diff options
Diffstat (limited to 'mm/zsmalloc.c')
| -rw-r--r-- | mm/zsmalloc.c | 2200 |
1 files changed, 2200 insertions, 0 deletions
diff --git a/mm/zsmalloc.c b/mm/zsmalloc.c new file mode 100644 index 000000000000..5bf832f9c05c --- /dev/null +++ b/mm/zsmalloc.c @@ -0,0 +1,2200 @@ +// SPDX-License-Identifier: GPL-2.0-or-later + +/* + * zsmalloc memory allocator + * + * Copyright (C) 2011 Nitin Gupta + * Copyright (C) 2012, 2013 Minchan Kim + * + * This code is released using a dual license strategy: BSD/GPL + * You can choose the license that better fits your requirements. + * + * Released under the terms of 3-clause BSD License + * Released under the terms of GNU General Public License Version 2.0 + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +/* + * lock ordering: + * page_lock + * pool->lock + * class->lock + * zspage->lock + */ + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/sched.h> +#include <linux/errno.h> +#include <linux/highmem.h> +#include <linux/string.h> +#include <linux/slab.h> +#include <linux/spinlock.h> +#include <linux/sprintf.h> +#include <linux/shrinker.h> +#include <linux/types.h> +#include <linux/debugfs.h> +#include <linux/zsmalloc.h> +#include <linux/fs.h> +#include <linux/workqueue.h> +#include "zpdesc.h" + +#define ZSPAGE_MAGIC 0x58 + +/* + * This must be power of 2 and greater than or equal to sizeof(link_free). + * These two conditions ensure that any 'struct link_free' itself doesn't + * span more than 1 page which avoids complex case of mapping 2 pages simply + * to restore link_free pointer values. + */ +#define ZS_ALIGN 8 + +#define ZS_HANDLE_SIZE (sizeof(unsigned long)) + +/* + * Object location (<PFN>, <obj_idx>) is encoded as + * a single (unsigned long) handle value. + * + * Note that object index <obj_idx> starts from 0. + * + * This is made more complicated by various memory models and PAE. + */ + +#ifndef MAX_POSSIBLE_PHYSMEM_BITS +#ifdef MAX_PHYSMEM_BITS +#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS +#else +/* + * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just + * be PAGE_SHIFT + */ +#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG +#endif +#endif + +#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) + +/* + * Head in allocated object should have OBJ_ALLOCATED_TAG + * to identify the object was allocated or not. + * It's okay to add the status bit in the least bit because + * header keeps handle which is 4byte-aligned address so we + * have room for two bit at least. + */ +#define OBJ_ALLOCATED_TAG 1 + +#define OBJ_TAG_BITS 1 +#define OBJ_TAG_MASK OBJ_ALLOCATED_TAG + +#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS) +#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) + +#define HUGE_BITS 1 +#define FULLNESS_BITS 4 +#define CLASS_BITS 8 +#define MAGIC_VAL_BITS 8 + +#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL)) + +/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ +#define ZS_MIN_ALLOC_SIZE \ + MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) +/* each chunk includes extra space to keep handle */ +#define ZS_MAX_ALLOC_SIZE PAGE_SIZE + +/* + * On systems with 4K page size, this gives 255 size classes! There is a + * trader-off here: + * - Large number of size classes is potentially wasteful as free page are + * spread across these classes + * - Small number of size classes causes large internal fragmentation + * - Probably its better to use specific size classes (empirically + * determined). NOTE: all those class sizes must be set as multiple of + * ZS_ALIGN to make sure link_free itself never has to span 2 pages. + * + * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN + * (reason above) + */ +#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) +#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ + ZS_SIZE_CLASS_DELTA) + 1) + +/* + * Pages are distinguished by the ratio of used memory (that is the ratio + * of ->inuse objects to all objects that page can store). For example, + * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%. + * + * The number of fullness groups is not random. It allows us to keep + * difference between the least busy page in the group (minimum permitted + * number of ->inuse objects) and the most busy page (maximum permitted + * number of ->inuse objects) at a reasonable value. + */ +enum fullness_group { + ZS_INUSE_RATIO_0, + ZS_INUSE_RATIO_10, + /* NOTE: 8 more fullness groups here */ + ZS_INUSE_RATIO_99 = 10, + ZS_INUSE_RATIO_100, + NR_FULLNESS_GROUPS, +}; + +enum class_stat_type { + /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */ + ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS, + ZS_OBJS_INUSE, + NR_CLASS_STAT_TYPES, +}; + +struct zs_size_stat { + unsigned long objs[NR_CLASS_STAT_TYPES]; +}; + +#ifdef CONFIG_ZSMALLOC_STAT +static struct dentry *zs_stat_root; +#endif + +static size_t huge_class_size; + +struct size_class { + spinlock_t lock; + struct list_head fullness_list[NR_FULLNESS_GROUPS]; + /* + * Size of objects stored in this class. Must be multiple + * of ZS_ALIGN. + */ + int size; + int objs_per_zspage; + /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ + int pages_per_zspage; + + unsigned int index; + struct zs_size_stat stats; +}; + +/* + * Placed within free objects to form a singly linked list. + * For every zspage, zspage->freeobj gives head of this list. + * + * This must be power of 2 and less than or equal to ZS_ALIGN + */ +struct link_free { + union { + /* + * Free object index; + * It's valid for non-allocated object + */ + unsigned long next; + /* + * Handle of allocated object. + */ + unsigned long handle; + }; +}; + +struct zs_pool { + const char *name; + + struct size_class *size_class[ZS_SIZE_CLASSES]; + struct kmem_cache *handle_cachep; + struct kmem_cache *zspage_cachep; + + atomic_long_t pages_allocated; + + struct zs_pool_stats stats; + + /* Compact classes */ + struct shrinker *shrinker; + +#ifdef CONFIG_ZSMALLOC_STAT + struct dentry *stat_dentry; +#endif +#ifdef CONFIG_COMPACTION + struct work_struct free_work; +#endif + /* protect zspage migration/compaction */ + rwlock_t lock; + atomic_t compaction_in_progress; +}; + +static inline void zpdesc_set_first(struct zpdesc *zpdesc) +{ + SetPagePrivate(zpdesc_page(zpdesc)); +} + +static inline void zpdesc_inc_zone_page_state(struct zpdesc *zpdesc) +{ + inc_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES); +} + +static inline void zpdesc_dec_zone_page_state(struct zpdesc *zpdesc) +{ + dec_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES); +} + +static inline struct zpdesc *alloc_zpdesc(gfp_t gfp, const int nid) +{ + struct page *page = alloc_pages_node(nid, gfp, 0); + + return page_zpdesc(page); +} + +static inline void free_zpdesc(struct zpdesc *zpdesc) +{ + struct page *page = zpdesc_page(zpdesc); + + /* PageZsmalloc is sticky until the page is freed to the buddy. */ + __free_page(page); +} + +#define ZS_PAGE_UNLOCKED 0 +#define ZS_PAGE_WRLOCKED -1 + +struct zspage_lock { + spinlock_t lock; + int cnt; + struct lockdep_map dep_map; +}; + +struct zspage { + struct { + unsigned int huge:HUGE_BITS; + unsigned int fullness:FULLNESS_BITS; + unsigned int class:CLASS_BITS + 1; + unsigned int magic:MAGIC_VAL_BITS; + }; + unsigned int inuse; + unsigned int freeobj; + struct zpdesc *first_zpdesc; + struct list_head list; /* fullness list */ + struct zs_pool *pool; + struct zspage_lock zsl; +}; + +static void zspage_lock_init(struct zspage *zspage) +{ + static struct lock_class_key __key; + struct zspage_lock *zsl = &zspage->zsl; + + lockdep_init_map(&zsl->dep_map, "zspage->lock", &__key, 0); + spin_lock_init(&zsl->lock); + zsl->cnt = ZS_PAGE_UNLOCKED; +} + +/* + * The zspage lock can be held from atomic contexts, but it needs to remain + * preemptible when held for reading because it remains held outside of those + * atomic contexts, otherwise we unnecessarily lose preemptibility. + * + * To achieve this, the following rules are enforced on readers and writers: + * + * - Writers are blocked by both writers and readers, while readers are only + * blocked by writers (i.e. normal rwlock semantics). + * + * - Writers are always atomic (to allow readers to spin waiting for them). + * + * - Writers always use trylock (as the lock may be held be sleeping readers). + * + * - Readers may spin on the lock (as they can only wait for atomic writers). + * + * - Readers may sleep while holding the lock (as writes only use trylock). + */ +static void zspage_read_lock(struct zspage *zspage) +{ + struct zspage_lock *zsl = &zspage->zsl; + + rwsem_acquire_read(&zsl->dep_map, 0, 0, _RET_IP_); + + spin_lock(&zsl->lock); + zsl->cnt++; + spin_unlock(&zsl->lock); + + lock_acquired(&zsl->dep_map, _RET_IP_); +} + +static void zspage_read_unlock(struct zspage *zspage) +{ + struct zspage_lock *zsl = &zspage->zsl; + + rwsem_release(&zsl->dep_map, _RET_IP_); + + spin_lock(&zsl->lock); + zsl->cnt--; + spin_unlock(&zsl->lock); +} + +static __must_check bool zspage_write_trylock(struct zspage *zspage) +{ + struct zspage_lock *zsl = &zspage->zsl; + + spin_lock(&zsl->lock); + if (zsl->cnt == ZS_PAGE_UNLOCKED) { + zsl->cnt = ZS_PAGE_WRLOCKED; + rwsem_acquire(&zsl->dep_map, 0, 1, _RET_IP_); + lock_acquired(&zsl->dep_map, _RET_IP_); + return true; + } + + spin_unlock(&zsl->lock); + return false; +} + +static void zspage_write_unlock(struct zspage *zspage) +{ + struct zspage_lock *zsl = &zspage->zsl; + + rwsem_release(&zsl->dep_map, _RET_IP_); + + zsl->cnt = ZS_PAGE_UNLOCKED; + spin_unlock(&zsl->lock); +} + +/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ +static void SetZsHugePage(struct zspage *zspage) +{ + zspage->huge = 1; +} + +static bool ZsHugePage(struct zspage *zspage) +{ + return zspage->huge; +} + +#ifdef CONFIG_COMPACTION +static void kick_deferred_free(struct zs_pool *pool); +static void init_deferred_free(struct zs_pool *pool); +static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); +#else +static void kick_deferred_free(struct zs_pool *pool) {} +static void init_deferred_free(struct zs_pool *pool) {} +static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} +#endif + +static int create_cache(struct zs_pool *pool) +{ + char *name; + + name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name); + if (!name) + return -ENOMEM; + pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE, + 0, 0, NULL); + kfree(name); + if (!pool->handle_cachep) + return -EINVAL; + + name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name); + if (!name) + return -ENOMEM; + pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage), + 0, 0, NULL); + kfree(name); + if (!pool->zspage_cachep) { + kmem_cache_destroy(pool->handle_cachep); + pool->handle_cachep = NULL; + return -EINVAL; + } + + return 0; +} + +static void destroy_cache(struct zs_pool *pool) +{ + kmem_cache_destroy(pool->handle_cachep); + kmem_cache_destroy(pool->zspage_cachep); +} + +static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) +{ + return (unsigned long)kmem_cache_alloc(pool->handle_cachep, + gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); +} + +static void cache_free_handle(struct zs_pool *pool, unsigned long handle) +{ + kmem_cache_free(pool->handle_cachep, (void *)handle); +} + +static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) +{ + return kmem_cache_zalloc(pool->zspage_cachep, + flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); +} + +static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) +{ + kmem_cache_free(pool->zspage_cachep, zspage); +} + +/* class->lock(which owns the handle) synchronizes races */ +static void record_obj(unsigned long handle, unsigned long obj) +{ + *(unsigned long *)handle = obj; +} + +static inline bool __maybe_unused is_first_zpdesc(struct zpdesc *zpdesc) +{ + return PagePrivate(zpdesc_page(zpdesc)); +} + +/* Protected by class->lock */ +static inline int get_zspage_inuse(struct zspage *zspage) +{ + return zspage->inuse; +} + +static inline void mod_zspage_inuse(struct zspage *zspage, int val) +{ + zspage->inuse += val; +} + +static struct zpdesc *get_first_zpdesc(struct zspage *zspage) +{ + struct zpdesc *first_zpdesc = zspage->first_zpdesc; + + VM_BUG_ON_PAGE(!is_first_zpdesc(first_zpdesc), zpdesc_page(first_zpdesc)); + return first_zpdesc; +} + +#define FIRST_OBJ_PAGE_TYPE_MASK 0xffffff + +static inline unsigned int get_first_obj_offset(struct zpdesc *zpdesc) +{ + VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc))); + return zpdesc->first_obj_offset & FIRST_OBJ_PAGE_TYPE_MASK; +} + +static inline void set_first_obj_offset(struct zpdesc *zpdesc, unsigned int offset) +{ + /* With 24 bits available, we can support offsets into 16 MiB pages. */ + BUILD_BUG_ON(PAGE_SIZE > SZ_16M); + VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc))); + VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK); + zpdesc->first_obj_offset &= ~FIRST_OBJ_PAGE_TYPE_MASK; + zpdesc->first_obj_offset |= offset & FIRST_OBJ_PAGE_TYPE_MASK; +} + +static inline unsigned int get_freeobj(struct zspage *zspage) +{ + return zspage->freeobj; +} + +static inline void set_freeobj(struct zspage *zspage, unsigned int obj) +{ + zspage->freeobj = obj; +} + +static struct size_class *zspage_class(struct zs_pool *pool, + struct zspage *zspage) +{ + return pool->size_class[zspage->class]; +} + +/* + * zsmalloc divides the pool into various size classes where each + * class maintains a list of zspages where each zspage is divided + * into equal sized chunks. Each allocation falls into one of these + * classes depending on its size. This function returns index of the + * size class which has chunk size big enough to hold the given size. + */ +static int get_size_class_index(int size) +{ + int idx = 0; + + if (likely(size > ZS_MIN_ALLOC_SIZE)) + idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, + ZS_SIZE_CLASS_DELTA); + + return min_t(int, ZS_SIZE_CLASSES - 1, idx); +} + +static inline void class_stat_add(struct size_class *class, int type, + unsigned long cnt) +{ + class->stats.objs[type] += cnt; +} + +static inline void class_stat_sub(struct size_class *class, int type, + unsigned long cnt) +{ + class->stats.objs[type] -= cnt; +} + +static inline unsigned long class_stat_read(struct size_class *class, int type) +{ + return class->stats.objs[type]; +} + +#ifdef CONFIG_ZSMALLOC_STAT + +static void __init zs_stat_init(void) +{ + if (!debugfs_initialized()) { + pr_warn("debugfs not available, stat dir not created\n"); + return; + } + + zs_stat_root = debugfs_create_dir("zsmalloc", NULL); +} + +static void __exit zs_stat_exit(void) +{ + debugfs_remove_recursive(zs_stat_root); +} + +static unsigned long zs_can_compact(struct size_class *class); + +static int zs_stats_size_show(struct seq_file *s, void *v) +{ + int i, fg; + struct zs_pool *pool = s->private; + struct size_class *class; + int objs_per_zspage; + unsigned long obj_allocated, obj_used, pages_used, freeable; + unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; + unsigned long total_freeable = 0; + unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, }; + + seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n", + "class", "size", "10%", "20%", "30%", "40%", + "50%", "60%", "70%", "80%", "90%", "99%", "100%", + "obj_allocated", "obj_used", "pages_used", + "pages_per_zspage", "freeable"); + + for (i = 0; i < ZS_SIZE_CLASSES; i++) { + + class = pool->size_class[i]; + + if (class->index != i) + continue; + + spin_lock(&class->lock); + + seq_printf(s, " %5u %5u ", i, class->size); + for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) { + inuse_totals[fg] += class_stat_read(class, fg); + seq_printf(s, "%9lu ", class_stat_read(class, fg)); + } + + obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED); + obj_used = class_stat_read(class, ZS_OBJS_INUSE); + freeable = zs_can_compact(class); + spin_unlock(&class->lock); + + objs_per_zspage = class->objs_per_zspage; + pages_used = obj_allocated / objs_per_zspage * + class->pages_per_zspage; + + seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n", + obj_allocated, obj_used, pages_used, + class->pages_per_zspage, freeable); + + total_objs += obj_allocated; + total_used_objs += obj_used; + total_pages += pages_used; + total_freeable += freeable; + } + + seq_puts(s, "\n"); + seq_printf(s, " %5s %5s ", "Total", ""); + + for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) + seq_printf(s, "%9lu ", inuse_totals[fg]); + + seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n", + total_objs, total_used_objs, total_pages, "", + total_freeable); + + return 0; +} +DEFINE_SHOW_ATTRIBUTE(zs_stats_size); + +static void zs_pool_stat_create(struct zs_pool *pool, const char *name) +{ + if (!zs_stat_root) { + pr_warn("no root stat dir, not creating <%s> stat dir\n", name); + return; + } + + pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); + + debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, + &zs_stats_size_fops); +} + +static void zs_pool_stat_destroy(struct zs_pool *pool) +{ + debugfs_remove_recursive(pool->stat_dentry); +} + +#else /* CONFIG_ZSMALLOC_STAT */ +static void __init zs_stat_init(void) +{ +} + +static void __exit zs_stat_exit(void) +{ +} + +static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) +{ +} + +static inline void zs_pool_stat_destroy(struct zs_pool *pool) +{ +} +#endif + + +/* + * For each size class, zspages are divided into different groups + * depending on their usage ratio. This function returns fullness + * status of the given page. + */ +static int get_fullness_group(struct size_class *class, struct zspage *zspage) +{ + int inuse, objs_per_zspage, ratio; + + inuse = get_zspage_inuse(zspage); + objs_per_zspage = class->objs_per_zspage; + + if (inuse == 0) + return ZS_INUSE_RATIO_0; + if (inuse == objs_per_zspage) + return ZS_INUSE_RATIO_100; + + ratio = 100 * inuse / objs_per_zspage; + /* + * Take integer division into consideration: a page with one inuse + * object out of 127 possible, will end up having 0 usage ratio, + * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group. + */ + return ratio / 10 + 1; +} + +/* + * Each size class maintains various freelists and zspages are assigned + * to one of these freelists based on the number of live objects they + * have. This functions inserts the given zspage into the freelist + * identified by <class, fullness_group>. + */ +static void insert_zspage(struct size_class *class, + struct zspage *zspage, + int fullness) +{ + class_stat_add(class, fullness, 1); + list_add(&zspage->list, &class->fullness_list[fullness]); + zspage->fullness = fullness; +} + +/* + * This function removes the given zspage from the freelist identified + * by <class, fullness_group>. + */ +static void remove_zspage(struct size_class *class, struct zspage *zspage) +{ + int fullness = zspage->fullness; + + VM_BUG_ON(list_empty(&class->fullness_list[fullness])); + + list_del_init(&zspage->list); + class_stat_sub(class, fullness, 1); +} + +/* + * Each size class maintains zspages in different fullness groups depending + * on the number of live objects they contain. When allocating or freeing + * objects, the fullness status of the page can change, for instance, from + * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function + * checks if such a status change has occurred for the given page and + * accordingly moves the page from the list of the old fullness group to that + * of the new fullness group. + */ +static int fix_fullness_group(struct size_class *class, struct zspage *zspage) +{ + int newfg; + + newfg = get_fullness_group(class, zspage); + if (newfg == zspage->fullness) + goto out; + + remove_zspage(class, zspage); + insert_zspage(class, zspage, newfg); +out: + return newfg; +} + +static struct zspage *get_zspage(struct zpdesc *zpdesc) +{ + struct zspage *zspage = zpdesc->zspage; + + BUG_ON(zspage->magic != ZSPAGE_MAGIC); + return zspage; +} + +static struct zpdesc *get_next_zpdesc(struct zpdesc *zpdesc) +{ + struct zspage *zspage = get_zspage(zpdesc); + + if (unlikely(ZsHugePage(zspage))) + return NULL; + + return zpdesc->next; +} + +/** + * obj_to_location - get (<zpdesc>, <obj_idx>) from encoded object value + * @obj: the encoded object value + * @zpdesc: zpdesc object resides in zspage + * @obj_idx: object index + */ +static void obj_to_location(unsigned long obj, struct zpdesc **zpdesc, + unsigned int *obj_idx) +{ + *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS); + *obj_idx = (obj & OBJ_INDEX_MASK); +} + +static void obj_to_zpdesc(unsigned long obj, struct zpdesc **zpdesc) +{ + *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS); +} + +/** + * location_to_obj - get obj value encoded from (<zpdesc>, <obj_idx>) + * @zpdesc: zpdesc object resides in zspage + * @obj_idx: object index + */ +static unsigned long location_to_obj(struct zpdesc *zpdesc, unsigned int obj_idx) +{ + unsigned long obj; + + obj = zpdesc_pfn(zpdesc) << OBJ_INDEX_BITS; + obj |= obj_idx & OBJ_INDEX_MASK; + + return obj; +} + +static unsigned long handle_to_obj(unsigned long handle) +{ + return *(unsigned long *)handle; +} + +static inline bool obj_allocated(struct zpdesc *zpdesc, void *obj, + unsigned long *phandle) +{ + unsigned long handle; + struct zspage *zspage = get_zspage(zpdesc); + + if (unlikely(ZsHugePage(zspage))) { + VM_BUG_ON_PAGE(!is_first_zpdesc(zpdesc), zpdesc_page(zpdesc)); + handle = zpdesc->handle; + } else + handle = *(unsigned long *)obj; + + if (!(handle & OBJ_ALLOCATED_TAG)) + return false; + + /* Clear all tags before returning the handle */ + *phandle = handle & ~OBJ_TAG_MASK; + return true; +} + +static void reset_zpdesc(struct zpdesc *zpdesc) +{ + struct page *page = zpdesc_page(zpdesc); + + ClearPagePrivate(page); + zpdesc->zspage = NULL; + zpdesc->next = NULL; + /* PageZsmalloc is sticky until the page is freed to the buddy. */ +} + +static int trylock_zspage(struct zspage *zspage) +{ + struct zpdesc *cursor, *fail; + + for (cursor = get_first_zpdesc(zspage); cursor != NULL; cursor = + get_next_zpdesc(cursor)) { + if (!zpdesc_trylock(cursor)) { + fail = cursor; + goto unlock; + } + } + + return 1; +unlock: + for (cursor = get_first_zpdesc(zspage); cursor != fail; cursor = + get_next_zpdesc(cursor)) + zpdesc_unlock(cursor); + + return 0; +} + +static void __free_zspage(struct zs_pool *pool, struct size_class *class, + struct zspage *zspage) +{ + struct zpdesc *zpdesc, *next; + + assert_spin_locked(&class->lock); + + VM_BUG_ON(get_zspage_inuse(zspage)); + VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0); + + next = zpdesc = get_first_zpdesc(zspage); + do { + VM_BUG_ON_PAGE(!zpdesc_is_locked(zpdesc), zpdesc_page(zpdesc)); + next = get_next_zpdesc(zpdesc); + reset_zpdesc(zpdesc); + zpdesc_unlock(zpdesc); + zpdesc_dec_zone_page_state(zpdesc); + zpdesc_put(zpdesc); + zpdesc = next; + } while (zpdesc != NULL); + + cache_free_zspage(pool, zspage); + + class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); + atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated); +} + +static void free_zspage(struct zs_pool *pool, struct size_class *class, + struct zspage *zspage) +{ + VM_BUG_ON(get_zspage_inuse(zspage)); + VM_BUG_ON(list_empty(&zspage->list)); + + /* + * Since zs_free couldn't be sleepable, this function cannot call + * lock_page. The page locks trylock_zspage got will be released + * by __free_zspage. + */ + if (!trylock_zspage(zspage)) { + kick_deferred_free(pool); + return; + } + + remove_zspage(class, zspage); + __free_zspage(pool, class, zspage); +} + +/* Initialize a newly allocated zspage */ +static void init_zspage(struct size_class *class, struct zspage *zspage) +{ + unsigned int freeobj = 1; + unsigned long off = 0; + struct zpdesc *zpdesc = get_first_zpdesc(zspage); + + while (zpdesc) { + struct zpdesc *next_zpdesc; + struct link_free *link; + void *vaddr; + + set_first_obj_offset(zpdesc, off); + + vaddr = kmap_local_zpdesc(zpdesc); + link = (struct link_free *)vaddr + off / sizeof(*link); + + while ((off += class->size) < PAGE_SIZE) { + link->next = freeobj++ << OBJ_TAG_BITS; + link += class->size / sizeof(*link); + } + + /* + * We now come to the last (full or partial) object on this + * page, which must point to the first object on the next + * page (if present) + */ + next_zpdesc = get_next_zpdesc(zpdesc); + if (next_zpdesc) { + link->next = freeobj++ << OBJ_TAG_BITS; + } else { + /* + * Reset OBJ_TAG_BITS bit to last link to tell + * whether it's allocated object or not. + */ + link->next = -1UL << OBJ_TAG_BITS; + } + kunmap_local(vaddr); + zpdesc = next_zpdesc; + off %= PAGE_SIZE; + } + + set_freeobj(zspage, 0); +} + +static void create_page_chain(struct size_class *class, struct zspage *zspage, + struct zpdesc *zpdescs[]) +{ + int i; + struct zpdesc *zpdesc; + struct zpdesc *prev_zpdesc = NULL; + int nr_zpdescs = class->pages_per_zspage; + + /* + * Allocate individual pages and link them together as: + * 1. all pages are linked together using zpdesc->next + * 2. each sub-page point to zspage using zpdesc->zspage + * + * we set PG_private to identify the first zpdesc (i.e. no other zpdesc + * has this flag set). + */ + for (i = 0; i < nr_zpdescs; i++) { + zpdesc = zpdescs[i]; + zpdesc->zspage = zspage; + zpdesc->next = NULL; + if (i == 0) { + zspage->first_zpdesc = zpdesc; + zpdesc_set_first(zpdesc); + if (unlikely(class->objs_per_zspage == 1 && + class->pages_per_zspage == 1)) + SetZsHugePage(zspage); + } else { + prev_zpdesc->next = zpdesc; + } + prev_zpdesc = zpdesc; + } +} + +/* + * Allocate a zspage for the given size class + */ +static struct zspage *alloc_zspage(struct zs_pool *pool, + struct size_class *class, + gfp_t gfp, const int nid) +{ + int i; + struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE]; + struct zspage *zspage = cache_alloc_zspage(pool, gfp); + + if (!zspage) + return NULL; + + if (!IS_ENABLED(CONFIG_COMPACTION)) + gfp &= ~__GFP_MOVABLE; + + zspage->magic = ZSPAGE_MAGIC; + zspage->pool = pool; + zspage->class = class->index; + zspage_lock_init(zspage); + + for (i = 0; i < class->pages_per_zspage; i++) { + struct zpdesc *zpdesc; + + zpdesc = alloc_zpdesc(gfp, nid); + if (!zpdesc) { + while (--i >= 0) { + zpdesc_dec_zone_page_state(zpdescs[i]); + free_zpdesc(zpdescs[i]); + } + cache_free_zspage(pool, zspage); + return NULL; + } + __zpdesc_set_zsmalloc(zpdesc); + + zpdesc_inc_zone_page_state(zpdesc); + zpdescs[i] = zpdesc; + } + + create_page_chain(class, zspage, zpdescs); + init_zspage(class, zspage); + + return zspage; +} + +static struct zspage *find_get_zspage(struct size_class *class) +{ + int i; + struct zspage *zspage; + + for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) { + zspage = list_first_entry_or_null(&class->fullness_list[i], + struct zspage, list); + if (zspage) + break; + } + + return zspage; +} + +static bool can_merge(struct size_class *prev, int pages_per_zspage, + int objs_per_zspage) +{ + if (prev->pages_per_zspage == pages_per_zspage && + prev->objs_per_zspage == objs_per_zspage) + return true; + + return false; +} + +static bool zspage_full(struct size_class *class, struct zspage *zspage) +{ + return get_zspage_inuse(zspage) == class->objs_per_zspage; +} + +static bool zspage_empty(struct zspage *zspage) +{ + return get_zspage_inuse(zspage) == 0; +} + +/** + * zs_lookup_class_index() - Returns index of the zsmalloc &size_class + * that hold objects of the provided size. + * @pool: zsmalloc pool to use + * @size: object size + * + * Context: Any context. + * + * Return: the index of the zsmalloc &size_class that hold objects of the + * provided size. + */ +unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size) +{ + struct size_class *class; + + class = pool->size_class[get_size_class_index(size)]; + + return class->index; +} +EXPORT_SYMBOL_GPL(zs_lookup_class_index); + +unsigned long zs_get_total_pages(struct zs_pool *pool) +{ + return atomic_long_read(&pool->pages_allocated); +} +EXPORT_SYMBOL_GPL(zs_get_total_pages); + +void *zs_obj_read_begin(struct zs_pool *pool, unsigned long handle, + void *local_copy) +{ + struct zspage *zspage; + struct zpdesc *zpdesc; + unsigned long obj, off; + unsigned int obj_idx; + struct size_class *class; + void *addr; + + /* Guarantee we can get zspage from handle safely */ + read_lock(&pool->lock); + obj = handle_to_obj(handle); + obj_to_location(obj, &zpdesc, &obj_idx); + zspage = get_zspage(zpdesc); + + /* Make sure migration doesn't move any pages in this zspage */ + zspage_read_lock(zspage); + read_unlock(&pool->lock); + + class = zspage_class(pool, zspage); + off = offset_in_page(class->size * obj_idx); + + if (off + class->size <= PAGE_SIZE) { + /* this object is contained entirely within a page */ + addr = kmap_local_zpdesc(zpdesc); + addr += off; + } else { + size_t sizes[2]; + + /* this object spans two pages */ + sizes[0] = PAGE_SIZE - off; + sizes[1] = class->size - sizes[0]; + addr = local_copy; + + memcpy_from_page(addr, zpdesc_page(zpdesc), + off, sizes[0]); + zpdesc = get_next_zpdesc(zpdesc); + memcpy_from_page(addr + sizes[0], + zpdesc_page(zpdesc), + 0, sizes[1]); + } + + if (!ZsHugePage(zspage)) + addr += ZS_HANDLE_SIZE; + + return addr; +} +EXPORT_SYMBOL_GPL(zs_obj_read_begin); + +void zs_obj_read_end(struct zs_pool *pool, unsigned long handle, + void *handle_mem) +{ + struct zspage *zspage; + struct zpdesc *zpdesc; + unsigned long obj, off; + unsigned int obj_idx; + struct size_class *class; + + obj = handle_to_obj(handle); + obj_to_location(obj, &zpdesc, &obj_idx); + zspage = get_zspage(zpdesc); + class = zspage_class(pool, zspage); + off = offset_in_page(class->size * obj_idx); + + if (off + class->size <= PAGE_SIZE) { + if (!ZsHugePage(zspage)) + off += ZS_HANDLE_SIZE; + handle_mem -= off; + kunmap_local(handle_mem); + } + + zspage_read_unlock(zspage); +} +EXPORT_SYMBOL_GPL(zs_obj_read_end); + +void zs_obj_write(struct zs_pool *pool, unsigned long handle, + void *handle_mem, size_t mem_len) +{ + struct zspage *zspage; + struct zpdesc *zpdesc; + unsigned long obj, off; + unsigned int obj_idx; + struct size_class *class; + + /* Guarantee we can get zspage from handle safely */ + read_lock(&pool->lock); + obj = handle_to_obj(handle); + obj_to_location(obj, &zpdesc, &obj_idx); + zspage = get_zspage(zpdesc); + + /* Make sure migration doesn't move any pages in this zspage */ + zspage_read_lock(zspage); + read_unlock(&pool->lock); + + class = zspage_class(pool, zspage); + off = offset_in_page(class->size * obj_idx); + + if (!ZsHugePage(zspage)) + off += ZS_HANDLE_SIZE; + + if (off + mem_len <= PAGE_SIZE) { + /* this object is contained entirely within a page */ + void *dst = kmap_local_zpdesc(zpdesc); + + memcpy(dst + off, handle_mem, mem_len); + kunmap_local(dst); + } else { + /* this object spans two pages */ + size_t sizes[2]; + + sizes[0] = PAGE_SIZE - off; + sizes[1] = mem_len - sizes[0]; + + memcpy_to_page(zpdesc_page(zpdesc), off, + handle_mem, sizes[0]); + zpdesc = get_next_zpdesc(zpdesc); + memcpy_to_page(zpdesc_page(zpdesc), 0, + handle_mem + sizes[0], sizes[1]); + } + + zspage_read_unlock(zspage); +} +EXPORT_SYMBOL_GPL(zs_obj_write); + +/** + * zs_huge_class_size() - Returns the size (in bytes) of the first huge + * zsmalloc &size_class. + * @pool: zsmalloc pool to use + * + * The function returns the size of the first huge class - any object of equal + * or bigger size will be stored in zspage consisting of a single physical + * page. + * + * Context: Any context. + * + * Return: the size (in bytes) of the first huge zsmalloc &size_class. + */ +size_t zs_huge_class_size(struct zs_pool *pool) +{ + return huge_class_size; +} +EXPORT_SYMBOL_GPL(zs_huge_class_size); + +static unsigned long obj_malloc(struct zs_pool *pool, + struct zspage *zspage, unsigned long handle) +{ + int i, nr_zpdesc, offset; + unsigned long obj; + struct link_free *link; + struct size_class *class; + + struct zpdesc *m_zpdesc; + unsigned long m_offset; + void *vaddr; + + class = pool->size_class[zspage->class]; + obj = get_freeobj(zspage); + + offset = obj * class->size; + nr_zpdesc = offset >> PAGE_SHIFT; + m_offset = offset_in_page(offset); + m_zpdesc = get_first_zpdesc(zspage); + + for (i = 0; i < nr_zpdesc; i++) + m_zpdesc = get_next_zpdesc(m_zpdesc); + + vaddr = kmap_local_zpdesc(m_zpdesc); + link = (struct link_free *)vaddr + m_offset / sizeof(*link); + set_freeobj(zspage, link->next >> OBJ_TAG_BITS); + if (likely(!ZsHugePage(zspage))) + /* record handle in the header of allocated chunk */ + link->handle = handle | OBJ_ALLOCATED_TAG; + else + zspage->first_zpdesc->handle = handle | OBJ_ALLOCATED_TAG; + + kunmap_local(vaddr); + mod_zspage_inuse(zspage, 1); + + obj = location_to_obj(m_zpdesc, obj); + record_obj(handle, obj); + + return obj; +} + + +/** + * zs_malloc - Allocate block of given size from pool. + * @pool: pool to allocate from + * @size: size of block to allocate + * @gfp: gfp flags when allocating object + * @nid: The preferred node id to allocate new zspage (if needed) + * + * On success, handle to the allocated object is returned, + * otherwise an ERR_PTR(). + * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. + */ +unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp, + const int nid) +{ + unsigned long handle; + struct size_class *class; + int newfg; + struct zspage *zspage; + + if (unlikely(!size)) + return (unsigned long)ERR_PTR(-EINVAL); + + if (unlikely(size > ZS_MAX_ALLOC_SIZE)) + return (unsigned long)ERR_PTR(-ENOSPC); + + handle = cache_alloc_handle(pool, gfp); + if (!handle) + return (unsigned long)ERR_PTR(-ENOMEM); + + /* extra space in chunk to keep the handle */ + size += ZS_HANDLE_SIZE; + class = pool->size_class[get_size_class_index(size)]; + + /* class->lock effectively protects the zpage migration */ + spin_lock(&class->lock); + zspage = find_get_zspage(class); + if (likely(zspage)) { + obj_malloc(pool, zspage, handle); + /* Now move the zspage to another fullness group, if required */ + fix_fullness_group(class, zspage); + class_stat_add(class, ZS_OBJS_INUSE, 1); + + goto out; + } + + spin_unlock(&class->lock); + + zspage = alloc_zspage(pool, class, gfp, nid); + if (!zspage) { + cache_free_handle(pool, handle); + return (unsigned long)ERR_PTR(-ENOMEM); + } + + spin_lock(&class->lock); + obj_malloc(pool, zspage, handle); + newfg = get_fullness_group(class, zspage); + insert_zspage(class, zspage, newfg); + atomic_long_add(class->pages_per_zspage, &pool->pages_allocated); + class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); + class_stat_add(class, ZS_OBJS_INUSE, 1); + + /* We completely set up zspage so mark them as movable */ + SetZsPageMovable(pool, zspage); +out: + spin_unlock(&class->lock); + + return handle; +} +EXPORT_SYMBOL_GPL(zs_malloc); + +static void obj_free(int class_size, unsigned long obj) +{ + struct link_free *link; + struct zspage *zspage; + struct zpdesc *f_zpdesc; + unsigned long f_offset; + unsigned int f_objidx; + void *vaddr; + + + obj_to_location(obj, &f_zpdesc, &f_objidx); + f_offset = offset_in_page(class_size * f_objidx); + zspage = get_zspage(f_zpdesc); + + vaddr = kmap_local_zpdesc(f_zpdesc); + link = (struct link_free *)(vaddr + f_offset); + + /* Insert this object in containing zspage's freelist */ + if (likely(!ZsHugePage(zspage))) + link->next = get_freeobj(zspage) << OBJ_TAG_BITS; + else + f_zpdesc->handle = 0; + set_freeobj(zspage, f_objidx); + + kunmap_local(vaddr); + mod_zspage_inuse(zspage, -1); +} + +void zs_free(struct zs_pool *pool, unsigned long handle) +{ + struct zspage *zspage; + struct zpdesc *f_zpdesc; + unsigned long obj; + struct size_class *class; + int fullness; + + if (IS_ERR_OR_NULL((void *)handle)) + return; + + /* + * The pool->lock protects the race with zpage's migration + * so it's safe to get the page from handle. + */ + read_lock(&pool->lock); + obj = handle_to_obj(handle); + obj_to_zpdesc(obj, &f_zpdesc); + zspage = get_zspage(f_zpdesc); + class = zspage_class(pool, zspage); + spin_lock(&class->lock); + read_unlock(&pool->lock); + + class_stat_sub(class, ZS_OBJS_INUSE, 1); + obj_free(class->size, obj); + + fullness = fix_fullness_group(class, zspage); + if (fullness == ZS_INUSE_RATIO_0) + free_zspage(pool, class, zspage); + + spin_unlock(&class->lock); + cache_free_handle(pool, handle); +} +EXPORT_SYMBOL_GPL(zs_free); + +static void zs_object_copy(struct size_class *class, unsigned long dst, + unsigned long src) +{ + struct zpdesc *s_zpdesc, *d_zpdesc; + unsigned int s_objidx, d_objidx; + unsigned long s_off, d_off; + void *s_addr, *d_addr; + int s_size, d_size, size; + int written = 0; + + s_size = d_size = class->size; + + obj_to_location(src, &s_zpdesc, &s_objidx); + obj_to_location(dst, &d_zpdesc, &d_objidx); + + s_off = offset_in_page(class->size * s_objidx); + d_off = offset_in_page(class->size * d_objidx); + + if (s_off + class->size > PAGE_SIZE) + s_size = PAGE_SIZE - s_off; + + if (d_off + class->size > PAGE_SIZE) + d_size = PAGE_SIZE - d_off; + + s_addr = kmap_local_zpdesc(s_zpdesc); + d_addr = kmap_local_zpdesc(d_zpdesc); + + while (1) { + size = min(s_size, d_size); + memcpy(d_addr + d_off, s_addr + s_off, size); + written += size; + + if (written == class->size) + break; + + s_off += size; + s_size -= size; + d_off += size; + d_size -= size; + + /* + * Calling kunmap_local(d_addr) is necessary. kunmap_local() + * calls must occurs in reverse order of calls to kmap_local_page(). + * So, to call kunmap_local(s_addr) we should first call + * kunmap_local(d_addr). For more details see + * Documentation/mm/highmem.rst. + */ + if (s_off >= PAGE_SIZE) { + kunmap_local(d_addr); + kunmap_local(s_addr); + s_zpdesc = get_next_zpdesc(s_zpdesc); + s_addr = kmap_local_zpdesc(s_zpdesc); + d_addr = kmap_local_zpdesc(d_zpdesc); + s_size = class->size - written; + s_off = 0; + } + + if (d_off >= PAGE_SIZE) { + kunmap_local(d_addr); + d_zpdesc = get_next_zpdesc(d_zpdesc); + d_addr = kmap_local_zpdesc(d_zpdesc); + d_size = class->size - written; + d_off = 0; + } + } + + kunmap_local(d_addr); + kunmap_local(s_addr); +} + +/* + * Find alloced object in zspage from index object and + * return handle. + */ +static unsigned long find_alloced_obj(struct size_class *class, + struct zpdesc *zpdesc, int *obj_idx) +{ + unsigned int offset; + int index = *obj_idx; + unsigned long handle = 0; + void *addr = kmap_local_zpdesc(zpdesc); + + offset = get_first_obj_offset(zpdesc); + offset += class->size * index; + + while (offset < PAGE_SIZE) { + if (obj_allocated(zpdesc, addr + offset, &handle)) + break; + + offset += class->size; + index++; + } + + kunmap_local(addr); + + *obj_idx = index; + + return handle; +} + +static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage, + struct zspage *dst_zspage) +{ + unsigned long used_obj, free_obj; + unsigned long handle; + int obj_idx = 0; + struct zpdesc *s_zpdesc = get_first_zpdesc(src_zspage); + struct size_class *class = pool->size_class[src_zspage->class]; + + while (1) { + handle = find_alloced_obj(class, s_zpdesc, &obj_idx); + if (!handle) { + s_zpdesc = get_next_zpdesc(s_zpdesc); + if (!s_zpdesc) + break; + obj_idx = 0; + continue; + } + + used_obj = handle_to_obj(handle); + free_obj = obj_malloc(pool, dst_zspage, handle); + zs_object_copy(class, free_obj, used_obj); + obj_idx++; + obj_free(class->size, used_obj); + + /* Stop if there is no more space */ + if (zspage_full(class, dst_zspage)) + break; + + /* Stop if there are no more objects to migrate */ + if (zspage_empty(src_zspage)) + break; + } +} + +static struct zspage *isolate_src_zspage(struct size_class *class) +{ + struct zspage *zspage; + int fg; + + for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) { + zspage = list_first_entry_or_null(&class->fullness_list[fg], + struct zspage, list); + if (zspage) { + remove_zspage(class, zspage); + return zspage; + } + } + + return zspage; +} + +static struct zspage *isolate_dst_zspage(struct size_class *class) +{ + struct zspage *zspage; + int fg; + + for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) { + zspage = list_first_entry_or_null(&class->fullness_list[fg], + struct zspage, list); + if (zspage) { + remove_zspage(class, zspage); + return zspage; + } + } + + return zspage; +} + +/* + * putback_zspage - add @zspage into right class's fullness list + * @class: destination class + * @zspage: target page + * + * Return @zspage's fullness status + */ +static int putback_zspage(struct size_class *class, struct zspage *zspage) +{ + int fullness; + + fullness = get_fullness_group(class, zspage); + insert_zspage(class, zspage, fullness); + + return fullness; +} + +#ifdef CONFIG_COMPACTION +/* + * To prevent zspage destroy during migration, zspage freeing should + * hold locks of all pages in the zspage. + */ +static void lock_zspage(struct zspage *zspage) +{ + struct zpdesc *curr_zpdesc, *zpdesc; + + /* + * Pages we haven't locked yet can be migrated off the list while we're + * trying to lock them, so we need to be careful and only attempt to + * lock each page under zspage_read_lock(). Otherwise, the page we lock + * may no longer belong to the zspage. This means that we may wait for + * the wrong page to unlock, so we must take a reference to the page + * prior to waiting for it to unlock outside zspage_read_lock(). + */ + while (1) { + zspage_read_lock(zspage); + zpdesc = get_first_zpdesc(zspage); + if (zpdesc_trylock(zpdesc)) + break; + zpdesc_get(zpdesc); + zspage_read_unlock(zspage); + zpdesc_wait_locked(zpdesc); + zpdesc_put(zpdesc); + } + + curr_zpdesc = zpdesc; + while ((zpdesc = get_next_zpdesc(curr_zpdesc))) { + if (zpdesc_trylock(zpdesc)) { + curr_zpdesc = zpdesc; + } else { + zpdesc_get(zpdesc); + zspage_read_unlock(zspage); + zpdesc_wait_locked(zpdesc); + zpdesc_put(zpdesc); + zspage_read_lock(zspage); + } + } + zspage_read_unlock(zspage); +} +#endif /* CONFIG_COMPACTION */ + +#ifdef CONFIG_COMPACTION + +static void replace_sub_page(struct size_class *class, struct zspage *zspage, + struct zpdesc *newzpdesc, struct zpdesc *oldzpdesc) +{ + struct zpdesc *zpdesc; + struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; + unsigned int first_obj_offset; + int idx = 0; + + zpdesc = get_first_zpdesc(zspage); + do { + if (zpdesc == oldzpdesc) + zpdescs[idx] = newzpdesc; + else + zpdescs[idx] = zpdesc; + idx++; + } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL); + + create_page_chain(class, zspage, zpdescs); + first_obj_offset = get_first_obj_offset(oldzpdesc); + set_first_obj_offset(newzpdesc, first_obj_offset); + if (unlikely(ZsHugePage(zspage))) + newzpdesc->handle = oldzpdesc->handle; + __zpdesc_set_movable(newzpdesc); +} + +static bool zs_page_isolate(struct page *page, isolate_mode_t mode) +{ + /* + * Page is locked so zspage can't be destroyed concurrently + * (see free_zspage()). But if the page was already destroyed + * (see reset_zpdesc()), refuse isolation here. + */ + return page_zpdesc(page)->zspage; +} + +static int zs_page_migrate(struct page *newpage, struct page *page, + enum migrate_mode mode) +{ + struct zs_pool *pool; + struct size_class *class; + struct zspage *zspage; + struct zpdesc *dummy; + struct zpdesc *newzpdesc = page_zpdesc(newpage); + struct zpdesc *zpdesc = page_zpdesc(page); + void *s_addr, *d_addr, *addr; + unsigned int offset; + unsigned long handle; + unsigned long old_obj, new_obj; + unsigned int obj_idx; + + /* + * TODO: nothing prevents a zspage from getting destroyed while + * it is isolated for migration, as the page lock is temporarily + * dropped after zs_page_isolate() succeeded: we should rework that + * and defer destroying such pages once they are un-isolated (putback) + * instead. + */ + if (!zpdesc->zspage) + return 0; + + /* The page is locked, so this pointer must remain valid */ + zspage = get_zspage(zpdesc); + pool = zspage->pool; + + /* + * The pool migrate_lock protects the race between zpage migration + * and zs_free. + */ + write_lock(&pool->lock); + class = zspage_class(pool, zspage); + + /* + * the class lock protects zpage alloc/free in the zspage. + */ + spin_lock(&class->lock); + /* the zspage write_lock protects zpage access via zs_obj_read/write() */ + if (!zspage_write_trylock(zspage)) { + spin_unlock(&class->lock); + write_unlock(&pool->lock); + return -EINVAL; + } + + /* We're committed, tell the world that this is a Zsmalloc page. */ + __zpdesc_set_zsmalloc(newzpdesc); + + offset = get_first_obj_offset(zpdesc); + s_addr = kmap_local_zpdesc(zpdesc); + + /* + * Here, any user cannot access all objects in the zspage so let's move. + */ + d_addr = kmap_local_zpdesc(newzpdesc); + copy_page(d_addr, s_addr); + kunmap_local(d_addr); + + for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE; + addr += class->size) { + if (obj_allocated(zpdesc, addr, &handle)) { + + old_obj = handle_to_obj(handle); + obj_to_location(old_obj, &dummy, &obj_idx); + new_obj = (unsigned long)location_to_obj(newzpdesc, obj_idx); + record_obj(handle, new_obj); + } + } + kunmap_local(s_addr); + + replace_sub_page(class, zspage, newzpdesc, zpdesc); + /* + * Since we complete the data copy and set up new zspage structure, + * it's okay to release migration_lock. + */ + write_unlock(&pool->lock); + spin_unlock(&class->lock); + zspage_write_unlock(zspage); + + zpdesc_get(newzpdesc); + if (zpdesc_zone(newzpdesc) != zpdesc_zone(zpdesc)) { + zpdesc_dec_zone_page_state(zpdesc); + zpdesc_inc_zone_page_state(newzpdesc); + } + + reset_zpdesc(zpdesc); + zpdesc_put(zpdesc); + + return 0; +} + +static void zs_page_putback(struct page *page) +{ +} + +const struct movable_operations zsmalloc_mops = { + .isolate_page = zs_page_isolate, + .migrate_page = zs_page_migrate, + .putback_page = zs_page_putback, +}; + +/* + * Caller should hold page_lock of all pages in the zspage + * In here, we cannot use zspage meta data. + */ +static void async_free_zspage(struct work_struct *work) +{ + int i; + struct size_class *class; + struct zspage *zspage, *tmp; + LIST_HEAD(free_pages); + struct zs_pool *pool = container_of(work, struct zs_pool, + free_work); + + for (i = 0; i < ZS_SIZE_CLASSES; i++) { + class = pool->size_class[i]; + if (class->index != i) + continue; + + spin_lock(&class->lock); + list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0], + &free_pages); + spin_unlock(&class->lock); + } + + list_for_each_entry_safe(zspage, tmp, &free_pages, list) { + list_del(&zspage->list); + lock_zspage(zspage); + + class = zspage_class(pool, zspage); + spin_lock(&class->lock); + class_stat_sub(class, ZS_INUSE_RATIO_0, 1); + __free_zspage(pool, class, zspage); + spin_unlock(&class->lock); + } +}; + +static void kick_deferred_free(struct zs_pool *pool) +{ + schedule_work(&pool->free_work); +} + +static void zs_flush_migration(struct zs_pool *pool) +{ + flush_work(&pool->free_work); +} + +static void init_deferred_free(struct zs_pool *pool) +{ + INIT_WORK(&pool->free_work, async_free_zspage); +} + +static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) +{ + struct zpdesc *zpdesc = get_first_zpdesc(zspage); + + do { + WARN_ON(!zpdesc_trylock(zpdesc)); + __zpdesc_set_movable(zpdesc); + zpdesc_unlock(zpdesc); + } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL); +} +#else +static inline void zs_flush_migration(struct zs_pool *pool) { } +#endif + +/* + * + * Based on the number of unused allocated objects calculate + * and return the number of pages that we can free. + */ +static unsigned long zs_can_compact(struct size_class *class) +{ + unsigned long obj_wasted; + unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED); + unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE); + + if (obj_allocated <= obj_used) + return 0; + + obj_wasted = obj_allocated - obj_used; + obj_wasted /= class->objs_per_zspage; + + return obj_wasted * class->pages_per_zspage; +} + +static unsigned long __zs_compact(struct zs_pool *pool, + struct size_class *class) +{ + struct zspage *src_zspage = NULL; + struct zspage *dst_zspage = NULL; + unsigned long pages_freed = 0; + + /* + * protect the race between zpage migration and zs_free + * as well as zpage allocation/free + */ + write_lock(&pool->lock); + spin_lock(&class->lock); + while (zs_can_compact(class)) { + int fg; + + if (!dst_zspage) { + dst_zspage = isolate_dst_zspage(class); + if (!dst_zspage) + break; + } + + src_zspage = isolate_src_zspage(class); + if (!src_zspage) + break; + + if (!zspage_write_trylock(src_zspage)) + break; + + migrate_zspage(pool, src_zspage, dst_zspage); + zspage_write_unlock(src_zspage); + + fg = putback_zspage(class, src_zspage); + if (fg == ZS_INUSE_RATIO_0) { + free_zspage(pool, class, src_zspage); + pages_freed += class->pages_per_zspage; + } + src_zspage = NULL; + + if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100 + || rwlock_is_contended(&pool->lock)) { + putback_zspage(class, dst_zspage); + dst_zspage = NULL; + + spin_unlock(&class->lock); + write_unlock(&pool->lock); + cond_resched(); + write_lock(&pool->lock); + spin_lock(&class->lock); + } + } + + if (src_zspage) + putback_zspage(class, src_zspage); + + if (dst_zspage) + putback_zspage(class, dst_zspage); + + spin_unlock(&class->lock); + write_unlock(&pool->lock); + + return pages_freed; +} + +unsigned long zs_compact(struct zs_pool *pool) +{ + int i; + struct size_class *class; + unsigned long pages_freed = 0; + + /* + * Pool compaction is performed under pool->lock so it is basically + * single-threaded. Having more than one thread in __zs_compact() + * will increase pool->lock contention, which will impact other + * zsmalloc operations that need pool->lock. + */ + if (atomic_xchg(&pool->compaction_in_progress, 1)) + return 0; + + for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { + class = pool->size_class[i]; + if (class->index != i) + continue; + pages_freed += __zs_compact(pool, class); + } + atomic_long_add(pages_freed, &pool->stats.pages_compacted); + atomic_set(&pool->compaction_in_progress, 0); + + return pages_freed; +} +EXPORT_SYMBOL_GPL(zs_compact); + +void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) +{ + memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); +} +EXPORT_SYMBOL_GPL(zs_pool_stats); + +static unsigned long zs_shrinker_scan(struct shrinker *shrinker, + struct shrink_control *sc) +{ + unsigned long pages_freed; + struct zs_pool *pool = shrinker->private_data; + + /* + * Compact classes and calculate compaction delta. + * Can run concurrently with a manually triggered + * (by user) compaction. + */ + pages_freed = zs_compact(pool); + + return pages_freed ? pages_freed : SHRINK_STOP; +} + +static unsigned long zs_shrinker_count(struct shrinker *shrinker, + struct shrink_control *sc) +{ + int i; + struct size_class *class; + unsigned long pages_to_free = 0; + struct zs_pool *pool = shrinker->private_data; + + for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { + class = pool->size_class[i]; + if (class->index != i) + continue; + + pages_to_free += zs_can_compact(class); + } + + return pages_to_free; +} + +static void zs_unregister_shrinker(struct zs_pool *pool) +{ + shrinker_free(pool->shrinker); +} + +static int zs_register_shrinker(struct zs_pool *pool) +{ + pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name); + if (!pool->shrinker) + return -ENOMEM; + + pool->shrinker->scan_objects = zs_shrinker_scan; + pool->shrinker->count_objects = zs_shrinker_count; + pool->shrinker->batch = 0; + pool->shrinker->private_data = pool; + + shrinker_register(pool->shrinker); + + return 0; +} + +static int calculate_zspage_chain_size(int class_size) +{ + int i, min_waste = INT_MAX; + int chain_size = 1; + + if (is_power_of_2(class_size)) + return chain_size; + + for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { + int waste; + + waste = (i * PAGE_SIZE) % class_size; + if (waste < min_waste) { + min_waste = waste; + chain_size = i; + } + } + + return chain_size; +} + +/** + * zs_create_pool - Creates an allocation pool to work from. + * @name: pool name to be created + * + * This function must be called before anything when using + * the zsmalloc allocator. + * + * On success, a pointer to the newly created pool is returned, + * otherwise NULL. + */ +struct zs_pool *zs_create_pool(const char *name) +{ + int i; + struct zs_pool *pool; + struct size_class *prev_class = NULL; + + pool = kzalloc(sizeof(*pool), GFP_KERNEL); + if (!pool) + return NULL; + + init_deferred_free(pool); + rwlock_init(&pool->lock); + atomic_set(&pool->compaction_in_progress, 0); + + pool->name = kstrdup(name, GFP_KERNEL); + if (!pool->name) + goto err; + + if (create_cache(pool)) + goto err; + + /* + * Iterate reversely, because, size of size_class that we want to use + * for merging should be larger or equal to current size. + */ + for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { + int size; + int pages_per_zspage; + int objs_per_zspage; + struct size_class *class; + int fullness; + + size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; + if (size > ZS_MAX_ALLOC_SIZE) + size = ZS_MAX_ALLOC_SIZE; + pages_per_zspage = calculate_zspage_chain_size(size); + objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; + + /* + * We iterate from biggest down to smallest classes, + * so huge_class_size holds the size of the first huge + * class. Any object bigger than or equal to that will + * endup in the huge class. + */ + if (pages_per_zspage != 1 && objs_per_zspage != 1 && + !huge_class_size) { + huge_class_size = size; + /* + * The object uses ZS_HANDLE_SIZE bytes to store the + * handle. We need to subtract it, because zs_malloc() + * unconditionally adds handle size before it performs + * size class search - so object may be smaller than + * huge class size, yet it still can end up in the huge + * class because it grows by ZS_HANDLE_SIZE extra bytes + * right before class lookup. + */ + huge_class_size -= (ZS_HANDLE_SIZE - 1); + } + + /* + * size_class is used for normal zsmalloc operation such + * as alloc/free for that size. Although it is natural that we + * have one size_class for each size, there is a chance that we + * can get more memory utilization if we use one size_class for + * many different sizes whose size_class have same + * characteristics. So, we makes size_class point to + * previous size_class if possible. + */ + if (prev_class) { + if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { + pool->size_class[i] = prev_class; + continue; + } + } + + class = kzalloc(sizeof(struct size_class), GFP_KERNEL); + if (!class) + goto err; + + class->size = size; + class->index = i; + class->pages_per_zspage = pages_per_zspage; + class->objs_per_zspage = objs_per_zspage; + spin_lock_init(&class->lock); + pool->size_class[i] = class; + + fullness = ZS_INUSE_RATIO_0; + while (fullness < NR_FULLNESS_GROUPS) { + INIT_LIST_HEAD(&class->fullness_list[fullness]); + fullness++; + } + + prev_class = class; + } + + /* debug only, don't abort if it fails */ + zs_pool_stat_create(pool, name); + + /* + * Not critical since shrinker is only used to trigger internal + * defragmentation of the pool which is pretty optional thing. If + * registration fails we still can use the pool normally and user can + * trigger compaction manually. Thus, ignore return code. + */ + zs_register_shrinker(pool); + + return pool; + +err: + zs_destroy_pool(pool); + return NULL; +} +EXPORT_SYMBOL_GPL(zs_create_pool); + +void zs_destroy_pool(struct zs_pool *pool) +{ + int i; + + zs_unregister_shrinker(pool); + zs_flush_migration(pool); + zs_pool_stat_destroy(pool); + + for (i = 0; i < ZS_SIZE_CLASSES; i++) { + int fg; + struct size_class *class = pool->size_class[i]; + + if (!class) + continue; + + if (class->index != i) + continue; + + for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) { + if (list_empty(&class->fullness_list[fg])) + continue; + + pr_err("Class-%d fullness group %d is not empty\n", + class->size, fg); + } + kfree(class); + } + + destroy_cache(pool); + kfree(pool->name); + kfree(pool); +} +EXPORT_SYMBOL_GPL(zs_destroy_pool); + +static int __init zs_init(void) +{ + int rc __maybe_unused; + +#ifdef CONFIG_COMPACTION + rc = set_movable_ops(&zsmalloc_mops, PGTY_zsmalloc); + if (rc) + return rc; +#endif + zs_stat_init(); + return 0; +} + +static void __exit zs_exit(void) +{ +#ifdef CONFIG_COMPACTION + set_movable_ops(NULL, PGTY_zsmalloc); +#endif + zs_stat_exit(); +} + +module_init(zs_init); +module_exit(zs_exit); + +MODULE_LICENSE("Dual BSD/GPL"); +MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); +MODULE_DESCRIPTION("zsmalloc memory allocator"); |
