summaryrefslogtreecommitdiff
path: root/mm/zsmalloc.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/zsmalloc.c')
-rw-r--r--mm/zsmalloc.c2200
1 files changed, 2200 insertions, 0 deletions
diff --git a/mm/zsmalloc.c b/mm/zsmalloc.c
new file mode 100644
index 000000000000..5bf832f9c05c
--- /dev/null
+++ b/mm/zsmalloc.c
@@ -0,0 +1,2200 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+
+/*
+ * zsmalloc memory allocator
+ *
+ * Copyright (C) 2011 Nitin Gupta
+ * Copyright (C) 2012, 2013 Minchan Kim
+ *
+ * This code is released using a dual license strategy: BSD/GPL
+ * You can choose the license that better fits your requirements.
+ *
+ * Released under the terms of 3-clause BSD License
+ * Released under the terms of GNU General Public License Version 2.0
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+/*
+ * lock ordering:
+ * page_lock
+ * pool->lock
+ * class->lock
+ * zspage->lock
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/errno.h>
+#include <linux/highmem.h>
+#include <linux/string.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/sprintf.h>
+#include <linux/shrinker.h>
+#include <linux/types.h>
+#include <linux/debugfs.h>
+#include <linux/zsmalloc.h>
+#include <linux/fs.h>
+#include <linux/workqueue.h>
+#include "zpdesc.h"
+
+#define ZSPAGE_MAGIC 0x58
+
+/*
+ * This must be power of 2 and greater than or equal to sizeof(link_free).
+ * These two conditions ensure that any 'struct link_free' itself doesn't
+ * span more than 1 page which avoids complex case of mapping 2 pages simply
+ * to restore link_free pointer values.
+ */
+#define ZS_ALIGN 8
+
+#define ZS_HANDLE_SIZE (sizeof(unsigned long))
+
+/*
+ * Object location (<PFN>, <obj_idx>) is encoded as
+ * a single (unsigned long) handle value.
+ *
+ * Note that object index <obj_idx> starts from 0.
+ *
+ * This is made more complicated by various memory models and PAE.
+ */
+
+#ifndef MAX_POSSIBLE_PHYSMEM_BITS
+#ifdef MAX_PHYSMEM_BITS
+#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
+#else
+/*
+ * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
+ * be PAGE_SHIFT
+ */
+#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
+#endif
+#endif
+
+#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
+
+/*
+ * Head in allocated object should have OBJ_ALLOCATED_TAG
+ * to identify the object was allocated or not.
+ * It's okay to add the status bit in the least bit because
+ * header keeps handle which is 4byte-aligned address so we
+ * have room for two bit at least.
+ */
+#define OBJ_ALLOCATED_TAG 1
+
+#define OBJ_TAG_BITS 1
+#define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
+
+#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
+#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
+
+#define HUGE_BITS 1
+#define FULLNESS_BITS 4
+#define CLASS_BITS 8
+#define MAGIC_VAL_BITS 8
+
+#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
+
+/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
+#define ZS_MIN_ALLOC_SIZE \
+ MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
+/* each chunk includes extra space to keep handle */
+#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
+
+/*
+ * On systems with 4K page size, this gives 255 size classes! There is a
+ * trader-off here:
+ * - Large number of size classes is potentially wasteful as free page are
+ * spread across these classes
+ * - Small number of size classes causes large internal fragmentation
+ * - Probably its better to use specific size classes (empirically
+ * determined). NOTE: all those class sizes must be set as multiple of
+ * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
+ *
+ * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
+ * (reason above)
+ */
+#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
+#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
+ ZS_SIZE_CLASS_DELTA) + 1)
+
+/*
+ * Pages are distinguished by the ratio of used memory (that is the ratio
+ * of ->inuse objects to all objects that page can store). For example,
+ * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
+ *
+ * The number of fullness groups is not random. It allows us to keep
+ * difference between the least busy page in the group (minimum permitted
+ * number of ->inuse objects) and the most busy page (maximum permitted
+ * number of ->inuse objects) at a reasonable value.
+ */
+enum fullness_group {
+ ZS_INUSE_RATIO_0,
+ ZS_INUSE_RATIO_10,
+ /* NOTE: 8 more fullness groups here */
+ ZS_INUSE_RATIO_99 = 10,
+ ZS_INUSE_RATIO_100,
+ NR_FULLNESS_GROUPS,
+};
+
+enum class_stat_type {
+ /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
+ ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS,
+ ZS_OBJS_INUSE,
+ NR_CLASS_STAT_TYPES,
+};
+
+struct zs_size_stat {
+ unsigned long objs[NR_CLASS_STAT_TYPES];
+};
+
+#ifdef CONFIG_ZSMALLOC_STAT
+static struct dentry *zs_stat_root;
+#endif
+
+static size_t huge_class_size;
+
+struct size_class {
+ spinlock_t lock;
+ struct list_head fullness_list[NR_FULLNESS_GROUPS];
+ /*
+ * Size of objects stored in this class. Must be multiple
+ * of ZS_ALIGN.
+ */
+ int size;
+ int objs_per_zspage;
+ /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
+ int pages_per_zspage;
+
+ unsigned int index;
+ struct zs_size_stat stats;
+};
+
+/*
+ * Placed within free objects to form a singly linked list.
+ * For every zspage, zspage->freeobj gives head of this list.
+ *
+ * This must be power of 2 and less than or equal to ZS_ALIGN
+ */
+struct link_free {
+ union {
+ /*
+ * Free object index;
+ * It's valid for non-allocated object
+ */
+ unsigned long next;
+ /*
+ * Handle of allocated object.
+ */
+ unsigned long handle;
+ };
+};
+
+struct zs_pool {
+ const char *name;
+
+ struct size_class *size_class[ZS_SIZE_CLASSES];
+ struct kmem_cache *handle_cachep;
+ struct kmem_cache *zspage_cachep;
+
+ atomic_long_t pages_allocated;
+
+ struct zs_pool_stats stats;
+
+ /* Compact classes */
+ struct shrinker *shrinker;
+
+#ifdef CONFIG_ZSMALLOC_STAT
+ struct dentry *stat_dentry;
+#endif
+#ifdef CONFIG_COMPACTION
+ struct work_struct free_work;
+#endif
+ /* protect zspage migration/compaction */
+ rwlock_t lock;
+ atomic_t compaction_in_progress;
+};
+
+static inline void zpdesc_set_first(struct zpdesc *zpdesc)
+{
+ SetPagePrivate(zpdesc_page(zpdesc));
+}
+
+static inline void zpdesc_inc_zone_page_state(struct zpdesc *zpdesc)
+{
+ inc_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
+}
+
+static inline void zpdesc_dec_zone_page_state(struct zpdesc *zpdesc)
+{
+ dec_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
+}
+
+static inline struct zpdesc *alloc_zpdesc(gfp_t gfp, const int nid)
+{
+ struct page *page = alloc_pages_node(nid, gfp, 0);
+
+ return page_zpdesc(page);
+}
+
+static inline void free_zpdesc(struct zpdesc *zpdesc)
+{
+ struct page *page = zpdesc_page(zpdesc);
+
+ /* PageZsmalloc is sticky until the page is freed to the buddy. */
+ __free_page(page);
+}
+
+#define ZS_PAGE_UNLOCKED 0
+#define ZS_PAGE_WRLOCKED -1
+
+struct zspage_lock {
+ spinlock_t lock;
+ int cnt;
+ struct lockdep_map dep_map;
+};
+
+struct zspage {
+ struct {
+ unsigned int huge:HUGE_BITS;
+ unsigned int fullness:FULLNESS_BITS;
+ unsigned int class:CLASS_BITS + 1;
+ unsigned int magic:MAGIC_VAL_BITS;
+ };
+ unsigned int inuse;
+ unsigned int freeobj;
+ struct zpdesc *first_zpdesc;
+ struct list_head list; /* fullness list */
+ struct zs_pool *pool;
+ struct zspage_lock zsl;
+};
+
+static void zspage_lock_init(struct zspage *zspage)
+{
+ static struct lock_class_key __key;
+ struct zspage_lock *zsl = &zspage->zsl;
+
+ lockdep_init_map(&zsl->dep_map, "zspage->lock", &__key, 0);
+ spin_lock_init(&zsl->lock);
+ zsl->cnt = ZS_PAGE_UNLOCKED;
+}
+
+/*
+ * The zspage lock can be held from atomic contexts, but it needs to remain
+ * preemptible when held for reading because it remains held outside of those
+ * atomic contexts, otherwise we unnecessarily lose preemptibility.
+ *
+ * To achieve this, the following rules are enforced on readers and writers:
+ *
+ * - Writers are blocked by both writers and readers, while readers are only
+ * blocked by writers (i.e. normal rwlock semantics).
+ *
+ * - Writers are always atomic (to allow readers to spin waiting for them).
+ *
+ * - Writers always use trylock (as the lock may be held be sleeping readers).
+ *
+ * - Readers may spin on the lock (as they can only wait for atomic writers).
+ *
+ * - Readers may sleep while holding the lock (as writes only use trylock).
+ */
+static void zspage_read_lock(struct zspage *zspage)
+{
+ struct zspage_lock *zsl = &zspage->zsl;
+
+ rwsem_acquire_read(&zsl->dep_map, 0, 0, _RET_IP_);
+
+ spin_lock(&zsl->lock);
+ zsl->cnt++;
+ spin_unlock(&zsl->lock);
+
+ lock_acquired(&zsl->dep_map, _RET_IP_);
+}
+
+static void zspage_read_unlock(struct zspage *zspage)
+{
+ struct zspage_lock *zsl = &zspage->zsl;
+
+ rwsem_release(&zsl->dep_map, _RET_IP_);
+
+ spin_lock(&zsl->lock);
+ zsl->cnt--;
+ spin_unlock(&zsl->lock);
+}
+
+static __must_check bool zspage_write_trylock(struct zspage *zspage)
+{
+ struct zspage_lock *zsl = &zspage->zsl;
+
+ spin_lock(&zsl->lock);
+ if (zsl->cnt == ZS_PAGE_UNLOCKED) {
+ zsl->cnt = ZS_PAGE_WRLOCKED;
+ rwsem_acquire(&zsl->dep_map, 0, 1, _RET_IP_);
+ lock_acquired(&zsl->dep_map, _RET_IP_);
+ return true;
+ }
+
+ spin_unlock(&zsl->lock);
+ return false;
+}
+
+static void zspage_write_unlock(struct zspage *zspage)
+{
+ struct zspage_lock *zsl = &zspage->zsl;
+
+ rwsem_release(&zsl->dep_map, _RET_IP_);
+
+ zsl->cnt = ZS_PAGE_UNLOCKED;
+ spin_unlock(&zsl->lock);
+}
+
+/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
+static void SetZsHugePage(struct zspage *zspage)
+{
+ zspage->huge = 1;
+}
+
+static bool ZsHugePage(struct zspage *zspage)
+{
+ return zspage->huge;
+}
+
+#ifdef CONFIG_COMPACTION
+static void kick_deferred_free(struct zs_pool *pool);
+static void init_deferred_free(struct zs_pool *pool);
+static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
+#else
+static void kick_deferred_free(struct zs_pool *pool) {}
+static void init_deferred_free(struct zs_pool *pool) {}
+static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
+#endif
+
+static int create_cache(struct zs_pool *pool)
+{
+ char *name;
+
+ name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name);
+ if (!name)
+ return -ENOMEM;
+ pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE,
+ 0, 0, NULL);
+ kfree(name);
+ if (!pool->handle_cachep)
+ return -EINVAL;
+
+ name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name);
+ if (!name)
+ return -ENOMEM;
+ pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage),
+ 0, 0, NULL);
+ kfree(name);
+ if (!pool->zspage_cachep) {
+ kmem_cache_destroy(pool->handle_cachep);
+ pool->handle_cachep = NULL;
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static void destroy_cache(struct zs_pool *pool)
+{
+ kmem_cache_destroy(pool->handle_cachep);
+ kmem_cache_destroy(pool->zspage_cachep);
+}
+
+static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
+{
+ return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
+ gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
+}
+
+static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
+{
+ kmem_cache_free(pool->handle_cachep, (void *)handle);
+}
+
+static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
+{
+ return kmem_cache_zalloc(pool->zspage_cachep,
+ flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
+}
+
+static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
+{
+ kmem_cache_free(pool->zspage_cachep, zspage);
+}
+
+/* class->lock(which owns the handle) synchronizes races */
+static void record_obj(unsigned long handle, unsigned long obj)
+{
+ *(unsigned long *)handle = obj;
+}
+
+static inline bool __maybe_unused is_first_zpdesc(struct zpdesc *zpdesc)
+{
+ return PagePrivate(zpdesc_page(zpdesc));
+}
+
+/* Protected by class->lock */
+static inline int get_zspage_inuse(struct zspage *zspage)
+{
+ return zspage->inuse;
+}
+
+static inline void mod_zspage_inuse(struct zspage *zspage, int val)
+{
+ zspage->inuse += val;
+}
+
+static struct zpdesc *get_first_zpdesc(struct zspage *zspage)
+{
+ struct zpdesc *first_zpdesc = zspage->first_zpdesc;
+
+ VM_BUG_ON_PAGE(!is_first_zpdesc(first_zpdesc), zpdesc_page(first_zpdesc));
+ return first_zpdesc;
+}
+
+#define FIRST_OBJ_PAGE_TYPE_MASK 0xffffff
+
+static inline unsigned int get_first_obj_offset(struct zpdesc *zpdesc)
+{
+ VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
+ return zpdesc->first_obj_offset & FIRST_OBJ_PAGE_TYPE_MASK;
+}
+
+static inline void set_first_obj_offset(struct zpdesc *zpdesc, unsigned int offset)
+{
+ /* With 24 bits available, we can support offsets into 16 MiB pages. */
+ BUILD_BUG_ON(PAGE_SIZE > SZ_16M);
+ VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
+ VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
+ zpdesc->first_obj_offset &= ~FIRST_OBJ_PAGE_TYPE_MASK;
+ zpdesc->first_obj_offset |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
+}
+
+static inline unsigned int get_freeobj(struct zspage *zspage)
+{
+ return zspage->freeobj;
+}
+
+static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
+{
+ zspage->freeobj = obj;
+}
+
+static struct size_class *zspage_class(struct zs_pool *pool,
+ struct zspage *zspage)
+{
+ return pool->size_class[zspage->class];
+}
+
+/*
+ * zsmalloc divides the pool into various size classes where each
+ * class maintains a list of zspages where each zspage is divided
+ * into equal sized chunks. Each allocation falls into one of these
+ * classes depending on its size. This function returns index of the
+ * size class which has chunk size big enough to hold the given size.
+ */
+static int get_size_class_index(int size)
+{
+ int idx = 0;
+
+ if (likely(size > ZS_MIN_ALLOC_SIZE))
+ idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
+ ZS_SIZE_CLASS_DELTA);
+
+ return min_t(int, ZS_SIZE_CLASSES - 1, idx);
+}
+
+static inline void class_stat_add(struct size_class *class, int type,
+ unsigned long cnt)
+{
+ class->stats.objs[type] += cnt;
+}
+
+static inline void class_stat_sub(struct size_class *class, int type,
+ unsigned long cnt)
+{
+ class->stats.objs[type] -= cnt;
+}
+
+static inline unsigned long class_stat_read(struct size_class *class, int type)
+{
+ return class->stats.objs[type];
+}
+
+#ifdef CONFIG_ZSMALLOC_STAT
+
+static void __init zs_stat_init(void)
+{
+ if (!debugfs_initialized()) {
+ pr_warn("debugfs not available, stat dir not created\n");
+ return;
+ }
+
+ zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
+}
+
+static void __exit zs_stat_exit(void)
+{
+ debugfs_remove_recursive(zs_stat_root);
+}
+
+static unsigned long zs_can_compact(struct size_class *class);
+
+static int zs_stats_size_show(struct seq_file *s, void *v)
+{
+ int i, fg;
+ struct zs_pool *pool = s->private;
+ struct size_class *class;
+ int objs_per_zspage;
+ unsigned long obj_allocated, obj_used, pages_used, freeable;
+ unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
+ unsigned long total_freeable = 0;
+ unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
+
+ seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
+ "class", "size", "10%", "20%", "30%", "40%",
+ "50%", "60%", "70%", "80%", "90%", "99%", "100%",
+ "obj_allocated", "obj_used", "pages_used",
+ "pages_per_zspage", "freeable");
+
+ for (i = 0; i < ZS_SIZE_CLASSES; i++) {
+
+ class = pool->size_class[i];
+
+ if (class->index != i)
+ continue;
+
+ spin_lock(&class->lock);
+
+ seq_printf(s, " %5u %5u ", i, class->size);
+ for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
+ inuse_totals[fg] += class_stat_read(class, fg);
+ seq_printf(s, "%9lu ", class_stat_read(class, fg));
+ }
+
+ obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
+ obj_used = class_stat_read(class, ZS_OBJS_INUSE);
+ freeable = zs_can_compact(class);
+ spin_unlock(&class->lock);
+
+ objs_per_zspage = class->objs_per_zspage;
+ pages_used = obj_allocated / objs_per_zspage *
+ class->pages_per_zspage;
+
+ seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
+ obj_allocated, obj_used, pages_used,
+ class->pages_per_zspage, freeable);
+
+ total_objs += obj_allocated;
+ total_used_objs += obj_used;
+ total_pages += pages_used;
+ total_freeable += freeable;
+ }
+
+ seq_puts(s, "\n");
+ seq_printf(s, " %5s %5s ", "Total", "");
+
+ for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
+ seq_printf(s, "%9lu ", inuse_totals[fg]);
+
+ seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
+ total_objs, total_used_objs, total_pages, "",
+ total_freeable);
+
+ return 0;
+}
+DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
+
+static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
+{
+ if (!zs_stat_root) {
+ pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
+ return;
+ }
+
+ pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
+
+ debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
+ &zs_stats_size_fops);
+}
+
+static void zs_pool_stat_destroy(struct zs_pool *pool)
+{
+ debugfs_remove_recursive(pool->stat_dentry);
+}
+
+#else /* CONFIG_ZSMALLOC_STAT */
+static void __init zs_stat_init(void)
+{
+}
+
+static void __exit zs_stat_exit(void)
+{
+}
+
+static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
+{
+}
+
+static inline void zs_pool_stat_destroy(struct zs_pool *pool)
+{
+}
+#endif
+
+
+/*
+ * For each size class, zspages are divided into different groups
+ * depending on their usage ratio. This function returns fullness
+ * status of the given page.
+ */
+static int get_fullness_group(struct size_class *class, struct zspage *zspage)
+{
+ int inuse, objs_per_zspage, ratio;
+
+ inuse = get_zspage_inuse(zspage);
+ objs_per_zspage = class->objs_per_zspage;
+
+ if (inuse == 0)
+ return ZS_INUSE_RATIO_0;
+ if (inuse == objs_per_zspage)
+ return ZS_INUSE_RATIO_100;
+
+ ratio = 100 * inuse / objs_per_zspage;
+ /*
+ * Take integer division into consideration: a page with one inuse
+ * object out of 127 possible, will end up having 0 usage ratio,
+ * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
+ */
+ return ratio / 10 + 1;
+}
+
+/*
+ * Each size class maintains various freelists and zspages are assigned
+ * to one of these freelists based on the number of live objects they
+ * have. This functions inserts the given zspage into the freelist
+ * identified by <class, fullness_group>.
+ */
+static void insert_zspage(struct size_class *class,
+ struct zspage *zspage,
+ int fullness)
+{
+ class_stat_add(class, fullness, 1);
+ list_add(&zspage->list, &class->fullness_list[fullness]);
+ zspage->fullness = fullness;
+}
+
+/*
+ * This function removes the given zspage from the freelist identified
+ * by <class, fullness_group>.
+ */
+static void remove_zspage(struct size_class *class, struct zspage *zspage)
+{
+ int fullness = zspage->fullness;
+
+ VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
+
+ list_del_init(&zspage->list);
+ class_stat_sub(class, fullness, 1);
+}
+
+/*
+ * Each size class maintains zspages in different fullness groups depending
+ * on the number of live objects they contain. When allocating or freeing
+ * objects, the fullness status of the page can change, for instance, from
+ * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
+ * checks if such a status change has occurred for the given page and
+ * accordingly moves the page from the list of the old fullness group to that
+ * of the new fullness group.
+ */
+static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
+{
+ int newfg;
+
+ newfg = get_fullness_group(class, zspage);
+ if (newfg == zspage->fullness)
+ goto out;
+
+ remove_zspage(class, zspage);
+ insert_zspage(class, zspage, newfg);
+out:
+ return newfg;
+}
+
+static struct zspage *get_zspage(struct zpdesc *zpdesc)
+{
+ struct zspage *zspage = zpdesc->zspage;
+
+ BUG_ON(zspage->magic != ZSPAGE_MAGIC);
+ return zspage;
+}
+
+static struct zpdesc *get_next_zpdesc(struct zpdesc *zpdesc)
+{
+ struct zspage *zspage = get_zspage(zpdesc);
+
+ if (unlikely(ZsHugePage(zspage)))
+ return NULL;
+
+ return zpdesc->next;
+}
+
+/**
+ * obj_to_location - get (<zpdesc>, <obj_idx>) from encoded object value
+ * @obj: the encoded object value
+ * @zpdesc: zpdesc object resides in zspage
+ * @obj_idx: object index
+ */
+static void obj_to_location(unsigned long obj, struct zpdesc **zpdesc,
+ unsigned int *obj_idx)
+{
+ *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
+ *obj_idx = (obj & OBJ_INDEX_MASK);
+}
+
+static void obj_to_zpdesc(unsigned long obj, struct zpdesc **zpdesc)
+{
+ *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
+}
+
+/**
+ * location_to_obj - get obj value encoded from (<zpdesc>, <obj_idx>)
+ * @zpdesc: zpdesc object resides in zspage
+ * @obj_idx: object index
+ */
+static unsigned long location_to_obj(struct zpdesc *zpdesc, unsigned int obj_idx)
+{
+ unsigned long obj;
+
+ obj = zpdesc_pfn(zpdesc) << OBJ_INDEX_BITS;
+ obj |= obj_idx & OBJ_INDEX_MASK;
+
+ return obj;
+}
+
+static unsigned long handle_to_obj(unsigned long handle)
+{
+ return *(unsigned long *)handle;
+}
+
+static inline bool obj_allocated(struct zpdesc *zpdesc, void *obj,
+ unsigned long *phandle)
+{
+ unsigned long handle;
+ struct zspage *zspage = get_zspage(zpdesc);
+
+ if (unlikely(ZsHugePage(zspage))) {
+ VM_BUG_ON_PAGE(!is_first_zpdesc(zpdesc), zpdesc_page(zpdesc));
+ handle = zpdesc->handle;
+ } else
+ handle = *(unsigned long *)obj;
+
+ if (!(handle & OBJ_ALLOCATED_TAG))
+ return false;
+
+ /* Clear all tags before returning the handle */
+ *phandle = handle & ~OBJ_TAG_MASK;
+ return true;
+}
+
+static void reset_zpdesc(struct zpdesc *zpdesc)
+{
+ struct page *page = zpdesc_page(zpdesc);
+
+ ClearPagePrivate(page);
+ zpdesc->zspage = NULL;
+ zpdesc->next = NULL;
+ /* PageZsmalloc is sticky until the page is freed to the buddy. */
+}
+
+static int trylock_zspage(struct zspage *zspage)
+{
+ struct zpdesc *cursor, *fail;
+
+ for (cursor = get_first_zpdesc(zspage); cursor != NULL; cursor =
+ get_next_zpdesc(cursor)) {
+ if (!zpdesc_trylock(cursor)) {
+ fail = cursor;
+ goto unlock;
+ }
+ }
+
+ return 1;
+unlock:
+ for (cursor = get_first_zpdesc(zspage); cursor != fail; cursor =
+ get_next_zpdesc(cursor))
+ zpdesc_unlock(cursor);
+
+ return 0;
+}
+
+static void __free_zspage(struct zs_pool *pool, struct size_class *class,
+ struct zspage *zspage)
+{
+ struct zpdesc *zpdesc, *next;
+
+ assert_spin_locked(&class->lock);
+
+ VM_BUG_ON(get_zspage_inuse(zspage));
+ VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
+
+ next = zpdesc = get_first_zpdesc(zspage);
+ do {
+ VM_BUG_ON_PAGE(!zpdesc_is_locked(zpdesc), zpdesc_page(zpdesc));
+ next = get_next_zpdesc(zpdesc);
+ reset_zpdesc(zpdesc);
+ zpdesc_unlock(zpdesc);
+ zpdesc_dec_zone_page_state(zpdesc);
+ zpdesc_put(zpdesc);
+ zpdesc = next;
+ } while (zpdesc != NULL);
+
+ cache_free_zspage(pool, zspage);
+
+ class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
+ atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
+}
+
+static void free_zspage(struct zs_pool *pool, struct size_class *class,
+ struct zspage *zspage)
+{
+ VM_BUG_ON(get_zspage_inuse(zspage));
+ VM_BUG_ON(list_empty(&zspage->list));
+
+ /*
+ * Since zs_free couldn't be sleepable, this function cannot call
+ * lock_page. The page locks trylock_zspage got will be released
+ * by __free_zspage.
+ */
+ if (!trylock_zspage(zspage)) {
+ kick_deferred_free(pool);
+ return;
+ }
+
+ remove_zspage(class, zspage);
+ __free_zspage(pool, class, zspage);
+}
+
+/* Initialize a newly allocated zspage */
+static void init_zspage(struct size_class *class, struct zspage *zspage)
+{
+ unsigned int freeobj = 1;
+ unsigned long off = 0;
+ struct zpdesc *zpdesc = get_first_zpdesc(zspage);
+
+ while (zpdesc) {
+ struct zpdesc *next_zpdesc;
+ struct link_free *link;
+ void *vaddr;
+
+ set_first_obj_offset(zpdesc, off);
+
+ vaddr = kmap_local_zpdesc(zpdesc);
+ link = (struct link_free *)vaddr + off / sizeof(*link);
+
+ while ((off += class->size) < PAGE_SIZE) {
+ link->next = freeobj++ << OBJ_TAG_BITS;
+ link += class->size / sizeof(*link);
+ }
+
+ /*
+ * We now come to the last (full or partial) object on this
+ * page, which must point to the first object on the next
+ * page (if present)
+ */
+ next_zpdesc = get_next_zpdesc(zpdesc);
+ if (next_zpdesc) {
+ link->next = freeobj++ << OBJ_TAG_BITS;
+ } else {
+ /*
+ * Reset OBJ_TAG_BITS bit to last link to tell
+ * whether it's allocated object or not.
+ */
+ link->next = -1UL << OBJ_TAG_BITS;
+ }
+ kunmap_local(vaddr);
+ zpdesc = next_zpdesc;
+ off %= PAGE_SIZE;
+ }
+
+ set_freeobj(zspage, 0);
+}
+
+static void create_page_chain(struct size_class *class, struct zspage *zspage,
+ struct zpdesc *zpdescs[])
+{
+ int i;
+ struct zpdesc *zpdesc;
+ struct zpdesc *prev_zpdesc = NULL;
+ int nr_zpdescs = class->pages_per_zspage;
+
+ /*
+ * Allocate individual pages and link them together as:
+ * 1. all pages are linked together using zpdesc->next
+ * 2. each sub-page point to zspage using zpdesc->zspage
+ *
+ * we set PG_private to identify the first zpdesc (i.e. no other zpdesc
+ * has this flag set).
+ */
+ for (i = 0; i < nr_zpdescs; i++) {
+ zpdesc = zpdescs[i];
+ zpdesc->zspage = zspage;
+ zpdesc->next = NULL;
+ if (i == 0) {
+ zspage->first_zpdesc = zpdesc;
+ zpdesc_set_first(zpdesc);
+ if (unlikely(class->objs_per_zspage == 1 &&
+ class->pages_per_zspage == 1))
+ SetZsHugePage(zspage);
+ } else {
+ prev_zpdesc->next = zpdesc;
+ }
+ prev_zpdesc = zpdesc;
+ }
+}
+
+/*
+ * Allocate a zspage for the given size class
+ */
+static struct zspage *alloc_zspage(struct zs_pool *pool,
+ struct size_class *class,
+ gfp_t gfp, const int nid)
+{
+ int i;
+ struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE];
+ struct zspage *zspage = cache_alloc_zspage(pool, gfp);
+
+ if (!zspage)
+ return NULL;
+
+ if (!IS_ENABLED(CONFIG_COMPACTION))
+ gfp &= ~__GFP_MOVABLE;
+
+ zspage->magic = ZSPAGE_MAGIC;
+ zspage->pool = pool;
+ zspage->class = class->index;
+ zspage_lock_init(zspage);
+
+ for (i = 0; i < class->pages_per_zspage; i++) {
+ struct zpdesc *zpdesc;
+
+ zpdesc = alloc_zpdesc(gfp, nid);
+ if (!zpdesc) {
+ while (--i >= 0) {
+ zpdesc_dec_zone_page_state(zpdescs[i]);
+ free_zpdesc(zpdescs[i]);
+ }
+ cache_free_zspage(pool, zspage);
+ return NULL;
+ }
+ __zpdesc_set_zsmalloc(zpdesc);
+
+ zpdesc_inc_zone_page_state(zpdesc);
+ zpdescs[i] = zpdesc;
+ }
+
+ create_page_chain(class, zspage, zpdescs);
+ init_zspage(class, zspage);
+
+ return zspage;
+}
+
+static struct zspage *find_get_zspage(struct size_class *class)
+{
+ int i;
+ struct zspage *zspage;
+
+ for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
+ zspage = list_first_entry_or_null(&class->fullness_list[i],
+ struct zspage, list);
+ if (zspage)
+ break;
+ }
+
+ return zspage;
+}
+
+static bool can_merge(struct size_class *prev, int pages_per_zspage,
+ int objs_per_zspage)
+{
+ if (prev->pages_per_zspage == pages_per_zspage &&
+ prev->objs_per_zspage == objs_per_zspage)
+ return true;
+
+ return false;
+}
+
+static bool zspage_full(struct size_class *class, struct zspage *zspage)
+{
+ return get_zspage_inuse(zspage) == class->objs_per_zspage;
+}
+
+static bool zspage_empty(struct zspage *zspage)
+{
+ return get_zspage_inuse(zspage) == 0;
+}
+
+/**
+ * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
+ * that hold objects of the provided size.
+ * @pool: zsmalloc pool to use
+ * @size: object size
+ *
+ * Context: Any context.
+ *
+ * Return: the index of the zsmalloc &size_class that hold objects of the
+ * provided size.
+ */
+unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
+{
+ struct size_class *class;
+
+ class = pool->size_class[get_size_class_index(size)];
+
+ return class->index;
+}
+EXPORT_SYMBOL_GPL(zs_lookup_class_index);
+
+unsigned long zs_get_total_pages(struct zs_pool *pool)
+{
+ return atomic_long_read(&pool->pages_allocated);
+}
+EXPORT_SYMBOL_GPL(zs_get_total_pages);
+
+void *zs_obj_read_begin(struct zs_pool *pool, unsigned long handle,
+ void *local_copy)
+{
+ struct zspage *zspage;
+ struct zpdesc *zpdesc;
+ unsigned long obj, off;
+ unsigned int obj_idx;
+ struct size_class *class;
+ void *addr;
+
+ /* Guarantee we can get zspage from handle safely */
+ read_lock(&pool->lock);
+ obj = handle_to_obj(handle);
+ obj_to_location(obj, &zpdesc, &obj_idx);
+ zspage = get_zspage(zpdesc);
+
+ /* Make sure migration doesn't move any pages in this zspage */
+ zspage_read_lock(zspage);
+ read_unlock(&pool->lock);
+
+ class = zspage_class(pool, zspage);
+ off = offset_in_page(class->size * obj_idx);
+
+ if (off + class->size <= PAGE_SIZE) {
+ /* this object is contained entirely within a page */
+ addr = kmap_local_zpdesc(zpdesc);
+ addr += off;
+ } else {
+ size_t sizes[2];
+
+ /* this object spans two pages */
+ sizes[0] = PAGE_SIZE - off;
+ sizes[1] = class->size - sizes[0];
+ addr = local_copy;
+
+ memcpy_from_page(addr, zpdesc_page(zpdesc),
+ off, sizes[0]);
+ zpdesc = get_next_zpdesc(zpdesc);
+ memcpy_from_page(addr + sizes[0],
+ zpdesc_page(zpdesc),
+ 0, sizes[1]);
+ }
+
+ if (!ZsHugePage(zspage))
+ addr += ZS_HANDLE_SIZE;
+
+ return addr;
+}
+EXPORT_SYMBOL_GPL(zs_obj_read_begin);
+
+void zs_obj_read_end(struct zs_pool *pool, unsigned long handle,
+ void *handle_mem)
+{
+ struct zspage *zspage;
+ struct zpdesc *zpdesc;
+ unsigned long obj, off;
+ unsigned int obj_idx;
+ struct size_class *class;
+
+ obj = handle_to_obj(handle);
+ obj_to_location(obj, &zpdesc, &obj_idx);
+ zspage = get_zspage(zpdesc);
+ class = zspage_class(pool, zspage);
+ off = offset_in_page(class->size * obj_idx);
+
+ if (off + class->size <= PAGE_SIZE) {
+ if (!ZsHugePage(zspage))
+ off += ZS_HANDLE_SIZE;
+ handle_mem -= off;
+ kunmap_local(handle_mem);
+ }
+
+ zspage_read_unlock(zspage);
+}
+EXPORT_SYMBOL_GPL(zs_obj_read_end);
+
+void zs_obj_write(struct zs_pool *pool, unsigned long handle,
+ void *handle_mem, size_t mem_len)
+{
+ struct zspage *zspage;
+ struct zpdesc *zpdesc;
+ unsigned long obj, off;
+ unsigned int obj_idx;
+ struct size_class *class;
+
+ /* Guarantee we can get zspage from handle safely */
+ read_lock(&pool->lock);
+ obj = handle_to_obj(handle);
+ obj_to_location(obj, &zpdesc, &obj_idx);
+ zspage = get_zspage(zpdesc);
+
+ /* Make sure migration doesn't move any pages in this zspage */
+ zspage_read_lock(zspage);
+ read_unlock(&pool->lock);
+
+ class = zspage_class(pool, zspage);
+ off = offset_in_page(class->size * obj_idx);
+
+ if (!ZsHugePage(zspage))
+ off += ZS_HANDLE_SIZE;
+
+ if (off + mem_len <= PAGE_SIZE) {
+ /* this object is contained entirely within a page */
+ void *dst = kmap_local_zpdesc(zpdesc);
+
+ memcpy(dst + off, handle_mem, mem_len);
+ kunmap_local(dst);
+ } else {
+ /* this object spans two pages */
+ size_t sizes[2];
+
+ sizes[0] = PAGE_SIZE - off;
+ sizes[1] = mem_len - sizes[0];
+
+ memcpy_to_page(zpdesc_page(zpdesc), off,
+ handle_mem, sizes[0]);
+ zpdesc = get_next_zpdesc(zpdesc);
+ memcpy_to_page(zpdesc_page(zpdesc), 0,
+ handle_mem + sizes[0], sizes[1]);
+ }
+
+ zspage_read_unlock(zspage);
+}
+EXPORT_SYMBOL_GPL(zs_obj_write);
+
+/**
+ * zs_huge_class_size() - Returns the size (in bytes) of the first huge
+ * zsmalloc &size_class.
+ * @pool: zsmalloc pool to use
+ *
+ * The function returns the size of the first huge class - any object of equal
+ * or bigger size will be stored in zspage consisting of a single physical
+ * page.
+ *
+ * Context: Any context.
+ *
+ * Return: the size (in bytes) of the first huge zsmalloc &size_class.
+ */
+size_t zs_huge_class_size(struct zs_pool *pool)
+{
+ return huge_class_size;
+}
+EXPORT_SYMBOL_GPL(zs_huge_class_size);
+
+static unsigned long obj_malloc(struct zs_pool *pool,
+ struct zspage *zspage, unsigned long handle)
+{
+ int i, nr_zpdesc, offset;
+ unsigned long obj;
+ struct link_free *link;
+ struct size_class *class;
+
+ struct zpdesc *m_zpdesc;
+ unsigned long m_offset;
+ void *vaddr;
+
+ class = pool->size_class[zspage->class];
+ obj = get_freeobj(zspage);
+
+ offset = obj * class->size;
+ nr_zpdesc = offset >> PAGE_SHIFT;
+ m_offset = offset_in_page(offset);
+ m_zpdesc = get_first_zpdesc(zspage);
+
+ for (i = 0; i < nr_zpdesc; i++)
+ m_zpdesc = get_next_zpdesc(m_zpdesc);
+
+ vaddr = kmap_local_zpdesc(m_zpdesc);
+ link = (struct link_free *)vaddr + m_offset / sizeof(*link);
+ set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
+ if (likely(!ZsHugePage(zspage)))
+ /* record handle in the header of allocated chunk */
+ link->handle = handle | OBJ_ALLOCATED_TAG;
+ else
+ zspage->first_zpdesc->handle = handle | OBJ_ALLOCATED_TAG;
+
+ kunmap_local(vaddr);
+ mod_zspage_inuse(zspage, 1);
+
+ obj = location_to_obj(m_zpdesc, obj);
+ record_obj(handle, obj);
+
+ return obj;
+}
+
+
+/**
+ * zs_malloc - Allocate block of given size from pool.
+ * @pool: pool to allocate from
+ * @size: size of block to allocate
+ * @gfp: gfp flags when allocating object
+ * @nid: The preferred node id to allocate new zspage (if needed)
+ *
+ * On success, handle to the allocated object is returned,
+ * otherwise an ERR_PTR().
+ * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
+ */
+unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp,
+ const int nid)
+{
+ unsigned long handle;
+ struct size_class *class;
+ int newfg;
+ struct zspage *zspage;
+
+ if (unlikely(!size))
+ return (unsigned long)ERR_PTR(-EINVAL);
+
+ if (unlikely(size > ZS_MAX_ALLOC_SIZE))
+ return (unsigned long)ERR_PTR(-ENOSPC);
+
+ handle = cache_alloc_handle(pool, gfp);
+ if (!handle)
+ return (unsigned long)ERR_PTR(-ENOMEM);
+
+ /* extra space in chunk to keep the handle */
+ size += ZS_HANDLE_SIZE;
+ class = pool->size_class[get_size_class_index(size)];
+
+ /* class->lock effectively protects the zpage migration */
+ spin_lock(&class->lock);
+ zspage = find_get_zspage(class);
+ if (likely(zspage)) {
+ obj_malloc(pool, zspage, handle);
+ /* Now move the zspage to another fullness group, if required */
+ fix_fullness_group(class, zspage);
+ class_stat_add(class, ZS_OBJS_INUSE, 1);
+
+ goto out;
+ }
+
+ spin_unlock(&class->lock);
+
+ zspage = alloc_zspage(pool, class, gfp, nid);
+ if (!zspage) {
+ cache_free_handle(pool, handle);
+ return (unsigned long)ERR_PTR(-ENOMEM);
+ }
+
+ spin_lock(&class->lock);
+ obj_malloc(pool, zspage, handle);
+ newfg = get_fullness_group(class, zspage);
+ insert_zspage(class, zspage, newfg);
+ atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
+ class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
+ class_stat_add(class, ZS_OBJS_INUSE, 1);
+
+ /* We completely set up zspage so mark them as movable */
+ SetZsPageMovable(pool, zspage);
+out:
+ spin_unlock(&class->lock);
+
+ return handle;
+}
+EXPORT_SYMBOL_GPL(zs_malloc);
+
+static void obj_free(int class_size, unsigned long obj)
+{
+ struct link_free *link;
+ struct zspage *zspage;
+ struct zpdesc *f_zpdesc;
+ unsigned long f_offset;
+ unsigned int f_objidx;
+ void *vaddr;
+
+
+ obj_to_location(obj, &f_zpdesc, &f_objidx);
+ f_offset = offset_in_page(class_size * f_objidx);
+ zspage = get_zspage(f_zpdesc);
+
+ vaddr = kmap_local_zpdesc(f_zpdesc);
+ link = (struct link_free *)(vaddr + f_offset);
+
+ /* Insert this object in containing zspage's freelist */
+ if (likely(!ZsHugePage(zspage)))
+ link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
+ else
+ f_zpdesc->handle = 0;
+ set_freeobj(zspage, f_objidx);
+
+ kunmap_local(vaddr);
+ mod_zspage_inuse(zspage, -1);
+}
+
+void zs_free(struct zs_pool *pool, unsigned long handle)
+{
+ struct zspage *zspage;
+ struct zpdesc *f_zpdesc;
+ unsigned long obj;
+ struct size_class *class;
+ int fullness;
+
+ if (IS_ERR_OR_NULL((void *)handle))
+ return;
+
+ /*
+ * The pool->lock protects the race with zpage's migration
+ * so it's safe to get the page from handle.
+ */
+ read_lock(&pool->lock);
+ obj = handle_to_obj(handle);
+ obj_to_zpdesc(obj, &f_zpdesc);
+ zspage = get_zspage(f_zpdesc);
+ class = zspage_class(pool, zspage);
+ spin_lock(&class->lock);
+ read_unlock(&pool->lock);
+
+ class_stat_sub(class, ZS_OBJS_INUSE, 1);
+ obj_free(class->size, obj);
+
+ fullness = fix_fullness_group(class, zspage);
+ if (fullness == ZS_INUSE_RATIO_0)
+ free_zspage(pool, class, zspage);
+
+ spin_unlock(&class->lock);
+ cache_free_handle(pool, handle);
+}
+EXPORT_SYMBOL_GPL(zs_free);
+
+static void zs_object_copy(struct size_class *class, unsigned long dst,
+ unsigned long src)
+{
+ struct zpdesc *s_zpdesc, *d_zpdesc;
+ unsigned int s_objidx, d_objidx;
+ unsigned long s_off, d_off;
+ void *s_addr, *d_addr;
+ int s_size, d_size, size;
+ int written = 0;
+
+ s_size = d_size = class->size;
+
+ obj_to_location(src, &s_zpdesc, &s_objidx);
+ obj_to_location(dst, &d_zpdesc, &d_objidx);
+
+ s_off = offset_in_page(class->size * s_objidx);
+ d_off = offset_in_page(class->size * d_objidx);
+
+ if (s_off + class->size > PAGE_SIZE)
+ s_size = PAGE_SIZE - s_off;
+
+ if (d_off + class->size > PAGE_SIZE)
+ d_size = PAGE_SIZE - d_off;
+
+ s_addr = kmap_local_zpdesc(s_zpdesc);
+ d_addr = kmap_local_zpdesc(d_zpdesc);
+
+ while (1) {
+ size = min(s_size, d_size);
+ memcpy(d_addr + d_off, s_addr + s_off, size);
+ written += size;
+
+ if (written == class->size)
+ break;
+
+ s_off += size;
+ s_size -= size;
+ d_off += size;
+ d_size -= size;
+
+ /*
+ * Calling kunmap_local(d_addr) is necessary. kunmap_local()
+ * calls must occurs in reverse order of calls to kmap_local_page().
+ * So, to call kunmap_local(s_addr) we should first call
+ * kunmap_local(d_addr). For more details see
+ * Documentation/mm/highmem.rst.
+ */
+ if (s_off >= PAGE_SIZE) {
+ kunmap_local(d_addr);
+ kunmap_local(s_addr);
+ s_zpdesc = get_next_zpdesc(s_zpdesc);
+ s_addr = kmap_local_zpdesc(s_zpdesc);
+ d_addr = kmap_local_zpdesc(d_zpdesc);
+ s_size = class->size - written;
+ s_off = 0;
+ }
+
+ if (d_off >= PAGE_SIZE) {
+ kunmap_local(d_addr);
+ d_zpdesc = get_next_zpdesc(d_zpdesc);
+ d_addr = kmap_local_zpdesc(d_zpdesc);
+ d_size = class->size - written;
+ d_off = 0;
+ }
+ }
+
+ kunmap_local(d_addr);
+ kunmap_local(s_addr);
+}
+
+/*
+ * Find alloced object in zspage from index object and
+ * return handle.
+ */
+static unsigned long find_alloced_obj(struct size_class *class,
+ struct zpdesc *zpdesc, int *obj_idx)
+{
+ unsigned int offset;
+ int index = *obj_idx;
+ unsigned long handle = 0;
+ void *addr = kmap_local_zpdesc(zpdesc);
+
+ offset = get_first_obj_offset(zpdesc);
+ offset += class->size * index;
+
+ while (offset < PAGE_SIZE) {
+ if (obj_allocated(zpdesc, addr + offset, &handle))
+ break;
+
+ offset += class->size;
+ index++;
+ }
+
+ kunmap_local(addr);
+
+ *obj_idx = index;
+
+ return handle;
+}
+
+static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
+ struct zspage *dst_zspage)
+{
+ unsigned long used_obj, free_obj;
+ unsigned long handle;
+ int obj_idx = 0;
+ struct zpdesc *s_zpdesc = get_first_zpdesc(src_zspage);
+ struct size_class *class = pool->size_class[src_zspage->class];
+
+ while (1) {
+ handle = find_alloced_obj(class, s_zpdesc, &obj_idx);
+ if (!handle) {
+ s_zpdesc = get_next_zpdesc(s_zpdesc);
+ if (!s_zpdesc)
+ break;
+ obj_idx = 0;
+ continue;
+ }
+
+ used_obj = handle_to_obj(handle);
+ free_obj = obj_malloc(pool, dst_zspage, handle);
+ zs_object_copy(class, free_obj, used_obj);
+ obj_idx++;
+ obj_free(class->size, used_obj);
+
+ /* Stop if there is no more space */
+ if (zspage_full(class, dst_zspage))
+ break;
+
+ /* Stop if there are no more objects to migrate */
+ if (zspage_empty(src_zspage))
+ break;
+ }
+}
+
+static struct zspage *isolate_src_zspage(struct size_class *class)
+{
+ struct zspage *zspage;
+ int fg;
+
+ for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
+ zspage = list_first_entry_or_null(&class->fullness_list[fg],
+ struct zspage, list);
+ if (zspage) {
+ remove_zspage(class, zspage);
+ return zspage;
+ }
+ }
+
+ return zspage;
+}
+
+static struct zspage *isolate_dst_zspage(struct size_class *class)
+{
+ struct zspage *zspage;
+ int fg;
+
+ for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
+ zspage = list_first_entry_or_null(&class->fullness_list[fg],
+ struct zspage, list);
+ if (zspage) {
+ remove_zspage(class, zspage);
+ return zspage;
+ }
+ }
+
+ return zspage;
+}
+
+/*
+ * putback_zspage - add @zspage into right class's fullness list
+ * @class: destination class
+ * @zspage: target page
+ *
+ * Return @zspage's fullness status
+ */
+static int putback_zspage(struct size_class *class, struct zspage *zspage)
+{
+ int fullness;
+
+ fullness = get_fullness_group(class, zspage);
+ insert_zspage(class, zspage, fullness);
+
+ return fullness;
+}
+
+#ifdef CONFIG_COMPACTION
+/*
+ * To prevent zspage destroy during migration, zspage freeing should
+ * hold locks of all pages in the zspage.
+ */
+static void lock_zspage(struct zspage *zspage)
+{
+ struct zpdesc *curr_zpdesc, *zpdesc;
+
+ /*
+ * Pages we haven't locked yet can be migrated off the list while we're
+ * trying to lock them, so we need to be careful and only attempt to
+ * lock each page under zspage_read_lock(). Otherwise, the page we lock
+ * may no longer belong to the zspage. This means that we may wait for
+ * the wrong page to unlock, so we must take a reference to the page
+ * prior to waiting for it to unlock outside zspage_read_lock().
+ */
+ while (1) {
+ zspage_read_lock(zspage);
+ zpdesc = get_first_zpdesc(zspage);
+ if (zpdesc_trylock(zpdesc))
+ break;
+ zpdesc_get(zpdesc);
+ zspage_read_unlock(zspage);
+ zpdesc_wait_locked(zpdesc);
+ zpdesc_put(zpdesc);
+ }
+
+ curr_zpdesc = zpdesc;
+ while ((zpdesc = get_next_zpdesc(curr_zpdesc))) {
+ if (zpdesc_trylock(zpdesc)) {
+ curr_zpdesc = zpdesc;
+ } else {
+ zpdesc_get(zpdesc);
+ zspage_read_unlock(zspage);
+ zpdesc_wait_locked(zpdesc);
+ zpdesc_put(zpdesc);
+ zspage_read_lock(zspage);
+ }
+ }
+ zspage_read_unlock(zspage);
+}
+#endif /* CONFIG_COMPACTION */
+
+#ifdef CONFIG_COMPACTION
+
+static void replace_sub_page(struct size_class *class, struct zspage *zspage,
+ struct zpdesc *newzpdesc, struct zpdesc *oldzpdesc)
+{
+ struct zpdesc *zpdesc;
+ struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
+ unsigned int first_obj_offset;
+ int idx = 0;
+
+ zpdesc = get_first_zpdesc(zspage);
+ do {
+ if (zpdesc == oldzpdesc)
+ zpdescs[idx] = newzpdesc;
+ else
+ zpdescs[idx] = zpdesc;
+ idx++;
+ } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
+
+ create_page_chain(class, zspage, zpdescs);
+ first_obj_offset = get_first_obj_offset(oldzpdesc);
+ set_first_obj_offset(newzpdesc, first_obj_offset);
+ if (unlikely(ZsHugePage(zspage)))
+ newzpdesc->handle = oldzpdesc->handle;
+ __zpdesc_set_movable(newzpdesc);
+}
+
+static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
+{
+ /*
+ * Page is locked so zspage can't be destroyed concurrently
+ * (see free_zspage()). But if the page was already destroyed
+ * (see reset_zpdesc()), refuse isolation here.
+ */
+ return page_zpdesc(page)->zspage;
+}
+
+static int zs_page_migrate(struct page *newpage, struct page *page,
+ enum migrate_mode mode)
+{
+ struct zs_pool *pool;
+ struct size_class *class;
+ struct zspage *zspage;
+ struct zpdesc *dummy;
+ struct zpdesc *newzpdesc = page_zpdesc(newpage);
+ struct zpdesc *zpdesc = page_zpdesc(page);
+ void *s_addr, *d_addr, *addr;
+ unsigned int offset;
+ unsigned long handle;
+ unsigned long old_obj, new_obj;
+ unsigned int obj_idx;
+
+ /*
+ * TODO: nothing prevents a zspage from getting destroyed while
+ * it is isolated for migration, as the page lock is temporarily
+ * dropped after zs_page_isolate() succeeded: we should rework that
+ * and defer destroying such pages once they are un-isolated (putback)
+ * instead.
+ */
+ if (!zpdesc->zspage)
+ return 0;
+
+ /* The page is locked, so this pointer must remain valid */
+ zspage = get_zspage(zpdesc);
+ pool = zspage->pool;
+
+ /*
+ * The pool migrate_lock protects the race between zpage migration
+ * and zs_free.
+ */
+ write_lock(&pool->lock);
+ class = zspage_class(pool, zspage);
+
+ /*
+ * the class lock protects zpage alloc/free in the zspage.
+ */
+ spin_lock(&class->lock);
+ /* the zspage write_lock protects zpage access via zs_obj_read/write() */
+ if (!zspage_write_trylock(zspage)) {
+ spin_unlock(&class->lock);
+ write_unlock(&pool->lock);
+ return -EINVAL;
+ }
+
+ /* We're committed, tell the world that this is a Zsmalloc page. */
+ __zpdesc_set_zsmalloc(newzpdesc);
+
+ offset = get_first_obj_offset(zpdesc);
+ s_addr = kmap_local_zpdesc(zpdesc);
+
+ /*
+ * Here, any user cannot access all objects in the zspage so let's move.
+ */
+ d_addr = kmap_local_zpdesc(newzpdesc);
+ copy_page(d_addr, s_addr);
+ kunmap_local(d_addr);
+
+ for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
+ addr += class->size) {
+ if (obj_allocated(zpdesc, addr, &handle)) {
+
+ old_obj = handle_to_obj(handle);
+ obj_to_location(old_obj, &dummy, &obj_idx);
+ new_obj = (unsigned long)location_to_obj(newzpdesc, obj_idx);
+ record_obj(handle, new_obj);
+ }
+ }
+ kunmap_local(s_addr);
+
+ replace_sub_page(class, zspage, newzpdesc, zpdesc);
+ /*
+ * Since we complete the data copy and set up new zspage structure,
+ * it's okay to release migration_lock.
+ */
+ write_unlock(&pool->lock);
+ spin_unlock(&class->lock);
+ zspage_write_unlock(zspage);
+
+ zpdesc_get(newzpdesc);
+ if (zpdesc_zone(newzpdesc) != zpdesc_zone(zpdesc)) {
+ zpdesc_dec_zone_page_state(zpdesc);
+ zpdesc_inc_zone_page_state(newzpdesc);
+ }
+
+ reset_zpdesc(zpdesc);
+ zpdesc_put(zpdesc);
+
+ return 0;
+}
+
+static void zs_page_putback(struct page *page)
+{
+}
+
+const struct movable_operations zsmalloc_mops = {
+ .isolate_page = zs_page_isolate,
+ .migrate_page = zs_page_migrate,
+ .putback_page = zs_page_putback,
+};
+
+/*
+ * Caller should hold page_lock of all pages in the zspage
+ * In here, we cannot use zspage meta data.
+ */
+static void async_free_zspage(struct work_struct *work)
+{
+ int i;
+ struct size_class *class;
+ struct zspage *zspage, *tmp;
+ LIST_HEAD(free_pages);
+ struct zs_pool *pool = container_of(work, struct zs_pool,
+ free_work);
+
+ for (i = 0; i < ZS_SIZE_CLASSES; i++) {
+ class = pool->size_class[i];
+ if (class->index != i)
+ continue;
+
+ spin_lock(&class->lock);
+ list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
+ &free_pages);
+ spin_unlock(&class->lock);
+ }
+
+ list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
+ list_del(&zspage->list);
+ lock_zspage(zspage);
+
+ class = zspage_class(pool, zspage);
+ spin_lock(&class->lock);
+ class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
+ __free_zspage(pool, class, zspage);
+ spin_unlock(&class->lock);
+ }
+};
+
+static void kick_deferred_free(struct zs_pool *pool)
+{
+ schedule_work(&pool->free_work);
+}
+
+static void zs_flush_migration(struct zs_pool *pool)
+{
+ flush_work(&pool->free_work);
+}
+
+static void init_deferred_free(struct zs_pool *pool)
+{
+ INIT_WORK(&pool->free_work, async_free_zspage);
+}
+
+static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
+{
+ struct zpdesc *zpdesc = get_first_zpdesc(zspage);
+
+ do {
+ WARN_ON(!zpdesc_trylock(zpdesc));
+ __zpdesc_set_movable(zpdesc);
+ zpdesc_unlock(zpdesc);
+ } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
+}
+#else
+static inline void zs_flush_migration(struct zs_pool *pool) { }
+#endif
+
+/*
+ *
+ * Based on the number of unused allocated objects calculate
+ * and return the number of pages that we can free.
+ */
+static unsigned long zs_can_compact(struct size_class *class)
+{
+ unsigned long obj_wasted;
+ unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
+ unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
+
+ if (obj_allocated <= obj_used)
+ return 0;
+
+ obj_wasted = obj_allocated - obj_used;
+ obj_wasted /= class->objs_per_zspage;
+
+ return obj_wasted * class->pages_per_zspage;
+}
+
+static unsigned long __zs_compact(struct zs_pool *pool,
+ struct size_class *class)
+{
+ struct zspage *src_zspage = NULL;
+ struct zspage *dst_zspage = NULL;
+ unsigned long pages_freed = 0;
+
+ /*
+ * protect the race between zpage migration and zs_free
+ * as well as zpage allocation/free
+ */
+ write_lock(&pool->lock);
+ spin_lock(&class->lock);
+ while (zs_can_compact(class)) {
+ int fg;
+
+ if (!dst_zspage) {
+ dst_zspage = isolate_dst_zspage(class);
+ if (!dst_zspage)
+ break;
+ }
+
+ src_zspage = isolate_src_zspage(class);
+ if (!src_zspage)
+ break;
+
+ if (!zspage_write_trylock(src_zspage))
+ break;
+
+ migrate_zspage(pool, src_zspage, dst_zspage);
+ zspage_write_unlock(src_zspage);
+
+ fg = putback_zspage(class, src_zspage);
+ if (fg == ZS_INUSE_RATIO_0) {
+ free_zspage(pool, class, src_zspage);
+ pages_freed += class->pages_per_zspage;
+ }
+ src_zspage = NULL;
+
+ if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
+ || rwlock_is_contended(&pool->lock)) {
+ putback_zspage(class, dst_zspage);
+ dst_zspage = NULL;
+
+ spin_unlock(&class->lock);
+ write_unlock(&pool->lock);
+ cond_resched();
+ write_lock(&pool->lock);
+ spin_lock(&class->lock);
+ }
+ }
+
+ if (src_zspage)
+ putback_zspage(class, src_zspage);
+
+ if (dst_zspage)
+ putback_zspage(class, dst_zspage);
+
+ spin_unlock(&class->lock);
+ write_unlock(&pool->lock);
+
+ return pages_freed;
+}
+
+unsigned long zs_compact(struct zs_pool *pool)
+{
+ int i;
+ struct size_class *class;
+ unsigned long pages_freed = 0;
+
+ /*
+ * Pool compaction is performed under pool->lock so it is basically
+ * single-threaded. Having more than one thread in __zs_compact()
+ * will increase pool->lock contention, which will impact other
+ * zsmalloc operations that need pool->lock.
+ */
+ if (atomic_xchg(&pool->compaction_in_progress, 1))
+ return 0;
+
+ for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
+ class = pool->size_class[i];
+ if (class->index != i)
+ continue;
+ pages_freed += __zs_compact(pool, class);
+ }
+ atomic_long_add(pages_freed, &pool->stats.pages_compacted);
+ atomic_set(&pool->compaction_in_progress, 0);
+
+ return pages_freed;
+}
+EXPORT_SYMBOL_GPL(zs_compact);
+
+void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
+{
+ memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
+}
+EXPORT_SYMBOL_GPL(zs_pool_stats);
+
+static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
+ struct shrink_control *sc)
+{
+ unsigned long pages_freed;
+ struct zs_pool *pool = shrinker->private_data;
+
+ /*
+ * Compact classes and calculate compaction delta.
+ * Can run concurrently with a manually triggered
+ * (by user) compaction.
+ */
+ pages_freed = zs_compact(pool);
+
+ return pages_freed ? pages_freed : SHRINK_STOP;
+}
+
+static unsigned long zs_shrinker_count(struct shrinker *shrinker,
+ struct shrink_control *sc)
+{
+ int i;
+ struct size_class *class;
+ unsigned long pages_to_free = 0;
+ struct zs_pool *pool = shrinker->private_data;
+
+ for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
+ class = pool->size_class[i];
+ if (class->index != i)
+ continue;
+
+ pages_to_free += zs_can_compact(class);
+ }
+
+ return pages_to_free;
+}
+
+static void zs_unregister_shrinker(struct zs_pool *pool)
+{
+ shrinker_free(pool->shrinker);
+}
+
+static int zs_register_shrinker(struct zs_pool *pool)
+{
+ pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
+ if (!pool->shrinker)
+ return -ENOMEM;
+
+ pool->shrinker->scan_objects = zs_shrinker_scan;
+ pool->shrinker->count_objects = zs_shrinker_count;
+ pool->shrinker->batch = 0;
+ pool->shrinker->private_data = pool;
+
+ shrinker_register(pool->shrinker);
+
+ return 0;
+}
+
+static int calculate_zspage_chain_size(int class_size)
+{
+ int i, min_waste = INT_MAX;
+ int chain_size = 1;
+
+ if (is_power_of_2(class_size))
+ return chain_size;
+
+ for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
+ int waste;
+
+ waste = (i * PAGE_SIZE) % class_size;
+ if (waste < min_waste) {
+ min_waste = waste;
+ chain_size = i;
+ }
+ }
+
+ return chain_size;
+}
+
+/**
+ * zs_create_pool - Creates an allocation pool to work from.
+ * @name: pool name to be created
+ *
+ * This function must be called before anything when using
+ * the zsmalloc allocator.
+ *
+ * On success, a pointer to the newly created pool is returned,
+ * otherwise NULL.
+ */
+struct zs_pool *zs_create_pool(const char *name)
+{
+ int i;
+ struct zs_pool *pool;
+ struct size_class *prev_class = NULL;
+
+ pool = kzalloc(sizeof(*pool), GFP_KERNEL);
+ if (!pool)
+ return NULL;
+
+ init_deferred_free(pool);
+ rwlock_init(&pool->lock);
+ atomic_set(&pool->compaction_in_progress, 0);
+
+ pool->name = kstrdup(name, GFP_KERNEL);
+ if (!pool->name)
+ goto err;
+
+ if (create_cache(pool))
+ goto err;
+
+ /*
+ * Iterate reversely, because, size of size_class that we want to use
+ * for merging should be larger or equal to current size.
+ */
+ for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
+ int size;
+ int pages_per_zspage;
+ int objs_per_zspage;
+ struct size_class *class;
+ int fullness;
+
+ size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
+ if (size > ZS_MAX_ALLOC_SIZE)
+ size = ZS_MAX_ALLOC_SIZE;
+ pages_per_zspage = calculate_zspage_chain_size(size);
+ objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
+
+ /*
+ * We iterate from biggest down to smallest classes,
+ * so huge_class_size holds the size of the first huge
+ * class. Any object bigger than or equal to that will
+ * endup in the huge class.
+ */
+ if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
+ !huge_class_size) {
+ huge_class_size = size;
+ /*
+ * The object uses ZS_HANDLE_SIZE bytes to store the
+ * handle. We need to subtract it, because zs_malloc()
+ * unconditionally adds handle size before it performs
+ * size class search - so object may be smaller than
+ * huge class size, yet it still can end up in the huge
+ * class because it grows by ZS_HANDLE_SIZE extra bytes
+ * right before class lookup.
+ */
+ huge_class_size -= (ZS_HANDLE_SIZE - 1);
+ }
+
+ /*
+ * size_class is used for normal zsmalloc operation such
+ * as alloc/free for that size. Although it is natural that we
+ * have one size_class for each size, there is a chance that we
+ * can get more memory utilization if we use one size_class for
+ * many different sizes whose size_class have same
+ * characteristics. So, we makes size_class point to
+ * previous size_class if possible.
+ */
+ if (prev_class) {
+ if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
+ pool->size_class[i] = prev_class;
+ continue;
+ }
+ }
+
+ class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
+ if (!class)
+ goto err;
+
+ class->size = size;
+ class->index = i;
+ class->pages_per_zspage = pages_per_zspage;
+ class->objs_per_zspage = objs_per_zspage;
+ spin_lock_init(&class->lock);
+ pool->size_class[i] = class;
+
+ fullness = ZS_INUSE_RATIO_0;
+ while (fullness < NR_FULLNESS_GROUPS) {
+ INIT_LIST_HEAD(&class->fullness_list[fullness]);
+ fullness++;
+ }
+
+ prev_class = class;
+ }
+
+ /* debug only, don't abort if it fails */
+ zs_pool_stat_create(pool, name);
+
+ /*
+ * Not critical since shrinker is only used to trigger internal
+ * defragmentation of the pool which is pretty optional thing. If
+ * registration fails we still can use the pool normally and user can
+ * trigger compaction manually. Thus, ignore return code.
+ */
+ zs_register_shrinker(pool);
+
+ return pool;
+
+err:
+ zs_destroy_pool(pool);
+ return NULL;
+}
+EXPORT_SYMBOL_GPL(zs_create_pool);
+
+void zs_destroy_pool(struct zs_pool *pool)
+{
+ int i;
+
+ zs_unregister_shrinker(pool);
+ zs_flush_migration(pool);
+ zs_pool_stat_destroy(pool);
+
+ for (i = 0; i < ZS_SIZE_CLASSES; i++) {
+ int fg;
+ struct size_class *class = pool->size_class[i];
+
+ if (!class)
+ continue;
+
+ if (class->index != i)
+ continue;
+
+ for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
+ if (list_empty(&class->fullness_list[fg]))
+ continue;
+
+ pr_err("Class-%d fullness group %d is not empty\n",
+ class->size, fg);
+ }
+ kfree(class);
+ }
+
+ destroy_cache(pool);
+ kfree(pool->name);
+ kfree(pool);
+}
+EXPORT_SYMBOL_GPL(zs_destroy_pool);
+
+static int __init zs_init(void)
+{
+ int rc __maybe_unused;
+
+#ifdef CONFIG_COMPACTION
+ rc = set_movable_ops(&zsmalloc_mops, PGTY_zsmalloc);
+ if (rc)
+ return rc;
+#endif
+ zs_stat_init();
+ return 0;
+}
+
+static void __exit zs_exit(void)
+{
+#ifdef CONFIG_COMPACTION
+ set_movable_ops(NULL, PGTY_zsmalloc);
+#endif
+ zs_stat_exit();
+}
+
+module_init(zs_init);
+module_exit(zs_exit);
+
+MODULE_LICENSE("Dual BSD/GPL");
+MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
+MODULE_DESCRIPTION("zsmalloc memory allocator");