summaryrefslogtreecommitdiff
path: root/mm/vmscan.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/vmscan.c')
-rw-r--r--mm/vmscan.c8583
1 files changed, 6362 insertions, 2221 deletions
diff --git a/mm/vmscan.c b/mm/vmscan.c
index 2cff0d491c6d..900c74b6aa62 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -1,6 +1,5 @@
+// SPDX-License-Identifier: GPL-2.0
/*
- * linux/mm/vmscan.c
- *
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* Swap reorganised 29.12.95, Stephen Tweedie.
@@ -11,7 +10,10 @@
* Multiqueue VM started 5.8.00, Rik van Riel.
*/
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
#include <linux/mm.h>
+#include <linux/sched/mm.h>
#include <linux/module.h>
#include <linux/gfp.h>
#include <linux/kernel_stat.h>
@@ -24,8 +26,7 @@
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
-#include <linux/buffer_head.h> /* for try_to_release_page(),
- buffer_heads_over_limit */
+#include <linux/buffer_head.h> /* for buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
@@ -34,1255 +35,1831 @@
#include <linux/cpuset.h>
#include <linux/compaction.h>
#include <linux/notifier.h>
-#include <linux/rwsem.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/memcontrol.h>
+#include <linux/migrate.h>
#include <linux/delayacct.h>
#include <linux/sysctl.h>
+#include <linux/memory-tiers.h>
#include <linux/oom.h>
+#include <linux/pagevec.h>
#include <linux/prefetch.h>
+#include <linux/printk.h>
+#include <linux/dax.h>
+#include <linux/psi.h>
+#include <linux/pagewalk.h>
+#include <linux/shmem_fs.h>
+#include <linux/ctype.h>
+#include <linux/debugfs.h>
+#include <linux/khugepaged.h>
+#include <linux/rculist_nulls.h>
+#include <linux/random.h>
+#include <linux/mmu_notifier.h>
+#include <linux/parser.h>
#include <asm/tlbflush.h>
#include <asm/div64.h>
#include <linux/swapops.h>
+#include <linux/balloon_compaction.h>
+#include <linux/sched/sysctl.h>
#include "internal.h"
+#include "swap.h"
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>
struct scan_control {
- /* Incremented by the number of inactive pages that were scanned */
- unsigned long nr_scanned;
-
- /* Number of pages freed so far during a call to shrink_zones() */
- unsigned long nr_reclaimed;
-
/* How many pages shrink_list() should reclaim */
unsigned long nr_to_reclaim;
- unsigned long hibernation_mode;
+ /*
+ * Nodemask of nodes allowed by the caller. If NULL, all nodes
+ * are scanned.
+ */
+ nodemask_t *nodemask;
- /* This context's GFP mask */
- gfp_t gfp_mask;
+ /*
+ * The memory cgroup that hit its limit and as a result is the
+ * primary target of this reclaim invocation.
+ */
+ struct mem_cgroup *target_mem_cgroup;
- int may_writepage;
+ /*
+ * Scan pressure balancing between anon and file LRUs
+ */
+ unsigned long anon_cost;
+ unsigned long file_cost;
- /* Can mapped pages be reclaimed? */
- int may_unmap;
+ /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
+ int *proactive_swappiness;
- /* Can pages be swapped as part of reclaim? */
- int may_swap;
+ /* Can active folios be deactivated as part of reclaim? */
+#define DEACTIVATE_ANON 1
+#define DEACTIVATE_FILE 2
+ unsigned int may_deactivate:2;
+ unsigned int force_deactivate:1;
+ unsigned int skipped_deactivate:1;
- int order;
+ /* Writepage batching in laptop mode; RECLAIM_WRITE */
+ unsigned int may_writepage:1;
- /* Scan (total_size >> priority) pages at once */
- int priority;
+ /* Can mapped folios be reclaimed? */
+ unsigned int may_unmap:1;
- /*
- * The memory cgroup that hit its limit and as a result is the
- * primary target of this reclaim invocation.
- */
- struct mem_cgroup *target_mem_cgroup;
+ /* Can folios be swapped as part of reclaim? */
+ unsigned int may_swap:1;
+
+ /* Not allow cache_trim_mode to be turned on as part of reclaim? */
+ unsigned int no_cache_trim_mode:1;
+
+ /* Has cache_trim_mode failed at least once? */
+ unsigned int cache_trim_mode_failed:1;
+
+ /* Proactive reclaim invoked by userspace */
+ unsigned int proactive:1;
/*
- * Nodemask of nodes allowed by the caller. If NULL, all nodes
- * are scanned.
+ * Cgroup memory below memory.low is protected as long as we
+ * don't threaten to OOM. If any cgroup is reclaimed at
+ * reduced force or passed over entirely due to its memory.low
+ * setting (memcg_low_skipped), and nothing is reclaimed as a
+ * result, then go back for one more cycle that reclaims the protected
+ * memory (memcg_low_reclaim) to avert OOM.
*/
- nodemask_t *nodemask;
-};
+ unsigned int memcg_low_reclaim:1;
+ unsigned int memcg_low_skipped:1;
-#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
+ /* Shared cgroup tree walk failed, rescan the whole tree */
+ unsigned int memcg_full_walk:1;
-#ifdef ARCH_HAS_PREFETCH
-#define prefetch_prev_lru_page(_page, _base, _field) \
- do { \
- if ((_page)->lru.prev != _base) { \
- struct page *prev; \
- \
- prev = lru_to_page(&(_page->lru)); \
- prefetch(&prev->_field); \
- } \
- } while (0)
-#else
-#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
-#endif
+ unsigned int hibernation_mode:1;
+
+ /* One of the zones is ready for compaction */
+ unsigned int compaction_ready:1;
+
+ /* There is easily reclaimable cold cache in the current node */
+ unsigned int cache_trim_mode:1;
+
+ /* The file folios on the current node are dangerously low */
+ unsigned int file_is_tiny:1;
+
+ /* Always discard instead of demoting to lower tier memory */
+ unsigned int no_demotion:1;
+
+ /* Allocation order */
+ s8 order;
+
+ /* Scan (total_size >> priority) pages at once */
+ s8 priority;
+
+ /* The highest zone to isolate folios for reclaim from */
+ s8 reclaim_idx;
+
+ /* This context's GFP mask */
+ gfp_t gfp_mask;
+
+ /* Incremented by the number of inactive pages that were scanned */
+ unsigned long nr_scanned;
+
+ /* Number of pages freed so far during a call to shrink_zones() */
+ unsigned long nr_reclaimed;
+
+ struct {
+ unsigned int dirty;
+ unsigned int unqueued_dirty;
+ unsigned int congested;
+ unsigned int writeback;
+ unsigned int immediate;
+ unsigned int file_taken;
+ unsigned int taken;
+ } nr;
+
+ /* for recording the reclaimed slab by now */
+ struct reclaim_state reclaim_state;
+};
#ifdef ARCH_HAS_PREFETCHW
-#define prefetchw_prev_lru_page(_page, _base, _field) \
+#define prefetchw_prev_lru_folio(_folio, _base, _field) \
do { \
- if ((_page)->lru.prev != _base) { \
- struct page *prev; \
+ if ((_folio)->lru.prev != _base) { \
+ struct folio *prev; \
\
- prev = lru_to_page(&(_page->lru)); \
+ prev = lru_to_folio(&(_folio->lru)); \
prefetchw(&prev->_field); \
} \
} while (0)
#else
-#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
+#define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
#endif
/*
- * From 0 .. 100. Higher means more swappy.
+ * From 0 .. MAX_SWAPPINESS. Higher means more swappy.
*/
int vm_swappiness = 60;
-unsigned long vm_total_pages; /* The total number of pages which the VM controls */
-
-static LIST_HEAD(shrinker_list);
-static DECLARE_RWSEM(shrinker_rwsem);
#ifdef CONFIG_MEMCG
-static bool global_reclaim(struct scan_control *sc)
+
+/* Returns true for reclaim through cgroup limits or cgroup interfaces. */
+static bool cgroup_reclaim(struct scan_control *sc)
{
- return !sc->target_mem_cgroup;
+ return sc->target_mem_cgroup;
}
-#else
-static bool global_reclaim(struct scan_control *sc)
+
+/*
+ * Returns true for reclaim on the root cgroup. This is true for direct
+ * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
+ */
+static bool root_reclaim(struct scan_control *sc)
{
- return true;
+ return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
}
-#endif
-static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
+/**
+ * writeback_throttling_sane - is the usual dirty throttling mechanism available?
+ * @sc: scan_control in question
+ *
+ * The normal page dirty throttling mechanism in balance_dirty_pages() is
+ * completely broken with the legacy memcg and direct stalling in
+ * shrink_folio_list() is used for throttling instead, which lacks all the
+ * niceties such as fairness, adaptive pausing, bandwidth proportional
+ * allocation and configurability.
+ *
+ * This function tests whether the vmscan currently in progress can assume
+ * that the normal dirty throttling mechanism is operational.
+ */
+static bool writeback_throttling_sane(struct scan_control *sc)
{
- if (!mem_cgroup_disabled())
- return mem_cgroup_get_lru_size(lruvec, lru);
+ if (!cgroup_reclaim(sc))
+ return true;
+#ifdef CONFIG_CGROUP_WRITEBACK
+ if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ return true;
+#endif
+ return false;
+}
- return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
+static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
+{
+ if (sc->proactive && sc->proactive_swappiness)
+ return *sc->proactive_swappiness;
+ return mem_cgroup_swappiness(memcg);
+}
+#else
+static bool cgroup_reclaim(struct scan_control *sc)
+{
+ return false;
}
-/*
- * Add a shrinker callback to be called from the vm
- */
-void register_shrinker(struct shrinker *shrinker)
+static bool root_reclaim(struct scan_control *sc)
{
- atomic_long_set(&shrinker->nr_in_batch, 0);
- down_write(&shrinker_rwsem);
- list_add_tail(&shrinker->list, &shrinker_list);
- up_write(&shrinker_rwsem);
+ return true;
}
-EXPORT_SYMBOL(register_shrinker);
-/*
- * Remove one
- */
-void unregister_shrinker(struct shrinker *shrinker)
+static bool writeback_throttling_sane(struct scan_control *sc)
{
- down_write(&shrinker_rwsem);
- list_del(&shrinker->list);
- up_write(&shrinker_rwsem);
+ return true;
}
-EXPORT_SYMBOL(unregister_shrinker);
-static inline int do_shrinker_shrink(struct shrinker *shrinker,
- struct shrink_control *sc,
- unsigned long nr_to_scan)
+static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
{
- sc->nr_to_scan = nr_to_scan;
- return (*shrinker->shrink)(shrinker, sc);
+ return READ_ONCE(vm_swappiness);
}
+#endif
-#define SHRINK_BATCH 128
-/*
- * Call the shrink functions to age shrinkable caches
- *
- * Here we assume it costs one seek to replace a lru page and that it also
- * takes a seek to recreate a cache object. With this in mind we age equal
- * percentages of the lru and ageable caches. This should balance the seeks
- * generated by these structures.
- *
- * If the vm encountered mapped pages on the LRU it increase the pressure on
- * slab to avoid swapping.
- *
- * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
+/* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to
+ * and including the specified highidx
+ * @zone: The current zone in the iterator
+ * @pgdat: The pgdat which node_zones are being iterated
+ * @idx: The index variable
+ * @highidx: The index of the highest zone to return
*
- * `lru_pages' represents the number of on-LRU pages in all the zones which
- * are eligible for the caller's allocation attempt. It is used for balancing
- * slab reclaim versus page reclaim.
- *
- * Returns the number of slab objects which we shrunk.
+ * This macro iterates through all managed zones up to and including the specified highidx.
+ * The zone iterator enters an invalid state after macro call and must be reinitialized
+ * before it can be used again.
*/
-unsigned long shrink_slab(struct shrink_control *shrink,
- unsigned long nr_pages_scanned,
- unsigned long lru_pages)
+#define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx) \
+ for ((idx) = 0, (zone) = (pgdat)->node_zones; \
+ (idx) <= (highidx); \
+ (idx)++, (zone)++) \
+ if (!managed_zone(zone)) \
+ continue; \
+ else
+
+static void set_task_reclaim_state(struct task_struct *task,
+ struct reclaim_state *rs)
{
- struct shrinker *shrinker;
- unsigned long ret = 0;
+ /* Check for an overwrite */
+ WARN_ON_ONCE(rs && task->reclaim_state);
- if (nr_pages_scanned == 0)
- nr_pages_scanned = SWAP_CLUSTER_MAX;
+ /* Check for the nulling of an already-nulled member */
+ WARN_ON_ONCE(!rs && !task->reclaim_state);
- if (!down_read_trylock(&shrinker_rwsem)) {
- /* Assume we'll be able to shrink next time */
- ret = 1;
- goto out;
+ task->reclaim_state = rs;
+}
+
+/*
+ * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
+ * scan_control->nr_reclaimed.
+ */
+static void flush_reclaim_state(struct scan_control *sc)
+{
+ /*
+ * Currently, reclaim_state->reclaimed includes three types of pages
+ * freed outside of vmscan:
+ * (1) Slab pages.
+ * (2) Clean file pages from pruned inodes (on highmem systems).
+ * (3) XFS freed buffer pages.
+ *
+ * For all of these cases, we cannot universally link the pages to a
+ * single memcg. For example, a memcg-aware shrinker can free one object
+ * charged to the target memcg, causing an entire page to be freed.
+ * If we count the entire page as reclaimed from the memcg, we end up
+ * overestimating the reclaimed amount (potentially under-reclaiming).
+ *
+ * Only count such pages for global reclaim to prevent under-reclaiming
+ * from the target memcg; preventing unnecessary retries during memcg
+ * charging and false positives from proactive reclaim.
+ *
+ * For uncommon cases where the freed pages were actually mostly
+ * charged to the target memcg, we end up underestimating the reclaimed
+ * amount. This should be fine. The freed pages will be uncharged
+ * anyway, even if they are not counted here properly, and we will be
+ * able to make forward progress in charging (which is usually in a
+ * retry loop).
+ *
+ * We can go one step further, and report the uncharged objcg pages in
+ * memcg reclaim, to make reporting more accurate and reduce
+ * underestimation, but it's probably not worth the complexity for now.
+ */
+ if (current->reclaim_state && root_reclaim(sc)) {
+ sc->nr_reclaimed += current->reclaim_state->reclaimed;
+ current->reclaim_state->reclaimed = 0;
}
+}
- list_for_each_entry(shrinker, &shrinker_list, list) {
- unsigned long long delta;
- long total_scan;
- long max_pass;
- int shrink_ret = 0;
- long nr;
- long new_nr;
- long batch_size = shrinker->batch ? shrinker->batch
- : SHRINK_BATCH;
+static bool can_demote(int nid, struct scan_control *sc,
+ struct mem_cgroup *memcg)
+{
+ int demotion_nid;
- max_pass = do_shrinker_shrink(shrinker, shrink, 0);
- if (max_pass <= 0)
- continue;
+ if (!numa_demotion_enabled)
+ return false;
+ if (sc && sc->no_demotion)
+ return false;
- /*
- * copy the current shrinker scan count into a local variable
- * and zero it so that other concurrent shrinker invocations
- * don't also do this scanning work.
- */
- nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
+ demotion_nid = next_demotion_node(nid);
+ if (demotion_nid == NUMA_NO_NODE)
+ return false;
- total_scan = nr;
- delta = (4 * nr_pages_scanned) / shrinker->seeks;
- delta *= max_pass;
- do_div(delta, lru_pages + 1);
- total_scan += delta;
- if (total_scan < 0) {
- printk(KERN_ERR "shrink_slab: %pF negative objects to "
- "delete nr=%ld\n",
- shrinker->shrink, total_scan);
- total_scan = max_pass;
- }
+ /* If demotion node isn't in the cgroup's mems_allowed, fall back */
+ return mem_cgroup_node_allowed(memcg, demotion_nid);
+}
+static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
+ int nid,
+ struct scan_control *sc)
+{
+ if (memcg == NULL) {
/*
- * We need to avoid excessive windup on filesystem shrinkers
- * due to large numbers of GFP_NOFS allocations causing the
- * shrinkers to return -1 all the time. This results in a large
- * nr being built up so when a shrink that can do some work
- * comes along it empties the entire cache due to nr >>>
- * max_pass. This is bad for sustaining a working set in
- * memory.
- *
- * Hence only allow the shrinker to scan the entire cache when
- * a large delta change is calculated directly.
+ * For non-memcg reclaim, is there
+ * space in any swap device?
*/
- if (delta < max_pass / 4)
- total_scan = min(total_scan, max_pass / 2);
+ if (get_nr_swap_pages() > 0)
+ return true;
+ } else {
+ /* Is the memcg below its swap limit? */
+ if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
+ return true;
+ }
- /*
- * Avoid risking looping forever due to too large nr value:
- * never try to free more than twice the estimate number of
- * freeable entries.
- */
- if (total_scan > max_pass * 2)
- total_scan = max_pass * 2;
+ /*
+ * The page can not be swapped.
+ *
+ * Can it be reclaimed from this node via demotion?
+ */
+ return can_demote(nid, sc, memcg);
+}
- trace_mm_shrink_slab_start(shrinker, shrink, nr,
- nr_pages_scanned, lru_pages,
- max_pass, delta, total_scan);
+/*
+ * This misses isolated folios which are not accounted for to save counters.
+ * As the data only determines if reclaim or compaction continues, it is
+ * not expected that isolated folios will be a dominating factor.
+ */
+unsigned long zone_reclaimable_pages(struct zone *zone)
+{
+ unsigned long nr;
- while (total_scan >= batch_size) {
- int nr_before;
+ nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
+ zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
+ if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
+ nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
+ zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
- nr_before = do_shrinker_shrink(shrinker, shrink, 0);
- shrink_ret = do_shrinker_shrink(shrinker, shrink,
- batch_size);
- if (shrink_ret == -1)
- break;
- if (shrink_ret < nr_before)
- ret += nr_before - shrink_ret;
- count_vm_events(SLABS_SCANNED, batch_size);
- total_scan -= batch_size;
+ return nr;
+}
- cond_resched();
- }
+/**
+ * lruvec_lru_size - Returns the number of pages on the given LRU list.
+ * @lruvec: lru vector
+ * @lru: lru to use
+ * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
+ */
+static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
+ int zone_idx)
+{
+ unsigned long size = 0;
+ int zid;
+ struct zone *zone;
- /*
- * move the unused scan count back into the shrinker in a
- * manner that handles concurrent updates. If we exhausted the
- * scan, there is no need to do an update.
- */
- if (total_scan > 0)
- new_nr = atomic_long_add_return(total_scan,
- &shrinker->nr_in_batch);
+ for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) {
+ if (!mem_cgroup_disabled())
+ size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
else
- new_nr = atomic_long_read(&shrinker->nr_in_batch);
-
- trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
+ size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
}
- up_read(&shrinker_rwsem);
-out:
- cond_resched();
- return ret;
+ return size;
}
-static inline int is_page_cache_freeable(struct page *page)
+static unsigned long drop_slab_node(int nid)
{
- /*
- * A freeable page cache page is referenced only by the caller
- * that isolated the page, the page cache radix tree and
- * optional buffer heads at page->private.
- */
- return page_count(page) - page_has_private(page) == 2;
+ unsigned long freed = 0;
+ struct mem_cgroup *memcg = NULL;
+
+ memcg = mem_cgroup_iter(NULL, NULL, NULL);
+ do {
+ freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
+ } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
+
+ return freed;
}
-static int may_write_to_queue(struct backing_dev_info *bdi,
- struct scan_control *sc)
+void drop_slab(void)
{
- if (current->flags & PF_SWAPWRITE)
- return 1;
- if (!bdi_write_congested(bdi))
- return 1;
- if (bdi == current->backing_dev_info)
- return 1;
- return 0;
+ int nid;
+ int shift = 0;
+ unsigned long freed;
+
+ do {
+ freed = 0;
+ for_each_online_node(nid) {
+ if (fatal_signal_pending(current))
+ return;
+
+ freed += drop_slab_node(nid);
+ }
+ } while ((freed >> shift++) > 1);
+}
+
+#define CHECK_RECLAIMER_OFFSET(type) \
+ do { \
+ BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \
+ PGDEMOTE_##type - PGDEMOTE_KSWAPD); \
+ BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \
+ PGSCAN_##type - PGSCAN_KSWAPD); \
+ } while (0)
+
+static int reclaimer_offset(struct scan_control *sc)
+{
+ CHECK_RECLAIMER_OFFSET(DIRECT);
+ CHECK_RECLAIMER_OFFSET(KHUGEPAGED);
+ CHECK_RECLAIMER_OFFSET(PROACTIVE);
+
+ if (current_is_kswapd())
+ return 0;
+ if (current_is_khugepaged())
+ return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
+ if (sc->proactive)
+ return PGSTEAL_PROACTIVE - PGSTEAL_KSWAPD;
+ return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
}
/*
- * We detected a synchronous write error writing a page out. Probably
+ * We detected a synchronous write error writing a folio out. Probably
* -ENOSPC. We need to propagate that into the address_space for a subsequent
* fsync(), msync() or close().
*
* The tricky part is that after writepage we cannot touch the mapping: nothing
- * prevents it from being freed up. But we have a ref on the page and once
- * that page is locked, the mapping is pinned.
+ * prevents it from being freed up. But we have a ref on the folio and once
+ * that folio is locked, the mapping is pinned.
*
- * We're allowed to run sleeping lock_page() here because we know the caller has
+ * We're allowed to run sleeping folio_lock() here because we know the caller has
* __GFP_FS.
*/
static void handle_write_error(struct address_space *mapping,
- struct page *page, int error)
+ struct folio *folio, int error)
{
- lock_page(page);
- if (page_mapping(page) == mapping)
+ folio_lock(folio);
+ if (folio_mapping(folio) == mapping)
mapping_set_error(mapping, error);
- unlock_page(page);
+ folio_unlock(folio);
+}
+
+static bool skip_throttle_noprogress(pg_data_t *pgdat)
+{
+ int reclaimable = 0, write_pending = 0;
+ int i;
+ struct zone *zone;
+ /*
+ * If kswapd is disabled, reschedule if necessary but do not
+ * throttle as the system is likely near OOM.
+ */
+ if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES)
+ return true;
+
+ /*
+ * If there are a lot of dirty/writeback folios then do not
+ * throttle as throttling will occur when the folios cycle
+ * towards the end of the LRU if still under writeback.
+ */
+ for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) {
+ reclaimable += zone_reclaimable_pages(zone);
+ write_pending += zone_page_state_snapshot(zone,
+ NR_ZONE_WRITE_PENDING);
+ }
+ if (2 * write_pending <= reclaimable)
+ return true;
+
+ return false;
+}
+
+void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
+{
+ wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
+ long timeout, ret;
+ DEFINE_WAIT(wait);
+
+ /*
+ * Do not throttle user workers, kthreads other than kswapd or
+ * workqueues. They may be required for reclaim to make
+ * forward progress (e.g. journalling workqueues or kthreads).
+ */
+ if (!current_is_kswapd() &&
+ current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
+ cond_resched();
+ return;
+ }
+
+ /*
+ * These figures are pulled out of thin air.
+ * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
+ * parallel reclaimers which is a short-lived event so the timeout is
+ * short. Failing to make progress or waiting on writeback are
+ * potentially long-lived events so use a longer timeout. This is shaky
+ * logic as a failure to make progress could be due to anything from
+ * writeback to a slow device to excessive referenced folios at the tail
+ * of the inactive LRU.
+ */
+ switch(reason) {
+ case VMSCAN_THROTTLE_WRITEBACK:
+ timeout = HZ/10;
+
+ if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
+ WRITE_ONCE(pgdat->nr_reclaim_start,
+ node_page_state(pgdat, NR_THROTTLED_WRITTEN));
+ }
+
+ break;
+ case VMSCAN_THROTTLE_CONGESTED:
+ fallthrough;
+ case VMSCAN_THROTTLE_NOPROGRESS:
+ if (skip_throttle_noprogress(pgdat)) {
+ cond_resched();
+ return;
+ }
+
+ timeout = 1;
+
+ break;
+ case VMSCAN_THROTTLE_ISOLATED:
+ timeout = HZ/50;
+ break;
+ default:
+ WARN_ON_ONCE(1);
+ timeout = HZ;
+ break;
+ }
+
+ prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
+ ret = schedule_timeout(timeout);
+ finish_wait(wqh, &wait);
+
+ if (reason == VMSCAN_THROTTLE_WRITEBACK)
+ atomic_dec(&pgdat->nr_writeback_throttled);
+
+ trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
+ jiffies_to_usecs(timeout - ret),
+ reason);
+}
+
+/*
+ * Account for folios written if tasks are throttled waiting on dirty
+ * folios to clean. If enough folios have been cleaned since throttling
+ * started then wakeup the throttled tasks.
+ */
+void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
+ int nr_throttled)
+{
+ unsigned long nr_written;
+
+ node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
+
+ /*
+ * This is an inaccurate read as the per-cpu deltas may not
+ * be synchronised. However, given that the system is
+ * writeback throttled, it is not worth taking the penalty
+ * of getting an accurate count. At worst, the throttle
+ * timeout guarantees forward progress.
+ */
+ nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
+ READ_ONCE(pgdat->nr_reclaim_start);
+
+ if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
+ wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
}
/* possible outcome of pageout() */
typedef enum {
- /* failed to write page out, page is locked */
+ /* failed to write folio out, folio is locked */
PAGE_KEEP,
- /* move page to the active list, page is locked */
+ /* move folio to the active list, folio is locked */
PAGE_ACTIVATE,
- /* page has been sent to the disk successfully, page is unlocked */
+ /* folio has been sent to the disk successfully, folio is unlocked */
PAGE_SUCCESS,
- /* page is clean and locked */
+ /* folio is clean and locked */
PAGE_CLEAN,
} pageout_t;
+static pageout_t writeout(struct folio *folio, struct address_space *mapping,
+ struct swap_iocb **plug, struct list_head *folio_list)
+{
+ int res;
+
+ folio_set_reclaim(folio);
+
+ /*
+ * The large shmem folio can be split if CONFIG_THP_SWAP is not enabled
+ * or we failed to allocate contiguous swap entries, in which case
+ * the split out folios get added back to folio_list.
+ */
+ if (shmem_mapping(mapping))
+ res = shmem_writeout(folio, plug, folio_list);
+ else
+ res = swap_writeout(folio, plug);
+
+ if (res < 0)
+ handle_write_error(mapping, folio, res);
+ if (res == AOP_WRITEPAGE_ACTIVATE) {
+ folio_clear_reclaim(folio);
+ return PAGE_ACTIVATE;
+ }
+
+ /* synchronous write? */
+ if (!folio_test_writeback(folio))
+ folio_clear_reclaim(folio);
+
+ trace_mm_vmscan_write_folio(folio);
+ node_stat_add_folio(folio, NR_VMSCAN_WRITE);
+ return PAGE_SUCCESS;
+}
+
/*
- * pageout is called by shrink_page_list() for each dirty page.
- * Calls ->writepage().
+ * pageout is called by shrink_folio_list() for each dirty folio.
*/
-static pageout_t pageout(struct page *page, struct address_space *mapping,
- struct scan_control *sc)
+static pageout_t pageout(struct folio *folio, struct address_space *mapping,
+ struct swap_iocb **plug, struct list_head *folio_list)
{
/*
- * If the page is dirty, only perform writeback if that write
- * will be non-blocking. To prevent this allocation from being
- * stalled by pagecache activity. But note that there may be
- * stalls if we need to run get_block(). We could test
- * PagePrivate for that.
+ * We no longer attempt to writeback filesystem folios here, other
+ * than tmpfs/shmem. That's taken care of in page-writeback.
+ * If we find a dirty filesystem folio at the end of the LRU list,
+ * typically that means the filesystem is saturating the storage
+ * with contiguous writes and telling it to write a folio here
+ * would only make the situation worse by injecting an element
+ * of random access.
*
- * If this process is currently in __generic_file_aio_write() against
- * this page's queue, we can perform writeback even if that
- * will block.
- *
- * If the page is swapcache, write it back even if that would
+ * If the folio is swapcache, write it back even if that would
* block, for some throttling. This happens by accident, because
* swap_backing_dev_info is bust: it doesn't reflect the
* congestion state of the swapdevs. Easy to fix, if needed.
+ *
+ * A freeable shmem or swapcache folio is referenced only by the
+ * caller that isolated the folio and the page cache.
*/
- if (!is_page_cache_freeable(page))
+ if (folio_ref_count(folio) != 1 + folio_nr_pages(folio) || !mapping)
return PAGE_KEEP;
- if (!mapping) {
- /*
- * Some data journaling orphaned pages can have
- * page->mapping == NULL while being dirty with clean buffers.
- */
- if (page_has_private(page)) {
- if (try_to_free_buffers(page)) {
- ClearPageDirty(page);
- printk("%s: orphaned page\n", __func__);
- return PAGE_CLEAN;
- }
- }
- return PAGE_KEEP;
- }
- if (mapping->a_ops->writepage == NULL)
+ if (!shmem_mapping(mapping) && !folio_test_anon(folio))
return PAGE_ACTIVATE;
- if (!may_write_to_queue(mapping->backing_dev_info, sc))
- return PAGE_KEEP;
-
- if (clear_page_dirty_for_io(page)) {
- int res;
- struct writeback_control wbc = {
- .sync_mode = WB_SYNC_NONE,
- .nr_to_write = SWAP_CLUSTER_MAX,
- .range_start = 0,
- .range_end = LLONG_MAX,
- .for_reclaim = 1,
- };
-
- SetPageReclaim(page);
- res = mapping->a_ops->writepage(page, &wbc);
- if (res < 0)
- handle_write_error(mapping, page, res);
- if (res == AOP_WRITEPAGE_ACTIVATE) {
- ClearPageReclaim(page);
- return PAGE_ACTIVATE;
- }
-
- if (!PageWriteback(page)) {
- /* synchronous write or broken a_ops? */
- ClearPageReclaim(page);
- }
- trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
- inc_zone_page_state(page, NR_VMSCAN_WRITE);
- return PAGE_SUCCESS;
- }
-
- return PAGE_CLEAN;
+ if (!folio_clear_dirty_for_io(folio))
+ return PAGE_CLEAN;
+ return writeout(folio, mapping, plug, folio_list);
}
/*
- * Same as remove_mapping, but if the page is removed from the mapping, it
+ * Same as remove_mapping, but if the folio is removed from the mapping, it
* gets returned with a refcount of 0.
*/
-static int __remove_mapping(struct address_space *mapping, struct page *page)
+static int __remove_mapping(struct address_space *mapping, struct folio *folio,
+ bool reclaimed, struct mem_cgroup *target_memcg)
{
- BUG_ON(!PageLocked(page));
- BUG_ON(mapping != page_mapping(page));
+ int refcount;
+ void *shadow = NULL;
+ struct swap_cluster_info *ci;
+
+ BUG_ON(!folio_test_locked(folio));
+ BUG_ON(mapping != folio_mapping(folio));
+
+ if (folio_test_swapcache(folio)) {
+ ci = swap_cluster_get_and_lock_irq(folio);
+ } else {
+ spin_lock(&mapping->host->i_lock);
+ xa_lock_irq(&mapping->i_pages);
+ }
- spin_lock_irq(&mapping->tree_lock);
/*
- * The non racy check for a busy page.
+ * The non racy check for a busy folio.
*
* Must be careful with the order of the tests. When someone has
- * a ref to the page, it may be possible that they dirty it then
- * drop the reference. So if PageDirty is tested before page_count
- * here, then the following race may occur:
+ * a ref to the folio, it may be possible that they dirty it then
+ * drop the reference. So if the dirty flag is tested before the
+ * refcount here, then the following race may occur:
*
* get_user_pages(&page);
* [user mapping goes away]
* write_to(page);
- * !PageDirty(page) [good]
- * SetPageDirty(page);
- * put_page(page);
- * !page_count(page) [good, discard it]
+ * !folio_test_dirty(folio) [good]
+ * folio_set_dirty(folio);
+ * folio_put(folio);
+ * !refcount(folio) [good, discard it]
*
* [oops, our write_to data is lost]
*
* Reversing the order of the tests ensures such a situation cannot
- * escape unnoticed. The smp_rmb is needed to ensure the page->flags
- * load is not satisfied before that of page->_count.
+ * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
+ * load is not satisfied before that of folio->_refcount.
*
- * Note that if SetPageDirty is always performed via set_page_dirty,
- * and thus under tree_lock, then this ordering is not required.
+ * Note that if the dirty flag is always set via folio_mark_dirty,
+ * and thus under the i_pages lock, then this ordering is not required.
*/
- if (!page_freeze_refs(page, 2))
+ refcount = 1 + folio_nr_pages(folio);
+ if (!folio_ref_freeze(folio, refcount))
goto cannot_free;
- /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
- if (unlikely(PageDirty(page))) {
- page_unfreeze_refs(page, 2);
+ /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
+ if (unlikely(folio_test_dirty(folio))) {
+ folio_ref_unfreeze(folio, refcount);
goto cannot_free;
}
- if (PageSwapCache(page)) {
- swp_entry_t swap = { .val = page_private(page) };
- __delete_from_swap_cache(page);
- spin_unlock_irq(&mapping->tree_lock);
- swapcache_free(swap, page);
- } else {
- void (*freepage)(struct page *);
-
- freepage = mapping->a_ops->freepage;
+ if (folio_test_swapcache(folio)) {
+ swp_entry_t swap = folio->swap;
- __delete_from_page_cache(page);
- spin_unlock_irq(&mapping->tree_lock);
- mem_cgroup_uncharge_cache_page(page);
+ if (reclaimed && !mapping_exiting(mapping))
+ shadow = workingset_eviction(folio, target_memcg);
+ __swap_cache_del_folio(ci, folio, swap, shadow);
+ memcg1_swapout(folio, swap);
+ swap_cluster_unlock_irq(ci);
+ put_swap_folio(folio, swap);
+ } else {
+ void (*free_folio)(struct folio *);
- if (freepage != NULL)
- freepage(page);
+ free_folio = mapping->a_ops->free_folio;
+ /*
+ * Remember a shadow entry for reclaimed file cache in
+ * order to detect refaults, thus thrashing, later on.
+ *
+ * But don't store shadows in an address space that is
+ * already exiting. This is not just an optimization,
+ * inode reclaim needs to empty out the radix tree or
+ * the nodes are lost. Don't plant shadows behind its
+ * back.
+ *
+ * We also don't store shadows for DAX mappings because the
+ * only page cache folios found in these are zero pages
+ * covering holes, and because we don't want to mix DAX
+ * exceptional entries and shadow exceptional entries in the
+ * same address_space.
+ */
+ if (reclaimed && folio_is_file_lru(folio) &&
+ !mapping_exiting(mapping) && !dax_mapping(mapping))
+ shadow = workingset_eviction(folio, target_memcg);
+ __filemap_remove_folio(folio, shadow);
+ xa_unlock_irq(&mapping->i_pages);
+ if (mapping_shrinkable(mapping))
+ inode_lru_list_add(mapping->host);
+ spin_unlock(&mapping->host->i_lock);
+
+ if (free_folio)
+ free_folio(folio);
}
return 1;
cannot_free:
- spin_unlock_irq(&mapping->tree_lock);
+ if (folio_test_swapcache(folio)) {
+ swap_cluster_unlock_irq(ci);
+ } else {
+ xa_unlock_irq(&mapping->i_pages);
+ spin_unlock(&mapping->host->i_lock);
+ }
return 0;
}
-/*
- * Attempt to detach a locked page from its ->mapping. If it is dirty or if
- * someone else has a ref on the page, abort and return 0. If it was
- * successfully detached, return 1. Assumes the caller has a single ref on
- * this page.
+/**
+ * remove_mapping() - Attempt to remove a folio from its mapping.
+ * @mapping: The address space.
+ * @folio: The folio to remove.
+ *
+ * If the folio is dirty, under writeback or if someone else has a ref
+ * on it, removal will fail.
+ * Return: The number of pages removed from the mapping. 0 if the folio
+ * could not be removed.
+ * Context: The caller should have a single refcount on the folio and
+ * hold its lock.
*/
-int remove_mapping(struct address_space *mapping, struct page *page)
+long remove_mapping(struct address_space *mapping, struct folio *folio)
{
- if (__remove_mapping(mapping, page)) {
+ if (__remove_mapping(mapping, folio, false, NULL)) {
/*
- * Unfreezing the refcount with 1 rather than 2 effectively
+ * Unfreezing the refcount with 1 effectively
* drops the pagecache ref for us without requiring another
* atomic operation.
*/
- page_unfreeze_refs(page, 1);
- return 1;
+ folio_ref_unfreeze(folio, 1);
+ return folio_nr_pages(folio);
}
return 0;
}
/**
- * putback_lru_page - put previously isolated page onto appropriate LRU list
- * @page: page to be put back to appropriate lru list
+ * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
+ * @folio: Folio to be returned to an LRU list.
*
- * Add previously isolated @page to appropriate LRU list.
- * Page may still be unevictable for other reasons.
+ * Add previously isolated @folio to appropriate LRU list.
+ * The folio may still be unevictable for other reasons.
*
- * lru_lock must not be held, interrupts must be enabled.
+ * Context: lru_lock must not be held, interrupts must be enabled.
*/
-void putback_lru_page(struct page *page)
+void folio_putback_lru(struct folio *folio)
{
- int lru;
- int was_unevictable = PageUnevictable(page);
-
- VM_BUG_ON(PageLRU(page));
-
-redo:
- ClearPageUnevictable(page);
+ folio_add_lru(folio);
+ folio_put(folio); /* drop ref from isolate */
+}
- if (page_evictable(page)) {
- /*
- * For evictable pages, we can use the cache.
- * In event of a race, worst case is we end up with an
- * unevictable page on [in]active list.
- * We know how to handle that.
- */
- lru = page_lru_base_type(page);
- lru_cache_add(page);
- } else {
- /*
- * Put unevictable pages directly on zone's unevictable
- * list.
- */
- lru = LRU_UNEVICTABLE;
- add_page_to_unevictable_list(page);
- /*
- * When racing with an mlock or AS_UNEVICTABLE clearing
- * (page is unlocked) make sure that if the other thread
- * does not observe our setting of PG_lru and fails
- * isolation/check_move_unevictable_pages,
- * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
- * the page back to the evictable list.
- *
- * The other side is TestClearPageMlocked() or shmem_lock().
- */
- smp_mb();
- }
+enum folio_references {
+ FOLIOREF_RECLAIM,
+ FOLIOREF_RECLAIM_CLEAN,
+ FOLIOREF_KEEP,
+ FOLIOREF_ACTIVATE,
+};
- /*
- * page's status can change while we move it among lru. If an evictable
- * page is on unevictable list, it never be freed. To avoid that,
- * check after we added it to the list, again.
- */
- if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
- if (!isolate_lru_page(page)) {
- put_page(page);
- goto redo;
- }
- /* This means someone else dropped this page from LRU
- * So, it will be freed or putback to LRU again. There is
- * nothing to do here.
- */
+#ifdef CONFIG_LRU_GEN
+/*
+ * Only used on a mapped folio in the eviction (rmap walk) path, where promotion
+ * needs to be done by taking the folio off the LRU list and then adding it back
+ * with PG_active set. In contrast, the aging (page table walk) path uses
+ * folio_update_gen().
+ */
+static bool lru_gen_set_refs(struct folio *folio)
+{
+ /* see the comment on LRU_REFS_FLAGS */
+ if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
+ set_mask_bits(&folio->flags.f, LRU_REFS_MASK, BIT(PG_referenced));
+ return false;
}
- if (was_unevictable && lru != LRU_UNEVICTABLE)
- count_vm_event(UNEVICTABLE_PGRESCUED);
- else if (!was_unevictable && lru == LRU_UNEVICTABLE)
- count_vm_event(UNEVICTABLE_PGCULLED);
-
- put_page(page); /* drop ref from isolate */
+ set_mask_bits(&folio->flags.f, LRU_REFS_FLAGS, BIT(PG_workingset));
+ return true;
}
+#else
+static bool lru_gen_set_refs(struct folio *folio)
+{
+ return false;
+}
+#endif /* CONFIG_LRU_GEN */
-enum page_references {
- PAGEREF_RECLAIM,
- PAGEREF_RECLAIM_CLEAN,
- PAGEREF_KEEP,
- PAGEREF_ACTIVATE,
-};
-
-static enum page_references page_check_references(struct page *page,
+static enum folio_references folio_check_references(struct folio *folio,
struct scan_control *sc)
{
- int referenced_ptes, referenced_page;
- unsigned long vm_flags;
+ int referenced_ptes, referenced_folio;
+ vm_flags_t vm_flags;
- referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
- &vm_flags);
- referenced_page = TestClearPageReferenced(page);
+ referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
+ &vm_flags);
/*
- * Mlock lost the isolation race with us. Let try_to_unmap()
- * move the page to the unevictable list.
+ * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
+ * Let the folio, now marked Mlocked, be moved to the unevictable list.
*/
if (vm_flags & VM_LOCKED)
- return PAGEREF_RECLAIM;
+ return FOLIOREF_ACTIVATE;
+
+ /*
+ * There are two cases to consider.
+ * 1) Rmap lock contention: rotate.
+ * 2) Skip the non-shared swapbacked folio mapped solely by
+ * the exiting or OOM-reaped process.
+ */
+ if (referenced_ptes == -1)
+ return FOLIOREF_KEEP;
+
+ if (lru_gen_enabled()) {
+ if (!referenced_ptes)
+ return FOLIOREF_RECLAIM;
+
+ return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP;
+ }
+
+ referenced_folio = folio_test_clear_referenced(folio);
if (referenced_ptes) {
- if (PageSwapBacked(page))
- return PAGEREF_ACTIVATE;
/*
- * All mapped pages start out with page table
+ * All mapped folios start out with page table
* references from the instantiating fault, so we need
- * to look twice if a mapped file page is used more
+ * to look twice if a mapped file/anon folio is used more
* than once.
*
* Mark it and spare it for another trip around the
* inactive list. Another page table reference will
* lead to its activation.
*
- * Note: the mark is set for activated pages as well
- * so that recently deactivated but used pages are
+ * Note: the mark is set for activated folios as well
+ * so that recently deactivated but used folios are
* quickly recovered.
*/
- SetPageReferenced(page);
+ folio_set_referenced(folio);
- if (referenced_page || referenced_ptes > 1)
- return PAGEREF_ACTIVATE;
+ if (referenced_folio || referenced_ptes > 1)
+ return FOLIOREF_ACTIVATE;
/*
- * Activate file-backed executable pages after first usage.
+ * Activate file-backed executable folios after first usage.
*/
- if (vm_flags & VM_EXEC)
- return PAGEREF_ACTIVATE;
+ if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
+ return FOLIOREF_ACTIVATE;
- return PAGEREF_KEEP;
+ return FOLIOREF_KEEP;
}
- /* Reclaim if clean, defer dirty pages to writeback */
- if (referenced_page && !PageSwapBacked(page))
- return PAGEREF_RECLAIM_CLEAN;
+ /* Reclaim if clean, defer dirty folios to writeback */
+ if (referenced_folio && folio_is_file_lru(folio))
+ return FOLIOREF_RECLAIM_CLEAN;
- return PAGEREF_RECLAIM;
+ return FOLIOREF_RECLAIM;
}
-/* Check if a page is dirty or under writeback */
-static void page_check_dirty_writeback(struct page *page,
+/* Check if a folio is dirty or under writeback */
+static void folio_check_dirty_writeback(struct folio *folio,
bool *dirty, bool *writeback)
{
struct address_space *mapping;
/*
- * Anonymous pages are not handled by flushers and must be written
- * from reclaim context. Do not stall reclaim based on them
+ * Anonymous folios are not handled by flushers and must be written
+ * from reclaim context. Do not stall reclaim based on them.
+ * MADV_FREE anonymous folios are put into inactive file list too.
+ * They could be mistakenly treated as file lru. So further anon
+ * test is needed.
*/
- if (!page_is_file_cache(page)) {
+ if (!folio_is_file_lru(folio) ||
+ (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
*dirty = false;
*writeback = false;
return;
}
- /* By default assume that the page flags are accurate */
- *dirty = PageDirty(page);
- *writeback = PageWriteback(page);
+ /* By default assume that the folio flags are accurate */
+ *dirty = folio_test_dirty(folio);
+ *writeback = folio_test_writeback(folio);
/* Verify dirty/writeback state if the filesystem supports it */
- if (!page_has_private(page))
+ if (!folio_test_private(folio))
return;
- mapping = page_mapping(page);
+ mapping = folio_mapping(folio);
if (mapping && mapping->a_ops->is_dirty_writeback)
- mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
+ mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
+}
+
+static struct folio *alloc_demote_folio(struct folio *src,
+ unsigned long private)
+{
+ struct folio *dst;
+ nodemask_t *allowed_mask;
+ struct migration_target_control *mtc;
+
+ mtc = (struct migration_target_control *)private;
+
+ allowed_mask = mtc->nmask;
+ /*
+ * make sure we allocate from the target node first also trying to
+ * demote or reclaim pages from the target node via kswapd if we are
+ * low on free memory on target node. If we don't do this and if
+ * we have free memory on the slower(lower) memtier, we would start
+ * allocating pages from slower(lower) memory tiers without even forcing
+ * a demotion of cold pages from the target memtier. This can result
+ * in the kernel placing hot pages in slower(lower) memory tiers.
+ */
+ mtc->nmask = NULL;
+ mtc->gfp_mask |= __GFP_THISNODE;
+ dst = alloc_migration_target(src, (unsigned long)mtc);
+ if (dst)
+ return dst;
+
+ mtc->gfp_mask &= ~__GFP_THISNODE;
+ mtc->nmask = allowed_mask;
+
+ return alloc_migration_target(src, (unsigned long)mtc);
}
/*
- * shrink_page_list() returns the number of reclaimed pages
+ * Take folios on @demote_folios and attempt to demote them to another node.
+ * Folios which are not demoted are left on @demote_folios.
*/
-static unsigned long shrink_page_list(struct list_head *page_list,
- struct zone *zone,
- struct scan_control *sc,
- enum ttu_flags ttu_flags,
- unsigned long *ret_nr_dirty,
- unsigned long *ret_nr_unqueued_dirty,
- unsigned long *ret_nr_congested,
- unsigned long *ret_nr_writeback,
- unsigned long *ret_nr_immediate,
- bool force_reclaim)
-{
- LIST_HEAD(ret_pages);
- LIST_HEAD(free_pages);
- int pgactivate = 0;
- unsigned long nr_unqueued_dirty = 0;
- unsigned long nr_dirty = 0;
- unsigned long nr_congested = 0;
- unsigned long nr_reclaimed = 0;
- unsigned long nr_writeback = 0;
- unsigned long nr_immediate = 0;
+static unsigned int demote_folio_list(struct list_head *demote_folios,
+ struct pglist_data *pgdat)
+{
+ int target_nid = next_demotion_node(pgdat->node_id);
+ unsigned int nr_succeeded;
+ nodemask_t allowed_mask;
+ struct migration_target_control mtc = {
+ /*
+ * Allocate from 'node', or fail quickly and quietly.
+ * When this happens, 'page' will likely just be discarded
+ * instead of migrated.
+ */
+ .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
+ __GFP_NOMEMALLOC | GFP_NOWAIT,
+ .nid = target_nid,
+ .nmask = &allowed_mask,
+ .reason = MR_DEMOTION,
+ };
+
+ if (list_empty(demote_folios))
+ return 0;
+
+ if (target_nid == NUMA_NO_NODE)
+ return 0;
+
+ node_get_allowed_targets(pgdat, &allowed_mask);
+
+ /* Demotion ignores all cpuset and mempolicy settings */
+ migrate_pages(demote_folios, alloc_demote_folio, NULL,
+ (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
+ &nr_succeeded);
+
+ return nr_succeeded;
+}
+
+static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
+{
+ if (gfp_mask & __GFP_FS)
+ return true;
+ if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
+ return false;
+ /*
+ * We can "enter_fs" for swap-cache with only __GFP_IO
+ * providing this isn't SWP_FS_OPS.
+ * ->flags can be updated non-atomicially (scan_swap_map_slots),
+ * but that will never affect SWP_FS_OPS, so the data_race
+ * is safe.
+ */
+ return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
+}
+
+/*
+ * shrink_folio_list() returns the number of reclaimed pages
+ */
+static unsigned int shrink_folio_list(struct list_head *folio_list,
+ struct pglist_data *pgdat, struct scan_control *sc,
+ struct reclaim_stat *stat, bool ignore_references,
+ struct mem_cgroup *memcg)
+{
+ struct folio_batch free_folios;
+ LIST_HEAD(ret_folios);
+ LIST_HEAD(demote_folios);
+ unsigned int nr_reclaimed = 0, nr_demoted = 0;
+ unsigned int pgactivate = 0;
+ bool do_demote_pass;
+ struct swap_iocb *plug = NULL;
+
+ folio_batch_init(&free_folios);
+ memset(stat, 0, sizeof(*stat));
cond_resched();
+ do_demote_pass = can_demote(pgdat->node_id, sc, memcg);
- mem_cgroup_uncharge_start();
- while (!list_empty(page_list)) {
+retry:
+ while (!list_empty(folio_list)) {
struct address_space *mapping;
- struct page *page;
- int may_enter_fs;
- enum page_references references = PAGEREF_RECLAIM_CLEAN;
+ struct folio *folio;
+ enum folio_references references = FOLIOREF_RECLAIM;
bool dirty, writeback;
+ unsigned int nr_pages;
cond_resched();
- page = lru_to_page(page_list);
- list_del(&page->lru);
+ folio = lru_to_folio(folio_list);
+ list_del(&folio->lru);
- if (!trylock_page(page))
+ if (!folio_trylock(folio))
goto keep;
- VM_BUG_ON(PageActive(page));
- VM_BUG_ON(page_zone(page) != zone);
+ if (folio_contain_hwpoisoned_page(folio)) {
+ /*
+ * unmap_poisoned_folio() can't handle large
+ * folio, just skip it. memory_failure() will
+ * handle it if the UCE is triggered again.
+ */
+ if (folio_test_large(folio))
+ goto keep_locked;
+
+ unmap_poisoned_folio(folio, folio_pfn(folio), false);
+ folio_unlock(folio);
+ folio_put(folio);
+ continue;
+ }
- sc->nr_scanned++;
+ VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
- if (unlikely(!page_evictable(page)))
- goto cull_mlocked;
+ nr_pages = folio_nr_pages(folio);
- if (!sc->may_unmap && page_mapped(page))
- goto keep_locked;
+ /* Account the number of base pages */
+ sc->nr_scanned += nr_pages;
- /* Double the slab pressure for mapped and swapcache pages */
- if (page_mapped(page) || PageSwapCache(page))
- sc->nr_scanned++;
+ if (unlikely(!folio_evictable(folio)))
+ goto activate_locked;
- may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
- (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
+ if (!sc->may_unmap && folio_mapped(folio))
+ goto keep_locked;
/*
- * The number of dirty pages determines if a zone is marked
- * reclaim_congested which affects wait_iff_congested. kswapd
- * will stall and start writing pages if the tail of the LRU
- * is all dirty unqueued pages.
+ * The number of dirty pages determines if a node is marked
+ * reclaim_congested. kswapd will stall and start writing
+ * folios if the tail of the LRU is all dirty unqueued folios.
*/
- page_check_dirty_writeback(page, &dirty, &writeback);
+ folio_check_dirty_writeback(folio, &dirty, &writeback);
if (dirty || writeback)
- nr_dirty++;
+ stat->nr_dirty += nr_pages;
if (dirty && !writeback)
- nr_unqueued_dirty++;
+ stat->nr_unqueued_dirty += nr_pages;
/*
- * Treat this page as congested if the underlying BDI is or if
- * pages are cycling through the LRU so quickly that the
- * pages marked for immediate reclaim are making it to the
- * end of the LRU a second time.
+ * Treat this folio as congested if folios are cycling
+ * through the LRU so quickly that the folios marked
+ * for immediate reclaim are making it to the end of
+ * the LRU a second time.
*/
- mapping = page_mapping(page);
- if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
- (writeback && PageReclaim(page)))
- nr_congested++;
+ if (writeback && folio_test_reclaim(folio))
+ stat->nr_congested += nr_pages;
/*
- * If a page at the tail of the LRU is under writeback, there
+ * If a folio at the tail of the LRU is under writeback, there
* are three cases to consider.
*
- * 1) If reclaim is encountering an excessive number of pages
- * under writeback and this page is both under writeback and
- * PageReclaim then it indicates that pages are being queued
- * for IO but are being recycled through the LRU before the
- * IO can complete. Waiting on the page itself risks an
- * indefinite stall if it is impossible to writeback the
- * page due to IO error or disconnected storage so instead
- * note that the LRU is being scanned too quickly and the
- * caller can stall after page list has been processed.
+ * 1) If reclaim is encountering an excessive number
+ * of folios under writeback and this folio has both
+ * the writeback and reclaim flags set, then it
+ * indicates that folios are being queued for I/O but
+ * are being recycled through the LRU before the I/O
+ * can complete. Waiting on the folio itself risks an
+ * indefinite stall if it is impossible to writeback
+ * the folio due to I/O error or disconnected storage
+ * so instead note that the LRU is being scanned too
+ * quickly and the caller can stall after the folio
+ * list has been processed.
*
- * 2) Global reclaim encounters a page, memcg encounters a
- * page that is not marked for immediate reclaim or
- * the caller does not have __GFP_IO. In this case mark
- * the page for immediate reclaim and continue scanning.
+ * 2) Global or new memcg reclaim encounters a folio that is
+ * not marked for immediate reclaim, or the caller does not
+ * have __GFP_FS (or __GFP_IO if it's simply going to swap,
+ * not to fs), or the folio belongs to a mapping where
+ * waiting on writeback during reclaim may lead to a deadlock.
+ * In this case mark the folio for immediate reclaim and
+ * continue scanning.
*
- * __GFP_IO is checked because a loop driver thread might
- * enter reclaim, and deadlock if it waits on a page for
+ * Require may_enter_fs() because we would wait on fs, which
+ * may not have submitted I/O yet. And the loop driver might
+ * enter reclaim, and deadlock if it waits on a folio for
* which it is needed to do the write (loop masks off
* __GFP_IO|__GFP_FS for this reason); but more thought
* would probably show more reasons.
*
- * Don't require __GFP_FS, since we're not going into the
- * FS, just waiting on its writeback completion. Worryingly,
- * ext4 gfs2 and xfs allocate pages with
- * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
- * may_enter_fs here is liable to OOM on them.
- *
- * 3) memcg encounters a page that is not already marked
- * PageReclaim. memcg does not have any dirty pages
+ * 3) Legacy memcg encounters a folio that already has the
+ * reclaim flag set. memcg does not have any dirty folio
* throttling so we could easily OOM just because too many
- * pages are in writeback and there is nothing else to
+ * folios are in writeback and there is nothing else to
* reclaim. Wait for the writeback to complete.
+ *
+ * In cases 1) and 2) we activate the folios to get them out of
+ * the way while we continue scanning for clean folios on the
+ * inactive list and refilling from the active list. The
+ * observation here is that waiting for disk writes is more
+ * expensive than potentially causing reloads down the line.
+ * Since they're marked for immediate reclaim, they won't put
+ * memory pressure on the cache working set any longer than it
+ * takes to write them to disk.
*/
- if (PageWriteback(page)) {
+ if (folio_test_writeback(folio)) {
+ mapping = folio_mapping(folio);
+
/* Case 1 above */
if (current_is_kswapd() &&
- PageReclaim(page) &&
- zone_is_reclaim_writeback(zone)) {
- nr_immediate++;
- goto keep_locked;
+ folio_test_reclaim(folio) &&
+ test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
+ stat->nr_immediate += nr_pages;
+ goto activate_locked;
/* Case 2 above */
- } else if (global_reclaim(sc) ||
- !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
+ } else if (writeback_throttling_sane(sc) ||
+ !folio_test_reclaim(folio) ||
+ !may_enter_fs(folio, sc->gfp_mask) ||
+ (mapping &&
+ mapping_writeback_may_deadlock_on_reclaim(mapping))) {
/*
- * This is slightly racy - end_page_writeback()
- * might have just cleared PageReclaim, then
- * setting PageReclaim here end up interpreted
- * as PageReadahead - but that does not matter
- * enough to care. What we do want is for this
- * page to have PageReclaim set next time memcg
- * reclaim reaches the tests above, so it will
- * then wait_on_page_writeback() to avoid OOM;
- * and it's also appropriate in global reclaim.
+ * This is slightly racy -
+ * folio_end_writeback() might have
+ * just cleared the reclaim flag, then
+ * setting the reclaim flag here ends up
+ * interpreted as the readahead flag - but
+ * that does not matter enough to care.
+ * What we do want is for this folio to
+ * have the reclaim flag set next time
+ * memcg reclaim reaches the tests above,
+ * so it will then wait for writeback to
+ * avoid OOM; and it's also appropriate
+ * in global reclaim.
*/
- SetPageReclaim(page);
- nr_writeback++;
-
- goto keep_locked;
+ folio_set_reclaim(folio);
+ stat->nr_writeback += nr_pages;
+ goto activate_locked;
/* Case 3 above */
} else {
- wait_on_page_writeback(page);
+ folio_unlock(folio);
+ folio_wait_writeback(folio);
+ /* then go back and try same folio again */
+ list_add_tail(&folio->lru, folio_list);
+ continue;
}
}
- if (!force_reclaim)
- references = page_check_references(page, sc);
+ if (!ignore_references)
+ references = folio_check_references(folio, sc);
switch (references) {
- case PAGEREF_ACTIVATE:
+ case FOLIOREF_ACTIVATE:
goto activate_locked;
- case PAGEREF_KEEP:
+ case FOLIOREF_KEEP:
+ stat->nr_ref_keep += nr_pages;
goto keep_locked;
- case PAGEREF_RECLAIM:
- case PAGEREF_RECLAIM_CLEAN:
- ; /* try to reclaim the page below */
+ case FOLIOREF_RECLAIM:
+ case FOLIOREF_RECLAIM_CLEAN:
+ ; /* try to reclaim the folio below */
+ }
+
+ /*
+ * Before reclaiming the folio, try to relocate
+ * its contents to another node.
+ */
+ if (do_demote_pass &&
+ (thp_migration_supported() || !folio_test_large(folio))) {
+ list_add(&folio->lru, &demote_folios);
+ folio_unlock(folio);
+ continue;
}
/*
* Anonymous process memory has backing store?
* Try to allocate it some swap space here.
+ * Lazyfree folio could be freed directly
*/
- if (PageAnon(page) && !PageSwapCache(page)) {
- if (!(sc->gfp_mask & __GFP_IO))
- goto keep_locked;
- if (!add_to_swap(page, page_list))
- goto activate_locked;
- may_enter_fs = 1;
+ if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
+ if (!folio_test_swapcache(folio)) {
+ if (!(sc->gfp_mask & __GFP_IO))
+ goto keep_locked;
+ if (folio_maybe_dma_pinned(folio))
+ goto keep_locked;
+ if (folio_test_large(folio)) {
+ /* cannot split folio, skip it */
+ if (!can_split_folio(folio, 1, NULL))
+ goto activate_locked;
+ /*
+ * Split partially mapped folios right away.
+ * We can free the unmapped pages without IO.
+ */
+ if (data_race(!list_empty(&folio->_deferred_list) &&
+ folio_test_partially_mapped(folio)) &&
+ split_folio_to_list(folio, folio_list))
+ goto activate_locked;
+ }
+ if (folio_alloc_swap(folio)) {
+ int __maybe_unused order = folio_order(folio);
+
+ if (!folio_test_large(folio))
+ goto activate_locked_split;
+ /* Fallback to swap normal pages */
+ if (split_folio_to_list(folio, folio_list))
+ goto activate_locked;
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ if (nr_pages >= HPAGE_PMD_NR) {
+ count_memcg_folio_events(folio,
+ THP_SWPOUT_FALLBACK, 1);
+ count_vm_event(THP_SWPOUT_FALLBACK);
+ }
+#endif
+ count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
+ if (folio_alloc_swap(folio))
+ goto activate_locked_split;
+ }
+ /*
+ * Normally the folio will be dirtied in unmap because its
+ * pte should be dirty. A special case is MADV_FREE page. The
+ * page's pte could have dirty bit cleared but the folio's
+ * SwapBacked flag is still set because clearing the dirty bit
+ * and SwapBacked flag has no lock protected. For such folio,
+ * unmap will not set dirty bit for it, so folio reclaim will
+ * not write the folio out. This can cause data corruption when
+ * the folio is swapped in later. Always setting the dirty flag
+ * for the folio solves the problem.
+ */
+ folio_mark_dirty(folio);
+ }
+ }
- /* Adding to swap updated mapping */
- mapping = page_mapping(page);
+ /*
+ * If the folio was split above, the tail pages will make
+ * their own pass through this function and be accounted
+ * then.
+ */
+ if ((nr_pages > 1) && !folio_test_large(folio)) {
+ sc->nr_scanned -= (nr_pages - 1);
+ nr_pages = 1;
}
/*
- * The page is mapped into the page tables of one or more
+ * The folio is mapped into the page tables of one or more
* processes. Try to unmap it here.
*/
- if (page_mapped(page) && mapping) {
- switch (try_to_unmap(page, ttu_flags)) {
- case SWAP_FAIL:
+ if (folio_mapped(folio)) {
+ enum ttu_flags flags = TTU_BATCH_FLUSH;
+ bool was_swapbacked = folio_test_swapbacked(folio);
+
+ if (folio_test_pmd_mappable(folio))
+ flags |= TTU_SPLIT_HUGE_PMD;
+ /*
+ * Without TTU_SYNC, try_to_unmap will only begin to
+ * hold PTL from the first present PTE within a large
+ * folio. Some initial PTEs might be skipped due to
+ * races with parallel PTE writes in which PTEs can be
+ * cleared temporarily before being written new present
+ * values. This will lead to a large folio is still
+ * mapped while some subpages have been partially
+ * unmapped after try_to_unmap; TTU_SYNC helps
+ * try_to_unmap acquire PTL from the first PTE,
+ * eliminating the influence of temporary PTE values.
+ */
+ if (folio_test_large(folio))
+ flags |= TTU_SYNC;
+
+ try_to_unmap(folio, flags);
+ if (folio_mapped(folio)) {
+ stat->nr_unmap_fail += nr_pages;
+ if (!was_swapbacked &&
+ folio_test_swapbacked(folio))
+ stat->nr_lazyfree_fail += nr_pages;
goto activate_locked;
- case SWAP_AGAIN:
- goto keep_locked;
- case SWAP_MLOCK:
- goto cull_mlocked;
- case SWAP_SUCCESS:
- ; /* try to free the page below */
}
}
- if (PageDirty(page)) {
- /*
- * Only kswapd can writeback filesystem pages to
- * avoid risk of stack overflow but only writeback
- * if many dirty pages have been encountered.
- */
- if (page_is_file_cache(page) &&
- (!current_is_kswapd() ||
- !zone_is_reclaim_dirty(zone))) {
+ /*
+ * Folio is unmapped now so it cannot be newly pinned anymore.
+ * No point in trying to reclaim folio if it is pinned.
+ * Furthermore we don't want to reclaim underlying fs metadata
+ * if the folio is pinned and thus potentially modified by the
+ * pinning process as that may upset the filesystem.
+ */
+ if (folio_maybe_dma_pinned(folio))
+ goto activate_locked;
+
+ mapping = folio_mapping(folio);
+ if (folio_test_dirty(folio)) {
+ if (folio_is_file_lru(folio)) {
/*
* Immediately reclaim when written back.
- * Similar in principal to deactivate_page()
- * except we already have the page isolated
+ * Similar in principle to folio_deactivate()
+ * except we already have the folio isolated
* and know it's dirty
*/
- inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
- SetPageReclaim(page);
+ node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
+ nr_pages);
+ if (!folio_test_reclaim(folio))
+ folio_set_reclaim(folio);
- goto keep_locked;
+ goto activate_locked;
}
- if (references == PAGEREF_RECLAIM_CLEAN)
+ if (references == FOLIOREF_RECLAIM_CLEAN)
goto keep_locked;
- if (!may_enter_fs)
+ if (!may_enter_fs(folio, sc->gfp_mask))
goto keep_locked;
if (!sc->may_writepage)
goto keep_locked;
- /* Page is dirty, try to write it out here */
- switch (pageout(page, mapping, sc)) {
+ /*
+ * Folio is dirty. Flush the TLB if a writable entry
+ * potentially exists to avoid CPU writes after I/O
+ * starts and then write it out here.
+ */
+ try_to_unmap_flush_dirty();
+ switch (pageout(folio, mapping, &plug, folio_list)) {
case PAGE_KEEP:
goto keep_locked;
case PAGE_ACTIVATE:
+ /*
+ * If shmem folio is split when writeback to swap,
+ * the tail pages will make their own pass through
+ * this function and be accounted then.
+ */
+ if (nr_pages > 1 && !folio_test_large(folio)) {
+ sc->nr_scanned -= (nr_pages - 1);
+ nr_pages = 1;
+ }
goto activate_locked;
case PAGE_SUCCESS:
- if (PageWriteback(page))
+ if (nr_pages > 1 && !folio_test_large(folio)) {
+ sc->nr_scanned -= (nr_pages - 1);
+ nr_pages = 1;
+ }
+ stat->nr_pageout += nr_pages;
+
+ if (folio_test_writeback(folio))
goto keep;
- if (PageDirty(page))
+ if (folio_test_dirty(folio))
goto keep;
/*
* A synchronous write - probably a ramdisk. Go
- * ahead and try to reclaim the page.
+ * ahead and try to reclaim the folio.
*/
- if (!trylock_page(page))
+ if (!folio_trylock(folio))
goto keep;
- if (PageDirty(page) || PageWriteback(page))
+ if (folio_test_dirty(folio) ||
+ folio_test_writeback(folio))
goto keep_locked;
- mapping = page_mapping(page);
+ mapping = folio_mapping(folio);
+ fallthrough;
case PAGE_CLEAN:
- ; /* try to free the page below */
+ ; /* try to free the folio below */
}
}
/*
- * If the page has buffers, try to free the buffer mappings
- * associated with this page. If we succeed we try to free
- * the page as well.
+ * If the folio has buffers, try to free the buffer
+ * mappings associated with this folio. If we succeed
+ * we try to free the folio as well.
*
- * We do this even if the page is PageDirty().
- * try_to_release_page() does not perform I/O, but it is
- * possible for a page to have PageDirty set, but it is actually
- * clean (all its buffers are clean). This happens if the
- * buffers were written out directly, with submit_bh(). ext3
- * will do this, as well as the blockdev mapping.
- * try_to_release_page() will discover that cleanness and will
- * drop the buffers and mark the page clean - it can be freed.
+ * We do this even if the folio is dirty.
+ * filemap_release_folio() does not perform I/O, but it
+ * is possible for a folio to have the dirty flag set,
+ * but it is actually clean (all its buffers are clean).
+ * This happens if the buffers were written out directly,
+ * with submit_bh(). ext3 will do this, as well as
+ * the blockdev mapping. filemap_release_folio() will
+ * discover that cleanness and will drop the buffers
+ * and mark the folio clean - it can be freed.
*
- * Rarely, pages can have buffers and no ->mapping. These are
- * the pages which were not successfully invalidated in
- * truncate_complete_page(). We try to drop those buffers here
- * and if that worked, and the page is no longer mapped into
- * process address space (page_count == 1) it can be freed.
- * Otherwise, leave the page on the LRU so it is swappable.
+ * Rarely, folios can have buffers and no ->mapping.
+ * These are the folios which were not successfully
+ * invalidated in truncate_cleanup_folio(). We try to
+ * drop those buffers here and if that worked, and the
+ * folio is no longer mapped into process address space
+ * (refcount == 1) it can be freed. Otherwise, leave
+ * the folio on the LRU so it is swappable.
*/
- if (page_has_private(page)) {
- if (!try_to_release_page(page, sc->gfp_mask))
+ if (folio_needs_release(folio)) {
+ if (!filemap_release_folio(folio, sc->gfp_mask))
goto activate_locked;
- if (!mapping && page_count(page) == 1) {
- unlock_page(page);
- if (put_page_testzero(page))
+ if (!mapping && folio_ref_count(folio) == 1) {
+ folio_unlock(folio);
+ if (folio_put_testzero(folio))
goto free_it;
else {
/*
* rare race with speculative reference.
* the speculative reference will free
- * this page shortly, so we may
+ * this folio shortly, so we may
* increment nr_reclaimed here (and
* leave it off the LRU).
*/
- nr_reclaimed++;
+ nr_reclaimed += nr_pages;
continue;
}
}
}
- if (!mapping || !__remove_mapping(mapping, page))
+ if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
+ /* follow __remove_mapping for reference */
+ if (!folio_ref_freeze(folio, 1))
+ goto keep_locked;
+ /*
+ * The folio has only one reference left, which is
+ * from the isolation. After the caller puts the
+ * folio back on the lru and drops the reference, the
+ * folio will be freed anyway. It doesn't matter
+ * which lru it goes on. So we don't bother checking
+ * the dirty flag here.
+ */
+ count_vm_events(PGLAZYFREED, nr_pages);
+ count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
+ } else if (!mapping || !__remove_mapping(mapping, folio, true,
+ sc->target_mem_cgroup))
goto keep_locked;
- /*
- * At this point, we have no other references and there is
- * no way to pick any more up (removed from LRU, removed
- * from pagecache). Can use non-atomic bitops now (and
- * we obviously don't have to worry about waking up a process
- * waiting on the page lock, because there are no references.
- */
- __clear_page_locked(page);
+ folio_unlock(folio);
free_it:
- nr_reclaimed++;
-
/*
- * Is there need to periodically free_page_list? It would
- * appear not as the counts should be low
+ * Folio may get swapped out as a whole, need to account
+ * all pages in it.
*/
- list_add(&page->lru, &free_pages);
- continue;
+ nr_reclaimed += nr_pages;
-cull_mlocked:
- if (PageSwapCache(page))
- try_to_free_swap(page);
- unlock_page(page);
- putback_lru_page(page);
+ folio_unqueue_deferred_split(folio);
+ if (folio_batch_add(&free_folios, folio) == 0) {
+ mem_cgroup_uncharge_folios(&free_folios);
+ try_to_unmap_flush();
+ free_unref_folios(&free_folios);
+ }
continue;
+activate_locked_split:
+ /*
+ * The tail pages that are failed to add into swap cache
+ * reach here. Fixup nr_scanned and nr_pages.
+ */
+ if (nr_pages > 1) {
+ sc->nr_scanned -= (nr_pages - 1);
+ nr_pages = 1;
+ }
activate_locked:
/* Not a candidate for swapping, so reclaim swap space. */
- if (PageSwapCache(page) && vm_swap_full())
- try_to_free_swap(page);
- VM_BUG_ON(PageActive(page));
- SetPageActive(page);
- pgactivate++;
+ if (folio_test_swapcache(folio) &&
+ (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
+ folio_free_swap(folio);
+ VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
+ if (!folio_test_mlocked(folio)) {
+ int type = folio_is_file_lru(folio);
+ folio_set_active(folio);
+ stat->nr_activate[type] += nr_pages;
+ count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
+ }
keep_locked:
- unlock_page(page);
+ folio_unlock(folio);
keep:
- list_add(&page->lru, &ret_pages);
- VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
+ list_add(&folio->lru, &ret_folios);
+ VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
+ folio_test_unevictable(folio), folio);
+ }
+ /* 'folio_list' is always empty here */
+
+ /* Migrate folios selected for demotion */
+ nr_demoted = demote_folio_list(&demote_folios, pgdat);
+ nr_reclaimed += nr_demoted;
+ stat->nr_demoted += nr_demoted;
+ /* Folios that could not be demoted are still in @demote_folios */
+ if (!list_empty(&demote_folios)) {
+ /* Folios which weren't demoted go back on @folio_list */
+ list_splice_init(&demote_folios, folio_list);
+
+ /*
+ * goto retry to reclaim the undemoted folios in folio_list if
+ * desired.
+ *
+ * Reclaiming directly from top tier nodes is not often desired
+ * due to it breaking the LRU ordering: in general memory
+ * should be reclaimed from lower tier nodes and demoted from
+ * top tier nodes.
+ *
+ * However, disabling reclaim from top tier nodes entirely
+ * would cause ooms in edge scenarios where lower tier memory
+ * is unreclaimable for whatever reason, eg memory being
+ * mlocked or too hot to reclaim. We can disable reclaim
+ * from top tier nodes in proactive reclaim though as that is
+ * not real memory pressure.
+ */
+ if (!sc->proactive) {
+ do_demote_pass = false;
+ goto retry;
+ }
}
- free_hot_cold_page_list(&free_pages, 1);
+ pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
- list_splice(&ret_pages, page_list);
+ mem_cgroup_uncharge_folios(&free_folios);
+ try_to_unmap_flush();
+ free_unref_folios(&free_folios);
+
+ list_splice(&ret_folios, folio_list);
count_vm_events(PGACTIVATE, pgactivate);
- mem_cgroup_uncharge_end();
- *ret_nr_dirty += nr_dirty;
- *ret_nr_congested += nr_congested;
- *ret_nr_unqueued_dirty += nr_unqueued_dirty;
- *ret_nr_writeback += nr_writeback;
- *ret_nr_immediate += nr_immediate;
+
+ if (plug)
+ swap_write_unplug(plug);
return nr_reclaimed;
}
-unsigned long reclaim_clean_pages_from_list(struct zone *zone,
- struct list_head *page_list)
+unsigned int reclaim_clean_pages_from_list(struct zone *zone,
+ struct list_head *folio_list)
{
struct scan_control sc = {
.gfp_mask = GFP_KERNEL,
- .priority = DEF_PRIORITY,
.may_unmap = 1,
};
- unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
- struct page *page, *next;
- LIST_HEAD(clean_pages);
-
- list_for_each_entry_safe(page, next, page_list, lru) {
- if (page_is_file_cache(page) && !PageDirty(page)) {
- ClearPageActive(page);
- list_move(&page->lru, &clean_pages);
+ struct reclaim_stat stat;
+ unsigned int nr_reclaimed;
+ struct folio *folio, *next;
+ LIST_HEAD(clean_folios);
+ unsigned int noreclaim_flag;
+
+ list_for_each_entry_safe(folio, next, folio_list, lru) {
+ /* TODO: these pages should not even appear in this list. */
+ if (page_has_movable_ops(&folio->page))
+ continue;
+ if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
+ !folio_test_dirty(folio) && !folio_test_unevictable(folio)) {
+ folio_clear_active(folio);
+ list_move(&folio->lru, &clean_folios);
}
}
- ret = shrink_page_list(&clean_pages, zone, &sc,
- TTU_UNMAP|TTU_IGNORE_ACCESS,
- &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
- list_splice(&clean_pages, page_list);
- __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
- return ret;
+ /*
+ * We should be safe here since we are only dealing with file pages and
+ * we are not kswapd and therefore cannot write dirty file pages. But
+ * call memalloc_noreclaim_save() anyway, just in case these conditions
+ * change in the future.
+ */
+ noreclaim_flag = memalloc_noreclaim_save();
+ nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
+ &stat, true, NULL);
+ memalloc_noreclaim_restore(noreclaim_flag);
+
+ list_splice(&clean_folios, folio_list);
+ mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
+ -(long)nr_reclaimed);
+ /*
+ * Since lazyfree pages are isolated from file LRU from the beginning,
+ * they will rotate back to anonymous LRU in the end if it failed to
+ * discard so isolated count will be mismatched.
+ * Compensate the isolated count for both LRU lists.
+ */
+ mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
+ stat.nr_lazyfree_fail);
+ mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
+ -(long)stat.nr_lazyfree_fail);
+ return nr_reclaimed;
}
/*
- * Attempt to remove the specified page from its LRU. Only take this page
- * if it is of the appropriate PageActive status. Pages which are being
- * freed elsewhere are also ignored.
- *
- * page: page to consider
- * mode: one of the LRU isolation modes defined above
- *
- * returns 0 on success, -ve errno on failure.
+ * Update LRU sizes after isolating pages. The LRU size updates must
+ * be complete before mem_cgroup_update_lru_size due to a sanity check.
*/
-int __isolate_lru_page(struct page *page, isolate_mode_t mode)
+static __always_inline void update_lru_sizes(struct lruvec *lruvec,
+ enum lru_list lru, unsigned long *nr_zone_taken)
{
- int ret = -EINVAL;
-
- /* Only take pages on the LRU. */
- if (!PageLRU(page))
- return ret;
-
- /* Compaction should not handle unevictable pages but CMA can do so */
- if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
- return ret;
+ int zid;
- ret = -EBUSY;
-
- /*
- * To minimise LRU disruption, the caller can indicate that it only
- * wants to isolate pages it will be able to operate on without
- * blocking - clean pages for the most part.
- *
- * ISOLATE_CLEAN means that only clean pages should be isolated. This
- * is used by reclaim when it is cannot write to backing storage
- *
- * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
- * that it is possible to migrate without blocking
- */
- if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
- /* All the caller can do on PageWriteback is block */
- if (PageWriteback(page))
- return ret;
-
- if (PageDirty(page)) {
- struct address_space *mapping;
-
- /* ISOLATE_CLEAN means only clean pages */
- if (mode & ISOLATE_CLEAN)
- return ret;
-
- /*
- * Only pages without mappings or that have a
- * ->migratepage callback are possible to migrate
- * without blocking
- */
- mapping = page_mapping(page);
- if (mapping && !mapping->a_ops->migratepage)
- return ret;
- }
- }
-
- if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
- return ret;
+ for (zid = 0; zid < MAX_NR_ZONES; zid++) {
+ if (!nr_zone_taken[zid])
+ continue;
- if (likely(get_page_unless_zero(page))) {
- /*
- * Be careful not to clear PageLRU until after we're
- * sure the page is not being freed elsewhere -- the
- * page release code relies on it.
- */
- ClearPageLRU(page);
- ret = 0;
+ update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
}
- return ret;
}
/*
- * zone->lru_lock is heavily contended. Some of the functions that
+ * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
+ *
+ * lruvec->lru_lock is heavily contended. Some of the functions that
* shrink the lists perform better by taking out a batch of pages
* and working on them outside the LRU lock.
*
* For pagecache intensive workloads, this function is the hottest
* spot in the kernel (apart from copy_*_user functions).
*
- * Appropriate locks must be held before calling this function.
+ * Lru_lock must be held before calling this function.
*
- * @nr_to_scan: The number of pages to look through on the list.
+ * @nr_to_scan: The number of eligible pages to look through on the list.
* @lruvec: The LRU vector to pull pages from.
* @dst: The temp list to put pages on to.
* @nr_scanned: The number of pages that were scanned.
* @sc: The scan_control struct for this reclaim session
- * @mode: One of the LRU isolation modes
* @lru: LRU list id for isolating
*
* returns how many pages were moved onto *@dst.
*/
-static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
+static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
struct lruvec *lruvec, struct list_head *dst,
unsigned long *nr_scanned, struct scan_control *sc,
- isolate_mode_t mode, enum lru_list lru)
+ enum lru_list lru)
{
struct list_head *src = &lruvec->lists[lru];
unsigned long nr_taken = 0;
- unsigned long scan;
+ unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
+ unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
+ unsigned long skipped = 0, total_scan = 0, scan = 0;
+ unsigned long nr_pages;
+ unsigned long max_nr_skipped = 0;
+ LIST_HEAD(folios_skipped);
+
+ while (scan < nr_to_scan && !list_empty(src)) {
+ struct list_head *move_to = src;
+ struct folio *folio;
+
+ folio = lru_to_folio(src);
+ prefetchw_prev_lru_folio(folio, src, flags);
+
+ nr_pages = folio_nr_pages(folio);
+ total_scan += nr_pages;
+
+ /* Using max_nr_skipped to prevent hard LOCKUP*/
+ if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED &&
+ (folio_zonenum(folio) > sc->reclaim_idx)) {
+ nr_skipped[folio_zonenum(folio)] += nr_pages;
+ move_to = &folios_skipped;
+ max_nr_skipped++;
+ goto move;
+ }
- for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
- struct page *page;
- int nr_pages;
+ /*
+ * Do not count skipped folios because that makes the function
+ * return with no isolated folios if the LRU mostly contains
+ * ineligible folios. This causes the VM to not reclaim any
+ * folios, triggering a premature OOM.
+ * Account all pages in a folio.
+ */
+ scan += nr_pages;
- page = lru_to_page(src);
- prefetchw_prev_lru_page(page, src, flags);
+ if (!folio_test_lru(folio))
+ goto move;
+ if (!sc->may_unmap && folio_mapped(folio))
+ goto move;
- VM_BUG_ON(!PageLRU(page));
+ /*
+ * Be careful not to clear the lru flag until after we're
+ * sure the folio is not being freed elsewhere -- the
+ * folio release code relies on it.
+ */
+ if (unlikely(!folio_try_get(folio)))
+ goto move;
- switch (__isolate_lru_page(page, mode)) {
- case 0:
- nr_pages = hpage_nr_pages(page);
- mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
- list_move(&page->lru, dst);
- nr_taken += nr_pages;
- break;
+ if (!folio_test_clear_lru(folio)) {
+ /* Another thread is already isolating this folio */
+ folio_put(folio);
+ goto move;
+ }
- case -EBUSY:
- /* else it is being freed elsewhere */
- list_move(&page->lru, src);
- continue;
+ nr_taken += nr_pages;
+ nr_zone_taken[folio_zonenum(folio)] += nr_pages;
+ move_to = dst;
+move:
+ list_move(&folio->lru, move_to);
+ }
- default:
- BUG();
+ /*
+ * Splice any skipped folios to the start of the LRU list. Note that
+ * this disrupts the LRU order when reclaiming for lower zones but
+ * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
+ * scanning would soon rescan the same folios to skip and waste lots
+ * of cpu cycles.
+ */
+ if (!list_empty(&folios_skipped)) {
+ int zid;
+
+ list_splice(&folios_skipped, src);
+ for (zid = 0; zid < MAX_NR_ZONES; zid++) {
+ if (!nr_skipped[zid])
+ continue;
+
+ __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
+ skipped += nr_skipped[zid];
}
}
-
- *nr_scanned = scan;
- trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
- nr_taken, mode, is_file_lru(lru));
+ *nr_scanned = total_scan;
+ trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
+ total_scan, skipped, nr_taken, lru);
+ update_lru_sizes(lruvec, lru, nr_zone_taken);
return nr_taken;
}
/**
- * isolate_lru_page - tries to isolate a page from its LRU list
- * @page: page to isolate from its LRU list
+ * folio_isolate_lru() - Try to isolate a folio from its LRU list.
+ * @folio: Folio to isolate from its LRU list.
*
- * Isolates a @page from an LRU list, clears PageLRU and adjusts the
- * vmstat statistic corresponding to whatever LRU list the page was on.
+ * Isolate a @folio from an LRU list and adjust the vmstat statistic
+ * corresponding to whatever LRU list the folio was on.
*
- * Returns 0 if the page was removed from an LRU list.
- * Returns -EBUSY if the page was not on an LRU list.
- *
- * The returned page will have PageLRU() cleared. If it was found on
- * the active list, it will have PageActive set. If it was found on
- * the unevictable list, it will have the PageUnevictable bit set. That flag
+ * The folio will have its LRU flag cleared. If it was found on the
+ * active list, it will have the Active flag set. If it was found on the
+ * unevictable list, it will have the Unevictable flag set. These flags
* may need to be cleared by the caller before letting the page go.
*
- * The vmstat statistic corresponding to the list on which the page was
- * found will be decremented.
+ * Context:
*
- * Restrictions:
- * (1) Must be called with an elevated refcount on the page. This is a
- * fundamentnal difference from isolate_lru_pages (which is called
+ * (1) Must be called with an elevated refcount on the folio. This is a
+ * fundamental difference from isolate_lru_folios() (which is called
* without a stable reference).
- * (2) the lru_lock must not be held.
- * (3) interrupts must be enabled.
+ * (2) The lru_lock must not be held.
+ * (3) Interrupts must be enabled.
+ *
+ * Return: true if the folio was removed from an LRU list.
+ * false if the folio was not on an LRU list.
*/
-int isolate_lru_page(struct page *page)
+bool folio_isolate_lru(struct folio *folio)
{
- int ret = -EBUSY;
+ bool ret = false;
- VM_BUG_ON(!page_count(page));
+ VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
- if (PageLRU(page)) {
- struct zone *zone = page_zone(page);
+ if (folio_test_clear_lru(folio)) {
struct lruvec *lruvec;
- spin_lock_irq(&zone->lru_lock);
- lruvec = mem_cgroup_page_lruvec(page, zone);
- if (PageLRU(page)) {
- int lru = page_lru(page);
- get_page(page);
- ClearPageLRU(page);
- del_page_from_lru_list(page, lruvec, lru);
- ret = 0;
- }
- spin_unlock_irq(&zone->lru_lock);
+ folio_get(folio);
+ lruvec = folio_lruvec_lock_irq(folio);
+ lruvec_del_folio(lruvec, folio);
+ unlock_page_lruvec_irq(lruvec);
+ ret = true;
}
+
return ret;
}
/*
* A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
- * then get resheduled. When there are massive number of tasks doing page
+ * then get rescheduled. When there are massive number of tasks doing page
* allocation, such sleeping direct reclaimers may keep piling up on each CPU,
* the LRU list will go small and be scanned faster than necessary, leading to
* unnecessary swapping, thrashing and OOM.
*/
-static int too_many_isolated(struct zone *zone, int file,
+static bool too_many_isolated(struct pglist_data *pgdat, int file,
struct scan_control *sc)
{
unsigned long inactive, isolated;
+ bool too_many;
if (current_is_kswapd())
- return 0;
+ return false;
- if (!global_reclaim(sc))
- return 0;
+ if (!writeback_throttling_sane(sc))
+ return false;
if (file) {
- inactive = zone_page_state(zone, NR_INACTIVE_FILE);
- isolated = zone_page_state(zone, NR_ISOLATED_FILE);
+ inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
+ isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
} else {
- inactive = zone_page_state(zone, NR_INACTIVE_ANON);
- isolated = zone_page_state(zone, NR_ISOLATED_ANON);
+ inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
+ isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
}
/*
@@ -1290,90 +1867,126 @@ static int too_many_isolated(struct zone *zone, int file,
* won't get blocked by normal direct-reclaimers, forming a circular
* deadlock.
*/
- if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
+ if (gfp_has_io_fs(sc->gfp_mask))
inactive >>= 3;
- return isolated > inactive;
+ too_many = isolated > inactive;
+
+ /* Wake up tasks throttled due to too_many_isolated. */
+ if (!too_many)
+ wake_throttle_isolated(pgdat);
+
+ return too_many;
}
-static noinline_for_stack void
-putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
+/*
+ * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
+ *
+ * Returns the number of pages moved to the given lruvec.
+ */
+static unsigned int move_folios_to_lru(struct lruvec *lruvec,
+ struct list_head *list)
{
- struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
- struct zone *zone = lruvec_zone(lruvec);
- LIST_HEAD(pages_to_free);
-
- /*
- * Put back any unfreeable pages.
- */
- while (!list_empty(page_list)) {
- struct page *page = lru_to_page(page_list);
- int lru;
+ int nr_pages, nr_moved = 0;
+ struct folio_batch free_folios;
- VM_BUG_ON(PageLRU(page));
- list_del(&page->lru);
- if (unlikely(!page_evictable(page))) {
- spin_unlock_irq(&zone->lru_lock);
- putback_lru_page(page);
- spin_lock_irq(&zone->lru_lock);
+ folio_batch_init(&free_folios);
+ while (!list_empty(list)) {
+ struct folio *folio = lru_to_folio(list);
+
+ VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
+ list_del(&folio->lru);
+ if (unlikely(!folio_evictable(folio))) {
+ spin_unlock_irq(&lruvec->lru_lock);
+ folio_putback_lru(folio);
+ spin_lock_irq(&lruvec->lru_lock);
continue;
}
- lruvec = mem_cgroup_page_lruvec(page, zone);
+ /*
+ * The folio_set_lru needs to be kept here for list integrity.
+ * Otherwise:
+ * #0 move_folios_to_lru #1 release_pages
+ * if (!folio_put_testzero())
+ * if (folio_put_testzero())
+ * !lru //skip lru_lock
+ * folio_set_lru()
+ * list_add(&folio->lru,)
+ * list_add(&folio->lru,)
+ */
+ folio_set_lru(folio);
+
+ if (unlikely(folio_put_testzero(folio))) {
+ __folio_clear_lru_flags(folio);
- SetPageLRU(page);
- lru = page_lru(page);
- add_page_to_lru_list(page, lruvec, lru);
+ folio_unqueue_deferred_split(folio);
+ if (folio_batch_add(&free_folios, folio) == 0) {
+ spin_unlock_irq(&lruvec->lru_lock);
+ mem_cgroup_uncharge_folios(&free_folios);
+ free_unref_folios(&free_folios);
+ spin_lock_irq(&lruvec->lru_lock);
+ }
- if (is_active_lru(lru)) {
- int file = is_file_lru(lru);
- int numpages = hpage_nr_pages(page);
- reclaim_stat->recent_rotated[file] += numpages;
+ continue;
}
- if (put_page_testzero(page)) {
- __ClearPageLRU(page);
- __ClearPageActive(page);
- del_page_from_lru_list(page, lruvec, lru);
- if (unlikely(PageCompound(page))) {
- spin_unlock_irq(&zone->lru_lock);
- (*get_compound_page_dtor(page))(page);
- spin_lock_irq(&zone->lru_lock);
- } else
- list_add(&page->lru, &pages_to_free);
- }
+ /*
+ * All pages were isolated from the same lruvec (and isolation
+ * inhibits memcg migration).
+ */
+ VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
+ lruvec_add_folio(lruvec, folio);
+ nr_pages = folio_nr_pages(folio);
+ nr_moved += nr_pages;
+ if (folio_test_active(folio))
+ workingset_age_nonresident(lruvec, nr_pages);
}
- /*
- * To save our caller's stack, now use input list for pages to free.
- */
- list_splice(&pages_to_free, page_list);
+ if (free_folios.nr) {
+ spin_unlock_irq(&lruvec->lru_lock);
+ mem_cgroup_uncharge_folios(&free_folios);
+ free_unref_folios(&free_folios);
+ spin_lock_irq(&lruvec->lru_lock);
+ }
+
+ return nr_moved;
}
/*
- * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
+ * If a kernel thread (such as nfsd for loop-back mounts) services a backing
+ * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
+ * we should not throttle. Otherwise it is safe to do so.
+ */
+static int current_may_throttle(void)
+{
+ return !(current->flags & PF_LOCAL_THROTTLE);
+}
+
+/*
+ * shrink_inactive_list() is a helper for shrink_node(). It returns the number
* of reclaimed pages
*/
-static noinline_for_stack unsigned long
-shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
- struct scan_control *sc, enum lru_list lru)
+static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
+ struct lruvec *lruvec, struct scan_control *sc,
+ enum lru_list lru)
{
- LIST_HEAD(page_list);
+ LIST_HEAD(folio_list);
unsigned long nr_scanned;
- unsigned long nr_reclaimed = 0;
+ unsigned int nr_reclaimed = 0;
unsigned long nr_taken;
- unsigned long nr_dirty = 0;
- unsigned long nr_congested = 0;
- unsigned long nr_unqueued_dirty = 0;
- unsigned long nr_writeback = 0;
- unsigned long nr_immediate = 0;
- isolate_mode_t isolate_mode = 0;
- int file = is_file_lru(lru);
- struct zone *zone = lruvec_zone(lruvec);
- struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
-
- while (unlikely(too_many_isolated(zone, file, sc))) {
- congestion_wait(BLK_RW_ASYNC, HZ/10);
+ struct reclaim_stat stat;
+ bool file = is_file_lru(lru);
+ enum vm_event_item item;
+ struct pglist_data *pgdat = lruvec_pgdat(lruvec);
+ bool stalled = false;
+
+ while (unlikely(too_many_isolated(pgdat, file, sc))) {
+ if (stalled)
+ return 0;
+
+ /* wait a bit for the reclaimer. */
+ stalled = true;
+ reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
/* We are about to die and free our memory. Return now. */
if (fatal_signal_pending(current))
@@ -1382,180 +1995,98 @@ shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
lru_add_drain();
- if (!sc->may_unmap)
- isolate_mode |= ISOLATE_UNMAPPED;
- if (!sc->may_writepage)
- isolate_mode |= ISOLATE_CLEAN;
+ spin_lock_irq(&lruvec->lru_lock);
- spin_lock_irq(&zone->lru_lock);
+ nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
+ &nr_scanned, sc, lru);
- nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
- &nr_scanned, sc, isolate_mode, lru);
+ __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
+ item = PGSCAN_KSWAPD + reclaimer_offset(sc);
+ if (!cgroup_reclaim(sc))
+ __count_vm_events(item, nr_scanned);
+ count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
+ __count_vm_events(PGSCAN_ANON + file, nr_scanned);
- __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
- __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
-
- if (global_reclaim(sc)) {
- zone->pages_scanned += nr_scanned;
- if (current_is_kswapd())
- __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
- else
- __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
- }
- spin_unlock_irq(&zone->lru_lock);
+ spin_unlock_irq(&lruvec->lru_lock);
if (nr_taken == 0)
return 0;
- nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
- &nr_dirty, &nr_unqueued_dirty, &nr_congested,
- &nr_writeback, &nr_immediate,
- false);
-
- spin_lock_irq(&zone->lru_lock);
-
- reclaim_stat->recent_scanned[file] += nr_taken;
-
- if (global_reclaim(sc)) {
- if (current_is_kswapd())
- __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
- nr_reclaimed);
- else
- __count_zone_vm_events(PGSTEAL_DIRECT, zone,
- nr_reclaimed);
- }
+ nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false,
+ lruvec_memcg(lruvec));
- putback_inactive_pages(lruvec, &page_list);
+ spin_lock_irq(&lruvec->lru_lock);
+ move_folios_to_lru(lruvec, &folio_list);
- __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
+ mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
+ stat.nr_demoted);
+ __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
+ item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
+ if (!cgroup_reclaim(sc))
+ __count_vm_events(item, nr_reclaimed);
+ count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
+ __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
- spin_unlock_irq(&zone->lru_lock);
-
- free_hot_cold_page_list(&page_list, 1);
+ lru_note_cost_unlock_irq(lruvec, file, stat.nr_pageout,
+ nr_scanned - nr_reclaimed);
/*
- * If reclaim is isolating dirty pages under writeback, it implies
- * that the long-lived page allocation rate is exceeding the page
- * laundering rate. Either the global limits are not being effective
- * at throttling processes due to the page distribution throughout
- * zones or there is heavy usage of a slow backing device. The
- * only option is to throttle from reclaim context which is not ideal
- * as there is no guarantee the dirtying process is throttled in the
- * same way balance_dirty_pages() manages.
- *
- * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
- * of pages under pages flagged for immediate reclaim and stall if any
- * are encountered in the nr_immediate check below.
+ * If dirty folios are scanned that are not queued for IO, it
+ * implies that flushers are not doing their job. This can
+ * happen when memory pressure pushes dirty folios to the end of
+ * the LRU before the dirty limits are breached and the dirty
+ * data has expired. It can also happen when the proportion of
+ * dirty folios grows not through writes but through memory
+ * pressure reclaiming all the clean cache. And in some cases,
+ * the flushers simply cannot keep up with the allocation
+ * rate. Nudge the flusher threads in case they are asleep.
*/
- if (nr_writeback && nr_writeback == nr_taken)
- zone_set_flag(zone, ZONE_WRITEBACK);
-
- /*
- * memcg will stall in page writeback so only consider forcibly
- * stalling for global reclaim
- */
- if (global_reclaim(sc)) {
- /*
- * Tag a zone as congested if all the dirty pages scanned were
- * backed by a congested BDI and wait_iff_congested will stall.
- */
- if (nr_dirty && nr_dirty == nr_congested)
- zone_set_flag(zone, ZONE_CONGESTED);
-
+ if (stat.nr_unqueued_dirty == nr_taken) {
+ wakeup_flusher_threads(WB_REASON_VMSCAN);
/*
- * If dirty pages are scanned that are not queued for IO, it
- * implies that flushers are not keeping up. In this case, flag
- * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
- * pages from reclaim context. It will forcibly stall in the
- * next check.
- */
- if (nr_unqueued_dirty == nr_taken)
- zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
-
- /*
- * In addition, if kswapd scans pages marked marked for
- * immediate reclaim and under writeback (nr_immediate), it
- * implies that pages are cycling through the LRU faster than
- * they are written so also forcibly stall.
+ * For cgroupv1 dirty throttling is achieved by waking up
+ * the kernel flusher here and later waiting on folios
+ * which are in writeback to finish (see shrink_folio_list()).
+ *
+ * Flusher may not be able to issue writeback quickly
+ * enough for cgroupv1 writeback throttling to work
+ * on a large system.
*/
- if (nr_unqueued_dirty == nr_taken || nr_immediate)
- congestion_wait(BLK_RW_ASYNC, HZ/10);
+ if (!writeback_throttling_sane(sc))
+ reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
}
- /*
- * Stall direct reclaim for IO completions if underlying BDIs or zone
- * is congested. Allow kswapd to continue until it starts encountering
- * unqueued dirty pages or cycling through the LRU too quickly.
- */
- if (!sc->hibernation_mode && !current_is_kswapd())
- wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
-
- trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
- zone_idx(zone),
- nr_scanned, nr_reclaimed,
- sc->priority,
- trace_shrink_flags(file));
+ sc->nr.dirty += stat.nr_dirty;
+ sc->nr.congested += stat.nr_congested;
+ sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
+ sc->nr.writeback += stat.nr_writeback;
+ sc->nr.immediate += stat.nr_immediate;
+ sc->nr.taken += nr_taken;
+ if (file)
+ sc->nr.file_taken += nr_taken;
+
+ trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
+ nr_scanned, nr_reclaimed, &stat, sc->priority, file);
return nr_reclaimed;
}
/*
- * This moves pages from the active list to the inactive list.
+ * shrink_active_list() moves folios from the active LRU to the inactive LRU.
*
- * We move them the other way if the page is referenced by one or more
- * processes, from rmap.
+ * We move them the other way if the folio is referenced by one or more
+ * processes.
*
- * If the pages are mostly unmapped, the processing is fast and it is
- * appropriate to hold zone->lru_lock across the whole operation. But if
- * the pages are mapped, the processing is slow (page_referenced()) so we
- * should drop zone->lru_lock around each page. It's impossible to balance
- * this, so instead we remove the pages from the LRU while processing them.
- * It is safe to rely on PG_active against the non-LRU pages in here because
- * nobody will play with that bit on a non-LRU page.
+ * If the folios are mostly unmapped, the processing is fast and it is
+ * appropriate to hold lru_lock across the whole operation. But if
+ * the folios are mapped, the processing is slow (folio_referenced()), so
+ * we should drop lru_lock around each folio. It's impossible to balance
+ * this, so instead we remove the folios from the LRU while processing them.
+ * It is safe to rely on the active flag against the non-LRU folios in here
+ * because nobody will play with that bit on a non-LRU folio.
*
- * The downside is that we have to touch page->_count against each page.
- * But we had to alter page->flags anyway.
+ * The downside is that we have to touch folio->_refcount against each folio.
+ * But we had to alter folio->flags anyway.
*/
-
-static void move_active_pages_to_lru(struct lruvec *lruvec,
- struct list_head *list,
- struct list_head *pages_to_free,
- enum lru_list lru)
-{
- struct zone *zone = lruvec_zone(lruvec);
- unsigned long pgmoved = 0;
- struct page *page;
- int nr_pages;
-
- while (!list_empty(list)) {
- page = lru_to_page(list);
- lruvec = mem_cgroup_page_lruvec(page, zone);
-
- VM_BUG_ON(PageLRU(page));
- SetPageLRU(page);
-
- nr_pages = hpage_nr_pages(page);
- mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
- list_move(&page->lru, &lruvec->lists[lru]);
- pgmoved += nr_pages;
-
- if (put_page_testzero(page)) {
- __ClearPageLRU(page);
- __ClearPageActive(page);
- del_page_from_lru_list(page, lruvec, lru);
-
- if (unlikely(PageCompound(page))) {
- spin_unlock_irq(&zone->lru_lock);
- (*get_compound_page_dtor(page))(page);
- spin_lock_irq(&zone->lru_lock);
- } else
- list_add(&page->lru, pages_to_free);
- }
- }
- __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
- if (!is_active_lru(lru))
- __count_vm_events(PGDEACTIVATE, pgmoved);
-}
-
static void shrink_active_list(unsigned long nr_to_scan,
struct lruvec *lruvec,
struct scan_control *sc,
@@ -1563,190 +2094,209 @@ static void shrink_active_list(unsigned long nr_to_scan,
{
unsigned long nr_taken;
unsigned long nr_scanned;
- unsigned long vm_flags;
- LIST_HEAD(l_hold); /* The pages which were snipped off */
+ vm_flags_t vm_flags;
+ LIST_HEAD(l_hold); /* The folios which were snipped off */
LIST_HEAD(l_active);
LIST_HEAD(l_inactive);
- struct page *page;
- struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
- unsigned long nr_rotated = 0;
- isolate_mode_t isolate_mode = 0;
- int file = is_file_lru(lru);
- struct zone *zone = lruvec_zone(lruvec);
+ unsigned nr_deactivate, nr_activate;
+ unsigned nr_rotated = 0;
+ bool file = is_file_lru(lru);
+ struct pglist_data *pgdat = lruvec_pgdat(lruvec);
lru_add_drain();
- if (!sc->may_unmap)
- isolate_mode |= ISOLATE_UNMAPPED;
- if (!sc->may_writepage)
- isolate_mode |= ISOLATE_CLEAN;
+ spin_lock_irq(&lruvec->lru_lock);
- spin_lock_irq(&zone->lru_lock);
+ nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
+ &nr_scanned, sc, lru);
- nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
- &nr_scanned, sc, isolate_mode, lru);
- if (global_reclaim(sc))
- zone->pages_scanned += nr_scanned;
+ __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
- reclaim_stat->recent_scanned[file] += nr_taken;
+ if (!cgroup_reclaim(sc))
+ __count_vm_events(PGREFILL, nr_scanned);
+ count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
- __count_zone_vm_events(PGREFILL, zone, nr_scanned);
- __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
- __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
- spin_unlock_irq(&zone->lru_lock);
+ spin_unlock_irq(&lruvec->lru_lock);
while (!list_empty(&l_hold)) {
+ struct folio *folio;
+
cond_resched();
- page = lru_to_page(&l_hold);
- list_del(&page->lru);
+ folio = lru_to_folio(&l_hold);
+ list_del(&folio->lru);
- if (unlikely(!page_evictable(page))) {
- putback_lru_page(page);
+ if (unlikely(!folio_evictable(folio))) {
+ folio_putback_lru(folio);
continue;
}
if (unlikely(buffer_heads_over_limit)) {
- if (page_has_private(page) && trylock_page(page)) {
- if (page_has_private(page))
- try_to_release_page(page, 0);
- unlock_page(page);
+ if (folio_needs_release(folio) &&
+ folio_trylock(folio)) {
+ filemap_release_folio(folio, 0);
+ folio_unlock(folio);
}
}
- if (page_referenced(page, 0, sc->target_mem_cgroup,
- &vm_flags)) {
- nr_rotated += hpage_nr_pages(page);
+ /* Referenced or rmap lock contention: rotate */
+ if (folio_referenced(folio, 0, sc->target_mem_cgroup,
+ &vm_flags) != 0) {
/*
- * Identify referenced, file-backed active pages and
+ * Identify referenced, file-backed active folios and
* give them one more trip around the active list. So
* that executable code get better chances to stay in
- * memory under moderate memory pressure. Anon pages
+ * memory under moderate memory pressure. Anon folios
* are not likely to be evicted by use-once streaming
- * IO, plus JVM can create lots of anon VM_EXEC pages,
+ * IO, plus JVM can create lots of anon VM_EXEC folios,
* so we ignore them here.
*/
- if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
- list_add(&page->lru, &l_active);
+ if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
+ nr_rotated += folio_nr_pages(folio);
+ list_add(&folio->lru, &l_active);
continue;
}
}
- ClearPageActive(page); /* we are de-activating */
- list_add(&page->lru, &l_inactive);
+ folio_clear_active(folio); /* we are de-activating */
+ folio_set_workingset(folio);
+ list_add(&folio->lru, &l_inactive);
}
/*
- * Move pages back to the lru list.
- */
- spin_lock_irq(&zone->lru_lock);
- /*
- * Count referenced pages from currently used mappings as rotated,
- * even though only some of them are actually re-activated. This
- * helps balance scan pressure between file and anonymous pages in
- * get_scan_ratio.
+ * Move folios back to the lru list.
*/
- reclaim_stat->recent_rotated[file] += nr_rotated;
+ spin_lock_irq(&lruvec->lru_lock);
+
+ nr_activate = move_folios_to_lru(lruvec, &l_active);
+ nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
+
+ __count_vm_events(PGDEACTIVATE, nr_deactivate);
+ count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
- move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
- move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
- __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
- spin_unlock_irq(&zone->lru_lock);
+ __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
- free_hot_cold_page_list(&l_hold, 1);
+ lru_note_cost_unlock_irq(lruvec, file, 0, nr_rotated);
+ trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
+ nr_deactivate, nr_rotated, sc->priority, file);
}
-#ifdef CONFIG_SWAP
-static int inactive_anon_is_low_global(struct zone *zone)
+static unsigned int reclaim_folio_list(struct list_head *folio_list,
+ struct pglist_data *pgdat)
{
- unsigned long active, inactive;
-
- active = zone_page_state(zone, NR_ACTIVE_ANON);
- inactive = zone_page_state(zone, NR_INACTIVE_ANON);
+ struct reclaim_stat stat;
+ unsigned int nr_reclaimed;
+ struct folio *folio;
+ struct scan_control sc = {
+ .gfp_mask = GFP_KERNEL,
+ .may_writepage = 1,
+ .may_unmap = 1,
+ .may_swap = 1,
+ .no_demotion = 1,
+ };
- if (inactive * zone->inactive_ratio < active)
- return 1;
+ nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true, NULL);
+ while (!list_empty(folio_list)) {
+ folio = lru_to_folio(folio_list);
+ list_del(&folio->lru);
+ folio_putback_lru(folio);
+ }
+ trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat);
- return 0;
+ return nr_reclaimed;
}
-/**
- * inactive_anon_is_low - check if anonymous pages need to be deactivated
- * @lruvec: LRU vector to check
- *
- * Returns true if the zone does not have enough inactive anon pages,
- * meaning some active anon pages need to be deactivated.
- */
-static int inactive_anon_is_low(struct lruvec *lruvec)
+unsigned long reclaim_pages(struct list_head *folio_list)
{
- /*
- * If we don't have swap space, anonymous page deactivation
- * is pointless.
- */
- if (!total_swap_pages)
- return 0;
+ int nid;
+ unsigned int nr_reclaimed = 0;
+ LIST_HEAD(node_folio_list);
+ unsigned int noreclaim_flag;
- if (!mem_cgroup_disabled())
- return mem_cgroup_inactive_anon_is_low(lruvec);
+ if (list_empty(folio_list))
+ return nr_reclaimed;
- return inactive_anon_is_low_global(lruvec_zone(lruvec));
-}
-#else
-static inline int inactive_anon_is_low(struct lruvec *lruvec)
-{
- return 0;
-}
-#endif
+ noreclaim_flag = memalloc_noreclaim_save();
-/**
- * inactive_file_is_low - check if file pages need to be deactivated
- * @lruvec: LRU vector to check
- *
- * When the system is doing streaming IO, memory pressure here
- * ensures that active file pages get deactivated, until more
- * than half of the file pages are on the inactive list.
- *
- * Once we get to that situation, protect the system's working
- * set from being evicted by disabling active file page aging.
- *
- * This uses a different ratio than the anonymous pages, because
- * the page cache uses a use-once replacement algorithm.
- */
-static int inactive_file_is_low(struct lruvec *lruvec)
-{
- unsigned long inactive;
- unsigned long active;
+ nid = folio_nid(lru_to_folio(folio_list));
+ do {
+ struct folio *folio = lru_to_folio(folio_list);
- inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
- active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
+ if (nid == folio_nid(folio)) {
+ folio_clear_active(folio);
+ list_move(&folio->lru, &node_folio_list);
+ continue;
+ }
- return active > inactive;
-}
+ nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
+ nid = folio_nid(lru_to_folio(folio_list));
+ } while (!list_empty(folio_list));
-static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
-{
- if (is_file_lru(lru))
- return inactive_file_is_low(lruvec);
- else
- return inactive_anon_is_low(lruvec);
+ nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
+
+ memalloc_noreclaim_restore(noreclaim_flag);
+
+ return nr_reclaimed;
}
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
struct lruvec *lruvec, struct scan_control *sc)
{
if (is_active_lru(lru)) {
- if (inactive_list_is_low(lruvec, lru))
+ if (sc->may_deactivate & (1 << is_file_lru(lru)))
shrink_active_list(nr_to_scan, lruvec, sc, lru);
+ else
+ sc->skipped_deactivate = 1;
return 0;
}
return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
}
-static int vmscan_swappiness(struct scan_control *sc)
+/*
+ * The inactive anon list should be small enough that the VM never has
+ * to do too much work.
+ *
+ * The inactive file list should be small enough to leave most memory
+ * to the established workingset on the scan-resistant active list,
+ * but large enough to avoid thrashing the aggregate readahead window.
+ *
+ * Both inactive lists should also be large enough that each inactive
+ * folio has a chance to be referenced again before it is reclaimed.
+ *
+ * If that fails and refaulting is observed, the inactive list grows.
+ *
+ * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
+ * on this LRU, maintained by the pageout code. An inactive_ratio
+ * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
+ *
+ * total target max
+ * memory ratio inactive
+ * -------------------------------------
+ * 10MB 1 5MB
+ * 100MB 1 50MB
+ * 1GB 3 250MB
+ * 10GB 10 0.9GB
+ * 100GB 31 3GB
+ * 1TB 101 10GB
+ * 10TB 320 32GB
+ */
+static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
{
- if (global_reclaim(sc))
- return vm_swappiness;
- return mem_cgroup_swappiness(sc->target_mem_cgroup);
+ enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
+ unsigned long inactive, active;
+ unsigned long inactive_ratio;
+ unsigned long gb;
+
+ inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
+ active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
+
+ gb = (inactive + active) >> (30 - PAGE_SHIFT);
+ if (gb)
+ inactive_ratio = int_sqrt(10 * gb);
+ else
+ inactive_ratio = 1;
+
+ return inactive * inactive_ratio < active;
}
enum scan_balance {
@@ -1756,46 +2306,230 @@ enum scan_balance {
SCAN_FILE,
};
+static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
+{
+ unsigned long file;
+ struct lruvec *target_lruvec;
+
+ if (lru_gen_enabled())
+ return;
+
+ target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
+
+ /*
+ * Flush the memory cgroup stats in rate-limited way as we don't need
+ * most accurate stats here. We may switch to regular stats flushing
+ * in the future once it is cheap enough.
+ */
+ mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
+
+ /*
+ * Determine the scan balance between anon and file LRUs.
+ */
+ spin_lock_irq(&target_lruvec->lru_lock);
+ sc->anon_cost = target_lruvec->anon_cost;
+ sc->file_cost = target_lruvec->file_cost;
+ spin_unlock_irq(&target_lruvec->lru_lock);
+
+ /*
+ * Target desirable inactive:active list ratios for the anon
+ * and file LRU lists.
+ */
+ if (!sc->force_deactivate) {
+ unsigned long refaults;
+
+ /*
+ * When refaults are being observed, it means a new
+ * workingset is being established. Deactivate to get
+ * rid of any stale active pages quickly.
+ */
+ refaults = lruvec_page_state(target_lruvec,
+ WORKINGSET_ACTIVATE_ANON);
+ if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
+ inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
+ sc->may_deactivate |= DEACTIVATE_ANON;
+ else
+ sc->may_deactivate &= ~DEACTIVATE_ANON;
+
+ refaults = lruvec_page_state(target_lruvec,
+ WORKINGSET_ACTIVATE_FILE);
+ if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
+ inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
+ sc->may_deactivate |= DEACTIVATE_FILE;
+ else
+ sc->may_deactivate &= ~DEACTIVATE_FILE;
+ } else
+ sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
+
+ /*
+ * If we have plenty of inactive file pages that aren't
+ * thrashing, try to reclaim those first before touching
+ * anonymous pages.
+ */
+ file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
+ if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
+ !sc->no_cache_trim_mode)
+ sc->cache_trim_mode = 1;
+ else
+ sc->cache_trim_mode = 0;
+
+ /*
+ * Prevent the reclaimer from falling into the cache trap: as
+ * cache pages start out inactive, every cache fault will tip
+ * the scan balance towards the file LRU. And as the file LRU
+ * shrinks, so does the window for rotation from references.
+ * This means we have a runaway feedback loop where a tiny
+ * thrashing file LRU becomes infinitely more attractive than
+ * anon pages. Try to detect this based on file LRU size.
+ */
+ if (!cgroup_reclaim(sc)) {
+ unsigned long total_high_wmark = 0;
+ unsigned long free, anon;
+ int z;
+ struct zone *zone;
+
+ free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
+ file = node_page_state(pgdat, NR_ACTIVE_FILE) +
+ node_page_state(pgdat, NR_INACTIVE_FILE);
+
+ for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) {
+ total_high_wmark += high_wmark_pages(zone);
+ }
+
+ /*
+ * Consider anon: if that's low too, this isn't a
+ * runaway file reclaim problem, but rather just
+ * extreme pressure. Reclaim as per usual then.
+ */
+ anon = node_page_state(pgdat, NR_INACTIVE_ANON);
+
+ sc->file_is_tiny =
+ file + free <= total_high_wmark &&
+ !(sc->may_deactivate & DEACTIVATE_ANON) &&
+ anon >> sc->priority;
+ }
+}
+
+static inline void calculate_pressure_balance(struct scan_control *sc,
+ int swappiness, u64 *fraction, u64 *denominator)
+{
+ unsigned long anon_cost, file_cost, total_cost;
+ unsigned long ap, fp;
+
+ /*
+ * Calculate the pressure balance between anon and file pages.
+ *
+ * The amount of pressure we put on each LRU is inversely
+ * proportional to the cost of reclaiming each list, as
+ * determined by the share of pages that are refaulting, times
+ * the relative IO cost of bringing back a swapped out
+ * anonymous page vs reloading a filesystem page (swappiness).
+ *
+ * Although we limit that influence to ensure no list gets
+ * left behind completely: at least a third of the pressure is
+ * applied, before swappiness.
+ *
+ * With swappiness at 100, anon and file have equal IO cost.
+ */
+ total_cost = sc->anon_cost + sc->file_cost;
+ anon_cost = total_cost + sc->anon_cost;
+ file_cost = total_cost + sc->file_cost;
+ total_cost = anon_cost + file_cost;
+
+ ap = swappiness * (total_cost + 1);
+ ap /= anon_cost + 1;
+
+ fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
+ fp /= file_cost + 1;
+
+ fraction[WORKINGSET_ANON] = ap;
+ fraction[WORKINGSET_FILE] = fp;
+ *denominator = ap + fp;
+}
+
+static unsigned long apply_proportional_protection(struct mem_cgroup *memcg,
+ struct scan_control *sc, unsigned long scan)
+{
+ unsigned long min, low;
+
+ mem_cgroup_protection(sc->target_mem_cgroup, memcg, &min, &low);
+
+ if (min || low) {
+ /*
+ * Scale a cgroup's reclaim pressure by proportioning
+ * its current usage to its memory.low or memory.min
+ * setting.
+ *
+ * This is important, as otherwise scanning aggression
+ * becomes extremely binary -- from nothing as we
+ * approach the memory protection threshold, to totally
+ * nominal as we exceed it. This results in requiring
+ * setting extremely liberal protection thresholds. It
+ * also means we simply get no protection at all if we
+ * set it too low, which is not ideal.
+ *
+ * If there is any protection in place, we reduce scan
+ * pressure by how much of the total memory used is
+ * within protection thresholds.
+ *
+ * There is one special case: in the first reclaim pass,
+ * we skip over all groups that are within their low
+ * protection. If that fails to reclaim enough pages to
+ * satisfy the reclaim goal, we come back and override
+ * the best-effort low protection. However, we still
+ * ideally want to honor how well-behaved groups are in
+ * that case instead of simply punishing them all
+ * equally. As such, we reclaim them based on how much
+ * memory they are using, reducing the scan pressure
+ * again by how much of the total memory used is under
+ * hard protection.
+ */
+ unsigned long cgroup_size = mem_cgroup_size(memcg);
+ unsigned long protection;
+
+ /* memory.low scaling, make sure we retry before OOM */
+ if (!sc->memcg_low_reclaim && low > min) {
+ protection = low;
+ sc->memcg_low_skipped = 1;
+ } else {
+ protection = min;
+ }
+
+ /* Avoid TOCTOU with earlier protection check */
+ cgroup_size = max(cgroup_size, protection);
+
+ scan -= scan * protection / (cgroup_size + 1);
+
+ /*
+ * Minimally target SWAP_CLUSTER_MAX pages to keep
+ * reclaim moving forwards, avoiding decrementing
+ * sc->priority further than desirable.
+ */
+ scan = max(scan, SWAP_CLUSTER_MAX);
+ }
+ return scan;
+}
+
/*
* Determine how aggressively the anon and file LRU lists should be
- * scanned. The relative value of each set of LRU lists is determined
- * by looking at the fraction of the pages scanned we did rotate back
- * onto the active list instead of evict.
+ * scanned.
*
- * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
- * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
+ * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
+ * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
*/
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
unsigned long *nr)
{
- struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
- u64 fraction[2];
+ struct pglist_data *pgdat = lruvec_pgdat(lruvec);
+ struct mem_cgroup *memcg = lruvec_memcg(lruvec);
+ int swappiness = sc_swappiness(sc, memcg);
+ u64 fraction[ANON_AND_FILE];
u64 denominator = 0; /* gcc */
- struct zone *zone = lruvec_zone(lruvec);
- unsigned long anon_prio, file_prio;
enum scan_balance scan_balance;
- unsigned long anon, file, free;
- bool force_scan = false;
- unsigned long ap, fp;
enum lru_list lru;
- /*
- * If the zone or memcg is small, nr[l] can be 0. This
- * results in no scanning on this priority and a potential
- * priority drop. Global direct reclaim can go to the next
- * zone and tends to have no problems. Global kswapd is for
- * zone balancing and it needs to scan a minimum amount. When
- * reclaiming for a memcg, a priority drop can cause high
- * latencies, so it's better to scan a minimum amount there as
- * well.
- */
- if (current_is_kswapd() && zone->all_unreclaimable)
- force_scan = true;
- if (!global_reclaim(sc))
- force_scan = true;
-
- /* If we have no swap space, do not bother scanning anon pages. */
- if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
+ /* If we have no swap space, do not bother scanning anon folios. */
+ if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
scan_balance = SCAN_FILE;
goto out;
}
@@ -1807,106 +2541,65 @@ static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
* using the memory controller's swap limit feature would be
* too expensive.
*/
- if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
+ if (cgroup_reclaim(sc) && !swappiness) {
scan_balance = SCAN_FILE;
goto out;
}
+ /* Proactive reclaim initiated by userspace for anonymous memory only */
+ if (swappiness == SWAPPINESS_ANON_ONLY) {
+ WARN_ON_ONCE(!sc->proactive);
+ scan_balance = SCAN_ANON;
+ goto out;
+ }
+
/*
* Do not apply any pressure balancing cleverness when the
* system is close to OOM, scan both anon and file equally
* (unless the swappiness setting disagrees with swapping).
*/
- if (!sc->priority && vmscan_swappiness(sc)) {
+ if (!sc->priority && swappiness) {
scan_balance = SCAN_EQUAL;
goto out;
}
- anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
- get_lru_size(lruvec, LRU_INACTIVE_ANON);
- file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
- get_lru_size(lruvec, LRU_INACTIVE_FILE);
-
/*
- * If it's foreseeable that reclaiming the file cache won't be
- * enough to get the zone back into a desirable shape, we have
- * to swap. Better start now and leave the - probably heavily
- * thrashing - remaining file pages alone.
+ * If the system is almost out of file pages, force-scan anon.
*/
- if (global_reclaim(sc)) {
- free = zone_page_state(zone, NR_FREE_PAGES);
- if (unlikely(file + free <= high_wmark_pages(zone))) {
- scan_balance = SCAN_ANON;
- goto out;
- }
+ if (sc->file_is_tiny) {
+ scan_balance = SCAN_ANON;
+ goto out;
}
/*
- * There is enough inactive page cache, do not reclaim
- * anything from the anonymous working set right now.
+ * If there is enough inactive page cache, we do not reclaim
+ * anything from the anonymous working right now to make sure
+ * a streaming file access pattern doesn't cause swapping.
*/
- if (!inactive_file_is_low(lruvec)) {
+ if (sc->cache_trim_mode) {
scan_balance = SCAN_FILE;
goto out;
}
scan_balance = SCAN_FRACT;
+ calculate_pressure_balance(sc, swappiness, fraction, &denominator);
- /*
- * With swappiness at 100, anonymous and file have the same priority.
- * This scanning priority is essentially the inverse of IO cost.
- */
- anon_prio = vmscan_swappiness(sc);
- file_prio = 200 - anon_prio;
-
- /*
- * OK, so we have swap space and a fair amount of page cache
- * pages. We use the recently rotated / recently scanned
- * ratios to determine how valuable each cache is.
- *
- * Because workloads change over time (and to avoid overflow)
- * we keep these statistics as a floating average, which ends
- * up weighing recent references more than old ones.
- *
- * anon in [0], file in [1]
- */
- spin_lock_irq(&zone->lru_lock);
- if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
- reclaim_stat->recent_scanned[0] /= 2;
- reclaim_stat->recent_rotated[0] /= 2;
- }
-
- if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
- reclaim_stat->recent_scanned[1] /= 2;
- reclaim_stat->recent_rotated[1] /= 2;
- }
-
- /*
- * The amount of pressure on anon vs file pages is inversely
- * proportional to the fraction of recently scanned pages on
- * each list that were recently referenced and in active use.
- */
- ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
- ap /= reclaim_stat->recent_rotated[0] + 1;
-
- fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
- fp /= reclaim_stat->recent_rotated[1] + 1;
- spin_unlock_irq(&zone->lru_lock);
-
- fraction[0] = ap;
- fraction[1] = fp;
- denominator = ap + fp + 1;
out:
for_each_evictable_lru(lru) {
- int file = is_file_lru(lru);
- unsigned long size;
+ bool file = is_file_lru(lru);
+ unsigned long lruvec_size;
unsigned long scan;
- size = get_lru_size(lruvec, lru);
- scan = size >> sc->priority;
+ lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
+ scan = apply_proportional_protection(memcg, sc, lruvec_size);
+ scan >>= sc->priority;
- if (!scan && force_scan)
- scan = min(size, SWAP_CLUSTER_MAX);
+ /*
+ * If the cgroup's already been deleted, make sure to
+ * scrape out the remaining cache.
+ */
+ if (!scan && !mem_cgroup_online(memcg))
+ scan = min(lruvec_size, SWAP_CLUSTER_MAX);
switch (scan_balance) {
case SCAN_EQUAL:
@@ -1916,8 +2609,14 @@ out:
/*
* Scan types proportional to swappiness and
* their relative recent reclaim efficiency.
+ * Make sure we don't miss the last page on
+ * the offlined memory cgroups because of a
+ * round-off error.
*/
- scan = div64_u64(scan * fraction[file], denominator);
+ scan = mem_cgroup_online(memcg) ?
+ div64_u64(scan * fraction[file], denominator) :
+ DIV64_U64_ROUND_UP(scan * fraction[file],
+ denominator);
break;
case SCAN_FILE:
case SCAN_ANON:
@@ -1929,13 +2628,3145 @@ out:
/* Look ma, no brain */
BUG();
}
+
nr[lru] = scan;
}
}
/*
- * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
+ * Anonymous LRU management is a waste if there is
+ * ultimately no way to reclaim the memory.
+ */
+static bool can_age_anon_pages(struct lruvec *lruvec,
+ struct scan_control *sc)
+{
+ /* Aging the anon LRU is valuable if swap is present: */
+ if (total_swap_pages > 0)
+ return true;
+
+ /* Also valuable if anon pages can be demoted: */
+ return can_demote(lruvec_pgdat(lruvec)->node_id, sc,
+ lruvec_memcg(lruvec));
+}
+
+#ifdef CONFIG_LRU_GEN
+
+#ifdef CONFIG_LRU_GEN_ENABLED
+DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
+#define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
+#else
+DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
+#define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
+#endif
+
+static bool should_walk_mmu(void)
+{
+ return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
+}
+
+static bool should_clear_pmd_young(void)
+{
+ return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
+}
+
+/******************************************************************************
+ * shorthand helpers
+ ******************************************************************************/
+
+#define DEFINE_MAX_SEQ(lruvec) \
+ unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
+
+#define DEFINE_MIN_SEQ(lruvec) \
+ unsigned long min_seq[ANON_AND_FILE] = { \
+ READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
+ READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
+ }
+
+/* Get the min/max evictable type based on swappiness */
+#define min_type(swappiness) (!(swappiness))
+#define max_type(swappiness) ((swappiness) < SWAPPINESS_ANON_ONLY)
+
+#define evictable_min_seq(min_seq, swappiness) \
+ min((min_seq)[min_type(swappiness)], (min_seq)[max_type(swappiness)])
+
+#define for_each_gen_type_zone(gen, type, zone) \
+ for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
+ for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
+ for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
+
+#define for_each_evictable_type(type, swappiness) \
+ for ((type) = min_type(swappiness); (type) <= max_type(swappiness); (type)++)
+
+#define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
+#define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
+
+static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
+{
+ struct pglist_data *pgdat = NODE_DATA(nid);
+
+#ifdef CONFIG_MEMCG
+ if (memcg) {
+ struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
+
+ /* see the comment in mem_cgroup_lruvec() */
+ if (!lruvec->pgdat)
+ lruvec->pgdat = pgdat;
+
+ return lruvec;
+ }
+#endif
+ VM_WARN_ON_ONCE(!mem_cgroup_disabled());
+
+ return &pgdat->__lruvec;
+}
+
+static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
+{
+ struct mem_cgroup *memcg = lruvec_memcg(lruvec);
+ struct pglist_data *pgdat = lruvec_pgdat(lruvec);
+
+ if (!sc->may_swap)
+ return 0;
+
+ if (!can_demote(pgdat->node_id, sc, memcg) &&
+ mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
+ return 0;
+
+ return sc_swappiness(sc, memcg);
+}
+
+static int get_nr_gens(struct lruvec *lruvec, int type)
+{
+ return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
+}
+
+static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
+{
+ int type;
+
+ for (type = 0; type < ANON_AND_FILE; type++) {
+ int n = get_nr_gens(lruvec, type);
+
+ if (n < MIN_NR_GENS || n > MAX_NR_GENS)
+ return false;
+ }
+
+ return true;
+}
+
+/******************************************************************************
+ * Bloom filters
+ ******************************************************************************/
+
+/*
+ * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
+ * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
+ * bits in a bitmap, k is the number of hash functions and n is the number of
+ * inserted items.
+ *
+ * Page table walkers use one of the two filters to reduce their search space.
+ * To get rid of non-leaf entries that no longer have enough leaf entries, the
+ * aging uses the double-buffering technique to flip to the other filter each
+ * time it produces a new generation. For non-leaf entries that have enough
+ * leaf entries, the aging carries them over to the next generation in
+ * walk_pmd_range(); the eviction also report them when walking the rmap
+ * in lru_gen_look_around().
+ *
+ * For future optimizations:
+ * 1. It's not necessary to keep both filters all the time. The spare one can be
+ * freed after the RCU grace period and reallocated if needed again.
+ * 2. And when reallocating, it's worth scaling its size according to the number
+ * of inserted entries in the other filter, to reduce the memory overhead on
+ * small systems and false positives on large systems.
+ * 3. Jenkins' hash function is an alternative to Knuth's.
+ */
+#define BLOOM_FILTER_SHIFT 15
+
+static inline int filter_gen_from_seq(unsigned long seq)
+{
+ return seq % NR_BLOOM_FILTERS;
+}
+
+static void get_item_key(void *item, int *key)
+{
+ u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
+
+ BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
+
+ key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
+ key[1] = hash >> BLOOM_FILTER_SHIFT;
+}
+
+static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
+ void *item)
+{
+ int key[2];
+ unsigned long *filter;
+ int gen = filter_gen_from_seq(seq);
+
+ filter = READ_ONCE(mm_state->filters[gen]);
+ if (!filter)
+ return true;
+
+ get_item_key(item, key);
+
+ return test_bit(key[0], filter) && test_bit(key[1], filter);
+}
+
+static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
+ void *item)
+{
+ int key[2];
+ unsigned long *filter;
+ int gen = filter_gen_from_seq(seq);
+
+ filter = READ_ONCE(mm_state->filters[gen]);
+ if (!filter)
+ return;
+
+ get_item_key(item, key);
+
+ if (!test_bit(key[0], filter))
+ set_bit(key[0], filter);
+ if (!test_bit(key[1], filter))
+ set_bit(key[1], filter);
+}
+
+static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
+{
+ unsigned long *filter;
+ int gen = filter_gen_from_seq(seq);
+
+ filter = mm_state->filters[gen];
+ if (filter) {
+ bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
+ return;
+ }
+
+ filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
+ __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
+ WRITE_ONCE(mm_state->filters[gen], filter);
+}
+
+/******************************************************************************
+ * mm_struct list
+ ******************************************************************************/
+
+#ifdef CONFIG_LRU_GEN_WALKS_MMU
+
+static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
+{
+ static struct lru_gen_mm_list mm_list = {
+ .fifo = LIST_HEAD_INIT(mm_list.fifo),
+ .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
+ };
+
+#ifdef CONFIG_MEMCG
+ if (memcg)
+ return &memcg->mm_list;
+#endif
+ VM_WARN_ON_ONCE(!mem_cgroup_disabled());
+
+ return &mm_list;
+}
+
+static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
+{
+ return &lruvec->mm_state;
+}
+
+static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
+{
+ int key;
+ struct mm_struct *mm;
+ struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
+ struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
+
+ mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
+ key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
+
+ if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
+ return NULL;
+
+ clear_bit(key, &mm->lru_gen.bitmap);
+
+ return mmget_not_zero(mm) ? mm : NULL;
+}
+
+void lru_gen_add_mm(struct mm_struct *mm)
+{
+ int nid;
+ struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
+ struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
+
+ VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
+#ifdef CONFIG_MEMCG
+ VM_WARN_ON_ONCE(mm->lru_gen.memcg);
+ mm->lru_gen.memcg = memcg;
+#endif
+ spin_lock(&mm_list->lock);
+
+ for_each_node_state(nid, N_MEMORY) {
+ struct lruvec *lruvec = get_lruvec(memcg, nid);
+ struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
+
+ /* the first addition since the last iteration */
+ if (mm_state->tail == &mm_list->fifo)
+ mm_state->tail = &mm->lru_gen.list;
+ }
+
+ list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
+
+ spin_unlock(&mm_list->lock);
+}
+
+void lru_gen_del_mm(struct mm_struct *mm)
+{
+ int nid;
+ struct lru_gen_mm_list *mm_list;
+ struct mem_cgroup *memcg = NULL;
+
+ if (list_empty(&mm->lru_gen.list))
+ return;
+
+#ifdef CONFIG_MEMCG
+ memcg = mm->lru_gen.memcg;
+#endif
+ mm_list = get_mm_list(memcg);
+
+ spin_lock(&mm_list->lock);
+
+ for_each_node(nid) {
+ struct lruvec *lruvec = get_lruvec(memcg, nid);
+ struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
+
+ /* where the current iteration continues after */
+ if (mm_state->head == &mm->lru_gen.list)
+ mm_state->head = mm_state->head->prev;
+
+ /* where the last iteration ended before */
+ if (mm_state->tail == &mm->lru_gen.list)
+ mm_state->tail = mm_state->tail->next;
+ }
+
+ list_del_init(&mm->lru_gen.list);
+
+ spin_unlock(&mm_list->lock);
+
+#ifdef CONFIG_MEMCG
+ mem_cgroup_put(mm->lru_gen.memcg);
+ mm->lru_gen.memcg = NULL;
+#endif
+}
+
+#ifdef CONFIG_MEMCG
+void lru_gen_migrate_mm(struct mm_struct *mm)
+{
+ struct mem_cgroup *memcg;
+ struct task_struct *task = rcu_dereference_protected(mm->owner, true);
+
+ VM_WARN_ON_ONCE(task->mm != mm);
+ lockdep_assert_held(&task->alloc_lock);
+
+ /* for mm_update_next_owner() */
+ if (mem_cgroup_disabled())
+ return;
+
+ /* migration can happen before addition */
+ if (!mm->lru_gen.memcg)
+ return;
+
+ rcu_read_lock();
+ memcg = mem_cgroup_from_task(task);
+ rcu_read_unlock();
+ if (memcg == mm->lru_gen.memcg)
+ return;
+
+ VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
+
+ lru_gen_del_mm(mm);
+ lru_gen_add_mm(mm);
+}
+#endif
+
+#else /* !CONFIG_LRU_GEN_WALKS_MMU */
+
+static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
+{
+ return NULL;
+}
+
+static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
+{
+ return NULL;
+}
+
+static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
+{
+ return NULL;
+}
+
+#endif
+
+static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
+{
+ int i;
+ int hist;
+ struct lruvec *lruvec = walk->lruvec;
+ struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
+
+ lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
+
+ hist = lru_hist_from_seq(walk->seq);
+
+ for (i = 0; i < NR_MM_STATS; i++) {
+ WRITE_ONCE(mm_state->stats[hist][i],
+ mm_state->stats[hist][i] + walk->mm_stats[i]);
+ walk->mm_stats[i] = 0;
+ }
+
+ if (NR_HIST_GENS > 1 && last) {
+ hist = lru_hist_from_seq(walk->seq + 1);
+
+ for (i = 0; i < NR_MM_STATS; i++)
+ WRITE_ONCE(mm_state->stats[hist][i], 0);
+ }
+}
+
+static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
+{
+ bool first = false;
+ bool last = false;
+ struct mm_struct *mm = NULL;
+ struct lruvec *lruvec = walk->lruvec;
+ struct mem_cgroup *memcg = lruvec_memcg(lruvec);
+ struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
+ struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
+
+ /*
+ * mm_state->seq is incremented after each iteration of mm_list. There
+ * are three interesting cases for this page table walker:
+ * 1. It tries to start a new iteration with a stale max_seq: there is
+ * nothing left to do.
+ * 2. It started the next iteration: it needs to reset the Bloom filter
+ * so that a fresh set of PTE tables can be recorded.
+ * 3. It ended the current iteration: it needs to reset the mm stats
+ * counters and tell its caller to increment max_seq.
+ */
+ spin_lock(&mm_list->lock);
+
+ VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
+
+ if (walk->seq <= mm_state->seq)
+ goto done;
+
+ if (!mm_state->head)
+ mm_state->head = &mm_list->fifo;
+
+ if (mm_state->head == &mm_list->fifo)
+ first = true;
+
+ do {
+ mm_state->head = mm_state->head->next;
+ if (mm_state->head == &mm_list->fifo) {
+ WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
+ last = true;
+ break;
+ }
+
+ /* force scan for those added after the last iteration */
+ if (!mm_state->tail || mm_state->tail == mm_state->head) {
+ mm_state->tail = mm_state->head->next;
+ walk->force_scan = true;
+ }
+ } while (!(mm = get_next_mm(walk)));
+done:
+ if (*iter || last)
+ reset_mm_stats(walk, last);
+
+ spin_unlock(&mm_list->lock);
+
+ if (mm && first)
+ reset_bloom_filter(mm_state, walk->seq + 1);
+
+ if (*iter)
+ mmput_async(*iter);
+
+ *iter = mm;
+
+ return last;
+}
+
+static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
+{
+ bool success = false;
+ struct mem_cgroup *memcg = lruvec_memcg(lruvec);
+ struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
+ struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
+
+ spin_lock(&mm_list->lock);
+
+ VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
+
+ if (seq > mm_state->seq) {
+ mm_state->head = NULL;
+ mm_state->tail = NULL;
+ WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
+ success = true;
+ }
+
+ spin_unlock(&mm_list->lock);
+
+ return success;
+}
+
+/******************************************************************************
+ * PID controller
+ ******************************************************************************/
+
+/*
+ * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
+ *
+ * The P term is refaulted/(evicted+protected) from a tier in the generation
+ * currently being evicted; the I term is the exponential moving average of the
+ * P term over the generations previously evicted, using the smoothing factor
+ * 1/2; the D term isn't supported.
+ *
+ * The setpoint (SP) is always the first tier of one type; the process variable
+ * (PV) is either any tier of the other type or any other tier of the same
+ * type.
+ *
+ * The error is the difference between the SP and the PV; the correction is to
+ * turn off protection when SP>PV or turn on protection when SP<PV.
+ *
+ * For future optimizations:
+ * 1. The D term may discount the other two terms over time so that long-lived
+ * generations can resist stale information.
+ */
+struct ctrl_pos {
+ unsigned long refaulted;
+ unsigned long total;
+ int gain;
+};
+
+static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
+ struct ctrl_pos *pos)
+{
+ int i;
+ struct lru_gen_folio *lrugen = &lruvec->lrugen;
+ int hist = lru_hist_from_seq(lrugen->min_seq[type]);
+
+ pos->gain = gain;
+ pos->refaulted = pos->total = 0;
+
+ for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) {
+ pos->refaulted += lrugen->avg_refaulted[type][i] +
+ atomic_long_read(&lrugen->refaulted[hist][type][i]);
+ pos->total += lrugen->avg_total[type][i] +
+ lrugen->protected[hist][type][i] +
+ atomic_long_read(&lrugen->evicted[hist][type][i]);
+ }
+}
+
+static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
+{
+ int hist, tier;
+ struct lru_gen_folio *lrugen = &lruvec->lrugen;
+ bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
+ unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
+
+ lockdep_assert_held(&lruvec->lru_lock);
+
+ if (!carryover && !clear)
+ return;
+
+ hist = lru_hist_from_seq(seq);
+
+ for (tier = 0; tier < MAX_NR_TIERS; tier++) {
+ if (carryover) {
+ unsigned long sum;
+
+ sum = lrugen->avg_refaulted[type][tier] +
+ atomic_long_read(&lrugen->refaulted[hist][type][tier]);
+ WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
+
+ sum = lrugen->avg_total[type][tier] +
+ lrugen->protected[hist][type][tier] +
+ atomic_long_read(&lrugen->evicted[hist][type][tier]);
+ WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
+ }
+
+ if (clear) {
+ atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
+ atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
+ WRITE_ONCE(lrugen->protected[hist][type][tier], 0);
+ }
+ }
+}
+
+static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
+{
+ /*
+ * Return true if the PV has a limited number of refaults or a lower
+ * refaulted/total than the SP.
+ */
+ return pv->refaulted < MIN_LRU_BATCH ||
+ pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
+ (sp->refaulted + 1) * pv->total * pv->gain;
+}
+
+/******************************************************************************
+ * the aging
+ ******************************************************************************/
+
+/* promote pages accessed through page tables */
+static int folio_update_gen(struct folio *folio, int gen)
+{
+ unsigned long new_flags, old_flags = READ_ONCE(folio->flags.f);
+
+ VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
+
+ /* see the comment on LRU_REFS_FLAGS */
+ if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
+ set_mask_bits(&folio->flags.f, LRU_REFS_MASK, BIT(PG_referenced));
+ return -1;
+ }
+
+ do {
+ /* lru_gen_del_folio() has isolated this page? */
+ if (!(old_flags & LRU_GEN_MASK))
+ return -1;
+
+ new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
+ new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset);
+ } while (!try_cmpxchg(&folio->flags.f, &old_flags, new_flags));
+
+ return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
+}
+
+/* protect pages accessed multiple times through file descriptors */
+static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
+{
+ int type = folio_is_file_lru(folio);
+ struct lru_gen_folio *lrugen = &lruvec->lrugen;
+ int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
+ unsigned long new_flags, old_flags = READ_ONCE(folio->flags.f);
+
+ VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
+
+ do {
+ new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
+ /* folio_update_gen() has promoted this page? */
+ if (new_gen >= 0 && new_gen != old_gen)
+ return new_gen;
+
+ new_gen = (old_gen + 1) % MAX_NR_GENS;
+
+ new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
+ new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
+ /* for folio_end_writeback() */
+ if (reclaiming)
+ new_flags |= BIT(PG_reclaim);
+ } while (!try_cmpxchg(&folio->flags.f, &old_flags, new_flags));
+
+ lru_gen_update_size(lruvec, folio, old_gen, new_gen);
+
+ return new_gen;
+}
+
+static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
+ int old_gen, int new_gen)
+{
+ int type = folio_is_file_lru(folio);
+ int zone = folio_zonenum(folio);
+ int delta = folio_nr_pages(folio);
+
+ VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
+ VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
+
+ walk->batched++;
+
+ walk->nr_pages[old_gen][type][zone] -= delta;
+ walk->nr_pages[new_gen][type][zone] += delta;
+}
+
+static void reset_batch_size(struct lru_gen_mm_walk *walk)
+{
+ int gen, type, zone;
+ struct lruvec *lruvec = walk->lruvec;
+ struct lru_gen_folio *lrugen = &lruvec->lrugen;
+
+ walk->batched = 0;
+
+ for_each_gen_type_zone(gen, type, zone) {
+ enum lru_list lru = type * LRU_INACTIVE_FILE;
+ int delta = walk->nr_pages[gen][type][zone];
+
+ if (!delta)
+ continue;
+
+ walk->nr_pages[gen][type][zone] = 0;
+ WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
+ lrugen->nr_pages[gen][type][zone] + delta);
+
+ if (lru_gen_is_active(lruvec, gen))
+ lru += LRU_ACTIVE;
+ __update_lru_size(lruvec, lru, zone, delta);
+ }
+}
+
+static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
+{
+ struct address_space *mapping;
+ struct vm_area_struct *vma = args->vma;
+ struct lru_gen_mm_walk *walk = args->private;
+
+ if (!vma_is_accessible(vma))
+ return true;
+
+ if (is_vm_hugetlb_page(vma))
+ return true;
+
+ if (!vma_has_recency(vma))
+ return true;
+
+ if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
+ return true;
+
+ if (vma == get_gate_vma(vma->vm_mm))
+ return true;
+
+ if (vma_is_anonymous(vma))
+ return !walk->swappiness;
+
+ if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
+ return true;
+
+ mapping = vma->vm_file->f_mapping;
+ if (mapping_unevictable(mapping))
+ return true;
+
+ if (shmem_mapping(mapping))
+ return !walk->swappiness;
+
+ if (walk->swappiness > MAX_SWAPPINESS)
+ return true;
+
+ /* to exclude special mappings like dax, etc. */
+ return !mapping->a_ops->read_folio;
+}
+
+/*
+ * Some userspace memory allocators map many single-page VMAs. Instead of
+ * returning back to the PGD table for each of such VMAs, finish an entire PMD
+ * table to reduce zigzags and improve cache performance.
*/
+static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
+ unsigned long *vm_start, unsigned long *vm_end)
+{
+ unsigned long start = round_up(*vm_end, size);
+ unsigned long end = (start | ~mask) + 1;
+ VMA_ITERATOR(vmi, args->mm, start);
+
+ VM_WARN_ON_ONCE(mask & size);
+ VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
+
+ for_each_vma(vmi, args->vma) {
+ if (end && end <= args->vma->vm_start)
+ return false;
+
+ if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
+ continue;
+
+ *vm_start = max(start, args->vma->vm_start);
+ *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
+
+ return true;
+ }
+
+ return false;
+}
+
+static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
+ struct pglist_data *pgdat)
+{
+ unsigned long pfn = pte_pfn(pte);
+
+ VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
+
+ if (!pte_present(pte) || is_zero_pfn(pfn))
+ return -1;
+
+ if (WARN_ON_ONCE(pte_special(pte)))
+ return -1;
+
+ if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
+ return -1;
+
+ if (WARN_ON_ONCE(!pfn_valid(pfn)))
+ return -1;
+
+ if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
+ return -1;
+
+ return pfn;
+}
+
+static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
+ struct pglist_data *pgdat)
+{
+ unsigned long pfn = pmd_pfn(pmd);
+
+ VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
+
+ if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
+ return -1;
+
+ if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
+ return -1;
+
+ if (WARN_ON_ONCE(!pfn_valid(pfn)))
+ return -1;
+
+ if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
+ return -1;
+
+ return pfn;
+}
+
+static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
+ struct pglist_data *pgdat)
+{
+ struct folio *folio = pfn_folio(pfn);
+
+ if (folio_lru_gen(folio) < 0)
+ return NULL;
+
+ if (folio_nid(folio) != pgdat->node_id)
+ return NULL;
+
+ if (folio_memcg(folio) != memcg)
+ return NULL;
+
+ return folio;
+}
+
+static bool suitable_to_scan(int total, int young)
+{
+ int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
+
+ /* suitable if the average number of young PTEs per cacheline is >=1 */
+ return young * n >= total;
+}
+
+static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio,
+ int new_gen, bool dirty)
+{
+ int old_gen;
+
+ if (!folio)
+ return;
+
+ if (dirty && !folio_test_dirty(folio) &&
+ !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
+ !folio_test_swapcache(folio)))
+ folio_mark_dirty(folio);
+
+ if (walk) {
+ old_gen = folio_update_gen(folio, new_gen);
+ if (old_gen >= 0 && old_gen != new_gen)
+ update_batch_size(walk, folio, old_gen, new_gen);
+ } else if (lru_gen_set_refs(folio)) {
+ old_gen = folio_lru_gen(folio);
+ if (old_gen >= 0 && old_gen != new_gen)
+ folio_activate(folio);
+ }
+}
+
+static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
+ struct mm_walk *args)
+{
+ int i;
+ bool dirty;
+ pte_t *pte;
+ spinlock_t *ptl;
+ unsigned long addr;
+ int total = 0;
+ int young = 0;
+ struct folio *last = NULL;
+ struct lru_gen_mm_walk *walk = args->private;
+ struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
+ struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
+ DEFINE_MAX_SEQ(walk->lruvec);
+ int gen = lru_gen_from_seq(max_seq);
+ pmd_t pmdval;
+
+ pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl);
+ if (!pte)
+ return false;
+
+ if (!spin_trylock(ptl)) {
+ pte_unmap(pte);
+ return true;
+ }
+
+ if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
+ pte_unmap_unlock(pte, ptl);
+ return false;
+ }
+
+ arch_enter_lazy_mmu_mode();
+restart:
+ for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
+ unsigned long pfn;
+ struct folio *folio;
+ pte_t ptent = ptep_get(pte + i);
+
+ total++;
+ walk->mm_stats[MM_LEAF_TOTAL]++;
+
+ pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
+ if (pfn == -1)
+ continue;
+
+ folio = get_pfn_folio(pfn, memcg, pgdat);
+ if (!folio)
+ continue;
+
+ if (!ptep_clear_young_notify(args->vma, addr, pte + i))
+ continue;
+
+ if (last != folio) {
+ walk_update_folio(walk, last, gen, dirty);
+
+ last = folio;
+ dirty = false;
+ }
+
+ if (pte_dirty(ptent))
+ dirty = true;
+
+ young++;
+ walk->mm_stats[MM_LEAF_YOUNG]++;
+ }
+
+ walk_update_folio(walk, last, gen, dirty);
+ last = NULL;
+
+ if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
+ goto restart;
+
+ arch_leave_lazy_mmu_mode();
+ pte_unmap_unlock(pte, ptl);
+
+ return suitable_to_scan(total, young);
+}
+
+static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
+ struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
+{
+ int i;
+ bool dirty;
+ pmd_t *pmd;
+ spinlock_t *ptl;
+ struct folio *last = NULL;
+ struct lru_gen_mm_walk *walk = args->private;
+ struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
+ struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
+ DEFINE_MAX_SEQ(walk->lruvec);
+ int gen = lru_gen_from_seq(max_seq);
+
+ VM_WARN_ON_ONCE(pud_leaf(*pud));
+
+ /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
+ if (*first == -1) {
+ *first = addr;
+ bitmap_zero(bitmap, MIN_LRU_BATCH);
+ return;
+ }
+
+ i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
+ if (i && i <= MIN_LRU_BATCH) {
+ __set_bit(i - 1, bitmap);
+ return;
+ }
+
+ pmd = pmd_offset(pud, *first);
+
+ ptl = pmd_lockptr(args->mm, pmd);
+ if (!spin_trylock(ptl))
+ goto done;
+
+ arch_enter_lazy_mmu_mode();
+
+ do {
+ unsigned long pfn;
+ struct folio *folio;
+
+ /* don't round down the first address */
+ addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
+
+ if (!pmd_present(pmd[i]))
+ goto next;
+
+ if (!pmd_trans_huge(pmd[i])) {
+ if (!walk->force_scan && should_clear_pmd_young() &&
+ !mm_has_notifiers(args->mm))
+ pmdp_test_and_clear_young(vma, addr, pmd + i);
+ goto next;
+ }
+
+ pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
+ if (pfn == -1)
+ goto next;
+
+ folio = get_pfn_folio(pfn, memcg, pgdat);
+ if (!folio)
+ goto next;
+
+ if (!pmdp_clear_young_notify(vma, addr, pmd + i))
+ goto next;
+
+ if (last != folio) {
+ walk_update_folio(walk, last, gen, dirty);
+
+ last = folio;
+ dirty = false;
+ }
+
+ if (pmd_dirty(pmd[i]))
+ dirty = true;
+
+ walk->mm_stats[MM_LEAF_YOUNG]++;
+next:
+ i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
+ } while (i <= MIN_LRU_BATCH);
+
+ walk_update_folio(walk, last, gen, dirty);
+
+ arch_leave_lazy_mmu_mode();
+ spin_unlock(ptl);
+done:
+ *first = -1;
+}
+
+static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
+ struct mm_walk *args)
+{
+ int i;
+ pmd_t *pmd;
+ unsigned long next;
+ unsigned long addr;
+ struct vm_area_struct *vma;
+ DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
+ unsigned long first = -1;
+ struct lru_gen_mm_walk *walk = args->private;
+ struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
+
+ VM_WARN_ON_ONCE(pud_leaf(*pud));
+
+ /*
+ * Finish an entire PMD in two passes: the first only reaches to PTE
+ * tables to avoid taking the PMD lock; the second, if necessary, takes
+ * the PMD lock to clear the accessed bit in PMD entries.
+ */
+ pmd = pmd_offset(pud, start & PUD_MASK);
+restart:
+ /* walk_pte_range() may call get_next_vma() */
+ vma = args->vma;
+ for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
+ pmd_t val = pmdp_get_lockless(pmd + i);
+
+ next = pmd_addr_end(addr, end);
+
+ if (!pmd_present(val) || is_huge_zero_pmd(val)) {
+ walk->mm_stats[MM_LEAF_TOTAL]++;
+ continue;
+ }
+
+ if (pmd_trans_huge(val)) {
+ struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
+ unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
+
+ walk->mm_stats[MM_LEAF_TOTAL]++;
+
+ if (pfn != -1)
+ walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
+ continue;
+ }
+
+ if (!walk->force_scan && should_clear_pmd_young() &&
+ !mm_has_notifiers(args->mm)) {
+ if (!pmd_young(val))
+ continue;
+
+ walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
+ }
+
+ if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
+ continue;
+
+ walk->mm_stats[MM_NONLEAF_FOUND]++;
+
+ if (!walk_pte_range(&val, addr, next, args))
+ continue;
+
+ walk->mm_stats[MM_NONLEAF_ADDED]++;
+
+ /* carry over to the next generation */
+ update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
+ }
+
+ walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
+
+ if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
+ goto restart;
+}
+
+static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
+ struct mm_walk *args)
+{
+ int i;
+ pud_t *pud;
+ unsigned long addr;
+ unsigned long next;
+ struct lru_gen_mm_walk *walk = args->private;
+
+ VM_WARN_ON_ONCE(p4d_leaf(*p4d));
+
+ pud = pud_offset(p4d, start & P4D_MASK);
+restart:
+ for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
+ pud_t val = pudp_get(pud + i);
+
+ next = pud_addr_end(addr, end);
+
+ if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
+ continue;
+
+ walk_pmd_range(&val, addr, next, args);
+
+ if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
+ end = (addr | ~PUD_MASK) + 1;
+ goto done;
+ }
+ }
+
+ if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
+ goto restart;
+
+ end = round_up(end, P4D_SIZE);
+done:
+ if (!end || !args->vma)
+ return 1;
+
+ walk->next_addr = max(end, args->vma->vm_start);
+
+ return -EAGAIN;
+}
+
+static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
+{
+ static const struct mm_walk_ops mm_walk_ops = {
+ .test_walk = should_skip_vma,
+ .p4d_entry = walk_pud_range,
+ .walk_lock = PGWALK_RDLOCK,
+ };
+ int err;
+ struct lruvec *lruvec = walk->lruvec;
+
+ walk->next_addr = FIRST_USER_ADDRESS;
+
+ do {
+ DEFINE_MAX_SEQ(lruvec);
+
+ err = -EBUSY;
+
+ /* another thread might have called inc_max_seq() */
+ if (walk->seq != max_seq)
+ break;
+
+ /* the caller might be holding the lock for write */
+ if (mmap_read_trylock(mm)) {
+ err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
+
+ mmap_read_unlock(mm);
+ }
+
+ if (walk->batched) {
+ spin_lock_irq(&lruvec->lru_lock);
+ reset_batch_size(walk);
+ spin_unlock_irq(&lruvec->lru_lock);
+ }
+
+ cond_resched();
+ } while (err == -EAGAIN);
+}
+
+static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
+{
+ struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
+
+ if (pgdat && current_is_kswapd()) {
+ VM_WARN_ON_ONCE(walk);
+
+ walk = &pgdat->mm_walk;
+ } else if (!walk && force_alloc) {
+ VM_WARN_ON_ONCE(current_is_kswapd());
+
+ walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
+ }
+
+ current->reclaim_state->mm_walk = walk;
+
+ return walk;
+}
+
+static void clear_mm_walk(void)
+{
+ struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
+
+ VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
+ VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
+
+ current->reclaim_state->mm_walk = NULL;
+
+ if (!current_is_kswapd())
+ kfree(walk);
+}
+
+static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness)
+{
+ int zone;
+ int remaining = MAX_LRU_BATCH;
+ struct lru_gen_folio *lrugen = &lruvec->lrugen;
+ int hist = lru_hist_from_seq(lrugen->min_seq[type]);
+ int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
+
+ /* For file type, skip the check if swappiness is anon only */
+ if (type && (swappiness == SWAPPINESS_ANON_ONLY))
+ goto done;
+
+ /* For anon type, skip the check if swappiness is zero (file only) */
+ if (!type && !swappiness)
+ goto done;
+
+ /* prevent cold/hot inversion if the type is evictable */
+ for (zone = 0; zone < MAX_NR_ZONES; zone++) {
+ struct list_head *head = &lrugen->folios[old_gen][type][zone];
+
+ while (!list_empty(head)) {
+ struct folio *folio = lru_to_folio(head);
+ int refs = folio_lru_refs(folio);
+ bool workingset = folio_test_workingset(folio);
+
+ VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
+ VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
+ VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
+ VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
+
+ new_gen = folio_inc_gen(lruvec, folio, false);
+ list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
+
+ /* don't count the workingset being lazily promoted */
+ if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
+ int tier = lru_tier_from_refs(refs, workingset);
+ int delta = folio_nr_pages(folio);
+
+ WRITE_ONCE(lrugen->protected[hist][type][tier],
+ lrugen->protected[hist][type][tier] + delta);
+ }
+
+ if (!--remaining)
+ return false;
+ }
+ }
+done:
+ reset_ctrl_pos(lruvec, type, true);
+ WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
+
+ return true;
+}
+
+static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness)
+{
+ int gen, type, zone;
+ bool success = false;
+ bool seq_inc_flag = false;
+ struct lru_gen_folio *lrugen = &lruvec->lrugen;
+ DEFINE_MIN_SEQ(lruvec);
+
+ VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
+
+ /* find the oldest populated generation */
+ for_each_evictable_type(type, swappiness) {
+ while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
+ gen = lru_gen_from_seq(min_seq[type]);
+
+ for (zone = 0; zone < MAX_NR_ZONES; zone++) {
+ if (!list_empty(&lrugen->folios[gen][type][zone]))
+ goto next;
+ }
+
+ min_seq[type]++;
+ seq_inc_flag = true;
+ }
+next:
+ ;
+ }
+
+ /*
+ * If min_seq[type] of both anonymous and file is not increased,
+ * we can directly return false to avoid unnecessary checking
+ * overhead later.
+ */
+ if (!seq_inc_flag)
+ return success;
+
+ /* see the comment on lru_gen_folio */
+ if (swappiness && swappiness <= MAX_SWAPPINESS) {
+ unsigned long seq = lrugen->max_seq - MIN_NR_GENS;
+
+ if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq)
+ min_seq[LRU_GEN_ANON] = seq;
+ else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq)
+ min_seq[LRU_GEN_FILE] = seq;
+ }
+
+ for_each_evictable_type(type, swappiness) {
+ if (min_seq[type] <= lrugen->min_seq[type])
+ continue;
+
+ reset_ctrl_pos(lruvec, type, true);
+ WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
+ success = true;
+ }
+
+ return success;
+}
+
+static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness)
+{
+ bool success;
+ int prev, next;
+ int type, zone;
+ struct lru_gen_folio *lrugen = &lruvec->lrugen;
+restart:
+ if (seq < READ_ONCE(lrugen->max_seq))
+ return false;
+
+ spin_lock_irq(&lruvec->lru_lock);
+
+ VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
+
+ success = seq == lrugen->max_seq;
+ if (!success)
+ goto unlock;
+
+ for (type = 0; type < ANON_AND_FILE; type++) {
+ if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
+ continue;
+
+ if (inc_min_seq(lruvec, type, swappiness))
+ continue;
+
+ spin_unlock_irq(&lruvec->lru_lock);
+ cond_resched();
+ goto restart;
+ }
+
+ /*
+ * Update the active/inactive LRU sizes for compatibility. Both sides of
+ * the current max_seq need to be covered, since max_seq+1 can overlap
+ * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
+ * overlap, cold/hot inversion happens.
+ */
+ prev = lru_gen_from_seq(lrugen->max_seq - 1);
+ next = lru_gen_from_seq(lrugen->max_seq + 1);
+
+ for (type = 0; type < ANON_AND_FILE; type++) {
+ for (zone = 0; zone < MAX_NR_ZONES; zone++) {
+ enum lru_list lru = type * LRU_INACTIVE_FILE;
+ long delta = lrugen->nr_pages[prev][type][zone] -
+ lrugen->nr_pages[next][type][zone];
+
+ if (!delta)
+ continue;
+
+ __update_lru_size(lruvec, lru, zone, delta);
+ __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
+ }
+ }
+
+ for (type = 0; type < ANON_AND_FILE; type++)
+ reset_ctrl_pos(lruvec, type, false);
+
+ WRITE_ONCE(lrugen->timestamps[next], jiffies);
+ /* make sure preceding modifications appear */
+ smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
+unlock:
+ spin_unlock_irq(&lruvec->lru_lock);
+
+ return success;
+}
+
+static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
+ int swappiness, bool force_scan)
+{
+ bool success;
+ struct lru_gen_mm_walk *walk;
+ struct mm_struct *mm = NULL;
+ struct lru_gen_folio *lrugen = &lruvec->lrugen;
+ struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
+
+ VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
+
+ if (!mm_state)
+ return inc_max_seq(lruvec, seq, swappiness);
+
+ /* see the comment in iterate_mm_list() */
+ if (seq <= READ_ONCE(mm_state->seq))
+ return false;
+
+ /*
+ * If the hardware doesn't automatically set the accessed bit, fallback
+ * to lru_gen_look_around(), which only clears the accessed bit in a
+ * handful of PTEs. Spreading the work out over a period of time usually
+ * is less efficient, but it avoids bursty page faults.
+ */
+ if (!should_walk_mmu()) {
+ success = iterate_mm_list_nowalk(lruvec, seq);
+ goto done;
+ }
+
+ walk = set_mm_walk(NULL, true);
+ if (!walk) {
+ success = iterate_mm_list_nowalk(lruvec, seq);
+ goto done;
+ }
+
+ walk->lruvec = lruvec;
+ walk->seq = seq;
+ walk->swappiness = swappiness;
+ walk->force_scan = force_scan;
+
+ do {
+ success = iterate_mm_list(walk, &mm);
+ if (mm)
+ walk_mm(mm, walk);
+ } while (mm);
+done:
+ if (success) {
+ success = inc_max_seq(lruvec, seq, swappiness);
+ WARN_ON_ONCE(!success);
+ }
+
+ return success;
+}
+
+/******************************************************************************
+ * working set protection
+ ******************************************************************************/
+
+static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
+{
+ int priority;
+ unsigned long reclaimable;
+
+ if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
+ return;
+ /*
+ * Determine the initial priority based on
+ * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
+ * where reclaimed_to_scanned_ratio = inactive / total.
+ */
+ reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
+ if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
+ reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
+
+ /* round down reclaimable and round up sc->nr_to_reclaim */
+ priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
+
+ /*
+ * The estimation is based on LRU pages only, so cap it to prevent
+ * overshoots of shrinker objects by large margins.
+ */
+ sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
+}
+
+static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
+{
+ int gen, type, zone;
+ unsigned long total = 0;
+ int swappiness = get_swappiness(lruvec, sc);
+ struct lru_gen_folio *lrugen = &lruvec->lrugen;
+ struct mem_cgroup *memcg = lruvec_memcg(lruvec);
+ DEFINE_MAX_SEQ(lruvec);
+ DEFINE_MIN_SEQ(lruvec);
+
+ for_each_evictable_type(type, swappiness) {
+ unsigned long seq;
+
+ for (seq = min_seq[type]; seq <= max_seq; seq++) {
+ gen = lru_gen_from_seq(seq);
+
+ for (zone = 0; zone < MAX_NR_ZONES; zone++)
+ total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
+ }
+ }
+
+ /* whether the size is big enough to be helpful */
+ return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
+}
+
+static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
+ unsigned long min_ttl)
+{
+ int gen;
+ unsigned long birth;
+ int swappiness = get_swappiness(lruvec, sc);
+ struct mem_cgroup *memcg = lruvec_memcg(lruvec);
+ DEFINE_MIN_SEQ(lruvec);
+
+ if (mem_cgroup_below_min(NULL, memcg))
+ return false;
+
+ if (!lruvec_is_sizable(lruvec, sc))
+ return false;
+
+ gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness));
+ birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
+
+ return time_is_before_jiffies(birth + min_ttl);
+}
+
+/* to protect the working set of the last N jiffies */
+static unsigned long lru_gen_min_ttl __read_mostly;
+
+static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
+{
+ struct mem_cgroup *memcg;
+ unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
+ bool reclaimable = !min_ttl;
+
+ VM_WARN_ON_ONCE(!current_is_kswapd());
+
+ set_initial_priority(pgdat, sc);
+
+ memcg = mem_cgroup_iter(NULL, NULL, NULL);
+ do {
+ struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
+
+ mem_cgroup_calculate_protection(NULL, memcg);
+
+ if (!reclaimable)
+ reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
+ } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
+
+ /*
+ * The main goal is to OOM kill if every generation from all memcgs is
+ * younger than min_ttl. However, another possibility is all memcgs are
+ * either too small or below min.
+ */
+ if (!reclaimable && mutex_trylock(&oom_lock)) {
+ struct oom_control oc = {
+ .gfp_mask = sc->gfp_mask,
+ };
+
+ out_of_memory(&oc);
+
+ mutex_unlock(&oom_lock);
+ }
+}
+
+/******************************************************************************
+ * rmap/PT walk feedback
+ ******************************************************************************/
+
+/*
+ * This function exploits spatial locality when shrink_folio_list() walks the
+ * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
+ * the scan was done cacheline efficiently, it adds the PMD entry pointing to
+ * the PTE table to the Bloom filter. This forms a feedback loop between the
+ * eviction and the aging.
+ */
+bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
+{
+ int i;
+ bool dirty;
+ unsigned long start;
+ unsigned long end;
+ struct lru_gen_mm_walk *walk;
+ struct folio *last = NULL;
+ int young = 1;
+ pte_t *pte = pvmw->pte;
+ unsigned long addr = pvmw->address;
+ struct vm_area_struct *vma = pvmw->vma;
+ struct folio *folio = pfn_folio(pvmw->pfn);
+ struct mem_cgroup *memcg = folio_memcg(folio);
+ struct pglist_data *pgdat = folio_pgdat(folio);
+ struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
+ struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
+ DEFINE_MAX_SEQ(lruvec);
+ int gen = lru_gen_from_seq(max_seq);
+
+ lockdep_assert_held(pvmw->ptl);
+ VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
+
+ if (!ptep_clear_young_notify(vma, addr, pte))
+ return false;
+
+ if (spin_is_contended(pvmw->ptl))
+ return true;
+
+ /* exclude special VMAs containing anon pages from COW */
+ if (vma->vm_flags & VM_SPECIAL)
+ return true;
+
+ /* avoid taking the LRU lock under the PTL when possible */
+ walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
+
+ start = max(addr & PMD_MASK, vma->vm_start);
+ end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
+
+ if (end - start == PAGE_SIZE)
+ return true;
+
+ if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
+ if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
+ end = start + MIN_LRU_BATCH * PAGE_SIZE;
+ else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
+ start = end - MIN_LRU_BATCH * PAGE_SIZE;
+ else {
+ start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
+ end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
+ }
+ }
+
+ arch_enter_lazy_mmu_mode();
+
+ pte -= (addr - start) / PAGE_SIZE;
+
+ for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
+ unsigned long pfn;
+ pte_t ptent = ptep_get(pte + i);
+
+ pfn = get_pte_pfn(ptent, vma, addr, pgdat);
+ if (pfn == -1)
+ continue;
+
+ folio = get_pfn_folio(pfn, memcg, pgdat);
+ if (!folio)
+ continue;
+
+ if (!ptep_clear_young_notify(vma, addr, pte + i))
+ continue;
+
+ if (last != folio) {
+ walk_update_folio(walk, last, gen, dirty);
+
+ last = folio;
+ dirty = false;
+ }
+
+ if (pte_dirty(ptent))
+ dirty = true;
+
+ young++;
+ }
+
+ walk_update_folio(walk, last, gen, dirty);
+
+ arch_leave_lazy_mmu_mode();
+
+ /* feedback from rmap walkers to page table walkers */
+ if (mm_state && suitable_to_scan(i, young))
+ update_bloom_filter(mm_state, max_seq, pvmw->pmd);
+
+ return true;
+}
+
+/******************************************************************************
+ * memcg LRU
+ ******************************************************************************/
+
+/* see the comment on MEMCG_NR_GENS */
+enum {
+ MEMCG_LRU_NOP,
+ MEMCG_LRU_HEAD,
+ MEMCG_LRU_TAIL,
+ MEMCG_LRU_OLD,
+ MEMCG_LRU_YOUNG,
+};
+
+static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
+{
+ int seg;
+ int old, new;
+ unsigned long flags;
+ int bin = get_random_u32_below(MEMCG_NR_BINS);
+ struct pglist_data *pgdat = lruvec_pgdat(lruvec);
+
+ spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
+
+ VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
+
+ seg = 0;
+ new = old = lruvec->lrugen.gen;
+
+ /* see the comment on MEMCG_NR_GENS */
+ if (op == MEMCG_LRU_HEAD)
+ seg = MEMCG_LRU_HEAD;
+ else if (op == MEMCG_LRU_TAIL)
+ seg = MEMCG_LRU_TAIL;
+ else if (op == MEMCG_LRU_OLD)
+ new = get_memcg_gen(pgdat->memcg_lru.seq);
+ else if (op == MEMCG_LRU_YOUNG)
+ new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
+ else
+ VM_WARN_ON_ONCE(true);
+
+ WRITE_ONCE(lruvec->lrugen.seg, seg);
+ WRITE_ONCE(lruvec->lrugen.gen, new);
+
+ hlist_nulls_del_rcu(&lruvec->lrugen.list);
+
+ if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
+ hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
+ else
+ hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
+
+ pgdat->memcg_lru.nr_memcgs[old]--;
+ pgdat->memcg_lru.nr_memcgs[new]++;
+
+ if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
+ WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
+
+ spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
+}
+
+#ifdef CONFIG_MEMCG
+
+void lru_gen_online_memcg(struct mem_cgroup *memcg)
+{
+ int gen;
+ int nid;
+ int bin = get_random_u32_below(MEMCG_NR_BINS);
+
+ for_each_node(nid) {
+ struct pglist_data *pgdat = NODE_DATA(nid);
+ struct lruvec *lruvec = get_lruvec(memcg, nid);
+
+ spin_lock_irq(&pgdat->memcg_lru.lock);
+
+ VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
+
+ gen = get_memcg_gen(pgdat->memcg_lru.seq);
+
+ lruvec->lrugen.gen = gen;
+
+ hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
+ pgdat->memcg_lru.nr_memcgs[gen]++;
+
+ spin_unlock_irq(&pgdat->memcg_lru.lock);
+ }
+}
+
+void lru_gen_offline_memcg(struct mem_cgroup *memcg)
+{
+ int nid;
+
+ for_each_node(nid) {
+ struct lruvec *lruvec = get_lruvec(memcg, nid);
+
+ lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
+ }
+}
+
+void lru_gen_release_memcg(struct mem_cgroup *memcg)
+{
+ int gen;
+ int nid;
+
+ for_each_node(nid) {
+ struct pglist_data *pgdat = NODE_DATA(nid);
+ struct lruvec *lruvec = get_lruvec(memcg, nid);
+
+ spin_lock_irq(&pgdat->memcg_lru.lock);
+
+ if (hlist_nulls_unhashed(&lruvec->lrugen.list))
+ goto unlock;
+
+ gen = lruvec->lrugen.gen;
+
+ hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
+ pgdat->memcg_lru.nr_memcgs[gen]--;
+
+ if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
+ WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
+unlock:
+ spin_unlock_irq(&pgdat->memcg_lru.lock);
+ }
+}
+
+void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
+{
+ struct lruvec *lruvec = get_lruvec(memcg, nid);
+
+ /* see the comment on MEMCG_NR_GENS */
+ if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
+ lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
+}
+
+#endif /* CONFIG_MEMCG */
+
+/******************************************************************************
+ * the eviction
+ ******************************************************************************/
+
+static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
+ int tier_idx)
+{
+ bool success;
+ bool dirty, writeback;
+ int gen = folio_lru_gen(folio);
+ int type = folio_is_file_lru(folio);
+ int zone = folio_zonenum(folio);
+ int delta = folio_nr_pages(folio);
+ int refs = folio_lru_refs(folio);
+ bool workingset = folio_test_workingset(folio);
+ int tier = lru_tier_from_refs(refs, workingset);
+ struct lru_gen_folio *lrugen = &lruvec->lrugen;
+
+ VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
+
+ /* unevictable */
+ if (!folio_evictable(folio)) {
+ success = lru_gen_del_folio(lruvec, folio, true);
+ VM_WARN_ON_ONCE_FOLIO(!success, folio);
+ folio_set_unevictable(folio);
+ lruvec_add_folio(lruvec, folio);
+ __count_vm_events(UNEVICTABLE_PGCULLED, delta);
+ return true;
+ }
+
+ /* promoted */
+ if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
+ list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
+ return true;
+ }
+
+ /* protected */
+ if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) {
+ gen = folio_inc_gen(lruvec, folio, false);
+ list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
+
+ /* don't count the workingset being lazily promoted */
+ if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
+ int hist = lru_hist_from_seq(lrugen->min_seq[type]);
+
+ WRITE_ONCE(lrugen->protected[hist][type][tier],
+ lrugen->protected[hist][type][tier] + delta);
+ }
+ return true;
+ }
+
+ /* ineligible */
+ if (zone > sc->reclaim_idx) {
+ gen = folio_inc_gen(lruvec, folio, false);
+ list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
+ return true;
+ }
+
+ dirty = folio_test_dirty(folio);
+ writeback = folio_test_writeback(folio);
+ if (type == LRU_GEN_FILE && dirty) {
+ sc->nr.file_taken += delta;
+ if (!writeback)
+ sc->nr.unqueued_dirty += delta;
+ }
+
+ /* waiting for writeback */
+ if (writeback || (type == LRU_GEN_FILE && dirty)) {
+ gen = folio_inc_gen(lruvec, folio, true);
+ list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
+ return true;
+ }
+
+ return false;
+}
+
+static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
+{
+ bool success;
+
+ /* swap constrained */
+ if (!(sc->gfp_mask & __GFP_IO) &&
+ (folio_test_dirty(folio) ||
+ (folio_test_anon(folio) && !folio_test_swapcache(folio))))
+ return false;
+
+ /* raced with release_pages() */
+ if (!folio_try_get(folio))
+ return false;
+
+ /* raced with another isolation */
+ if (!folio_test_clear_lru(folio)) {
+ folio_put(folio);
+ return false;
+ }
+
+ /* see the comment on LRU_REFS_FLAGS */
+ if (!folio_test_referenced(folio))
+ set_mask_bits(&folio->flags.f, LRU_REFS_MASK, 0);
+
+ /* for shrink_folio_list() */
+ folio_clear_reclaim(folio);
+
+ success = lru_gen_del_folio(lruvec, folio, true);
+ VM_WARN_ON_ONCE_FOLIO(!success, folio);
+
+ return true;
+}
+
+static int scan_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
+ struct scan_control *sc, int type, int tier,
+ struct list_head *list)
+{
+ int i;
+ int gen;
+ enum vm_event_item item;
+ int sorted = 0;
+ int scanned = 0;
+ int isolated = 0;
+ int skipped = 0;
+ int remaining = min(nr_to_scan, MAX_LRU_BATCH);
+ struct lru_gen_folio *lrugen = &lruvec->lrugen;
+ struct mem_cgroup *memcg = lruvec_memcg(lruvec);
+
+ VM_WARN_ON_ONCE(!list_empty(list));
+
+ if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
+ return 0;
+
+ gen = lru_gen_from_seq(lrugen->min_seq[type]);
+
+ for (i = MAX_NR_ZONES; i > 0; i--) {
+ LIST_HEAD(moved);
+ int skipped_zone = 0;
+ int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
+ struct list_head *head = &lrugen->folios[gen][type][zone];
+
+ while (!list_empty(head)) {
+ struct folio *folio = lru_to_folio(head);
+ int delta = folio_nr_pages(folio);
+
+ VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
+ VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
+ VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
+ VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
+
+ scanned += delta;
+
+ if (sort_folio(lruvec, folio, sc, tier))
+ sorted += delta;
+ else if (isolate_folio(lruvec, folio, sc)) {
+ list_add(&folio->lru, list);
+ isolated += delta;
+ } else {
+ list_move(&folio->lru, &moved);
+ skipped_zone += delta;
+ }
+
+ if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
+ break;
+ }
+
+ if (skipped_zone) {
+ list_splice(&moved, head);
+ __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
+ skipped += skipped_zone;
+ }
+
+ if (!remaining || isolated >= MIN_LRU_BATCH)
+ break;
+ }
+
+ item = PGSCAN_KSWAPD + reclaimer_offset(sc);
+ if (!cgroup_reclaim(sc)) {
+ __count_vm_events(item, isolated);
+ __count_vm_events(PGREFILL, sorted);
+ }
+ count_memcg_events(memcg, item, isolated);
+ count_memcg_events(memcg, PGREFILL, sorted);
+ __count_vm_events(PGSCAN_ANON + type, isolated);
+ trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
+ scanned, skipped, isolated,
+ type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
+ if (type == LRU_GEN_FILE)
+ sc->nr.file_taken += isolated;
+ /*
+ * There might not be eligible folios due to reclaim_idx. Check the
+ * remaining to prevent livelock if it's not making progress.
+ */
+ return isolated || !remaining ? scanned : 0;
+}
+
+static int get_tier_idx(struct lruvec *lruvec, int type)
+{
+ int tier;
+ struct ctrl_pos sp, pv;
+
+ /*
+ * To leave a margin for fluctuations, use a larger gain factor (2:3).
+ * This value is chosen because any other tier would have at least twice
+ * as many refaults as the first tier.
+ */
+ read_ctrl_pos(lruvec, type, 0, 2, &sp);
+ for (tier = 1; tier < MAX_NR_TIERS; tier++) {
+ read_ctrl_pos(lruvec, type, tier, 3, &pv);
+ if (!positive_ctrl_err(&sp, &pv))
+ break;
+ }
+
+ return tier - 1;
+}
+
+static int get_type_to_scan(struct lruvec *lruvec, int swappiness)
+{
+ struct ctrl_pos sp, pv;
+
+ if (swappiness <= MIN_SWAPPINESS + 1)
+ return LRU_GEN_FILE;
+
+ if (swappiness >= MAX_SWAPPINESS)
+ return LRU_GEN_ANON;
+ /*
+ * Compare the sum of all tiers of anon with that of file to determine
+ * which type to scan.
+ */
+ read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp);
+ read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv);
+
+ return positive_ctrl_err(&sp, &pv);
+}
+
+static int isolate_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
+ struct scan_control *sc, int swappiness,
+ int *type_scanned, struct list_head *list)
+{
+ int i;
+ int type = get_type_to_scan(lruvec, swappiness);
+
+ for_each_evictable_type(i, swappiness) {
+ int scanned;
+ int tier = get_tier_idx(lruvec, type);
+
+ *type_scanned = type;
+
+ scanned = scan_folios(nr_to_scan, lruvec, sc, type, tier, list);
+ if (scanned)
+ return scanned;
+
+ type = !type;
+ }
+
+ return 0;
+}
+
+static int evict_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
+ struct scan_control *sc, int swappiness)
+{
+ int type;
+ int scanned;
+ int reclaimed;
+ LIST_HEAD(list);
+ LIST_HEAD(clean);
+ struct folio *folio;
+ struct folio *next;
+ enum vm_event_item item;
+ struct reclaim_stat stat;
+ struct lru_gen_mm_walk *walk;
+ bool skip_retry = false;
+ struct lru_gen_folio *lrugen = &lruvec->lrugen;
+ struct mem_cgroup *memcg = lruvec_memcg(lruvec);
+ struct pglist_data *pgdat = lruvec_pgdat(lruvec);
+
+ spin_lock_irq(&lruvec->lru_lock);
+
+ scanned = isolate_folios(nr_to_scan, lruvec, sc, swappiness, &type, &list);
+
+ scanned += try_to_inc_min_seq(lruvec, swappiness);
+
+ if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq)
+ scanned = 0;
+
+ spin_unlock_irq(&lruvec->lru_lock);
+
+ if (list_empty(&list))
+ return scanned;
+retry:
+ reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false, memcg);
+ sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
+ sc->nr_reclaimed += reclaimed;
+ trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
+ scanned, reclaimed, &stat, sc->priority,
+ type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
+
+ list_for_each_entry_safe_reverse(folio, next, &list, lru) {
+ DEFINE_MIN_SEQ(lruvec);
+
+ if (!folio_evictable(folio)) {
+ list_del(&folio->lru);
+ folio_putback_lru(folio);
+ continue;
+ }
+
+ /* retry folios that may have missed folio_rotate_reclaimable() */
+ if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) &&
+ !folio_test_dirty(folio) && !folio_test_writeback(folio)) {
+ list_move(&folio->lru, &clean);
+ continue;
+ }
+
+ /* don't add rejected folios to the oldest generation */
+ if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type])
+ set_mask_bits(&folio->flags.f, LRU_REFS_FLAGS, BIT(PG_active));
+ }
+
+ spin_lock_irq(&lruvec->lru_lock);
+
+ move_folios_to_lru(lruvec, &list);
+
+ walk = current->reclaim_state->mm_walk;
+ if (walk && walk->batched) {
+ walk->lruvec = lruvec;
+ reset_batch_size(walk);
+ }
+
+ mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
+ stat.nr_demoted);
+
+ item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
+ if (!cgroup_reclaim(sc))
+ __count_vm_events(item, reclaimed);
+ count_memcg_events(memcg, item, reclaimed);
+ __count_vm_events(PGSTEAL_ANON + type, reclaimed);
+
+ spin_unlock_irq(&lruvec->lru_lock);
+
+ list_splice_init(&clean, &list);
+
+ if (!list_empty(&list)) {
+ skip_retry = true;
+ goto retry;
+ }
+
+ return scanned;
+}
+
+static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
+ int swappiness, unsigned long *nr_to_scan)
+{
+ int gen, type, zone;
+ unsigned long size = 0;
+ struct lru_gen_folio *lrugen = &lruvec->lrugen;
+ DEFINE_MIN_SEQ(lruvec);
+
+ *nr_to_scan = 0;
+ /* have to run aging, since eviction is not possible anymore */
+ if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq)
+ return true;
+
+ for_each_evictable_type(type, swappiness) {
+ unsigned long seq;
+
+ for (seq = min_seq[type]; seq <= max_seq; seq++) {
+ gen = lru_gen_from_seq(seq);
+
+ for (zone = 0; zone < MAX_NR_ZONES; zone++)
+ size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
+ }
+ }
+
+ *nr_to_scan = size;
+ /* better to run aging even though eviction is still possible */
+ return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq;
+}
+
+/*
+ * For future optimizations:
+ * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
+ * reclaim.
+ */
+static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
+{
+ bool success;
+ unsigned long nr_to_scan;
+ struct mem_cgroup *memcg = lruvec_memcg(lruvec);
+ DEFINE_MAX_SEQ(lruvec);
+
+ if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
+ return -1;
+
+ success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan);
+
+ /* try to scrape all its memory if this memcg was deleted */
+ if (nr_to_scan && !mem_cgroup_online(memcg))
+ return nr_to_scan;
+
+ nr_to_scan = apply_proportional_protection(memcg, sc, nr_to_scan);
+
+ /* try to get away with not aging at the default priority */
+ if (!success || sc->priority == DEF_PRIORITY)
+ return nr_to_scan >> sc->priority;
+
+ /* stop scanning this lruvec as it's low on cold folios */
+ return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0;
+}
+
+static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
+{
+ int i;
+ enum zone_watermarks mark;
+
+ /* don't abort memcg reclaim to ensure fairness */
+ if (!root_reclaim(sc))
+ return false;
+
+ if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
+ return true;
+
+ /* check the order to exclude compaction-induced reclaim */
+ if (!current_is_kswapd() || sc->order)
+ return false;
+
+ mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
+ WMARK_PROMO : WMARK_HIGH;
+
+ for (i = 0; i <= sc->reclaim_idx; i++) {
+ struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
+ unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
+
+ if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
+ return false;
+ }
+
+ /* kswapd should abort if all eligible zones are safe */
+ return true;
+}
+
+static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
+{
+ long nr_to_scan;
+ unsigned long scanned = 0;
+ int swappiness = get_swappiness(lruvec, sc);
+
+ while (true) {
+ int delta;
+
+ nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
+ if (nr_to_scan <= 0)
+ break;
+
+ delta = evict_folios(nr_to_scan, lruvec, sc, swappiness);
+ if (!delta)
+ break;
+
+ scanned += delta;
+ if (scanned >= nr_to_scan)
+ break;
+
+ if (should_abort_scan(lruvec, sc))
+ break;
+
+ cond_resched();
+ }
+
+ /*
+ * If too many file cache in the coldest generation can't be evicted
+ * due to being dirty, wake up the flusher.
+ */
+ if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken)
+ wakeup_flusher_threads(WB_REASON_VMSCAN);
+
+ /* whether this lruvec should be rotated */
+ return nr_to_scan < 0;
+}
+
+static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
+{
+ bool success;
+ unsigned long scanned = sc->nr_scanned;
+ unsigned long reclaimed = sc->nr_reclaimed;
+ struct mem_cgroup *memcg = lruvec_memcg(lruvec);
+ struct pglist_data *pgdat = lruvec_pgdat(lruvec);
+
+ /* lru_gen_age_node() called mem_cgroup_calculate_protection() */
+ if (mem_cgroup_below_min(NULL, memcg))
+ return MEMCG_LRU_YOUNG;
+
+ if (mem_cgroup_below_low(NULL, memcg)) {
+ /* see the comment on MEMCG_NR_GENS */
+ if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
+ return MEMCG_LRU_TAIL;
+
+ memcg_memory_event(memcg, MEMCG_LOW);
+ }
+
+ success = try_to_shrink_lruvec(lruvec, sc);
+
+ shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
+
+ if (!sc->proactive)
+ vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
+ sc->nr_reclaimed - reclaimed);
+
+ flush_reclaim_state(sc);
+
+ if (success && mem_cgroup_online(memcg))
+ return MEMCG_LRU_YOUNG;
+
+ if (!success && lruvec_is_sizable(lruvec, sc))
+ return 0;
+
+ /* one retry if offlined or too small */
+ return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
+ MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
+}
+
+static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
+{
+ int op;
+ int gen;
+ int bin;
+ int first_bin;
+ struct lruvec *lruvec;
+ struct lru_gen_folio *lrugen;
+ struct mem_cgroup *memcg;
+ struct hlist_nulls_node *pos;
+
+ gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
+ bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
+restart:
+ op = 0;
+ memcg = NULL;
+
+ rcu_read_lock();
+
+ hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
+ if (op) {
+ lru_gen_rotate_memcg(lruvec, op);
+ op = 0;
+ }
+
+ mem_cgroup_put(memcg);
+ memcg = NULL;
+
+ if (gen != READ_ONCE(lrugen->gen))
+ continue;
+
+ lruvec = container_of(lrugen, struct lruvec, lrugen);
+ memcg = lruvec_memcg(lruvec);
+
+ if (!mem_cgroup_tryget(memcg)) {
+ lru_gen_release_memcg(memcg);
+ memcg = NULL;
+ continue;
+ }
+
+ rcu_read_unlock();
+
+ op = shrink_one(lruvec, sc);
+
+ rcu_read_lock();
+
+ if (should_abort_scan(lruvec, sc))
+ break;
+ }
+
+ rcu_read_unlock();
+
+ if (op)
+ lru_gen_rotate_memcg(lruvec, op);
+
+ mem_cgroup_put(memcg);
+
+ if (!is_a_nulls(pos))
+ return;
+
+ /* restart if raced with lru_gen_rotate_memcg() */
+ if (gen != get_nulls_value(pos))
+ goto restart;
+
+ /* try the rest of the bins of the current generation */
+ bin = get_memcg_bin(bin + 1);
+ if (bin != first_bin)
+ goto restart;
+}
+
+static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
+{
+ struct blk_plug plug;
+
+ VM_WARN_ON_ONCE(root_reclaim(sc));
+ VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
+
+ lru_add_drain();
+
+ blk_start_plug(&plug);
+
+ set_mm_walk(NULL, sc->proactive);
+
+ if (try_to_shrink_lruvec(lruvec, sc))
+ lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
+
+ clear_mm_walk();
+
+ blk_finish_plug(&plug);
+}
+
+static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
+{
+ struct blk_plug plug;
+ unsigned long reclaimed = sc->nr_reclaimed;
+
+ VM_WARN_ON_ONCE(!root_reclaim(sc));
+
+ /*
+ * Unmapped clean folios are already prioritized. Scanning for more of
+ * them is likely futile and can cause high reclaim latency when there
+ * is a large number of memcgs.
+ */
+ if (!sc->may_writepage || !sc->may_unmap)
+ goto done;
+
+ lru_add_drain();
+
+ blk_start_plug(&plug);
+
+ set_mm_walk(pgdat, sc->proactive);
+
+ set_initial_priority(pgdat, sc);
+
+ if (current_is_kswapd())
+ sc->nr_reclaimed = 0;
+
+ if (mem_cgroup_disabled())
+ shrink_one(&pgdat->__lruvec, sc);
+ else
+ shrink_many(pgdat, sc);
+
+ if (current_is_kswapd())
+ sc->nr_reclaimed += reclaimed;
+
+ clear_mm_walk();
+
+ blk_finish_plug(&plug);
+done:
+ if (sc->nr_reclaimed > reclaimed)
+ atomic_set(&pgdat->kswapd_failures, 0);
+}
+
+/******************************************************************************
+ * state change
+ ******************************************************************************/
+
+static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
+{
+ struct lru_gen_folio *lrugen = &lruvec->lrugen;
+
+ if (lrugen->enabled) {
+ enum lru_list lru;
+
+ for_each_evictable_lru(lru) {
+ if (!list_empty(&lruvec->lists[lru]))
+ return false;
+ }
+ } else {
+ int gen, type, zone;
+
+ for_each_gen_type_zone(gen, type, zone) {
+ if (!list_empty(&lrugen->folios[gen][type][zone]))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static bool fill_evictable(struct lruvec *lruvec)
+{
+ enum lru_list lru;
+ int remaining = MAX_LRU_BATCH;
+
+ for_each_evictable_lru(lru) {
+ int type = is_file_lru(lru);
+ bool active = is_active_lru(lru);
+ struct list_head *head = &lruvec->lists[lru];
+
+ while (!list_empty(head)) {
+ bool success;
+ struct folio *folio = lru_to_folio(head);
+
+ VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
+ VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
+ VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
+ VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
+
+ lruvec_del_folio(lruvec, folio);
+ success = lru_gen_add_folio(lruvec, folio, false);
+ VM_WARN_ON_ONCE(!success);
+
+ if (!--remaining)
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static bool drain_evictable(struct lruvec *lruvec)
+{
+ int gen, type, zone;
+ int remaining = MAX_LRU_BATCH;
+
+ for_each_gen_type_zone(gen, type, zone) {
+ struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
+
+ while (!list_empty(head)) {
+ bool success;
+ struct folio *folio = lru_to_folio(head);
+
+ VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
+ VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
+ VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
+ VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
+
+ success = lru_gen_del_folio(lruvec, folio, false);
+ VM_WARN_ON_ONCE(!success);
+ lruvec_add_folio(lruvec, folio);
+
+ if (!--remaining)
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static void lru_gen_change_state(bool enabled)
+{
+ static DEFINE_MUTEX(state_mutex);
+
+ struct mem_cgroup *memcg;
+
+ cgroup_lock();
+ cpus_read_lock();
+ get_online_mems();
+ mutex_lock(&state_mutex);
+
+ if (enabled == lru_gen_enabled())
+ goto unlock;
+
+ if (enabled)
+ static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
+ else
+ static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
+
+ memcg = mem_cgroup_iter(NULL, NULL, NULL);
+ do {
+ int nid;
+
+ for_each_node(nid) {
+ struct lruvec *lruvec = get_lruvec(memcg, nid);
+
+ spin_lock_irq(&lruvec->lru_lock);
+
+ VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
+ VM_WARN_ON_ONCE(!state_is_valid(lruvec));
+
+ lruvec->lrugen.enabled = enabled;
+
+ while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
+ spin_unlock_irq(&lruvec->lru_lock);
+ cond_resched();
+ spin_lock_irq(&lruvec->lru_lock);
+ }
+
+ spin_unlock_irq(&lruvec->lru_lock);
+ }
+
+ cond_resched();
+ } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
+unlock:
+ mutex_unlock(&state_mutex);
+ put_online_mems();
+ cpus_read_unlock();
+ cgroup_unlock();
+}
+
+/******************************************************************************
+ * sysfs interface
+ ******************************************************************************/
+
+static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
+{
+ return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
+}
+
+/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
+static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
+ const char *buf, size_t len)
+{
+ unsigned int msecs;
+
+ if (kstrtouint(buf, 0, &msecs))
+ return -EINVAL;
+
+ WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
+
+ return len;
+}
+
+static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
+
+static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
+{
+ unsigned int caps = 0;
+
+ if (get_cap(LRU_GEN_CORE))
+ caps |= BIT(LRU_GEN_CORE);
+
+ if (should_walk_mmu())
+ caps |= BIT(LRU_GEN_MM_WALK);
+
+ if (should_clear_pmd_young())
+ caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
+
+ return sysfs_emit(buf, "0x%04x\n", caps);
+}
+
+/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
+static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
+ const char *buf, size_t len)
+{
+ int i;
+ unsigned int caps;
+
+ if (tolower(*buf) == 'n')
+ caps = 0;
+ else if (tolower(*buf) == 'y')
+ caps = -1;
+ else if (kstrtouint(buf, 0, &caps))
+ return -EINVAL;
+
+ for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
+ bool enabled = caps & BIT(i);
+
+ if (i == LRU_GEN_CORE)
+ lru_gen_change_state(enabled);
+ else if (enabled)
+ static_branch_enable(&lru_gen_caps[i]);
+ else
+ static_branch_disable(&lru_gen_caps[i]);
+ }
+
+ return len;
+}
+
+static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
+
+static struct attribute *lru_gen_attrs[] = {
+ &lru_gen_min_ttl_attr.attr,
+ &lru_gen_enabled_attr.attr,
+ NULL
+};
+
+static const struct attribute_group lru_gen_attr_group = {
+ .name = "lru_gen",
+ .attrs = lru_gen_attrs,
+};
+
+/******************************************************************************
+ * debugfs interface
+ ******************************************************************************/
+
+static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
+{
+ struct mem_cgroup *memcg;
+ loff_t nr_to_skip = *pos;
+
+ m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
+ if (!m->private)
+ return ERR_PTR(-ENOMEM);
+
+ memcg = mem_cgroup_iter(NULL, NULL, NULL);
+ do {
+ int nid;
+
+ for_each_node_state(nid, N_MEMORY) {
+ if (!nr_to_skip--)
+ return get_lruvec(memcg, nid);
+ }
+ } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
+
+ return NULL;
+}
+
+static void lru_gen_seq_stop(struct seq_file *m, void *v)
+{
+ if (!IS_ERR_OR_NULL(v))
+ mem_cgroup_iter_break(NULL, lruvec_memcg(v));
+
+ kvfree(m->private);
+ m->private = NULL;
+}
+
+static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
+{
+ int nid = lruvec_pgdat(v)->node_id;
+ struct mem_cgroup *memcg = lruvec_memcg(v);
+
+ ++*pos;
+
+ nid = next_memory_node(nid);
+ if (nid == MAX_NUMNODES) {
+ memcg = mem_cgroup_iter(NULL, memcg, NULL);
+ if (!memcg)
+ return NULL;
+
+ nid = first_memory_node;
+ }
+
+ return get_lruvec(memcg, nid);
+}
+
+static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
+ unsigned long max_seq, unsigned long *min_seq,
+ unsigned long seq)
+{
+ int i;
+ int type, tier;
+ int hist = lru_hist_from_seq(seq);
+ struct lru_gen_folio *lrugen = &lruvec->lrugen;
+ struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
+
+ for (tier = 0; tier < MAX_NR_TIERS; tier++) {
+ seq_printf(m, " %10d", tier);
+ for (type = 0; type < ANON_AND_FILE; type++) {
+ const char *s = "xxx";
+ unsigned long n[3] = {};
+
+ if (seq == max_seq) {
+ s = "RTx";
+ n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
+ n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
+ } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
+ s = "rep";
+ n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
+ n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
+ n[2] = READ_ONCE(lrugen->protected[hist][type][tier]);
+ }
+
+ for (i = 0; i < 3; i++)
+ seq_printf(m, " %10lu%c", n[i], s[i]);
+ }
+ seq_putc(m, '\n');
+ }
+
+ if (!mm_state)
+ return;
+
+ seq_puts(m, " ");
+ for (i = 0; i < NR_MM_STATS; i++) {
+ const char *s = "xxxx";
+ unsigned long n = 0;
+
+ if (seq == max_seq && NR_HIST_GENS == 1) {
+ s = "TYFA";
+ n = READ_ONCE(mm_state->stats[hist][i]);
+ } else if (seq != max_seq && NR_HIST_GENS > 1) {
+ s = "tyfa";
+ n = READ_ONCE(mm_state->stats[hist][i]);
+ }
+
+ seq_printf(m, " %10lu%c", n, s[i]);
+ }
+ seq_putc(m, '\n');
+}
+
+/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
+static int lru_gen_seq_show(struct seq_file *m, void *v)
+{
+ unsigned long seq;
+ bool full = debugfs_get_aux_num(m->file);
+ struct lruvec *lruvec = v;
+ struct lru_gen_folio *lrugen = &lruvec->lrugen;
+ int nid = lruvec_pgdat(lruvec)->node_id;
+ struct mem_cgroup *memcg = lruvec_memcg(lruvec);
+ DEFINE_MAX_SEQ(lruvec);
+ DEFINE_MIN_SEQ(lruvec);
+
+ if (nid == first_memory_node) {
+ const char *path = memcg ? m->private : "";
+
+#ifdef CONFIG_MEMCG
+ if (memcg)
+ cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
+#endif
+ seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
+ }
+
+ seq_printf(m, " node %5d\n", nid);
+
+ if (!full)
+ seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2);
+ else if (max_seq >= MAX_NR_GENS)
+ seq = max_seq - MAX_NR_GENS + 1;
+ else
+ seq = 0;
+
+ for (; seq <= max_seq; seq++) {
+ int type, zone;
+ int gen = lru_gen_from_seq(seq);
+ unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
+
+ seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
+
+ for (type = 0; type < ANON_AND_FILE; type++) {
+ unsigned long size = 0;
+ char mark = full && seq < min_seq[type] ? 'x' : ' ';
+
+ for (zone = 0; zone < MAX_NR_ZONES; zone++)
+ size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
+
+ seq_printf(m, " %10lu%c", size, mark);
+ }
+
+ seq_putc(m, '\n');
+
+ if (full)
+ lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
+ }
+
+ return 0;
+}
+
+static const struct seq_operations lru_gen_seq_ops = {
+ .start = lru_gen_seq_start,
+ .stop = lru_gen_seq_stop,
+ .next = lru_gen_seq_next,
+ .show = lru_gen_seq_show,
+};
+
+static int run_aging(struct lruvec *lruvec, unsigned long seq,
+ int swappiness, bool force_scan)
+{
+ DEFINE_MAX_SEQ(lruvec);
+
+ if (seq > max_seq)
+ return -EINVAL;
+
+ return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST;
+}
+
+static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
+ int swappiness, unsigned long nr_to_reclaim)
+{
+ DEFINE_MAX_SEQ(lruvec);
+
+ if (seq + MIN_NR_GENS > max_seq)
+ return -EINVAL;
+
+ sc->nr_reclaimed = 0;
+
+ while (!signal_pending(current)) {
+ DEFINE_MIN_SEQ(lruvec);
+
+ if (seq < evictable_min_seq(min_seq, swappiness))
+ return 0;
+
+ if (sc->nr_reclaimed >= nr_to_reclaim)
+ return 0;
+
+ if (!evict_folios(nr_to_reclaim - sc->nr_reclaimed, lruvec, sc,
+ swappiness))
+ return 0;
+
+ cond_resched();
+ }
+
+ return -EINTR;
+}
+
+static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
+ struct scan_control *sc, int swappiness, unsigned long opt)
+{
+ struct lruvec *lruvec;
+ int err = -EINVAL;
+ struct mem_cgroup *memcg = NULL;
+
+ if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
+ return -EINVAL;
+
+ if (!mem_cgroup_disabled()) {
+ rcu_read_lock();
+
+ memcg = mem_cgroup_from_id(memcg_id);
+ if (!mem_cgroup_tryget(memcg))
+ memcg = NULL;
+
+ rcu_read_unlock();
+
+ if (!memcg)
+ return -EINVAL;
+ }
+
+ if (memcg_id != mem_cgroup_id(memcg))
+ goto done;
+
+ sc->target_mem_cgroup = memcg;
+ lruvec = get_lruvec(memcg, nid);
+
+ if (swappiness < MIN_SWAPPINESS)
+ swappiness = get_swappiness(lruvec, sc);
+ else if (swappiness > SWAPPINESS_ANON_ONLY)
+ goto done;
+
+ switch (cmd) {
+ case '+':
+ err = run_aging(lruvec, seq, swappiness, opt);
+ break;
+ case '-':
+ err = run_eviction(lruvec, seq, sc, swappiness, opt);
+ break;
+ }
+done:
+ mem_cgroup_put(memcg);
+
+ return err;
+}
+
+/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
+static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
+ size_t len, loff_t *pos)
+{
+ void *buf;
+ char *cur, *next;
+ unsigned int flags;
+ struct blk_plug plug;
+ int err = -EINVAL;
+ struct scan_control sc = {
+ .may_writepage = true,
+ .may_unmap = true,
+ .may_swap = true,
+ .reclaim_idx = MAX_NR_ZONES - 1,
+ .gfp_mask = GFP_KERNEL,
+ .proactive = true,
+ };
+
+ buf = kvmalloc(len + 1, GFP_KERNEL);
+ if (!buf)
+ return -ENOMEM;
+
+ if (copy_from_user(buf, src, len)) {
+ kvfree(buf);
+ return -EFAULT;
+ }
+
+ set_task_reclaim_state(current, &sc.reclaim_state);
+ flags = memalloc_noreclaim_save();
+ blk_start_plug(&plug);
+ if (!set_mm_walk(NULL, true)) {
+ err = -ENOMEM;
+ goto done;
+ }
+
+ next = buf;
+ next[len] = '\0';
+
+ while ((cur = strsep(&next, ",;\n"))) {
+ int n;
+ int end;
+ char cmd, swap_string[5];
+ unsigned int memcg_id;
+ unsigned int nid;
+ unsigned long seq;
+ unsigned int swappiness;
+ unsigned long opt = -1;
+
+ cur = skip_spaces(cur);
+ if (!*cur)
+ continue;
+
+ n = sscanf(cur, "%c %u %u %lu %n %4s %n %lu %n", &cmd, &memcg_id, &nid,
+ &seq, &end, swap_string, &end, &opt, &end);
+ if (n < 4 || cur[end]) {
+ err = -EINVAL;
+ break;
+ }
+
+ if (n == 4) {
+ swappiness = -1;
+ } else if (!strcmp("max", swap_string)) {
+ /* set by userspace for anonymous memory only */
+ swappiness = SWAPPINESS_ANON_ONLY;
+ } else {
+ err = kstrtouint(swap_string, 0, &swappiness);
+ if (err)
+ break;
+ }
+
+ err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
+ if (err)
+ break;
+ }
+done:
+ clear_mm_walk();
+ blk_finish_plug(&plug);
+ memalloc_noreclaim_restore(flags);
+ set_task_reclaim_state(current, NULL);
+
+ kvfree(buf);
+
+ return err ? : len;
+}
+
+static int lru_gen_seq_open(struct inode *inode, struct file *file)
+{
+ return seq_open(file, &lru_gen_seq_ops);
+}
+
+static const struct file_operations lru_gen_rw_fops = {
+ .open = lru_gen_seq_open,
+ .read = seq_read,
+ .write = lru_gen_seq_write,
+ .llseek = seq_lseek,
+ .release = seq_release,
+};
+
+static const struct file_operations lru_gen_ro_fops = {
+ .open = lru_gen_seq_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = seq_release,
+};
+
+/******************************************************************************
+ * initialization
+ ******************************************************************************/
+
+void lru_gen_init_pgdat(struct pglist_data *pgdat)
+{
+ int i, j;
+
+ spin_lock_init(&pgdat->memcg_lru.lock);
+
+ for (i = 0; i < MEMCG_NR_GENS; i++) {
+ for (j = 0; j < MEMCG_NR_BINS; j++)
+ INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
+ }
+}
+
+void lru_gen_init_lruvec(struct lruvec *lruvec)
+{
+ int i;
+ int gen, type, zone;
+ struct lru_gen_folio *lrugen = &lruvec->lrugen;
+ struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
+
+ lrugen->max_seq = MIN_NR_GENS + 1;
+ lrugen->enabled = lru_gen_enabled();
+
+ for (i = 0; i <= MIN_NR_GENS + 1; i++)
+ lrugen->timestamps[i] = jiffies;
+
+ for_each_gen_type_zone(gen, type, zone)
+ INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
+
+ if (mm_state)
+ mm_state->seq = MIN_NR_GENS;
+}
+
+#ifdef CONFIG_MEMCG
+
+void lru_gen_init_memcg(struct mem_cgroup *memcg)
+{
+ struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
+
+ if (!mm_list)
+ return;
+
+ INIT_LIST_HEAD(&mm_list->fifo);
+ spin_lock_init(&mm_list->lock);
+}
+
+void lru_gen_exit_memcg(struct mem_cgroup *memcg)
+{
+ int i;
+ int nid;
+ struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
+
+ VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
+
+ for_each_node(nid) {
+ struct lruvec *lruvec = get_lruvec(memcg, nid);
+ struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
+
+ VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
+ sizeof(lruvec->lrugen.nr_pages)));
+
+ lruvec->lrugen.list.next = LIST_POISON1;
+
+ if (!mm_state)
+ continue;
+
+ for (i = 0; i < NR_BLOOM_FILTERS; i++) {
+ bitmap_free(mm_state->filters[i]);
+ mm_state->filters[i] = NULL;
+ }
+ }
+}
+
+#endif /* CONFIG_MEMCG */
+
+static int __init init_lru_gen(void)
+{
+ BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
+ BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
+
+ if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
+ pr_err("lru_gen: failed to create sysfs group\n");
+
+ debugfs_create_file_aux_num("lru_gen", 0644, NULL, NULL, false,
+ &lru_gen_rw_fops);
+ debugfs_create_file_aux_num("lru_gen_full", 0444, NULL, NULL, true,
+ &lru_gen_ro_fops);
+
+ return 0;
+};
+late_initcall(init_lru_gen);
+
+#else /* !CONFIG_LRU_GEN */
+
+static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
+{
+ BUILD_BUG();
+}
+
+static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
+{
+ BUILD_BUG();
+}
+
+static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
+{
+ BUILD_BUG();
+}
+
+#endif /* CONFIG_LRU_GEN */
+
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{
unsigned long nr[NR_LRU_LISTS];
@@ -1944,14 +5775,33 @@ static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
enum lru_list lru;
unsigned long nr_reclaimed = 0;
unsigned long nr_to_reclaim = sc->nr_to_reclaim;
+ bool proportional_reclaim;
struct blk_plug plug;
- bool scan_adjusted = false;
+
+ if (lru_gen_enabled() && !root_reclaim(sc)) {
+ lru_gen_shrink_lruvec(lruvec, sc);
+ return;
+ }
get_scan_count(lruvec, sc, nr);
/* Record the original scan target for proportional adjustments later */
memcpy(targets, nr, sizeof(nr));
+ /*
+ * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
+ * event that can occur when there is little memory pressure e.g.
+ * multiple streaming readers/writers. Hence, we do not abort scanning
+ * when the requested number of pages are reclaimed when scanning at
+ * DEF_PRIORITY on the assumption that the fact we are direct
+ * reclaiming implies that kswapd is not keeping up and it is best to
+ * do a batch of work at once. For memcg reclaim one check is made to
+ * abort proportional reclaim if either the file or anon lru has already
+ * dropped to zero at the first pass.
+ */
+ proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
+ sc->priority == DEF_PRIORITY);
+
blk_start_plug(&plug);
while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
nr[LRU_INACTIVE_FILE]) {
@@ -1968,21 +5818,14 @@ static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
}
}
- if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
- continue;
+ cond_resched();
- /*
- * For global direct reclaim, reclaim only the number of pages
- * requested. Less care is taken to scan proportionally as it
- * is more important to minimise direct reclaim stall latency
- * than it is to properly age the LRU lists.
- */
- if (global_reclaim(sc) && !current_is_kswapd())
- break;
+ if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
+ continue;
/*
* For kswapd and memcg, reclaim at least the number of pages
- * requested. Ensure that the anon and file LRUs shrink
+ * requested. Ensure that the anon and file LRUs are scanned
* proportionally what was requested by get_scan_count(). We
* stop reclaiming one LRU and reduce the amount scanning
* proportional to the original scan target.
@@ -1990,6 +5833,15 @@ static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
+ /*
+ * It's just vindictive to attack the larger once the smaller
+ * has gone to zero. And given the way we stop scanning the
+ * smaller below, this makes sure that we only make one nudge
+ * towards proportionality once we've got nr_to_reclaim.
+ */
+ if (!nr_file || !nr_anon)
+ break;
+
if (nr_file > nr_anon) {
unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
targets[LRU_ACTIVE_ANON] + 1;
@@ -2019,8 +5871,6 @@ static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
nr_scanned = targets[lru] - nr[lru];
nr[lru] = targets[lru] * (100 - percentage) / 100;
nr[lru] -= min(nr[lru], nr_scanned);
-
- scan_adjusted = true;
}
blk_finish_plug(&plug);
sc->nr_reclaimed += nr_reclaimed;
@@ -2029,17 +5879,16 @@ static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
* Even if we did not try to evict anon pages at all, we want to
* rebalance the anon lru active/inactive ratio.
*/
- if (inactive_anon_is_low(lruvec))
+ if (can_age_anon_pages(lruvec, sc) &&
+ inactive_is_low(lruvec, LRU_INACTIVE_ANON))
shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
sc, LRU_ACTIVE_ANON);
-
- throttle_vm_writeout(sc->gfp_mask);
}
/* Use reclaim/compaction for costly allocs or under memory pressure */
static bool in_reclaim_compaction(struct scan_control *sc)
{
- if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
+ if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
sc->priority < DEF_PRIORITY - 2))
return true;
@@ -2051,41 +5900,46 @@ static bool in_reclaim_compaction(struct scan_control *sc)
* Reclaim/compaction is used for high-order allocation requests. It reclaims
* order-0 pages before compacting the zone. should_continue_reclaim() returns
* true if more pages should be reclaimed such that when the page allocator
- * calls try_to_compact_zone() that it will have enough free pages to succeed.
+ * calls try_to_compact_pages() that it will have enough free pages to succeed.
* It will give up earlier than that if there is difficulty reclaiming pages.
*/
-static inline bool should_continue_reclaim(struct zone *zone,
+static inline bool should_continue_reclaim(struct pglist_data *pgdat,
unsigned long nr_reclaimed,
- unsigned long nr_scanned,
struct scan_control *sc)
{
unsigned long pages_for_compaction;
unsigned long inactive_lru_pages;
+ int z;
+ struct zone *zone;
/* If not in reclaim/compaction mode, stop */
if (!in_reclaim_compaction(sc))
return false;
- /* Consider stopping depending on scan and reclaim activity */
- if (sc->gfp_mask & __GFP_REPEAT) {
- /*
- * For __GFP_REPEAT allocations, stop reclaiming if the
- * full LRU list has been scanned and we are still failing
- * to reclaim pages. This full LRU scan is potentially
- * expensive but a __GFP_REPEAT caller really wants to succeed
- */
- if (!nr_reclaimed && !nr_scanned)
+ /*
+ * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
+ * number of pages that were scanned. This will return to the caller
+ * with the risk reclaim/compaction and the resulting allocation attempt
+ * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
+ * allocations through requiring that the full LRU list has been scanned
+ * first, by assuming that zero delta of sc->nr_scanned means full LRU
+ * scan, but that approximation was wrong, and there were corner cases
+ * where always a non-zero amount of pages were scanned.
+ */
+ if (!nr_reclaimed)
+ return false;
+
+ /* If compaction would go ahead or the allocation would succeed, stop */
+ for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
+ unsigned long watermark = min_wmark_pages(zone);
+
+ /* Allocation can already succeed, nothing to do */
+ if (zone_watermark_ok(zone, sc->order, watermark,
+ sc->reclaim_idx, 0))
return false;
- } else {
- /*
- * For non-__GFP_REPEAT allocations which can presumably
- * fail without consequence, stop if we failed to reclaim
- * any pages from the last SWAP_CLUSTER_MAX number of
- * pages that were scanned. This will return to the
- * caller faster at the risk reclaim/compaction and
- * the resulting allocation attempt fails
- */
- if (!nr_reclaimed)
+
+ if (compaction_suitable(zone, sc->order, watermark,
+ sc->reclaim_idx))
return false;
}
@@ -2093,107 +5947,265 @@ static inline bool should_continue_reclaim(struct zone *zone,
* If we have not reclaimed enough pages for compaction and the
* inactive lists are large enough, continue reclaiming
*/
- pages_for_compaction = (2UL << sc->order);
- inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
- if (get_nr_swap_pages() > 0)
- inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
- if (sc->nr_reclaimed < pages_for_compaction &&
- inactive_lru_pages > pages_for_compaction)
- return true;
+ pages_for_compaction = compact_gap(sc->order);
+ inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
+ if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
+ inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
- /* If compaction would go ahead or the allocation would succeed, stop */
- switch (compaction_suitable(zone, sc->order)) {
- case COMPACT_PARTIAL:
- case COMPACT_CONTINUE:
- return false;
- default:
- return true;
- }
+ return inactive_lru_pages > pages_for_compaction;
}
-static void shrink_zone(struct zone *zone, struct scan_control *sc)
+static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
{
- unsigned long nr_reclaimed, nr_scanned;
-
- do {
- struct mem_cgroup *root = sc->target_mem_cgroup;
- struct mem_cgroup_reclaim_cookie reclaim = {
- .zone = zone,
- .priority = sc->priority,
- };
- struct mem_cgroup *memcg;
+ struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
+ struct mem_cgroup_reclaim_cookie reclaim = {
+ .pgdat = pgdat,
+ };
+ struct mem_cgroup_reclaim_cookie *partial = &reclaim;
+ struct mem_cgroup *memcg;
- nr_reclaimed = sc->nr_reclaimed;
- nr_scanned = sc->nr_scanned;
+ /*
+ * In most cases, direct reclaimers can do partial walks
+ * through the cgroup tree, using an iterator state that
+ * persists across invocations. This strikes a balance between
+ * fairness and allocation latency.
+ *
+ * For kswapd, reliable forward progress is more important
+ * than a quick return to idle. Always do full walks.
+ */
+ if (current_is_kswapd() || sc->memcg_full_walk)
+ partial = NULL;
- memcg = mem_cgroup_iter(root, NULL, &reclaim);
- do {
- struct lruvec *lruvec;
+ memcg = mem_cgroup_iter(target_memcg, NULL, partial);
+ do {
+ struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
+ unsigned long reclaimed;
+ unsigned long scanned;
- lruvec = mem_cgroup_zone_lruvec(zone, memcg);
+ /*
+ * This loop can become CPU-bound when target memcgs
+ * aren't eligible for reclaim - either because they
+ * don't have any reclaimable pages, or because their
+ * memory is explicitly protected. Avoid soft lockups.
+ */
+ cond_resched();
- shrink_lruvec(lruvec, sc);
+ mem_cgroup_calculate_protection(target_memcg, memcg);
+ if (mem_cgroup_below_min(target_memcg, memcg)) {
/*
- * Direct reclaim and kswapd have to scan all memory
- * cgroups to fulfill the overall scan target for the
- * zone.
- *
- * Limit reclaim, on the other hand, only cares about
- * nr_to_reclaim pages to be reclaimed and it will
- * retry with decreasing priority if one round over the
- * whole hierarchy is not sufficient.
+ * Hard protection.
+ * If there is no reclaimable memory, OOM.
*/
- if (!global_reclaim(sc) &&
- sc->nr_reclaimed >= sc->nr_to_reclaim) {
- mem_cgroup_iter_break(root, memcg);
- break;
+ continue;
+ } else if (mem_cgroup_below_low(target_memcg, memcg)) {
+ /*
+ * Soft protection.
+ * Respect the protection only as long as
+ * there is an unprotected supply
+ * of reclaimable memory from other cgroups.
+ */
+ if (!sc->memcg_low_reclaim) {
+ sc->memcg_low_skipped = 1;
+ continue;
}
- memcg = mem_cgroup_iter(root, memcg, &reclaim);
- } while (memcg);
+ memcg_memory_event(memcg, MEMCG_LOW);
+ }
+
+ reclaimed = sc->nr_reclaimed;
+ scanned = sc->nr_scanned;
+
+ shrink_lruvec(lruvec, sc);
- vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
- sc->nr_scanned - nr_scanned,
- sc->nr_reclaimed - nr_reclaimed);
+ shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
+ sc->priority);
- } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
- sc->nr_scanned - nr_scanned, sc));
+ /* Record the group's reclaim efficiency */
+ if (!sc->proactive)
+ vmpressure(sc->gfp_mask, memcg, false,
+ sc->nr_scanned - scanned,
+ sc->nr_reclaimed - reclaimed);
+
+ /* If partial walks are allowed, bail once goal is reached */
+ if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
+ mem_cgroup_iter_break(target_memcg, memcg);
+ break;
+ }
+ } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
}
-/* Returns true if compaction should go ahead for a high-order request */
+static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
+{
+ unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
+ struct lruvec *target_lruvec;
+ bool reclaimable = false;
+
+ if (lru_gen_enabled() && root_reclaim(sc)) {
+ memset(&sc->nr, 0, sizeof(sc->nr));
+ lru_gen_shrink_node(pgdat, sc);
+ return;
+ }
+
+ target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
+
+again:
+ memset(&sc->nr, 0, sizeof(sc->nr));
+
+ nr_reclaimed = sc->nr_reclaimed;
+ nr_scanned = sc->nr_scanned;
+
+ prepare_scan_control(pgdat, sc);
+
+ shrink_node_memcgs(pgdat, sc);
+
+ flush_reclaim_state(sc);
+
+ nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
+
+ /* Record the subtree's reclaim efficiency */
+ if (!sc->proactive)
+ vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
+ sc->nr_scanned - nr_scanned, nr_node_reclaimed);
+
+ if (nr_node_reclaimed)
+ reclaimable = true;
+
+ if (current_is_kswapd()) {
+ /*
+ * If reclaim is isolating dirty pages under writeback,
+ * it implies that the long-lived page allocation rate
+ * is exceeding the page laundering rate. Either the
+ * global limits are not being effective at throttling
+ * processes due to the page distribution throughout
+ * zones or there is heavy usage of a slow backing
+ * device. The only option is to throttle from reclaim
+ * context which is not ideal as there is no guarantee
+ * the dirtying process is throttled in the same way
+ * balance_dirty_pages() manages.
+ *
+ * Once a node is flagged PGDAT_WRITEBACK, kswapd will
+ * count the number of pages under pages flagged for
+ * immediate reclaim and stall if any are encountered
+ * in the nr_immediate check below.
+ */
+ if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
+ set_bit(PGDAT_WRITEBACK, &pgdat->flags);
+
+ /*
+ * If kswapd scans pages marked for immediate
+ * reclaim and under writeback (nr_immediate), it
+ * implies that pages are cycling through the LRU
+ * faster than they are written so forcibly stall
+ * until some pages complete writeback.
+ */
+ if (sc->nr.immediate)
+ reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
+ }
+
+ /*
+ * Tag a node/memcg as congested if all the dirty pages were marked
+ * for writeback and immediate reclaim (counted in nr.congested).
+ *
+ * Legacy memcg will stall in page writeback so avoid forcibly
+ * stalling in reclaim_throttle().
+ */
+ if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
+ if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
+ set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
+
+ if (current_is_kswapd())
+ set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
+ }
+
+ /*
+ * Stall direct reclaim for IO completions if the lruvec is
+ * node is congested. Allow kswapd to continue until it
+ * starts encountering unqueued dirty pages or cycling through
+ * the LRU too quickly.
+ */
+ if (!current_is_kswapd() && current_may_throttle() &&
+ !sc->hibernation_mode &&
+ (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
+ test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
+ reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
+
+ if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
+ goto again;
+
+ /*
+ * Kswapd gives up on balancing particular nodes after too
+ * many failures to reclaim anything from them and goes to
+ * sleep. On reclaim progress, reset the failure counter. A
+ * successful direct reclaim run will revive a dormant kswapd.
+ */
+ if (reclaimable)
+ atomic_set(&pgdat->kswapd_failures, 0);
+ else if (sc->cache_trim_mode)
+ sc->cache_trim_mode_failed = 1;
+}
+
+/*
+ * Returns true if compaction should go ahead for a costly-order request, or
+ * the allocation would already succeed without compaction. Return false if we
+ * should reclaim first.
+ */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
- unsigned long balance_gap, watermark;
- bool watermark_ok;
+ unsigned long watermark;
- /* Do not consider compaction for orders reclaim is meant to satisfy */
- if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
+ if (!gfp_compaction_allowed(sc->gfp_mask))
return false;
+ /* Allocation can already succeed, nothing to do */
+ if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
+ sc->reclaim_idx, 0))
+ return true;
+
/*
- * Compaction takes time to run and there are potentially other
- * callers using the pages just freed. Continue reclaiming until
- * there is a buffer of free pages available to give compaction
- * a reasonable chance of completing and allocating the page
+ * Direct reclaim usually targets the min watermark, but compaction
+ * takes time to run and there are potentially other callers using the
+ * pages just freed. So target a higher buffer to give compaction a
+ * reasonable chance of completing and allocating the pages.
+ *
+ * Note that we won't actually reclaim the whole buffer in one attempt
+ * as the target watermark in should_continue_reclaim() is lower. But if
+ * we are already above the high+gap watermark, don't reclaim at all.
*/
- balance_gap = min(low_wmark_pages(zone),
- (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
- KSWAPD_ZONE_BALANCE_GAP_RATIO);
- watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
- watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
+ watermark = high_wmark_pages(zone);
+ if (compaction_suitable(zone, sc->order, watermark, sc->reclaim_idx))
+ return true;
+
+ return false;
+}
+static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
+{
/*
- * If compaction is deferred, reclaim up to a point where
- * compaction will have a chance of success when re-enabled
+ * If reclaim is making progress greater than 12% efficiency then
+ * wake all the NOPROGRESS throttled tasks.
*/
- if (compaction_deferred(zone, sc->order))
- return watermark_ok;
+ if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
+ wait_queue_head_t *wqh;
- /* If compaction is not ready to start, keep reclaiming */
- if (!compaction_suitable(zone, sc->order))
- return false;
+ wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
+ if (waitqueue_active(wqh))
+ wake_up(wqh);
+
+ return;
+ }
- return watermark_ok;
+ /*
+ * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
+ * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
+ * under writeback and marked for immediate reclaim at the tail of the
+ * LRU.
+ */
+ if (current_is_kswapd() || cgroup_reclaim(sc))
+ return;
+
+ /* Throttle if making no progress at high prioities. */
+ if (sc->priority == 1 && !sc->nr_reclaimed)
+ reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
}
/*
@@ -2201,67 +6213,66 @@ static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
* try to reclaim pages from zones which will satisfy the caller's allocation
* request.
*
- * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
- * Because:
- * a) The caller may be trying to free *extra* pages to satisfy a higher-order
- * allocation or
- * b) The target zone may be at high_wmark_pages(zone) but the lower zones
- * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
- * zone defense algorithm.
- *
* If a zone is deemed to be full of pinned pages then just give it a light
* scan then give up on it.
- *
- * This function returns true if a zone is being reclaimed for a costly
- * high-order allocation and compaction is ready to begin. This indicates to
- * the caller that it should consider retrying the allocation instead of
- * further reclaim.
*/
-static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
+static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
{
struct zoneref *z;
struct zone *zone;
unsigned long nr_soft_reclaimed;
unsigned long nr_soft_scanned;
- bool aborted_reclaim = false;
+ gfp_t orig_mask;
+ pg_data_t *last_pgdat = NULL;
+ pg_data_t *first_pgdat = NULL;
/*
* If the number of buffer_heads in the machine exceeds the maximum
* allowed level, force direct reclaim to scan the highmem zone as
* highmem pages could be pinning lowmem pages storing buffer_heads
*/
- if (buffer_heads_over_limit)
+ orig_mask = sc->gfp_mask;
+ if (buffer_heads_over_limit) {
sc->gfp_mask |= __GFP_HIGHMEM;
+ sc->reclaim_idx = gfp_zone(sc->gfp_mask);
+ }
for_each_zone_zonelist_nodemask(zone, z, zonelist,
- gfp_zone(sc->gfp_mask), sc->nodemask) {
- if (!populated_zone(zone))
- continue;
+ sc->reclaim_idx, sc->nodemask) {
/*
* Take care memory controller reclaiming has small influence
* to global LRU.
*/
- if (global_reclaim(sc)) {
- if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
+ if (!cgroup_reclaim(sc)) {
+ if (!cpuset_zone_allowed(zone,
+ GFP_KERNEL | __GFP_HARDWALL))
+ continue;
+
+ /*
+ * If we already have plenty of memory free for
+ * compaction in this zone, don't free any more.
+ * Even though compaction is invoked for any
+ * non-zero order, only frequent costly order
+ * reclamation is disruptive enough to become a
+ * noticeable problem, like transparent huge
+ * page allocations.
+ */
+ if (IS_ENABLED(CONFIG_COMPACTION) &&
+ sc->order > PAGE_ALLOC_COSTLY_ORDER &&
+ compaction_ready(zone, sc)) {
+ sc->compaction_ready = true;
continue;
- if (zone->all_unreclaimable &&
- sc->priority != DEF_PRIORITY)
- continue; /* Let kswapd poll it */
- if (IS_ENABLED(CONFIG_COMPACTION)) {
- /*
- * If we already have plenty of memory free for
- * compaction in this zone, don't free any more.
- * Even though compaction is invoked for any
- * non-zero order, only frequent costly order
- * reclamation is disruptive enough to become a
- * noticeable problem, like transparent huge
- * page allocations.
- */
- if (compaction_ready(zone, sc)) {
- aborted_reclaim = true;
- continue;
- }
}
+
+ /*
+ * Shrink each node in the zonelist once. If the
+ * zonelist is ordered by zone (not the default) then a
+ * node may be shrunk multiple times but in that case
+ * the user prefers lower zones being preserved.
+ */
+ if (zone->zone_pgdat == last_pgdat)
+ continue;
+
/*
* This steals pages from memory cgroups over softlimit
* and returns the number of reclaimed pages and
@@ -2269,43 +6280,47 @@ static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
* and balancing, not for a memcg's limit.
*/
nr_soft_scanned = 0;
- nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
- sc->order, sc->gfp_mask,
- &nr_soft_scanned);
+ nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
+ sc->order, sc->gfp_mask,
+ &nr_soft_scanned);
sc->nr_reclaimed += nr_soft_reclaimed;
sc->nr_scanned += nr_soft_scanned;
/* need some check for avoid more shrink_zone() */
}
- shrink_zone(zone, sc);
+ if (!first_pgdat)
+ first_pgdat = zone->zone_pgdat;
+
+ /* See comment about same check for global reclaim above */
+ if (zone->zone_pgdat == last_pgdat)
+ continue;
+ last_pgdat = zone->zone_pgdat;
+ shrink_node(zone->zone_pgdat, sc);
}
- return aborted_reclaim;
-}
+ if (first_pgdat)
+ consider_reclaim_throttle(first_pgdat, sc);
-static bool zone_reclaimable(struct zone *zone)
-{
- return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
+ /*
+ * Restore to original mask to avoid the impact on the caller if we
+ * promoted it to __GFP_HIGHMEM.
+ */
+ sc->gfp_mask = orig_mask;
}
-/* All zones in zonelist are unreclaimable? */
-static bool all_unreclaimable(struct zonelist *zonelist,
- struct scan_control *sc)
+static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
{
- struct zoneref *z;
- struct zone *zone;
+ struct lruvec *target_lruvec;
+ unsigned long refaults;
- for_each_zone_zonelist_nodemask(zone, z, zonelist,
- gfp_zone(sc->gfp_mask), sc->nodemask) {
- if (!populated_zone(zone))
- continue;
- if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
- continue;
- if (!zone->all_unreclaimable)
- return false;
- }
+ if (lru_gen_enabled())
+ return;
- return true;
+ target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
+ refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
+ target_lruvec->refaults[WORKINGSET_ANON] = refaults;
+ refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
+ target_lruvec->refaults[WORKINGSET_FILE] = refaults;
}
/*
@@ -2325,52 +6340,30 @@ static bool all_unreclaimable(struct zonelist *zonelist,
* else, the number of pages reclaimed
*/
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
- struct scan_control *sc,
- struct shrink_control *shrink)
+ struct scan_control *sc)
{
- unsigned long total_scanned = 0;
- struct reclaim_state *reclaim_state = current->reclaim_state;
+ int initial_priority = sc->priority;
+ pg_data_t *last_pgdat;
struct zoneref *z;
struct zone *zone;
- unsigned long writeback_threshold;
- bool aborted_reclaim;
-
+retry:
delayacct_freepages_start();
- if (global_reclaim(sc))
- count_vm_event(ALLOCSTALL);
+ if (!cgroup_reclaim(sc))
+ __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
do {
- vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
- sc->priority);
+ if (!sc->proactive)
+ vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
+ sc->priority);
sc->nr_scanned = 0;
- aborted_reclaim = shrink_zones(zonelist, sc);
-
- /*
- * Don't shrink slabs when reclaiming memory from over limit
- * cgroups but do shrink slab at least once when aborting
- * reclaim for compaction to avoid unevenly scanning file/anon
- * LRU pages over slab pages.
- */
- if (global_reclaim(sc)) {
- unsigned long lru_pages = 0;
- for_each_zone_zonelist(zone, z, zonelist,
- gfp_zone(sc->gfp_mask)) {
- if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
- continue;
+ shrink_zones(zonelist, sc);
- lru_pages += zone_reclaimable_pages(zone);
- }
-
- shrink_slab(shrink, sc->nr_scanned, lru_pages);
- if (reclaim_state) {
- sc->nr_reclaimed += reclaim_state->reclaimed_slab;
- reclaim_state->reclaimed_slab = 0;
- }
- }
- total_scanned += sc->nr_scanned;
if (sc->nr_reclaimed >= sc->nr_to_reclaim)
- goto out;
+ break;
+
+ if (sc->compaction_ready)
+ break;
/*
* If we're getting trouble reclaiming, start doing
@@ -2378,48 +6371,79 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
*/
if (sc->priority < DEF_PRIORITY - 2)
sc->may_writepage = 1;
+ } while (--sc->priority >= 0);
- /*
- * Try to write back as many pages as we just scanned. This
- * tends to cause slow streaming writers to write data to the
- * disk smoothly, at the dirtying rate, which is nice. But
- * that's undesirable in laptop mode, where we *want* lumpy
- * writeout. So in laptop mode, write out the whole world.
- */
- writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
- if (total_scanned > writeback_threshold) {
- wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
- WB_REASON_TRY_TO_FREE_PAGES);
- sc->may_writepage = 1;
+ last_pgdat = NULL;
+ for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
+ sc->nodemask) {
+ if (zone->zone_pgdat == last_pgdat)
+ continue;
+ last_pgdat = zone->zone_pgdat;
+
+ snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
+
+ if (cgroup_reclaim(sc)) {
+ struct lruvec *lruvec;
+
+ lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
+ zone->zone_pgdat);
+ clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
}
- } while (--sc->priority >= 0 && !aborted_reclaim);
+ }
-out:
delayacct_freepages_end();
if (sc->nr_reclaimed)
return sc->nr_reclaimed;
+ /* Aborted reclaim to try compaction? don't OOM, then */
+ if (sc->compaction_ready)
+ return 1;
+
/*
- * As hibernation is going on, kswapd is freezed so that it can't mark
- * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
- * check.
+ * In most cases, direct reclaimers can do partial walks
+ * through the cgroup tree to meet the reclaim goal while
+ * keeping latency low. Since the iterator state is shared
+ * among all direct reclaim invocations (to retain fairness
+ * among cgroups), though, high concurrency can result in
+ * individual threads not seeing enough cgroups to make
+ * meaningful forward progress. Avoid false OOMs in this case.
*/
- if (oom_killer_disabled)
- return 0;
+ if (!sc->memcg_full_walk) {
+ sc->priority = initial_priority;
+ sc->memcg_full_walk = 1;
+ goto retry;
+ }
- /* Aborted reclaim to try compaction? don't OOM, then */
- if (aborted_reclaim)
- return 1;
+ /*
+ * We make inactive:active ratio decisions based on the node's
+ * composition of memory, but a restrictive reclaim_idx or a
+ * memory.low cgroup setting can exempt large amounts of
+ * memory from reclaim. Neither of which are very common, so
+ * instead of doing costly eligibility calculations of the
+ * entire cgroup subtree up front, we assume the estimates are
+ * good, and retry with forcible deactivation if that fails.
+ */
+ if (sc->skipped_deactivate) {
+ sc->priority = initial_priority;
+ sc->force_deactivate = 1;
+ sc->skipped_deactivate = 0;
+ goto retry;
+ }
- /* top priority shrink_zones still had more to do? don't OOM, then */
- if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
- return 1;
+ /* Untapped cgroup reserves? Don't OOM, retry. */
+ if (sc->memcg_low_skipped) {
+ sc->priority = initial_priority;
+ sc->force_deactivate = 0;
+ sc->memcg_low_reclaim = 1;
+ sc->memcg_low_skipped = 0;
+ goto retry;
+ }
return 0;
}
-static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
+static bool allow_direct_reclaim(pg_data_t *pgdat)
{
struct zone *zone;
unsigned long pfmemalloc_reserve = 0;
@@ -2427,18 +6451,28 @@ static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
int i;
bool wmark_ok;
- for (i = 0; i <= ZONE_NORMAL; i++) {
- zone = &pgdat->node_zones[i];
+ if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES)
+ return true;
+
+ for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) {
+ if (!zone_reclaimable_pages(zone) && zone_page_state_snapshot(zone, NR_FREE_PAGES))
+ continue;
+
pfmemalloc_reserve += min_wmark_pages(zone);
- free_pages += zone_page_state(zone, NR_FREE_PAGES);
+ free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
}
+ /* If there are no reserves (unexpected config) then do not throttle */
+ if (!pfmemalloc_reserve)
+ return true;
+
wmark_ok = free_pages > pfmemalloc_reserve / 2;
/* kswapd must be awake if processes are being throttled */
if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
- pgdat->classzone_idx = min(pgdat->classzone_idx,
- (enum zone_type)ZONE_NORMAL);
+ if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
+ WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
+
wake_up_interruptible(&pgdat->kswapd_wait);
}
@@ -2457,9 +6491,9 @@ static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
nodemask_t *nodemask)
{
+ struct zoneref *z;
struct zone *zone;
- int high_zoneidx = gfp_zone(gfp_mask);
- pg_data_t *pgdat;
+ pg_data_t *pgdat = NULL;
/*
* Kernel threads should not be throttled as they may be indirectly
@@ -2478,10 +6512,34 @@ static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
if (fatal_signal_pending(current))
goto out;
- /* Check if the pfmemalloc reserves are ok */
- first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
- pgdat = zone->zone_pgdat;
- if (pfmemalloc_watermark_ok(pgdat))
+ /*
+ * Check if the pfmemalloc reserves are ok by finding the first node
+ * with a usable ZONE_NORMAL or lower zone. The expectation is that
+ * GFP_KERNEL will be required for allocating network buffers when
+ * swapping over the network so ZONE_HIGHMEM is unusable.
+ *
+ * Throttling is based on the first usable node and throttled processes
+ * wait on a queue until kswapd makes progress and wakes them. There
+ * is an affinity then between processes waking up and where reclaim
+ * progress has been made assuming the process wakes on the same node.
+ * More importantly, processes running on remote nodes will not compete
+ * for remote pfmemalloc reserves and processes on different nodes
+ * should make reasonable progress.
+ */
+ for_each_zone_zonelist_nodemask(zone, z, zonelist,
+ gfp_zone(gfp_mask), nodemask) {
+ if (zone_idx(zone) > ZONE_NORMAL)
+ continue;
+
+ /* Throttle based on the first usable node */
+ pgdat = zone->zone_pgdat;
+ if (allow_direct_reclaim(pgdat))
+ goto out;
+ break;
+ }
+
+ /* If no zone was usable by the allocation flags then do not throttle */
+ if (!pgdat)
goto out;
/* Account for the throttling */
@@ -2495,18 +6553,14 @@ static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
* blocked waiting on the same lock. Instead, throttle for up to a
* second before continuing.
*/
- if (!(gfp_mask & __GFP_FS)) {
+ if (!(gfp_mask & __GFP_FS))
wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
- pfmemalloc_watermark_ok(pgdat), HZ);
-
- goto check_pending;
- }
-
- /* Throttle until kswapd wakes the process */
- wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
- pfmemalloc_watermark_ok(pgdat));
+ allow_direct_reclaim(pgdat), HZ);
+ else
+ /* Throttle until kswapd wakes the process */
+ wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
+ allow_direct_reclaim(pgdat));
-check_pending:
if (fatal_signal_pending(current))
return true;
@@ -2519,69 +6573,74 @@ unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
{
unsigned long nr_reclaimed;
struct scan_control sc = {
- .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
- .may_writepage = !laptop_mode,
.nr_to_reclaim = SWAP_CLUSTER_MAX,
- .may_unmap = 1,
- .may_swap = 1,
+ .gfp_mask = current_gfp_context(gfp_mask),
+ .reclaim_idx = gfp_zone(gfp_mask),
.order = order,
- .priority = DEF_PRIORITY,
- .target_mem_cgroup = NULL,
.nodemask = nodemask,
+ .priority = DEF_PRIORITY,
+ .may_writepage = !laptop_mode,
+ .may_unmap = 1,
+ .may_swap = 1,
};
- struct shrink_control shrink = {
- .gfp_mask = sc.gfp_mask,
- };
+
+ /*
+ * scan_control uses s8 fields for order, priority, and reclaim_idx.
+ * Confirm they are large enough for max values.
+ */
+ BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
+ BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
+ BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
/*
* Do not enter reclaim if fatal signal was delivered while throttled.
* 1 is returned so that the page allocator does not OOM kill at this
* point.
*/
- if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
+ if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
return 1;
- trace_mm_vmscan_direct_reclaim_begin(order,
- sc.may_writepage,
- gfp_mask);
+ set_task_reclaim_state(current, &sc.reclaim_state);
+ trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
- nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
+ nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
+ set_task_reclaim_state(current, NULL);
return nr_reclaimed;
}
#ifdef CONFIG_MEMCG
-unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
+/* Only used by soft limit reclaim. Do not reuse for anything else. */
+unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
gfp_t gfp_mask, bool noswap,
- struct zone *zone,
+ pg_data_t *pgdat,
unsigned long *nr_scanned)
{
+ struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
struct scan_control sc = {
- .nr_scanned = 0,
.nr_to_reclaim = SWAP_CLUSTER_MAX,
+ .target_mem_cgroup = memcg,
.may_writepage = !laptop_mode,
.may_unmap = 1,
+ .reclaim_idx = MAX_NR_ZONES - 1,
.may_swap = !noswap,
- .order = 0,
- .priority = 0,
- .target_mem_cgroup = memcg,
};
- struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
+
+ WARN_ON_ONCE(!current->reclaim_state);
sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
- sc.may_writepage,
sc.gfp_mask);
/*
* NOTE: Although we can get the priority field, using it
* here is not a good idea, since it limits the pages we can scan.
- * if we don't reclaim here, the shrink_zone from balance_pgdat
+ * if we don't reclaim here, the shrink_node from balance_pgdat
* will pick up pages from other mem cgroup's as well. We hack
* the priority and make it zero.
*/
@@ -2590,143 +6649,189 @@ unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
*nr_scanned = sc.nr_scanned;
+
return sc.nr_reclaimed;
}
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
+ unsigned long nr_pages,
gfp_t gfp_mask,
- bool noswap)
+ unsigned int reclaim_options,
+ int *swappiness)
{
- struct zonelist *zonelist;
unsigned long nr_reclaimed;
- int nid;
+ unsigned int noreclaim_flag;
struct scan_control sc = {
+ .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
+ .proactive_swappiness = swappiness,
+ .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
+ (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
+ .reclaim_idx = MAX_NR_ZONES - 1,
+ .target_mem_cgroup = memcg,
+ .priority = DEF_PRIORITY,
.may_writepage = !laptop_mode,
.may_unmap = 1,
- .may_swap = !noswap,
- .nr_to_reclaim = SWAP_CLUSTER_MAX,
- .order = 0,
- .priority = DEF_PRIORITY,
- .target_mem_cgroup = memcg,
- .nodemask = NULL, /* we don't care the placement */
- .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
- (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
+ .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
+ .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
};
- struct shrink_control shrink = {
- .gfp_mask = sc.gfp_mask,
- };
-
/*
- * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
- * take care of from where we get pages. So the node where we start the
- * scan does not need to be the current node.
+ * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
+ * equal pressure on all the nodes. This is based on the assumption that
+ * the reclaim does not bail out early.
*/
- nid = mem_cgroup_select_victim_node(memcg);
-
- zonelist = NODE_DATA(nid)->node_zonelists;
+ struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
- trace_mm_vmscan_memcg_reclaim_begin(0,
- sc.may_writepage,
- sc.gfp_mask);
+ set_task_reclaim_state(current, &sc.reclaim_state);
+ trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
+ noreclaim_flag = memalloc_noreclaim_save();
- nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
+ nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
+ memalloc_noreclaim_restore(noreclaim_flag);
trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
+ set_task_reclaim_state(current, NULL);
return nr_reclaimed;
}
+#else
+unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
+ unsigned long nr_pages,
+ gfp_t gfp_mask,
+ unsigned int reclaim_options,
+ int *swappiness)
+{
+ return 0;
+}
#endif
-static void age_active_anon(struct zone *zone, struct scan_control *sc)
+static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
{
struct mem_cgroup *memcg;
+ struct lruvec *lruvec;
- if (!total_swap_pages)
+ if (lru_gen_enabled()) {
+ lru_gen_age_node(pgdat, sc);
return;
+ }
- memcg = mem_cgroup_iter(NULL, NULL, NULL);
- do {
- struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
+ lruvec = mem_cgroup_lruvec(NULL, pgdat);
+ if (!can_age_anon_pages(lruvec, sc))
+ return;
- if (inactive_anon_is_low(lruvec))
- shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
- sc, LRU_ACTIVE_ANON);
+ if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
+ return;
+ memcg = mem_cgroup_iter(NULL, NULL, NULL);
+ do {
+ lruvec = mem_cgroup_lruvec(memcg, pgdat);
+ shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
+ sc, LRU_ACTIVE_ANON);
memcg = mem_cgroup_iter(NULL, memcg, NULL);
} while (memcg);
}
-static bool zone_balanced(struct zone *zone, int order,
- unsigned long balance_gap, int classzone_idx)
+static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
{
- if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
- balance_gap, classzone_idx, 0))
- return false;
+ int i;
+ struct zone *zone;
- if (IS_ENABLED(CONFIG_COMPACTION) && order &&
- !compaction_suitable(zone, order))
- return false;
+ /*
+ * Check for watermark boosts top-down as the higher zones
+ * are more likely to be boosted. Both watermarks and boosts
+ * should not be checked at the same time as reclaim would
+ * start prematurely when there is no boosting and a lower
+ * zone is balanced.
+ */
+ for (i = highest_zoneidx; i >= 0; i--) {
+ zone = pgdat->node_zones + i;
+ if (!managed_zone(zone))
+ continue;
- return true;
+ if (zone->watermark_boost)
+ return true;
+ }
+
+ return false;
}
/*
- * pgdat_balanced() is used when checking if a node is balanced.
- *
- * For order-0, all zones must be balanced!
- *
- * For high-order allocations only zones that meet watermarks and are in a
- * zone allowed by the callers classzone_idx are added to balanced_pages. The
- * total of balanced pages must be at least 25% of the zones allowed by
- * classzone_idx for the node to be considered balanced. Forcing all zones to
- * be balanced for high orders can cause excessive reclaim when there are
- * imbalanced zones.
- * The choice of 25% is due to
- * o a 16M DMA zone that is balanced will not balance a zone on any
- * reasonable sized machine
- * o On all other machines, the top zone must be at least a reasonable
- * percentage of the middle zones. For example, on 32-bit x86, highmem
- * would need to be at least 256M for it to be balance a whole node.
- * Similarly, on x86-64 the Normal zone would need to be at least 1G
- * to balance a node on its own. These seemed like reasonable ratios.
+ * Returns true if there is an eligible zone balanced for the request order
+ * and highest_zoneidx
*/
-static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
+static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
{
- unsigned long managed_pages = 0;
- unsigned long balanced_pages = 0;
int i;
+ unsigned long mark = -1;
+ struct zone *zone;
- /* Check the watermark levels */
- for (i = 0; i <= classzone_idx; i++) {
- struct zone *zone = pgdat->node_zones + i;
+ /*
+ * Check watermarks bottom-up as lower zones are more likely to
+ * meet watermarks.
+ */
+ for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
+ enum zone_stat_item item;
+ unsigned long free_pages;
- if (!populated_zone(zone))
- continue;
+ if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
+ mark = promo_wmark_pages(zone);
+ else
+ mark = high_wmark_pages(zone);
- managed_pages += zone->managed_pages;
+ /*
+ * In defrag_mode, watermarks must be met in whole
+ * blocks to avoid polluting allocator fallbacks.
+ *
+ * However, kswapd usually cannot accomplish this on
+ * its own and needs kcompactd support. Once it's
+ * reclaimed a compaction gap, and kswapd_shrink_node
+ * has dropped order, simply ensure there are enough
+ * base pages for compaction, wake kcompactd & sleep.
+ */
+ if (defrag_mode && order)
+ item = NR_FREE_PAGES_BLOCKS;
+ else
+ item = NR_FREE_PAGES;
/*
- * A special case here:
+ * When there is a high number of CPUs in the system,
+ * the cumulative error from the vmstat per-cpu cache
+ * can blur the line between the watermarks. In that
+ * case, be safe and get an accurate snapshot.
*
- * balance_pgdat() skips over all_unreclaimable after
- * DEF_PRIORITY. Effectively, it considers them balanced so
- * they must be considered balanced here as well!
+ * TODO: NR_FREE_PAGES_BLOCKS moves in steps of
+ * pageblock_nr_pages, while the vmstat pcp threshold
+ * is limited to 125. On many configurations that
+ * counter won't actually be per-cpu cached. But keep
+ * things simple for now; revisit when somebody cares.
*/
- if (zone->all_unreclaimable) {
- balanced_pages += zone->managed_pages;
- continue;
- }
+ free_pages = zone_page_state(zone, item);
+ if (zone->percpu_drift_mark && free_pages < zone->percpu_drift_mark)
+ free_pages = zone_page_state_snapshot(zone, item);
- if (zone_balanced(zone, order, 0, i))
- balanced_pages += zone->managed_pages;
- else if (!order)
- return false;
+ if (__zone_watermark_ok(zone, order, mark, highest_zoneidx,
+ 0, free_pages))
+ return true;
}
- if (order)
- return balanced_pages >= (managed_pages >> 2);
- else
+ /*
+ * If a node has no managed zone within highest_zoneidx, it does not
+ * need balancing by definition. This can happen if a zone-restricted
+ * allocation tries to wake a remote kswapd.
+ */
+ if (mark == -1)
return true;
+
+ return false;
+}
+
+/* Clear pgdat state for congested, dirty or under writeback. */
+static void clear_pgdat_congested(pg_data_t *pgdat)
+{
+ struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
+
+ clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
+ clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
+ clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}
/*
@@ -2735,228 +6840,225 @@ static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
*
* Returns true if kswapd is ready to sleep
*/
-static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
- int classzone_idx)
+static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
+ int highest_zoneidx)
{
- /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
- if (remaining)
- return false;
-
/*
- * There is a potential race between when kswapd checks its watermarks
- * and a process gets throttled. There is also a potential race if
- * processes get throttled, kswapd wakes, a large process exits therby
- * balancing the zones that causes kswapd to miss a wakeup. If kswapd
- * is going to sleep, no process should be sleeping on pfmemalloc_wait
- * so wake them now if necessary. If necessary, processes will wake
- * kswapd and get throttled again
+ * The throttled processes are normally woken up in balance_pgdat() as
+ * soon as allow_direct_reclaim() is true. But there is a potential
+ * race between when kswapd checks the watermarks and a process gets
+ * throttled. There is also a potential race if processes get
+ * throttled, kswapd wakes, a large process exits thereby balancing the
+ * zones, which causes kswapd to exit balance_pgdat() before reaching
+ * the wake up checks. If kswapd is going to sleep, no process should
+ * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
+ * the wake up is premature, processes will wake kswapd and get
+ * throttled again. The difference from wake ups in balance_pgdat() is
+ * that here we are under prepare_to_wait().
*/
- if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
- wake_up(&pgdat->pfmemalloc_wait);
- return false;
+ if (waitqueue_active(&pgdat->pfmemalloc_wait))
+ wake_up_all(&pgdat->pfmemalloc_wait);
+
+ /* Hopeless node, leave it to direct reclaim */
+ if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES)
+ return true;
+
+ if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
+ clear_pgdat_congested(pgdat);
+ return true;
}
- return pgdat_balanced(pgdat, order, classzone_idx);
+ return false;
}
/*
- * kswapd shrinks the zone by the number of pages required to reach
- * the high watermark.
+ * kswapd shrinks a node of pages that are at or below the highest usable
+ * zone that is currently unbalanced.
*
* Returns true if kswapd scanned at least the requested number of pages to
* reclaim or if the lack of progress was due to pages under writeback.
* This is used to determine if the scanning priority needs to be raised.
*/
-static bool kswapd_shrink_zone(struct zone *zone,
- int classzone_idx,
- struct scan_control *sc,
- unsigned long lru_pages,
- unsigned long *nr_attempted)
-{
- unsigned long nr_slab;
- int testorder = sc->order;
- unsigned long balance_gap;
- struct reclaim_state *reclaim_state = current->reclaim_state;
- struct shrink_control shrink = {
- .gfp_mask = sc->gfp_mask,
- };
- bool lowmem_pressure;
-
- /* Reclaim above the high watermark. */
- sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
+static bool kswapd_shrink_node(pg_data_t *pgdat,
+ struct scan_control *sc)
+{
+ struct zone *zone;
+ int z;
+ unsigned long nr_reclaimed = sc->nr_reclaimed;
- /*
- * Kswapd reclaims only single pages with compaction enabled. Trying
- * too hard to reclaim until contiguous free pages have become
- * available can hurt performance by evicting too much useful data
- * from memory. Do not reclaim more than needed for compaction.
- */
- if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
- compaction_suitable(zone, sc->order) !=
- COMPACT_SKIPPED)
- testorder = 0;
+ /* Reclaim a number of pages proportional to the number of zones */
+ sc->nr_to_reclaim = 0;
+ for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
+ sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
+ }
/*
- * We put equal pressure on every zone, unless one zone has way too
- * many pages free already. The "too many pages" is defined as the
- * high wmark plus a "gap" where the gap is either the low
- * watermark or 1% of the zone, whichever is smaller.
+ * Historically care was taken to put equal pressure on all zones but
+ * now pressure is applied based on node LRU order.
*/
- balance_gap = min(low_wmark_pages(zone),
- (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
- KSWAPD_ZONE_BALANCE_GAP_RATIO);
+ shrink_node(pgdat, sc);
/*
- * If there is no low memory pressure or the zone is balanced then no
- * reclaim is necessary
+ * Fragmentation may mean that the system cannot be rebalanced for
+ * high-order allocations. If twice the allocation size has been
+ * reclaimed then recheck watermarks only at order-0 to prevent
+ * excessive reclaim. Assume that a process requested a high-order
+ * can direct reclaim/compact.
*/
- lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
- if (!lowmem_pressure && zone_balanced(zone, testorder,
- balance_gap, classzone_idx))
- return true;
-
- shrink_zone(zone, sc);
-
- reclaim_state->reclaimed_slab = 0;
- nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
- sc->nr_reclaimed += reclaim_state->reclaimed_slab;
-
- /* Account for the number of pages attempted to reclaim */
- *nr_attempted += sc->nr_to_reclaim;
+ if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
+ sc->order = 0;
- if (nr_slab == 0 && !zone_reclaimable(zone))
- zone->all_unreclaimable = 1;
+ /* account for progress from mm_account_reclaimed_pages() */
+ return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
+}
- zone_clear_flag(zone, ZONE_WRITEBACK);
+/* Page allocator PCP high watermark is lowered if reclaim is active. */
+static inline void
+update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
+{
+ int i;
+ struct zone *zone;
- /*
- * If a zone reaches its high watermark, consider it to be no longer
- * congested. It's possible there are dirty pages backed by congested
- * BDIs but as pressure is relieved, speculatively avoid congestion
- * waits.
- */
- if (!zone->all_unreclaimable &&
- zone_balanced(zone, testorder, 0, classzone_idx)) {
- zone_clear_flag(zone, ZONE_CONGESTED);
- zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
+ for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
+ if (active)
+ set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
+ else
+ clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
}
+}
+
+static inline void
+set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
+{
+ update_reclaim_active(pgdat, highest_zoneidx, true);
+}
- return sc->nr_scanned >= sc->nr_to_reclaim;
+static inline void
+clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
+{
+ update_reclaim_active(pgdat, highest_zoneidx, false);
}
/*
- * For kswapd, balance_pgdat() will work across all this node's zones until
- * they are all at high_wmark_pages(zone).
- *
- * Returns the final order kswapd was reclaiming at
+ * For kswapd, balance_pgdat() will reclaim pages across a node from zones
+ * that are eligible for use by the caller until at least one zone is
+ * balanced.
*
- * There is special handling here for zones which are full of pinned pages.
- * This can happen if the pages are all mlocked, or if they are all used by
- * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
- * What we do is to detect the case where all pages in the zone have been
- * scanned twice and there has been zero successful reclaim. Mark the zone as
- * dead and from now on, only perform a short scan. Basically we're polling
- * the zone for when the problem goes away.
+ * Returns the order kswapd finished reclaiming at.
*
* kswapd scans the zones in the highmem->normal->dma direction. It skips
* zones which have free_pages > high_wmark_pages(zone), but once a zone is
- * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
- * lower zones regardless of the number of free pages in the lower zones. This
- * interoperates with the page allocator fallback scheme to ensure that aging
- * of pages is balanced across the zones.
+ * found to have free_pages <= high_wmark_pages(zone), any page in that zone
+ * or lower is eligible for reclaim until at least one usable zone is
+ * balanced.
*/
-static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
- int *classzone_idx)
+static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
{
int i;
- int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
unsigned long nr_soft_reclaimed;
unsigned long nr_soft_scanned;
+ unsigned long pflags;
+ unsigned long nr_boost_reclaim;
+ unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
+ bool boosted;
+ struct zone *zone;
struct scan_control sc = {
.gfp_mask = GFP_KERNEL,
- .priority = DEF_PRIORITY,
- .may_unmap = 1,
- .may_swap = 1,
- .may_writepage = !laptop_mode,
.order = order,
- .target_mem_cgroup = NULL,
+ .may_unmap = 1,
};
+
+ set_task_reclaim_state(current, &sc.reclaim_state);
+ psi_memstall_enter(&pflags);
+ __fs_reclaim_acquire(_THIS_IP_);
+
count_vm_event(PAGEOUTRUN);
+ /*
+ * Account for the reclaim boost. Note that the zone boost is left in
+ * place so that parallel allocations that are near the watermark will
+ * stall or direct reclaim until kswapd is finished.
+ */
+ nr_boost_reclaim = 0;
+ for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
+ nr_boost_reclaim += zone->watermark_boost;
+ zone_boosts[i] = zone->watermark_boost;
+ }
+ boosted = nr_boost_reclaim;
+
+restart:
+ set_reclaim_active(pgdat, highest_zoneidx);
+ sc.priority = DEF_PRIORITY;
do {
- unsigned long lru_pages = 0;
- unsigned long nr_attempted = 0;
+ unsigned long nr_reclaimed = sc.nr_reclaimed;
bool raise_priority = true;
- bool pgdat_needs_compaction = (order > 0);
+ bool balanced;
+ bool ret;
+ bool was_frozen;
- sc.nr_reclaimed = 0;
+ sc.reclaim_idx = highest_zoneidx;
/*
- * Scan in the highmem->dma direction for the highest
- * zone which needs scanning
+ * If the number of buffer_heads exceeds the maximum allowed
+ * then consider reclaiming from all zones. This has a dual
+ * purpose -- on 64-bit systems it is expected that
+ * buffer_heads are stripped during active rotation. On 32-bit
+ * systems, highmem pages can pin lowmem memory and shrinking
+ * buffers can relieve lowmem pressure. Reclaim may still not
+ * go ahead if all eligible zones for the original allocation
+ * request are balanced to avoid excessive reclaim from kswapd.
*/
- for (i = pgdat->nr_zones - 1; i >= 0; i--) {
- struct zone *zone = pgdat->node_zones + i;
-
- if (!populated_zone(zone))
- continue;
-
- if (zone->all_unreclaimable &&
- sc.priority != DEF_PRIORITY)
- continue;
-
- /*
- * Do some background aging of the anon list, to give
- * pages a chance to be referenced before reclaiming.
- */
- age_active_anon(zone, &sc);
+ if (buffer_heads_over_limit) {
+ for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
+ zone = pgdat->node_zones + i;
+ if (!managed_zone(zone))
+ continue;
- /*
- * If the number of buffer_heads in the machine
- * exceeds the maximum allowed level and this node
- * has a highmem zone, force kswapd to reclaim from
- * it to relieve lowmem pressure.
- */
- if (buffer_heads_over_limit && is_highmem_idx(i)) {
- end_zone = i;
+ sc.reclaim_idx = i;
break;
}
+ }
- if (!zone_balanced(zone, order, 0, 0)) {
- end_zone = i;
- break;
- } else {
- /*
- * If balanced, clear the dirty and congested
- * flags
- */
- zone_clear_flag(zone, ZONE_CONGESTED);
- zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
- }
+ /*
+ * If the pgdat is imbalanced then ignore boosting and preserve
+ * the watermarks for a later time and restart. Note that the
+ * zone watermarks will be still reset at the end of balancing
+ * on the grounds that the normal reclaim should be enough to
+ * re-evaluate if boosting is required when kswapd next wakes.
+ */
+ balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
+ if (!balanced && nr_boost_reclaim) {
+ nr_boost_reclaim = 0;
+ goto restart;
}
- if (i < 0)
+ /*
+ * If boosting is not active then only reclaim if there are no
+ * eligible zones. Note that sc.reclaim_idx is not used as
+ * buffer_heads_over_limit may have adjusted it.
+ */
+ if (!nr_boost_reclaim && balanced)
goto out;
- for (i = 0; i <= end_zone; i++) {
- struct zone *zone = pgdat->node_zones + i;
-
- if (!populated_zone(zone))
- continue;
+ /* Limit the priority of boosting to avoid reclaim writeback */
+ if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
+ raise_priority = false;
- lru_pages += zone_reclaimable_pages(zone);
+ /*
+ * Do not writeback or swap pages for boosted reclaim. The
+ * intent is to relieve pressure not issue sub-optimal IO
+ * from reclaim context. If no pages are reclaimed, the
+ * reclaim will be aborted.
+ */
+ sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
+ sc.may_swap = !nr_boost_reclaim;
- /*
- * If any zone is currently balanced then kswapd will
- * not call compaction as it is expected that the
- * necessary pages are already available.
- */
- if (pgdat_needs_compaction &&
- zone_watermark_ok(zone, order,
- low_wmark_pages(zone),
- *classzone_idx, 0))
- pgdat_needs_compaction = false;
- }
+ /*
+ * Do some background aging, to give pages a chance to be
+ * referenced before reclaiming. All pages are rotated
+ * regardless of classzone as this is about consistent aging.
+ */
+ kswapd_age_node(pgdat, &sc);
/*
* If we're getting trouble reclaiming, start doing writepage
@@ -2965,46 +7067,20 @@ static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
if (sc.priority < DEF_PRIORITY - 2)
sc.may_writepage = 1;
+ /* Call soft limit reclaim before calling shrink_node. */
+ sc.nr_scanned = 0;
+ nr_soft_scanned = 0;
+ nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
+ sc.gfp_mask, &nr_soft_scanned);
+ sc.nr_reclaimed += nr_soft_reclaimed;
+
/*
- * Now scan the zone in the dma->highmem direction, stopping
- * at the last zone which needs scanning.
- *
- * We do this because the page allocator works in the opposite
- * direction. This prevents the page allocator from allocating
- * pages behind kswapd's direction of progress, which would
- * cause too much scanning of the lower zones.
+ * There should be no need to raise the scanning priority if
+ * enough pages are already being scanned that that high
+ * watermark would be met at 100% efficiency.
*/
- for (i = 0; i <= end_zone; i++) {
- struct zone *zone = pgdat->node_zones + i;
-
- if (!populated_zone(zone))
- continue;
-
- if (zone->all_unreclaimable &&
- sc.priority != DEF_PRIORITY)
- continue;
-
- sc.nr_scanned = 0;
-
- nr_soft_scanned = 0;
- /*
- * Call soft limit reclaim before calling shrink_zone.
- */
- nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
- order, sc.gfp_mask,
- &nr_soft_scanned);
- sc.nr_reclaimed += nr_soft_reclaimed;
-
- /*
- * There should be no need to raise the scanning
- * priority if enough pages are already being scanned
- * that that high watermark would be met at 100%
- * efficiency.
- */
- if (kswapd_shrink_zone(zone, end_zone, &sc,
- lru_pages, &nr_attempted))
- raise_priority = false;
- }
+ if (kswapd_shrink_node(pgdat, &sc))
+ raise_priority = false;
/*
* If the low watermark is met there is no need for processes
@@ -3012,52 +7088,109 @@ static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
* able to safely make forward progress. Wake them
*/
if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
- pfmemalloc_watermark_ok(pgdat))
- wake_up(&pgdat->pfmemalloc_wait);
-
- /*
- * Fragmentation may mean that the system cannot be rebalanced
- * for high-order allocations in all zones. If twice the
- * allocation size has been reclaimed and the zones are still
- * not balanced then recheck the watermarks at order-0 to
- * prevent kswapd reclaiming excessively. Assume that a
- * process requested a high-order can direct reclaim/compact.
- */
- if (order && sc.nr_reclaimed >= 2UL << order)
- order = sc.order = 0;
+ allow_direct_reclaim(pgdat))
+ wake_up_all(&pgdat->pfmemalloc_wait);
/* Check if kswapd should be suspending */
- if (try_to_freeze() || kthread_should_stop())
+ __fs_reclaim_release(_THIS_IP_);
+ ret = kthread_freezable_should_stop(&was_frozen);
+ __fs_reclaim_acquire(_THIS_IP_);
+ if (was_frozen || ret)
break;
/*
- * Compact if necessary and kswapd is reclaiming at least the
- * high watermark number of pages as requsted
+ * Raise priority if scanning rate is too low or there was no
+ * progress in reclaiming pages
*/
- if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
- compact_pgdat(pgdat, order);
+ nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
+ nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
/*
- * Raise priority if scanning rate is too low or there was no
- * progress in reclaiming pages
+ * If reclaim made no progress for a boost, stop reclaim as
+ * IO cannot be queued and it could be an infinite loop in
+ * extreme circumstances.
*/
- if (raise_priority || !sc.nr_reclaimed)
+ if (nr_boost_reclaim && !nr_reclaimed)
+ break;
+
+ if (raise_priority || !nr_reclaimed)
sc.priority--;
- } while (sc.priority >= 1 &&
- !pgdat_balanced(pgdat, order, *classzone_idx));
+ } while (sc.priority >= 1);
+
+ /*
+ * Restart only if it went through the priority loop all the way,
+ * but cache_trim_mode didn't work.
+ */
+ if (!sc.nr_reclaimed && sc.priority < 1 &&
+ !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
+ sc.no_cache_trim_mode = 1;
+ goto restart;
+ }
+
+ /*
+ * If the reclaim was boosted, we might still be far from the
+ * watermark_high at this point. We need to avoid increasing the
+ * failure count to prevent the kswapd thread from stopping.
+ */
+ if (!sc.nr_reclaimed && !boosted)
+ atomic_inc(&pgdat->kswapd_failures);
out:
+ clear_reclaim_active(pgdat, highest_zoneidx);
+
+ /* If reclaim was boosted, account for the reclaim done in this pass */
+ if (boosted) {
+ unsigned long flags;
+
+ for (i = 0; i <= highest_zoneidx; i++) {
+ if (!zone_boosts[i])
+ continue;
+
+ /* Increments are under the zone lock */
+ zone = pgdat->node_zones + i;
+ spin_lock_irqsave(&zone->lock, flags);
+ zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
+ spin_unlock_irqrestore(&zone->lock, flags);
+ }
+
+ /*
+ * As there is now likely space, wakeup kcompact to defragment
+ * pageblocks.
+ */
+ wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
+ }
+
+ snapshot_refaults(NULL, pgdat);
+ __fs_reclaim_release(_THIS_IP_);
+ psi_memstall_leave(&pflags);
+ set_task_reclaim_state(current, NULL);
+
/*
- * Return the order we were reclaiming at so prepare_kswapd_sleep()
- * makes a decision on the order we were last reclaiming at. However,
- * if another caller entered the allocator slow path while kswapd
- * was awake, order will remain at the higher level
+ * Return the order kswapd stopped reclaiming at as
+ * prepare_kswapd_sleep() takes it into account. If another caller
+ * entered the allocator slow path while kswapd was awake, order will
+ * remain at the higher level.
*/
- *classzone_idx = end_zone;
- return order;
+ return sc.order;
+}
+
+/*
+ * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
+ * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
+ * not a valid index then either kswapd runs for first time or kswapd couldn't
+ * sleep after previous reclaim attempt (node is still unbalanced). In that
+ * case return the zone index of the previous kswapd reclaim cycle.
+ */
+static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
+ enum zone_type prev_highest_zoneidx)
+{
+ enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
+
+ return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
}
-static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
+static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
+ unsigned int highest_zoneidx)
{
long remaining = 0;
DEFINE_WAIT(wait);
@@ -3067,9 +7200,44 @@ static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
- /* Try to sleep for a short interval */
- if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
+ /*
+ * Try to sleep for a short interval. Note that kcompactd will only be
+ * woken if it is possible to sleep for a short interval. This is
+ * deliberate on the assumption that if reclaim cannot keep an
+ * eligible zone balanced that it's also unlikely that compaction will
+ * succeed.
+ */
+ if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
+ /*
+ * Compaction records what page blocks it recently failed to
+ * isolate pages from and skips them in the future scanning.
+ * When kswapd is going to sleep, it is reasonable to assume
+ * that pages and compaction may succeed so reset the cache.
+ */
+ reset_isolation_suitable(pgdat);
+
+ /*
+ * We have freed the memory, now we should compact it to make
+ * allocation of the requested order possible.
+ */
+ wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
+
remaining = schedule_timeout(HZ/10);
+
+ /*
+ * If woken prematurely then reset kswapd_highest_zoneidx and
+ * order. The values will either be from a wakeup request or
+ * the previous request that slept prematurely.
+ */
+ if (remaining) {
+ WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
+ kswapd_highest_zoneidx(pgdat,
+ highest_zoneidx));
+
+ if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
+ WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
+ }
+
finish_wait(&pgdat->kswapd_wait, &wait);
prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
}
@@ -3078,7 +7246,8 @@ static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
* After a short sleep, check if it was a premature sleep. If not, then
* go fully to sleep until explicitly woken up.
*/
- if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
+ if (!remaining &&
+ prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
/*
@@ -3091,14 +7260,6 @@ static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
*/
set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
- /*
- * Compaction records what page blocks it recently failed to
- * isolate pages from and skips them in the future scanning.
- * When kswapd is going to sleep, it is reasonable to assume
- * that pages and compaction may succeed so reset the cache.
- */
- reset_isolation_suitable(pgdat);
-
if (!kthread_should_stop())
schedule();
@@ -3127,24 +7288,11 @@ static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
*/
static int kswapd(void *p)
{
- unsigned long order, new_order;
- unsigned balanced_order;
- int classzone_idx, new_classzone_idx;
- int balanced_classzone_idx;
- pg_data_t *pgdat = (pg_data_t*)p;
+ unsigned int alloc_order, reclaim_order;
+ unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
+ pg_data_t *pgdat = (pg_data_t *)p;
struct task_struct *tsk = current;
- struct reclaim_state reclaim_state = {
- .reclaimed_slab = 0,
- };
- const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
-
- lockdep_set_current_reclaim_state(GFP_KERNEL);
-
- if (!cpumask_empty(cpumask))
- set_cpus_allowed_ptr(tsk, cpumask);
- current->reclaim_state = &reclaim_state;
-
/*
* Tell the memory management that we're a "memory allocator",
* and that if we need more memory we should get access to it
@@ -3157,126 +7305,111 @@ static int kswapd(void *p)
* us from recursively trying to free more memory as we're
* trying to free the first piece of memory in the first place).
*/
- tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
+ tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
set_freezable();
- order = new_order = 0;
- balanced_order = 0;
- classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
- balanced_classzone_idx = classzone_idx;
+ WRITE_ONCE(pgdat->kswapd_order, 0);
+ WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
+ atomic_set(&pgdat->nr_writeback_throttled, 0);
for ( ; ; ) {
- bool ret;
+ bool was_frozen;
- /*
- * If the last balance_pgdat was unsuccessful it's unlikely a
- * new request of a similar or harder type will succeed soon
- * so consider going to sleep on the basis we reclaimed at
- */
- if (balanced_classzone_idx >= new_classzone_idx &&
- balanced_order == new_order) {
- new_order = pgdat->kswapd_max_order;
- new_classzone_idx = pgdat->classzone_idx;
- pgdat->kswapd_max_order = 0;
- pgdat->classzone_idx = pgdat->nr_zones - 1;
- }
+ alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
+ highest_zoneidx = kswapd_highest_zoneidx(pgdat,
+ highest_zoneidx);
- if (order < new_order || classzone_idx > new_classzone_idx) {
- /*
- * Don't sleep if someone wants a larger 'order'
- * allocation or has tigher zone constraints
- */
- order = new_order;
- classzone_idx = new_classzone_idx;
- } else {
- kswapd_try_to_sleep(pgdat, balanced_order,
- balanced_classzone_idx);
- order = pgdat->kswapd_max_order;
- classzone_idx = pgdat->classzone_idx;
- new_order = order;
- new_classzone_idx = classzone_idx;
- pgdat->kswapd_max_order = 0;
- pgdat->classzone_idx = pgdat->nr_zones - 1;
- }
-
- ret = try_to_freeze();
- if (kthread_should_stop())
+kswapd_try_sleep:
+ kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
+ highest_zoneidx);
+
+ /* Read the new order and highest_zoneidx */
+ alloc_order = READ_ONCE(pgdat->kswapd_order);
+ highest_zoneidx = kswapd_highest_zoneidx(pgdat,
+ highest_zoneidx);
+ WRITE_ONCE(pgdat->kswapd_order, 0);
+ WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
+
+ if (kthread_freezable_should_stop(&was_frozen))
break;
/*
* We can speed up thawing tasks if we don't call balance_pgdat
* after returning from the refrigerator
*/
- if (!ret) {
- trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
- balanced_classzone_idx = classzone_idx;
- balanced_order = balance_pgdat(pgdat, order,
- &balanced_classzone_idx);
- }
+ if (was_frozen)
+ continue;
+
+ /*
+ * Reclaim begins at the requested order but if a high-order
+ * reclaim fails then kswapd falls back to reclaiming for
+ * order-0. If that happens, kswapd will consider sleeping
+ * for the order it finished reclaiming at (reclaim_order)
+ * but kcompactd is woken to compact for the original
+ * request (alloc_order).
+ */
+ trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
+ alloc_order);
+ reclaim_order = balance_pgdat(pgdat, alloc_order,
+ highest_zoneidx);
+ if (reclaim_order < alloc_order)
+ goto kswapd_try_sleep;
}
- current->reclaim_state = NULL;
+ tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
+
return 0;
}
/*
- * A zone is low on free memory, so wake its kswapd task to service it.
+ * A zone is low on free memory or too fragmented for high-order memory. If
+ * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
+ * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
+ * has failed or is not needed, still wake up kcompactd if only compaction is
+ * needed.
*/
-void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
+void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
+ enum zone_type highest_zoneidx)
{
pg_data_t *pgdat;
+ enum zone_type curr_idx;
- if (!populated_zone(zone))
+ if (!managed_zone(zone))
return;
- if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
- return;
- pgdat = zone->zone_pgdat;
- if (pgdat->kswapd_max_order < order) {
- pgdat->kswapd_max_order = order;
- pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
- }
- if (!waitqueue_active(&pgdat->kswapd_wait))
+ if (!cpuset_zone_allowed(zone, gfp_flags))
return;
- if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
- return;
-
- trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
- wake_up_interruptible(&pgdat->kswapd_wait);
-}
-
-/*
- * The reclaimable count would be mostly accurate.
- * The less reclaimable pages may be
- * - mlocked pages, which will be moved to unevictable list when encountered
- * - mapped pages, which may require several travels to be reclaimed
- * - dirty pages, which is not "instantly" reclaimable
- */
-unsigned long global_reclaimable_pages(void)
-{
- int nr;
- nr = global_page_state(NR_ACTIVE_FILE) +
- global_page_state(NR_INACTIVE_FILE);
-
- if (get_nr_swap_pages() > 0)
- nr += global_page_state(NR_ACTIVE_ANON) +
- global_page_state(NR_INACTIVE_ANON);
+ pgdat = zone->zone_pgdat;
+ curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
- return nr;
-}
+ if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
+ WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
-unsigned long zone_reclaimable_pages(struct zone *zone)
-{
- int nr;
+ if (READ_ONCE(pgdat->kswapd_order) < order)
+ WRITE_ONCE(pgdat->kswapd_order, order);
- nr = zone_page_state(zone, NR_ACTIVE_FILE) +
- zone_page_state(zone, NR_INACTIVE_FILE);
+ if (!waitqueue_active(&pgdat->kswapd_wait))
+ return;
- if (get_nr_swap_pages() > 0)
- nr += zone_page_state(zone, NR_ACTIVE_ANON) +
- zone_page_state(zone, NR_INACTIVE_ANON);
+ /* Hopeless node, leave it to direct reclaim if possible */
+ if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES ||
+ (pgdat_balanced(pgdat, order, highest_zoneidx) &&
+ !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
+ /*
+ * There may be plenty of free memory available, but it's too
+ * fragmented for high-order allocations. Wake up kcompactd
+ * and rely on compaction_suitable() to determine if it's
+ * needed. If it fails, it will defer subsequent attempts to
+ * ratelimit its work.
+ */
+ if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
+ wakeup_kcompactd(pgdat, order, highest_zoneidx);
+ return;
+ }
- return nr;
+ trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
+ gfp_flags);
+ wake_up_interruptible(&pgdat->kswapd_wait);
}
#ifdef CONFIG_HIBERNATION
@@ -3290,100 +7423,97 @@ unsigned long zone_reclaimable_pages(struct zone *zone)
*/
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
{
- struct reclaim_state reclaim_state;
struct scan_control sc = {
+ .nr_to_reclaim = nr_to_reclaim,
.gfp_mask = GFP_HIGHUSER_MOVABLE,
- .may_swap = 1,
- .may_unmap = 1,
+ .reclaim_idx = MAX_NR_ZONES - 1,
+ .priority = DEF_PRIORITY,
.may_writepage = 1,
- .nr_to_reclaim = nr_to_reclaim,
+ .may_unmap = 1,
+ .may_swap = 1,
.hibernation_mode = 1,
- .order = 0,
- .priority = DEF_PRIORITY,
- };
- struct shrink_control shrink = {
- .gfp_mask = sc.gfp_mask,
};
struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
- struct task_struct *p = current;
unsigned long nr_reclaimed;
+ unsigned int noreclaim_flag;
- p->flags |= PF_MEMALLOC;
- lockdep_set_current_reclaim_state(sc.gfp_mask);
- reclaim_state.reclaimed_slab = 0;
- p->reclaim_state = &reclaim_state;
+ fs_reclaim_acquire(sc.gfp_mask);
+ noreclaim_flag = memalloc_noreclaim_save();
+ set_task_reclaim_state(current, &sc.reclaim_state);
- nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
+ nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
- p->reclaim_state = NULL;
- lockdep_clear_current_reclaim_state();
- p->flags &= ~PF_MEMALLOC;
+ set_task_reclaim_state(current, NULL);
+ memalloc_noreclaim_restore(noreclaim_flag);
+ fs_reclaim_release(sc.gfp_mask);
return nr_reclaimed;
}
#endif /* CONFIG_HIBERNATION */
-/* It's optimal to keep kswapds on the same CPUs as their memory, but
- not required for correctness. So if the last cpu in a node goes
- away, we get changed to run anywhere: as the first one comes back,
- restore their cpu bindings. */
-static int cpu_callback(struct notifier_block *nfb, unsigned long action,
- void *hcpu)
-{
- int nid;
-
- if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
- for_each_node_state(nid, N_MEMORY) {
- pg_data_t *pgdat = NODE_DATA(nid);
- const struct cpumask *mask;
-
- mask = cpumask_of_node(pgdat->node_id);
-
- if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
- /* One of our CPUs online: restore mask */
- set_cpus_allowed_ptr(pgdat->kswapd, mask);
- }
- }
- return NOTIFY_OK;
-}
-
/*
* This kswapd start function will be called by init and node-hot-add.
- * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
*/
-int kswapd_run(int nid)
+void __meminit kswapd_run(int nid)
{
pg_data_t *pgdat = NODE_DATA(nid);
- int ret = 0;
-
- if (pgdat->kswapd)
- return 0;
- pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
- if (IS_ERR(pgdat->kswapd)) {
- /* failure at boot is fatal */
- BUG_ON(system_state == SYSTEM_BOOTING);
- pr_err("Failed to start kswapd on node %d\n", nid);
- ret = PTR_ERR(pgdat->kswapd);
- pgdat->kswapd = NULL;
+ pgdat_kswapd_lock(pgdat);
+ if (!pgdat->kswapd) {
+ pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid);
+ if (IS_ERR(pgdat->kswapd)) {
+ /* failure at boot is fatal */
+ pr_err("Failed to start kswapd on node %d,ret=%ld\n",
+ nid, PTR_ERR(pgdat->kswapd));
+ BUG_ON(system_state < SYSTEM_RUNNING);
+ pgdat->kswapd = NULL;
+ } else {
+ wake_up_process(pgdat->kswapd);
+ }
}
- return ret;
+ pgdat_kswapd_unlock(pgdat);
}
/*
* Called by memory hotplug when all memory in a node is offlined. Caller must
- * hold lock_memory_hotplug().
+ * be holding mem_hotplug_begin/done().
*/
-void kswapd_stop(int nid)
+void __meminit kswapd_stop(int nid)
{
- struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
+ pg_data_t *pgdat = NODE_DATA(nid);
+ struct task_struct *kswapd;
+ pgdat_kswapd_lock(pgdat);
+ kswapd = pgdat->kswapd;
if (kswapd) {
kthread_stop(kswapd);
- NODE_DATA(nid)->kswapd = NULL;
+ pgdat->kswapd = NULL;
}
+ pgdat_kswapd_unlock(pgdat);
}
+static const struct ctl_table vmscan_sysctl_table[] = {
+ {
+ .procname = "swappiness",
+ .data = &vm_swappiness,
+ .maxlen = sizeof(vm_swappiness),
+ .mode = 0644,
+ .proc_handler = proc_dointvec_minmax,
+ .extra1 = SYSCTL_ZERO,
+ .extra2 = SYSCTL_TWO_HUNDRED,
+ },
+#ifdef CONFIG_NUMA
+ {
+ .procname = "zone_reclaim_mode",
+ .data = &node_reclaim_mode,
+ .maxlen = sizeof(node_reclaim_mode),
+ .mode = 0644,
+ .proc_handler = proc_dointvec_minmax,
+ .extra1 = SYSCTL_ZERO,
+ }
+#endif
+};
+
static int __init kswapd_init(void)
{
int nid;
@@ -3391,7 +7521,7 @@ static int __init kswapd_init(void)
swap_setup();
for_each_node_state(nid, N_MEMORY)
kswapd_run(nid);
- hotcpu_notifier(cpu_callback, 0);
+ register_sysctl_init("vm", vmscan_sysctl_table);
return 0;
}
@@ -3399,27 +7529,22 @@ module_init(kswapd_init)
#ifdef CONFIG_NUMA
/*
- * Zone reclaim mode
+ * Node reclaim mode
*
- * If non-zero call zone_reclaim when the number of free pages falls below
+ * If non-zero call node_reclaim when the number of free pages falls below
* the watermarks.
*/
-int zone_reclaim_mode __read_mostly;
-
-#define RECLAIM_OFF 0
-#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
-#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
-#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
+int node_reclaim_mode __read_mostly;
/*
- * Priority for ZONE_RECLAIM. This determines the fraction of pages
+ * Priority for NODE_RECLAIM. This determines the fraction of pages
* of a node considered for each zone_reclaim. 4 scans 1/16th of
* a zone.
*/
-#define ZONE_RECLAIM_PRIORITY 4
+#define NODE_RECLAIM_PRIORITY 4
/*
- * Percentage of pages in a zone that must be unmapped for zone_reclaim to
+ * Percentage of pages in a zone that must be unmapped for node_reclaim to
* occur.
*/
int sysctl_min_unmapped_ratio = 1;
@@ -3430,11 +7555,11 @@ int sysctl_min_unmapped_ratio = 1;
*/
int sysctl_min_slab_ratio = 5;
-static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
+static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
{
- unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
- unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
- zone_page_state(zone, NR_ACTIVE_FILE);
+ unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
+ unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
+ node_page_state(pgdat, NR_ACTIVE_FILE);
/*
* It's possible for there to be more file mapped pages than
@@ -3445,25 +7570,27 @@ static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
}
/* Work out how many page cache pages we can reclaim in this reclaim_mode */
-static long zone_pagecache_reclaimable(struct zone *zone)
+static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
{
- long nr_pagecache_reclaimable;
- long delta = 0;
+ unsigned long nr_pagecache_reclaimable;
+ unsigned long delta = 0;
/*
- * If RECLAIM_SWAP is set, then all file pages are considered
+ * If RECLAIM_UNMAP is set, then all file pages are considered
* potentially reclaimable. Otherwise, we have to worry about
- * pages like swapcache and zone_unmapped_file_pages() provides
+ * pages like swapcache and node_unmapped_file_pages() provides
* a better estimate
*/
- if (zone_reclaim_mode & RECLAIM_SWAP)
- nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
+ if (node_reclaim_mode & RECLAIM_UNMAP)
+ nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
else
- nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
+ nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
- /* If we can't clean pages, remove dirty pages from consideration */
- if (!(zone_reclaim_mode & RECLAIM_WRITE))
- delta += zone_page_state(zone, NR_FILE_DIRTY);
+ /*
+ * Since we can't clean folios through reclaim, remove dirty file
+ * folios from consideration.
+ */
+ delta += node_page_state(pgdat, NR_FILE_DIRTY);
/* Watch for any possible underflows due to delta */
if (unlikely(delta > nr_pagecache_reclaimable))
@@ -3473,271 +7600,285 @@ static long zone_pagecache_reclaimable(struct zone *zone)
}
/*
- * Try to free up some pages from this zone through reclaim.
+ * Try to free up some pages from this node through reclaim.
*/
-static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
+static unsigned long __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask,
+ unsigned long nr_pages,
+ struct scan_control *sc)
{
- /* Minimum pages needed in order to stay on node */
- const unsigned long nr_pages = 1 << order;
struct task_struct *p = current;
- struct reclaim_state reclaim_state;
- struct scan_control sc = {
- .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
- .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
- .may_swap = 1,
- .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
- .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
- .order = order,
- .priority = ZONE_RECLAIM_PRIORITY,
- };
- struct shrink_control shrink = {
- .gfp_mask = sc.gfp_mask,
- };
- unsigned long nr_slab_pages0, nr_slab_pages1;
+ unsigned int noreclaim_flag;
+ unsigned long pflags;
+
+ trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, sc->order,
+ sc->gfp_mask);
cond_resched();
+ psi_memstall_enter(&pflags);
+ delayacct_freepages_start();
+ fs_reclaim_acquire(sc->gfp_mask);
/*
- * We need to be able to allocate from the reserves for RECLAIM_SWAP
- * and we also need to be able to write out pages for RECLAIM_WRITE
- * and RECLAIM_SWAP.
+ * We need to be able to allocate from the reserves for RECLAIM_UNMAP
*/
- p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
- lockdep_set_current_reclaim_state(gfp_mask);
- reclaim_state.reclaimed_slab = 0;
- p->reclaim_state = &reclaim_state;
+ noreclaim_flag = memalloc_noreclaim_save();
+ set_task_reclaim_state(p, &sc->reclaim_state);
- if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
+ if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
+ node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
/*
- * Free memory by calling shrink zone with increasing
+ * Free memory by calling shrink node with increasing
* priorities until we have enough memory freed.
*/
do {
- shrink_zone(zone, &sc);
- } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
+ shrink_node(pgdat, sc);
+ } while (sc->nr_reclaimed < nr_pages && --sc->priority >= 0);
}
- nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
- if (nr_slab_pages0 > zone->min_slab_pages) {
- /*
- * shrink_slab() does not currently allow us to determine how
- * many pages were freed in this zone. So we take the current
- * number of slab pages and shake the slab until it is reduced
- * by the same nr_pages that we used for reclaiming unmapped
- * pages.
- *
- * Note that shrink_slab will free memory on all zones and may
- * take a long time.
- */
- for (;;) {
- unsigned long lru_pages = zone_reclaimable_pages(zone);
-
- /* No reclaimable slab or very low memory pressure */
- if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
- break;
-
- /* Freed enough memory */
- nr_slab_pages1 = zone_page_state(zone,
- NR_SLAB_RECLAIMABLE);
- if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
- break;
- }
+ set_task_reclaim_state(p, NULL);
+ memalloc_noreclaim_restore(noreclaim_flag);
+ fs_reclaim_release(sc->gfp_mask);
+ delayacct_freepages_end();
+ psi_memstall_leave(&pflags);
- /*
- * Update nr_reclaimed by the number of slab pages we
- * reclaimed from this zone.
- */
- nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
- if (nr_slab_pages1 < nr_slab_pages0)
- sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
- }
+ trace_mm_vmscan_node_reclaim_end(sc->nr_reclaimed);
- p->reclaim_state = NULL;
- current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
- lockdep_clear_current_reclaim_state();
- return sc.nr_reclaimed >= nr_pages;
+ return sc->nr_reclaimed;
}
-int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
+int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
{
- int node_id;
int ret;
+ /* Minimum pages needed in order to stay on node */
+ const unsigned long nr_pages = 1 << order;
+ struct scan_control sc = {
+ .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
+ .gfp_mask = current_gfp_context(gfp_mask),
+ .order = order,
+ .priority = NODE_RECLAIM_PRIORITY,
+ .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
+ .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
+ .may_swap = 1,
+ .reclaim_idx = gfp_zone(gfp_mask),
+ };
/*
- * Zone reclaim reclaims unmapped file backed pages and
+ * Node reclaim reclaims unmapped file backed pages and
* slab pages if we are over the defined limits.
*
* A small portion of unmapped file backed pages is needed for
* file I/O otherwise pages read by file I/O will be immediately
- * thrown out if the zone is overallocated. So we do not reclaim
- * if less than a specified percentage of the zone is used by
+ * thrown out if the node is overallocated. So we do not reclaim
+ * if less than a specified percentage of the node is used by
* unmapped file backed pages.
*/
- if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
- zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
- return ZONE_RECLAIM_FULL;
-
- if (zone->all_unreclaimable)
- return ZONE_RECLAIM_FULL;
+ if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
+ node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
+ pgdat->min_slab_pages)
+ return NODE_RECLAIM_FULL;
/*
* Do not scan if the allocation should not be delayed.
*/
- if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
- return ZONE_RECLAIM_NOSCAN;
+ if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
+ return NODE_RECLAIM_NOSCAN;
/*
- * Only run zone reclaim on the local zone or on zones that do not
+ * Only run node reclaim on the local node or on nodes that do not
* have associated processors. This will favor the local processor
* over remote processors and spread off node memory allocations
* as wide as possible.
*/
- node_id = zone_to_nid(zone);
- if (node_state(node_id, N_CPU) && node_id != numa_node_id())
- return ZONE_RECLAIM_NOSCAN;
+ if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
+ return NODE_RECLAIM_NOSCAN;
- if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
- return ZONE_RECLAIM_NOSCAN;
+ if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
+ return NODE_RECLAIM_NOSCAN;
- ret = __zone_reclaim(zone, gfp_mask, order);
- zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
+ ret = __node_reclaim(pgdat, gfp_mask, nr_pages, &sc) >= nr_pages;
+ clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
- if (!ret)
+ if (ret)
+ count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
+ else
count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
return ret;
}
-#endif
-/*
- * page_evictable - test whether a page is evictable
- * @page: the page to test
- *
- * Test whether page is evictable--i.e., should be placed on active/inactive
- * lists vs unevictable list.
- *
- * Reasons page might not be evictable:
- * (1) page's mapping marked unevictable
- * (2) page is part of an mlocked VMA
- *
- */
-int page_evictable(struct page *page)
+enum {
+ MEMORY_RECLAIM_SWAPPINESS = 0,
+ MEMORY_RECLAIM_SWAPPINESS_MAX,
+ MEMORY_RECLAIM_NULL,
+};
+static const match_table_t tokens = {
+ { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
+ { MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max"},
+ { MEMORY_RECLAIM_NULL, NULL },
+};
+
+int user_proactive_reclaim(char *buf,
+ struct mem_cgroup *memcg, pg_data_t *pgdat)
{
- return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
+ unsigned int nr_retries = MAX_RECLAIM_RETRIES;
+ unsigned long nr_to_reclaim, nr_reclaimed = 0;
+ int swappiness = -1;
+ char *old_buf, *start;
+ substring_t args[MAX_OPT_ARGS];
+ gfp_t gfp_mask = GFP_KERNEL;
+
+ if (!buf || (!memcg && !pgdat) || (memcg && pgdat))
+ return -EINVAL;
+
+ buf = strstrip(buf);
+
+ old_buf = buf;
+ nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
+ if (buf == old_buf)
+ return -EINVAL;
+
+ buf = strstrip(buf);
+
+ while ((start = strsep(&buf, " ")) != NULL) {
+ if (!strlen(start))
+ continue;
+ switch (match_token(start, tokens, args)) {
+ case MEMORY_RECLAIM_SWAPPINESS:
+ if (match_int(&args[0], &swappiness))
+ return -EINVAL;
+ if (swappiness < MIN_SWAPPINESS ||
+ swappiness > MAX_SWAPPINESS)
+ return -EINVAL;
+ break;
+ case MEMORY_RECLAIM_SWAPPINESS_MAX:
+ swappiness = SWAPPINESS_ANON_ONLY;
+ break;
+ default:
+ return -EINVAL;
+ }
+ }
+
+ while (nr_reclaimed < nr_to_reclaim) {
+ /* Will converge on zero, but reclaim enforces a minimum */
+ unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
+ unsigned long reclaimed;
+
+ if (signal_pending(current))
+ return -EINTR;
+
+ /*
+ * This is the final attempt, drain percpu lru caches in the
+ * hope of introducing more evictable pages.
+ */
+ if (!nr_retries)
+ lru_add_drain_all();
+
+ if (memcg) {
+ unsigned int reclaim_options;
+
+ reclaim_options = MEMCG_RECLAIM_MAY_SWAP |
+ MEMCG_RECLAIM_PROACTIVE;
+ reclaimed = try_to_free_mem_cgroup_pages(memcg,
+ batch_size, gfp_mask,
+ reclaim_options,
+ swappiness == -1 ? NULL : &swappiness);
+ } else {
+ struct scan_control sc = {
+ .gfp_mask = current_gfp_context(gfp_mask),
+ .reclaim_idx = gfp_zone(gfp_mask),
+ .proactive_swappiness = swappiness == -1 ? NULL : &swappiness,
+ .priority = DEF_PRIORITY,
+ .may_writepage = !laptop_mode,
+ .nr_to_reclaim = max(batch_size, SWAP_CLUSTER_MAX),
+ .may_unmap = 1,
+ .may_swap = 1,
+ .proactive = 1,
+ };
+
+ if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED,
+ &pgdat->flags))
+ return -EBUSY;
+
+ reclaimed = __node_reclaim(pgdat, gfp_mask,
+ batch_size, &sc);
+ clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
+ }
+
+ if (!reclaimed && !nr_retries--)
+ return -EAGAIN;
+
+ nr_reclaimed += reclaimed;
+ }
+
+ return 0;
}
-#ifdef CONFIG_SHMEM
+#endif
+
/**
- * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
- * @pages: array of pages to check
- * @nr_pages: number of pages to check
- *
- * Checks pages for evictability and moves them to the appropriate lru list.
+ * check_move_unevictable_folios - Move evictable folios to appropriate zone
+ * lru list
+ * @fbatch: Batch of lru folios to check.
*
- * This function is only used for SysV IPC SHM_UNLOCK.
+ * Checks folios for evictability, if an evictable folio is in the unevictable
+ * lru list, moves it to the appropriate evictable lru list. This function
+ * should be only used for lru folios.
*/
-void check_move_unevictable_pages(struct page **pages, int nr_pages)
+void check_move_unevictable_folios(struct folio_batch *fbatch)
{
- struct lruvec *lruvec;
- struct zone *zone = NULL;
+ struct lruvec *lruvec = NULL;
int pgscanned = 0;
int pgrescued = 0;
int i;
- for (i = 0; i < nr_pages; i++) {
- struct page *page = pages[i];
- struct zone *pagezone;
+ for (i = 0; i < fbatch->nr; i++) {
+ struct folio *folio = fbatch->folios[i];
+ int nr_pages = folio_nr_pages(folio);
- pgscanned++;
- pagezone = page_zone(page);
- if (pagezone != zone) {
- if (zone)
- spin_unlock_irq(&zone->lru_lock);
- zone = pagezone;
- spin_lock_irq(&zone->lru_lock);
- }
- lruvec = mem_cgroup_page_lruvec(page, zone);
+ pgscanned += nr_pages;
- if (!PageLRU(page) || !PageUnevictable(page))
+ /* block memcg migration while the folio moves between lrus */
+ if (!folio_test_clear_lru(folio))
continue;
- if (page_evictable(page)) {
- enum lru_list lru = page_lru_base_type(page);
-
- VM_BUG_ON(PageActive(page));
- ClearPageUnevictable(page);
- del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
- add_page_to_lru_list(page, lruvec, lru);
- pgrescued++;
+ lruvec = folio_lruvec_relock_irq(folio, lruvec);
+ if (folio_evictable(folio) && folio_test_unevictable(folio)) {
+ lruvec_del_folio(lruvec, folio);
+ folio_clear_unevictable(folio);
+ lruvec_add_folio(lruvec, folio);
+ pgrescued += nr_pages;
}
+ folio_set_lru(folio);
}
- if (zone) {
+ if (lruvec) {
__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
- spin_unlock_irq(&zone->lru_lock);
+ unlock_page_lruvec_irq(lruvec);
+ } else if (pgscanned) {
+ count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
}
}
-#endif /* CONFIG_SHMEM */
+EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
-static void warn_scan_unevictable_pages(void)
+#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
+static ssize_t reclaim_store(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
{
- printk_once(KERN_WARNING
- "%s: The scan_unevictable_pages sysctl/node-interface has been "
- "disabled for lack of a legitimate use case. If you have "
- "one, please send an email to linux-mm@kvack.org.\n",
- current->comm);
-}
+ int ret, nid = dev->id;
-/*
- * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
- * all nodes' unevictable lists for evictable pages
- */
-unsigned long scan_unevictable_pages;
-
-int scan_unevictable_handler(struct ctl_table *table, int write,
- void __user *buffer,
- size_t *length, loff_t *ppos)
-{
- warn_scan_unevictable_pages();
- proc_doulongvec_minmax(table, write, buffer, length, ppos);
- scan_unevictable_pages = 0;
- return 0;
+ ret = user_proactive_reclaim((char *)buf, NULL, NODE_DATA(nid));
+ return ret ? -EAGAIN : count;
}
-#ifdef CONFIG_NUMA
-/*
- * per node 'scan_unevictable_pages' attribute. On demand re-scan of
- * a specified node's per zone unevictable lists for evictable pages.
- */
-
-static ssize_t read_scan_unevictable_node(struct device *dev,
- struct device_attribute *attr,
- char *buf)
-{
- warn_scan_unevictable_pages();
- return sprintf(buf, "0\n"); /* always zero; should fit... */
-}
-
-static ssize_t write_scan_unevictable_node(struct device *dev,
- struct device_attribute *attr,
- const char *buf, size_t count)
-{
- warn_scan_unevictable_pages();
- return 1;
-}
-
-
-static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
- read_scan_unevictable_node,
- write_scan_unevictable_node);
-
-int scan_unevictable_register_node(struct node *node)
+static DEVICE_ATTR_WO(reclaim);
+int reclaim_register_node(struct node *node)
{
- return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
+ return device_create_file(&node->dev, &dev_attr_reclaim);
}
-void scan_unevictable_unregister_node(struct node *node)
+void reclaim_unregister_node(struct node *node)
{
- device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
+ return device_remove_file(&node->dev, &dev_attr_reclaim);
}
#endif