copied != length) + break; } - return copied; + + return count - remains; } -/** - * vread() - read vmalloc area in a safe way. - * @buf: buffer for reading data - * @addr: vm address. - * @count: number of bytes to be read. - * - * Returns # of bytes which addr and buf should be increased. - * (same number to @count). Returns 0 if [addr...addr+count) doesn't - * includes any intersect with alive vmalloc area. - * - * This function checks that addr is a valid vmalloc'ed area, and - * copy data from that area to a given buffer. If the given memory range - * of [addr...addr+count) includes some valid address, data is copied to - * proper area of @buf. If there are memory holes, they'll be zero-filled. - * IOREMAP area is treated as memory hole and no copy is done. - * - * If [addr...addr+count) doesn't includes any intersects with alive - * vm_struct area, returns 0. @buf should be kernel's buffer. - * - * Note: In usual ops, vread() is never necessary because the caller - * should know vmalloc() area is valid and can use memcpy(). - * This is for routines which have to access vmalloc area without - * any informaion, as /dev/kmem. +/* + * Read from a vm_map_ram region of memory. * + * Returns the number of copied bytes. */ - -long vread(char *buf, char *addr, unsigned long count) +static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr, + size_t count, unsigned long flags) { - struct vmap_area *va; - struct vm_struct *vm; - char *vaddr, *buf_start = buf; - unsigned long buflen = count; - unsigned long n; + char *start; + struct vmap_block *vb; + struct xarray *xa; + unsigned long offset; + unsigned int rs, re; + size_t remains, n; - /* Don't allow overflow */ - if ((unsigned long) addr + count < count) - count = -(unsigned long) addr; + /* + * If it's area created by vm_map_ram() interface directly, but + * not further subdividing and delegating management to vmap_block, + * handle it here. + */ + if (!(flags & VMAP_BLOCK)) + return aligned_vread_iter(iter, addr, count); - spin_lock(&vmap_area_lock); - list_for_each_entry(va, &vmap_area_list, list) { - if (!count) - break; + remains = count; - if (!(va->flags & VM_VM_AREA)) - continue; + /* + * Area is split into regions and tracked with vmap_block, read out + * each region and zero fill the hole between regions. + */ + xa = addr_to_vb_xa((unsigned long) addr); + vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr)); + if (!vb) + goto finished_zero; - vm = va->vm; - vaddr = (char *) vm->addr; - if (addr >= vaddr + vm->size - PAGE_SIZE) - continue; - while (addr < vaddr) { - if (count == 0) + spin_lock(&vb->lock); + if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) { + spin_unlock(&vb->lock); + goto finished_zero; + } + + for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) { + size_t copied; + + if (remains == 0) + goto finished; + + start = vmap_block_vaddr(vb->va->va_start, rs); + + if (addr < start) { + size_t to_zero = min_t(size_t, start - addr, remains); + size_t zeroed = zero_iter(iter, to_zero); + + addr += zeroed; + remains -= zeroed; + + if (remains == 0 || zeroed != to_zero) goto finished; - *buf = '\0'; - buf++; - addr++; - count--; } - n = vaddr + vm->size - PAGE_SIZE - addr; - if (n > count) - n = count; - if (!(vm->flags & VM_IOREMAP)) - aligned_vread(buf, addr, n); - else /* IOREMAP area is treated as memory hole */ - memset(buf, 0, n); - buf += n; - addr += n; - count -= n; + + /*it could start reading from the middle of used region*/ + offset = offset_in_page(addr); + n = ((re - rs + 1) << PAGE_SHIFT) - offset; + if (n > remains) + n = remains; + + copied = aligned_vread_iter(iter, start + offset, n); + + addr += copied; + remains -= copied; + + if (copied != n) + goto finished; } -finished: - spin_unlock(&vmap_area_lock); - if (buf == buf_start) - return 0; - /* zero-fill memory holes */ - if (buf != buf_start + buflen) - memset(buf, 0, buflen - (buf - buf_start)); + spin_unlock(&vb->lock); - return buflen; +finished_zero: + /* zero-fill the left dirty or free regions */ + return count - remains + zero_iter(iter, remains); +finished: + /* We couldn't copy/zero everything */ + spin_unlock(&vb->lock); + return count - remains; } /** - * vwrite() - write vmalloc area in a safe way. - * @buf: buffer for source data - * @addr: vm address. - * @count: number of bytes to be read. + * vread_iter() - read vmalloc area in a safe way to an iterator. + * @iter: the iterator to which data should be written. + * @addr: vm address. + * @count: number of bytes to be read. * - * Returns # of bytes which addr and buf should be incresed. - * (same number to @count). - * If [addr...addr+count) doesn't includes any intersect with valid - * vmalloc area, returns 0. + * This function checks that addr is a valid vmalloc'ed area, and + * copy data from that area to a given buffer. If the given memory range + * of [addr...addr+count) includes some valid address, data is copied to + * proper area of @buf. If there are memory holes, they'll be zero-filled. + * IOREMAP area is treated as memory hole and no copy is done. * - * This function checks that addr is a valid vmalloc'ed area, and - * copy data from a buffer to the given addr. If specified range of - * [addr...addr+count) includes some valid address, data is copied from - * proper area of @buf. If there are memory holes, no copy to hole. - * IOREMAP area is treated as memory hole and no copy is done. + * If [addr...addr+count) doesn't includes any intersects with alive + * vm_struct area, returns 0. @buf should be kernel's buffer. * - * If [addr...addr+count) doesn't includes any intersects with alive - * vm_struct area, returns 0. @buf should be kernel's buffer. + * Note: In usual ops, vread() is never necessary because the caller + * should know vmalloc() area is valid and can use memcpy(). + * This is for routines which have to access vmalloc area without + * any information, as /proc/kcore. * - * Note: In usual ops, vwrite() is never necessary because the caller - * should know vmalloc() area is valid and can use memcpy(). - * This is for routines which have to access vmalloc area without - * any informaion, as /dev/kmem. + * Return: number of bytes for which addr and buf should be increased + * (same number as @count) or %0 if [addr...addr+count) doesn't + * include any intersection with valid vmalloc area */ - -long vwrite(char *buf, char *addr, unsigned long count) +long vread_iter(struct iov_iter *iter, const char *addr, size_t count) { + struct vmap_node *vn; struct vmap_area *va; struct vm_struct *vm; char *vaddr; - unsigned long n, buflen; - int copied = 0; + size_t n, size, flags, remains; + unsigned long next; + + addr = kasan_reset_tag(addr); /* Don't allow overflow */ if ((unsigned long) addr + count < count) count = -(unsigned long) addr; - buflen = count; - spin_lock(&vmap_area_lock); - list_for_each_entry(va, &vmap_area_list, list) { - if (!count) - break; + remains = count; - if (!(va->flags & VM_VM_AREA)) - continue; + vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va); + if (!vn) + goto finished_zero; + + /* no intersects with alive vmap_area */ + if ((unsigned long)addr + remains <= va->va_start) + goto finished_zero; + + do { + size_t copied; + + if (remains == 0) + goto finished; vm = va->vm; - vaddr = (char *) vm->addr; - if (addr >= vaddr + vm->size - PAGE_SIZE) - continue; - while (addr < vaddr) { - if (count == 0) + flags = va->flags & VMAP_FLAGS_MASK; + /* + * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need + * be set together with VMAP_RAM. + */ + WARN_ON(flags == VMAP_BLOCK); + + if (!vm && !flags) + goto next_va; + + if (vm && (vm->flags & VM_UNINITIALIZED)) + goto next_va; + + /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ + smp_rmb(); + + vaddr = (char *) va->va_start; + size = vm ? get_vm_area_size(vm) : va_size(va); + + if (addr >= vaddr + size) + goto next_va; + + if (addr < vaddr) { + size_t to_zero = min_t(size_t, vaddr - addr, remains); + size_t zeroed = zero_iter(iter, to_zero); + + addr += zeroed; + remains -= zeroed; + + if (remains == 0 || zeroed != to_zero) goto finished; - buf++; - addr++; - count--; - } - n = vaddr + vm->size - PAGE_SIZE - addr; - if (n > count) - n = count; - if (!(vm->flags & VM_IOREMAP)) { - aligned_vwrite(buf, addr, n); - copied++; } - buf += n; - addr += n; - count -= n; - } + + n = vaddr + size - addr; + if (n > remains) + n = remains; + + if (flags & VMAP_RAM) + copied = vmap_ram_vread_iter(iter, addr, n, flags); + else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE)))) + copied = aligned_vread_iter(iter, addr, n); + else /* IOREMAP | SPARSE area is treated as memory hole */ + copied = zero_iter(iter, n); + + addr += copied; + remains -= copied; + + if (copied != n) + goto finished; + + next_va: + next = va->va_end; + spin_unlock(&vn->busy.lock); + } while ((vn = find_vmap_area_exceed_addr_lock(next, &va))); + +finished_zero: + if (vn) + spin_unlock(&vn->busy.lock); + + /* zero-fill memory holes */ + return count - remains + zero_iter(iter, remains); finished: - spin_unlock(&vmap_area_lock); - if (!copied) - return 0; - return buflen; + /* Nothing remains, or We couldn't copy/zero everything. */ + if (vn) + spin_unlock(&vn->busy.lock); + + return count - remains; } /** - * remap_vmalloc_range_partial - map vmalloc pages to userspace - * @vma: vma to cover - * @uaddr: target user address to start at - * @kaddr: virtual address of vmalloc kernel memory - * @size: size of map area + * remap_vmalloc_range_partial - map vmalloc pages to userspace + * @vma: vma to cover + * @uaddr: target user address to start at + * @kaddr: virtual address of vmalloc kernel memory + * @pgoff: offset from @kaddr to start at + * @size: size of map area * - * Returns: 0 for success, -Exxx on failure + * Returns: 0 for success, -Exxx on failure * - * This function checks that @kaddr is a valid vmalloc'ed area, - * and that it is big enough to cover the range starting at - * @uaddr in @vma. Will return failure if that criteria isn't - * met. + * This function checks that @kaddr is a valid vmalloc'ed area, + * and that it is big enough to cover the range starting at + * @uaddr in @vma. Will return failure if that criteria isn't + * met. * - * Similar to remap_pfn_range() (see mm/memory.c) + * Similar to remap_pfn_range() (see mm/memory.c) */ int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, - void *kaddr, unsigned long size) + void *kaddr, unsigned long pgoff, + unsigned long size) { struct vm_struct *area; + unsigned long off; + unsigned long end_index; + + if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) + return -EINVAL; size = PAGE_ALIGN(size); @@ -2129,11 +4717,13 @@ int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, if (!area) return -EINVAL; - if (!(area->flags & VM_USERMAP)) + if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) return -EINVAL; - if (kaddr + size > area->addr + area->size) + if (check_add_overflow(size, off, &end_index) || + end_index > get_vm_area_size(area)) return -EINVAL; + kaddr += off; do { struct page *page = vmalloc_to_page(kaddr); @@ -2148,92 +4738,34 @@ int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, size -= PAGE_SIZE; } while (size > 0); - vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; + vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP); return 0; } -EXPORT_SYMBOL(remap_vmalloc_range_partial); /** - * remap_vmalloc_range - map vmalloc pages to userspace - * @vma: vma to cover (map full range of vma) - * @addr: vmalloc memory - * @pgoff: number of pages into addr before first page to map + * remap_vmalloc_range - map vmalloc pages to userspace + * @vma: vma to cover (map full range of vma) + * @addr: vmalloc memory + * @pgoff: number of pages into addr before first page to map * - * Returns: 0 for success, -Exxx on failure + * Returns: 0 for success, -Exxx on failure * - * This function checks that addr is a valid vmalloc'ed area, and - * that it is big enough to cover the vma. Will return failure if - * that criteria isn't met. + * This function checks that addr is a valid vmalloc'ed area, and + * that it is big enough to cover the vma. Will return failure if + * that criteria isn't met. * - * Similar to remap_pfn_range() (see mm/memory.c) + * Similar to remap_pfn_range() (see mm/memory.c) */ int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, unsigned long pgoff) { return remap_vmalloc_range_partial(vma, vma->vm_start, - addr + (pgoff << PAGE_SHIFT), + addr, pgoff, vma->vm_end - vma->vm_start); } EXPORT_SYMBOL(remap_vmalloc_range); -/* - * Implement a stub for vmalloc_sync_all() if the architecture chose not to - * have one. - */ -void __attribute__((weak)) vmalloc_sync_all(void) -{ -} - - -static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) -{ - pte_t ***p = data; - - if (p) { - *(*p) = pte; - (*p)++; - } - return 0; -} - -/** - * alloc_vm_area - allocate a range of kernel address space - * @size: size of the area - * @ptes: returns the PTEs for the address space - * - * Returns: NULL on failure, vm_struct on success - * - * This function reserves a range of kernel address space, and - * allocates pagetables to map that range. No actual mappings - * are created. - * - * If @ptes is non-NULL, pointers to the PTEs (in init_mm) - * allocated for the VM area are returned. - */ -struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) -{ - struct vm_struct *area; - - area = get_vm_area_caller(size, VM_IOREMAP, - __builtin_return_address(0)); - if (area == NULL) - return NULL; - - /* - * This ensures that page tables are constructed for this region - * of kernel virtual address space and mapped into init_mm. - */ - if (apply_to_page_range(&init_mm, (unsigned long)area->addr, - size, f, ptes ? &ptes : NULL)) { - free_vm_area(area); - return NULL; - } - - return area; -} -EXPORT_SYMBOL_GPL(alloc_vm_area); - void free_vm_area(struct vm_struct *area) { struct vm_struct *ret; @@ -2246,85 +4778,69 @@ EXPORT_SYMBOL_GPL(free_vm_area); #ifdef CONFIG_SMP static struct vmap_area *node_to_va(struct rb_node *n) { - return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; + return rb_entry_safe(n, struct vmap_area, rb_node); } /** - * pvm_find_next_prev - find the next and prev vmap_area surrounding @end - * @end: target address - * @pnext: out arg for the next vmap_area - * @pprev: out arg for the previous vmap_area + * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to + * @addr: target address * - * Returns: %true if either or both of next and prev are found, - * %false if no vmap_area exists - * - * Find vmap_areas end addresses of which enclose @end. ie. if not - * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. + * Returns: vmap_area if it is found. If there is no such area + * the first highest(reverse order) vmap_area is returned + * i.e. va->va_start < addr && va->va_end < addr or NULL + * if there are no any areas before @addr. */ -static bool pvm_find_next_prev(unsigned long end, - struct vmap_area **pnext, - struct vmap_area **pprev) +static struct vmap_area * +pvm_find_va_enclose_addr(unsigned long addr) { - struct rb_node *n = vmap_area_root.rb_node; - struct vmap_area *va = NULL; + struct vmap_area *va, *tmp; + struct rb_node *n; + + n = free_vmap_area_root.rb_node; + va = NULL; while (n) { - va = rb_entry(n, struct vmap_area, rb_node); - if (end < va->va_end) - n = n->rb_left; - else if (end > va->va_end) + tmp = rb_entry(n, struct vmap_area, rb_node); + if (tmp->va_start <= addr) { + va = tmp; + if (tmp->va_end >= addr) + break; + n = n->rb_right; - else - break; + } else { + n = n->rb_left; + } } - if (!va) - return false; - - if (va->va_end > end) { - *pnext = va; - *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); - } else { - *pprev = va; - *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); - } - return true; + return va; } /** - * pvm_determine_end - find the highest aligned address between two vmap_areas - * @pnext: in/out arg for the next vmap_area - * @pprev: in/out arg for the previous vmap_area - * @align: alignment + * pvm_determine_end_from_reverse - find the highest aligned address + * of free block below VMALLOC_END + * @va: + * in - the VA we start the search(reverse order); + * out - the VA with the highest aligned end address. + * @align: alignment for required highest address * - * Returns: determined end address - * - * Find the highest aligned address between *@pnext and *@pprev below - * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned - * down address is between the end addresses of the two vmap_areas. - * - * Please note that the address returned by this function may fall - * inside *@pnext vmap_area. The caller is responsible for checking - * that. + * Returns: determined end address within vmap_area */ -static unsigned long pvm_determine_end(struct vmap_area **pnext, - struct vmap_area **pprev, - unsigned long align) +static unsigned long +pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) { - const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); + unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); unsigned long addr; - if (*pnext) - addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); - else - addr = vmalloc_end; - - while (*pprev && (*pprev)->va_end > addr) { - *pnext = *pprev; - *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); + if (likely(*va)) { + list_for_each_entry_from_reverse((*va), + &free_vmap_area_list, list) { + addr = min((*va)->va_end & ~(align - 1), vmalloc_end); + if ((*va)->va_start < addr) + return addr; + } } - return addr; + return 0; } /** @@ -2344,12 +4860,12 @@ static unsigned long pvm_determine_end(struct vmap_area **pnext, * to gigabytes. To avoid interacting with regular vmallocs, these * areas are allocated from top. * - * Despite its complicated look, this allocator is rather simple. It - * does everything top-down and scans areas from the end looking for - * matching slot. While scanning, if any of the areas overlaps with - * existing vmap_area, the base address is pulled down to fit the - * area. Scanning is repeated till all the areas fit and then all - * necessary data structres are inserted and the result is returned. + * Despite its complicated look, this allocator is rather simple. It + * does everything top-down and scans free blocks from the end looking + * for matching base. While scanning, if any of the areas do not fit the + * base address is pulled down to fit the area. Scanning is repeated till + * all the areas fit and then all necessary data structures are inserted + * and the result is returned. */ struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, const size_t *sizes, int nr_vms, @@ -2357,14 +4873,14 @@ struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, { const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); - struct vmap_area **vas, *prev, *next; + struct vmap_area **vas, *va; struct vm_struct **vms; int area, area2, last_area, term_area; - unsigned long base, start, end, last_end; + unsigned long base, start, size, end, last_end, orig_start, orig_end; bool purged = false; /* verify parameters and allocate data structures */ - BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); + BUG_ON(offset_in_page(align) || !is_power_of_2(align)); for (last_area = 0, area = 0; area < nr_vms; area++) { start = offsets[area]; end = start + sizes[area]; @@ -2377,15 +4893,11 @@ struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, if (start > offsets[last_area]) last_area = area; - for (area2 = 0; area2 < nr_vms; area2++) { + for (area2 = area + 1; area2 < nr_vms; area2++) { unsigned long start2 = offsets[area2]; unsigned long end2 = start2 + sizes[area2]; - if (area2 == area) - continue; - - BUG_ON(start2 >= start && start2 < end); - BUG_ON(end2 <= end && end2 > start); + BUG_ON(start2 < end && start < end2); } } last_end = offsets[last_area] + sizes[last_area]; @@ -2401,62 +4913,52 @@ struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, goto err_free2; for (area = 0; area < nr_vms; area++) { - vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); + vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); if (!vas[area] || !vms[area]) goto err_free; } retry: - spin_lock(&vmap_area_lock); + spin_lock(&free_vmap_area_lock); /* start scanning - we scan from the top, begin with the last area */ area = term_area = last_area; start = offsets[area]; end = start + sizes[area]; - if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { - base = vmalloc_end - last_end; - goto found; - } - base = pvm_determine_end(&next, &prev, align) - end; + va = pvm_find_va_enclose_addr(vmalloc_end); + base = pvm_determine_end_from_reverse(&va, align) - end; while (true) { - BUG_ON(next && next->va_end <= base + end); - BUG_ON(prev && prev->va_end > base + end); - /* * base might have underflowed, add last_end before * comparing. */ - if (base + last_end < vmalloc_start + last_end) { - spin_unlock(&vmap_area_lock); - if (!purged) { - purge_vmap_area_lazy(); - purged = true; - goto retry; - } - goto err_free; - } + if (base + last_end < vmalloc_start + last_end) + goto overflow; /* - * If next overlaps, move base downwards so that it's - * right below next and then recheck. + * Fitting base has not been found. */ - if (next && next->va_start < base + end) { - base = pvm_determine_end(&next, &prev, align) - end; + if (va == NULL) + goto overflow; + + /* + * If required width exceeds current VA block, move + * base downwards and then recheck. + */ + if (base + end > va->va_end) { + base = pvm_determine_end_from_reverse(&va, align) - end; term_area = area; continue; } /* - * If prev overlaps, shift down next and prev and move - * base so that it's right below new next and then - * recheck. + * If this VA does not fit, move base downwards and recheck. */ - if (prev && prev->va_end > base + start) { - next = prev; - prev = node_to_va(rb_prev(&next->rb_node)); - base = pvm_determine_end(&next, &prev, align) - end; + if (base + start < va->va_start) { + va = node_to_va(rb_prev(&va->rb_node)); + base = pvm_determine_end_from_reverse(&va, align) - end; term_area = area; continue; } @@ -2468,41 +4970,142 @@ retry: area = (area + nr_vms - 1) % nr_vms; if (area == term_area) break; + start = offsets[area]; end = start + sizes[area]; - pvm_find_next_prev(base + end, &next, &prev); + va = pvm_find_va_enclose_addr(base + end); } -found: + /* we've found a fitting base, insert all va's */ for (area = 0; area < nr_vms; area++) { - struct vmap_area *va = vas[area]; + int ret; + + start = base + offsets[area]; + size = sizes[area]; + + va = pvm_find_va_enclose_addr(start); + if (WARN_ON_ONCE(va == NULL)) + /* It is a BUG(), but trigger recovery instead. */ + goto recovery; - va->va_start = base + offsets[area]; - va->va_end = va->va_start + sizes[area]; - __insert_vmap_area(va); + ret = va_clip(&free_vmap_area_root, + &free_vmap_area_list, va, start, size); + if (WARN_ON_ONCE(unlikely(ret))) + /* It is a BUG(), but trigger recovery instead. */ + goto recovery; + + /* Allocated area. */ + va = vas[area]; + va->va_start = start; + va->va_end = start + size; } - vmap_area_pcpu_hole = base + offsets[last_area]; + spin_unlock(&free_vmap_area_lock); - spin_unlock(&vmap_area_lock); + /* populate the kasan shadow space */ + for (area = 0; area < nr_vms; area++) { + if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area], GFP_KERNEL)) + goto err_free_shadow; + } /* insert all vm's */ - for (area = 0; area < nr_vms; area++) + for (area = 0; area < nr_vms; area++) { + struct vmap_node *vn = addr_to_node(vas[area]->va_start); + + spin_lock(&vn->busy.lock); + insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head); setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, pcpu_get_vm_areas); + spin_unlock(&vn->busy.lock); + } + + /* + * Mark allocated areas as accessible. Do it now as a best-effort + * approach, as they can be mapped outside of vmalloc code. + * With hardware tag-based KASAN, marking is skipped for + * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). + */ + for (area = 0; area < nr_vms; area++) + vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, + vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); kfree(vas); return vms; +recovery: + /* + * Remove previously allocated areas. There is no + * need in removing these areas from the busy tree, + * because they are inserted only on the final step + * and when pcpu_get_vm_areas() is success. + */ + while (area--) { + orig_start = vas[area]->va_start; + orig_end = vas[area]->va_end; + va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, + &free_vmap_area_list); + if (va) + kasan_release_vmalloc(orig_start, orig_end, + va->va_start, va->va_end, + KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH); + vas[area] = NULL; + } + +overflow: + spin_unlock(&free_vmap_area_lock); + if (!purged) { + reclaim_and_purge_vmap_areas(); + purged = true; + + /* Before "retry", check if we recover. */ + for (area = 0; area < nr_vms; area++) { + if (vas[area]) + continue; + + vas[area] = kmem_cache_zalloc( + vmap_area_cachep, GFP_KERNEL); + if (!vas[area]) + goto err_free; + } + + goto retry; + } + err_free: for (area = 0; area < nr_vms; area++) { - kfree(vas[area]); + if (vas[area]) + kmem_cache_free(vmap_area_cachep, vas[area]); + kfree(vms[area]); } err_free2: kfree(vas); kfree(vms); return NULL; + +err_free_shadow: + spin_lock(&free_vmap_area_lock); + /* + * We release all the vmalloc shadows, even the ones for regions that + * hadn't been successfully added. This relies on kasan_release_vmalloc + * being able to tolerate this case. + */ + for (area = 0; area < nr_vms; area++) { + orig_start = vas[area]->va_start; + orig_end = vas[area]->va_end; + va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, + &free_vmap_area_list); + if (va) + kasan_release_vmalloc(orig_start, orig_end, + va->va_start, va->va_end, + KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH); + vas[area] = NULL; + kfree(vms[area]); + } + spin_unlock(&free_vmap_area_lock); + kfree(vas); + kfree(vms); + return NULL; } /** @@ -2522,203 +5125,350 @@ void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) } #endif /* CONFIG_SMP */ -#ifdef CONFIG_PROC_FS -static void *s_start(struct seq_file *m, loff_t *pos) - __acquires(&vmap_area_lock) +#ifdef CONFIG_PRINTK +bool vmalloc_dump_obj(void *object) { - loff_t n = *pos; + const void *caller; + struct vm_struct *vm; struct vmap_area *va; + struct vmap_node *vn; + unsigned long addr; + unsigned int nr_pages; - spin_lock(&vmap_area_lock); - va = list_entry((&vmap_area_list)->next, typeof(*va), list); - while (n > 0 && &va->list != &vmap_area_list) { - n--; - va = list_entry(va->list.next, typeof(*va), list); + addr = PAGE_ALIGN((unsigned long) object); + vn = addr_to_node(addr); + + if (!spin_trylock(&vn->busy.lock)) + return false; + + va = __find_vmap_area(addr, &vn->busy.root); + if (!va || !va->vm) { + spin_unlock(&vn->busy.lock); + return false; } - if (!n && &va->list != &vmap_area_list) - return va; - return NULL; + vm = va->vm; + addr = (unsigned long) vm->addr; + caller = vm->caller; + nr_pages = vm->nr_pages; + spin_unlock(&vn->busy.lock); + + pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", + nr_pages, addr, caller); + return true; } +#endif -static void *s_next(struct seq_file *m, void *p, loff_t *pos) +#ifdef CONFIG_PROC_FS + +/* + * Print number of pages allocated on each memory node. + * + * This function can only be called if CONFIG_NUMA is enabled + * and VM_UNINITIALIZED bit in v->flags is disabled. + */ +static void show_numa_info(struct seq_file *m, struct vm_struct *v, + unsigned int *counters) { - struct vmap_area *va = p, *next; + unsigned int nr; + unsigned int step = 1U << vm_area_page_order(v); + + if (!counters) + return; - ++*pos; - next = list_entry(va->list.next, typeof(*va), list); - if (&next->list != &vmap_area_list) - return next; + memset(counters, 0, nr_node_ids * sizeof(unsigned int)); - return NULL; + for (nr = 0; nr < v->nr_pages; nr += step) + counters[page_to_nid(v->pages[nr])] += step; + for_each_node_state(nr, N_HIGH_MEMORY) + if (counters[nr]) + seq_printf(m, " N%u=%u", nr, counters[nr]); } -static void s_stop(struct seq_file *m, void *p) - __releases(&vmap_area_lock) +static void show_purge_info(struct seq_file *m) { - spin_unlock(&vmap_area_lock); + struct vmap_node *vn; + struct vmap_area *va; + + for_each_vmap_node(vn) { + spin_lock(&vn->lazy.lock); + list_for_each_entry(va, &vn->lazy.head, list) { + seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", + (void *)va->va_start, (void *)va->va_end, + va_size(va)); + } + spin_unlock(&vn->lazy.lock); + } } -static void show_numa_info(struct seq_file *m, struct vm_struct *v) +static int vmalloc_info_show(struct seq_file *m, void *p) { - if (IS_ENABLED(CONFIG_NUMA)) { - unsigned int nr, *counters = m->private; + struct vmap_node *vn; + struct vmap_area *va; + struct vm_struct *v; + unsigned int *counters; - if (!counters) - return; + if (IS_ENABLED(CONFIG_NUMA)) + counters = kmalloc_array(nr_node_ids, sizeof(unsigned int), GFP_KERNEL); - memset(counters, 0, nr_node_ids * sizeof(unsigned int)); + for_each_vmap_node(vn) { + spin_lock(&vn->busy.lock); + list_for_each_entry(va, &vn->busy.head, list) { + if (!va->vm) { + if (va->flags & VMAP_RAM) + seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", + (void *)va->va_start, (void *)va->va_end, + va_size(va)); - for (nr = 0; nr < v->nr_pages; nr++) - counters[page_to_nid(v->pages[nr])]++; + continue; + } - for_each_node_state(nr, N_HIGH_MEMORY) - if (counters[nr]) - seq_printf(m, " N%u=%u", nr, counters[nr]); - } -} + v = va->vm; + if (v->flags & VM_UNINITIALIZED) + continue; -static int s_show(struct seq_file *m, void *p) -{ - struct vmap_area *va = p; - struct vm_struct *v; + /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ + smp_rmb(); - if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING)) - return 0; + seq_printf(m, "0x%pK-0x%pK %7ld", + v->addr, v->addr + v->size, v->size); - if (!(va->flags & VM_VM_AREA)) { - seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", - (void *)va->va_start, (void *)va->va_end, - va->va_end - va->va_start); - return 0; - } + if (v->caller) + seq_printf(m, " %pS", v->caller); - v = va->vm; + if (v->nr_pages) + seq_printf(m, " pages=%d", v->nr_pages); - /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ - smp_rmb(); - if (v->flags & VM_UNINITIALIZED) - return 0; + if (v->phys_addr) + seq_printf(m, " phys=%pa", &v->phys_addr); - seq_printf(m, "0x%pK-0x%pK %7ld", - v->addr, v->addr + v->size, v->size); + if (v->flags & VM_IOREMAP) + seq_puts(m, " ioremap"); - if (v->caller) - seq_printf(m, " %pS", v->caller); + if (v->flags & VM_SPARSE) + seq_puts(m, " sparse"); - if (v->nr_pages) - seq_printf(m, " pages=%d", v->nr_pages); + if (v->flags & VM_ALLOC) + seq_puts(m, " vmalloc"); - if (v->phys_addr) - seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); + if (v->flags & VM_MAP) + seq_puts(m, " vmap"); - if (v->flags & VM_IOREMAP) - seq_printf(m, " ioremap"); + if (v->flags & VM_USERMAP) + seq_puts(m, " user"); - if (v->flags & VM_ALLOC) - seq_printf(m, " vmalloc"); + if (v->flags & VM_DMA_COHERENT) + seq_puts(m, " dma-coherent"); - if (v->flags & VM_MAP) - seq_printf(m, " vmap"); + if (is_vmalloc_addr(v->pages)) + seq_puts(m, " vpages"); - if (v->flags & VM_USERMAP) - seq_printf(m, " user"); + if (IS_ENABLED(CONFIG_NUMA)) + show_numa_info(m, v, counters); - if (v->flags & VM_VPAGES) - seq_printf(m, " vpages"); + seq_putc(m, '\n'); + } + spin_unlock(&vn->busy.lock); + } - show_numa_info(m, v); - seq_putc(m, '\n'); + /* + * As a final step, dump "unpurged" areas. + */ + show_purge_info(m); + if (IS_ENABLED(CONFIG_NUMA)) + kfree(counters); return 0; } -static const struct seq_operations vmalloc_op = { - .start = s_start, - .next = s_next, - .stop = s_stop, - .show = s_show, -}; +static int __init proc_vmalloc_init(void) +{ + proc_create_single("vmallocinfo", 0400, NULL, vmalloc_info_show); + return 0; +} +module_init(proc_vmalloc_init); + +#endif -static int vmalloc_open(struct inode *inode, struct file *file) +static void __init vmap_init_free_space(void) { - unsigned int *ptr = NULL; - int ret; + unsigned long vmap_start = 1; + const unsigned long vmap_end = ULONG_MAX; + struct vmap_area *free; + struct vm_struct *busy; - if (IS_ENABLED(CONFIG_NUMA)) { - ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); - if (ptr == NULL) - return -ENOMEM; + /* + * B F B B B F + * -|-----|.....|-----|-----|-----|.....|- + * | The KVA space | + * |<--------------------------------->| + */ + for (busy = vmlist; busy; busy = busy->next) { + if ((unsigned long) busy->addr - vmap_start > 0) { + free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); + if (!WARN_ON_ONCE(!free)) { + free->va_start = vmap_start; + free->va_end = (unsigned long) busy->addr; + + insert_vmap_area_augment(free, NULL, + &free_vmap_area_root, + &free_vmap_area_list); + } + } + + vmap_start = (unsigned long) busy->addr + busy->size; + } + + if (vmap_end - vmap_start > 0) { + free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); + if (!WARN_ON_ONCE(!free)) { + free->va_start = vmap_start; + free->va_end = vmap_end; + + insert_vmap_area_augment(free, NULL, + &free_vmap_area_root, + &free_vmap_area_list); + } } - ret = seq_open(file, &vmalloc_op); - if (!ret) { - struct seq_file *m = file->private_data; - m->private = ptr; - } else - kfree(ptr); - return ret; } -static const struct file_operations proc_vmalloc_operations = { - .open = vmalloc_open, - .read = seq_read, - .llseek = seq_lseek, - .release = seq_release_private, -}; +static void vmap_init_nodes(void) +{ + struct vmap_node *vn; + int i; -static int __init proc_vmalloc_init(void) +#if BITS_PER_LONG == 64 + /* + * A high threshold of max nodes is fixed and bound to 128, + * thus a scale factor is 1 for systems where number of cores + * are less or equal to specified threshold. + * + * As for NUMA-aware notes. For bigger systems, for example + * NUMA with multi-sockets, where we can end-up with thousands + * of cores in total, a "sub-numa-clustering" should be added. + * + * In this case a NUMA domain is considered as a single entity + * with dedicated sub-nodes in it which describe one group or + * set of cores. Therefore a per-domain purging is supposed to + * be added as well as a per-domain balancing. + */ + int n = clamp_t(unsigned int, num_possible_cpus(), 1, 128); + + if (n > 1) { + vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT); + if (vn) { + /* Node partition is 16 pages. */ + vmap_zone_size = (1 << 4) * PAGE_SIZE; + nr_vmap_nodes = n; + vmap_nodes = vn; + } else { + pr_err("Failed to allocate an array. Disable a node layer\n"); + } + } +#endif + + for_each_vmap_node(vn) { + vn->busy.root = RB_ROOT; + INIT_LIST_HEAD(&vn->busy.head); + spin_lock_init(&vn->busy.lock); + + vn->lazy.root = RB_ROOT; + INIT_LIST_HEAD(&vn->lazy.head); + spin_lock_init(&vn->lazy.lock); + + for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { + INIT_LIST_HEAD(&vn->pool[i].head); + WRITE_ONCE(vn->pool[i].len, 0); + } + + spin_lock_init(&vn->pool_lock); + } +} + +static unsigned long +vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc) { - proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); - return 0; + unsigned long count = 0; + struct vmap_node *vn; + int i; + + for_each_vmap_node(vn) { + for (i = 0; i < MAX_VA_SIZE_PAGES; i++) + count += READ_ONCE(vn->pool[i].len); + } + + return count ? count : SHRINK_EMPTY; } -module_init(proc_vmalloc_init); -void get_vmalloc_info(struct vmalloc_info *vmi) +static unsigned long +vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) { - struct vmap_area *va; - unsigned long free_area_size; - unsigned long prev_end; + struct vmap_node *vn; + + for_each_vmap_node(vn) + decay_va_pool_node(vn, true); - vmi->used = 0; - vmi->largest_chunk = 0; + return SHRINK_STOP; +} + +void __init vmalloc_init(void) +{ + struct shrinker *vmap_node_shrinker; + struct vmap_area *va; + struct vmap_node *vn; + struct vm_struct *tmp; + int i; - prev_end = VMALLOC_START; + /* + * Create the cache for vmap_area objects. + */ + vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); - spin_lock(&vmap_area_lock); + for_each_possible_cpu(i) { + struct vmap_block_queue *vbq; + struct vfree_deferred *p; - if (list_empty(&vmap_area_list)) { - vmi->largest_chunk = VMALLOC_TOTAL; - goto out; + vbq = &per_cpu(vmap_block_queue, i); + spin_lock_init(&vbq->lock); + INIT_LIST_HEAD(&vbq->free); + p = &per_cpu(vfree_deferred, i); + init_llist_head(&p->list); + INIT_WORK(&p->wq, delayed_vfree_work); + xa_init(&vbq->vmap_blocks); } - list_for_each_entry(va, &vmap_area_list, list) { - unsigned long addr = va->va_start; + /* + * Setup nodes before importing vmlist. + */ + vmap_init_nodes(); - /* - * Some archs keep another range for modules in vmalloc space - */ - if (addr < VMALLOC_START) + /* Import existing vmlist entries. */ + for (tmp = vmlist; tmp; tmp = tmp->next) { + va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); + if (WARN_ON_ONCE(!va)) continue; - if (addr >= VMALLOC_END) - break; - if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING)) - continue; + va->va_start = (unsigned long)tmp->addr; + va->va_end = va->va_start + tmp->size; + va->vm = tmp; - vmi->used += (va->va_end - va->va_start); + vn = addr_to_node(va->va_start); + insert_vmap_area(va, &vn->busy.root, &vn->busy.head); + } - free_area_size = addr - prev_end; - if (vmi->largest_chunk < free_area_size) - vmi->largest_chunk = free_area_size; + /* + * Now we can initialize a free vmap space. + */ + vmap_init_free_space(); + vmap_initialized = true; - prev_end = va->va_end; + vmap_node_shrinker = shrinker_alloc(0, "vmap-node"); + if (!vmap_node_shrinker) { + pr_err("Failed to allocate vmap-node shrinker!\n"); + return; } - if (VMALLOC_END - prev_end > vmi->largest_chunk) - vmi->largest_chunk = VMALLOC_END - prev_end; - -out: - spin_unlock(&vmap_area_lock); + vmap_node_shrinker->count_objects = vmap_node_shrink_count; + vmap_node_shrinker->scan_objects = vmap_node_shrink_scan; + shrinker_register(vmap_node_shrinker); } -#endif - |
