summaryrefslogtreecommitdiff
path: root/net/unix/garbage.c
diff options
context:
space:
mode:
Diffstat (limited to 'net/unix/garbage.c')
-rw-r--r--net/unix/garbage.c695
1 files changed, 512 insertions, 183 deletions
diff --git a/net/unix/garbage.c b/net/unix/garbage.c
index 12e2ddaf887f..78323d43e63e 100644
--- a/net/unix/garbage.c
+++ b/net/unix/garbage.c
@@ -63,245 +63,574 @@
* wrt receive and holding up unrelated socket operations.
*/
-#include <linux/kernel.h>
-#include <linux/string.h>
-#include <linux/socket.h>
-#include <linux/un.h>
-#include <linux/net.h>
#include <linux/fs.h>
+#include <linux/list.h>
#include <linux/skbuff.h>
-#include <linux/netdevice.h>
-#include <linux/file.h>
-#include <linux/proc_fs.h>
-#include <linux/mutex.h>
-#include <linux/wait.h>
-
-#include <net/sock.h>
+#include <linux/socket.h>
+#include <linux/workqueue.h>
#include <net/af_unix.h>
#include <net/scm.h>
#include <net/tcp_states.h>
-#include "scm.h"
+#include "af_unix.h"
+
+struct unix_vertex {
+ struct list_head edges;
+ struct list_head entry;
+ struct list_head scc_entry;
+ unsigned long out_degree;
+ unsigned long index;
+ unsigned long scc_index;
+};
+
+struct unix_edge {
+ struct unix_sock *predecessor;
+ struct unix_sock *successor;
+ struct list_head vertex_entry;
+ struct list_head stack_entry;
+};
+
+struct unix_sock *unix_get_socket(struct file *filp)
+{
+ struct inode *inode = file_inode(filp);
+
+ /* Socket ? */
+ if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) {
+ struct socket *sock = SOCKET_I(inode);
+ const struct proto_ops *ops;
+ struct sock *sk = sock->sk;
+
+ ops = READ_ONCE(sock->ops);
-/* Internal data structures and random procedures: */
+ /* PF_UNIX ? */
+ if (sk && ops && ops->family == PF_UNIX)
+ return unix_sk(sk);
+ }
-static LIST_HEAD(gc_candidates);
-static DECLARE_WAIT_QUEUE_HEAD(unix_gc_wait);
+ return NULL;
+}
-static void scan_inflight(struct sock *x, void (*func)(struct unix_sock *),
- struct sk_buff_head *hitlist)
+static struct unix_vertex *unix_edge_successor(struct unix_edge *edge)
{
- struct sk_buff *skb;
- struct sk_buff *next;
-
- spin_lock(&x->sk_receive_queue.lock);
- skb_queue_walk_safe(&x->sk_receive_queue, skb, next) {
- /* Do we have file descriptors ? */
- if (UNIXCB(skb).fp) {
- bool hit = false;
- /* Process the descriptors of this socket */
- int nfd = UNIXCB(skb).fp->count;
- struct file **fp = UNIXCB(skb).fp->fp;
-
- while (nfd--) {
- /* Get the socket the fd matches if it indeed does so */
- struct sock *sk = unix_get_socket(*fp++);
-
- if (sk) {
- struct unix_sock *u = unix_sk(sk);
-
- /* Ignore non-candidates, they could
- * have been added to the queues after
- * starting the garbage collection
- */
- if (test_bit(UNIX_GC_CANDIDATE, &u->gc_flags)) {
- hit = true;
-
- func(u);
- }
- }
- }
- if (hit && hitlist != NULL) {
- __skb_unlink(skb, &x->sk_receive_queue);
- __skb_queue_tail(hitlist, skb);
- }
- }
+ /* If an embryo socket has a fd,
+ * the listener indirectly holds the fd's refcnt.
+ */
+ if (edge->successor->listener)
+ return unix_sk(edge->successor->listener)->vertex;
+
+ return edge->successor->vertex;
+}
+
+enum {
+ UNIX_GRAPH_NOT_CYCLIC,
+ UNIX_GRAPH_MAYBE_CYCLIC,
+ UNIX_GRAPH_CYCLIC,
+};
+
+static unsigned char unix_graph_state;
+
+static void unix_update_graph(struct unix_vertex *vertex)
+{
+ /* If the receiver socket is not inflight, no cyclic
+ * reference could be formed.
+ */
+ if (!vertex)
+ return;
+
+ WRITE_ONCE(unix_graph_state, UNIX_GRAPH_MAYBE_CYCLIC);
+}
+
+static LIST_HEAD(unix_unvisited_vertices);
+
+enum unix_vertex_index {
+ UNIX_VERTEX_INDEX_MARK1,
+ UNIX_VERTEX_INDEX_MARK2,
+ UNIX_VERTEX_INDEX_START,
+};
+
+static unsigned long unix_vertex_unvisited_index = UNIX_VERTEX_INDEX_MARK1;
+static unsigned long unix_vertex_max_scc_index = UNIX_VERTEX_INDEX_START;
+
+static void unix_add_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
+{
+ struct unix_vertex *vertex = edge->predecessor->vertex;
+
+ if (!vertex) {
+ vertex = list_first_entry(&fpl->vertices, typeof(*vertex), entry);
+ vertex->index = unix_vertex_unvisited_index;
+ vertex->scc_index = ++unix_vertex_max_scc_index;
+ vertex->out_degree = 0;
+ INIT_LIST_HEAD(&vertex->edges);
+ INIT_LIST_HEAD(&vertex->scc_entry);
+
+ list_move_tail(&vertex->entry, &unix_unvisited_vertices);
+ edge->predecessor->vertex = vertex;
}
- spin_unlock(&x->sk_receive_queue.lock);
+
+ vertex->out_degree++;
+ list_add_tail(&edge->vertex_entry, &vertex->edges);
+
+ unix_update_graph(unix_edge_successor(edge));
}
-static void scan_children(struct sock *x, void (*func)(struct unix_sock *),
- struct sk_buff_head *hitlist)
+static void unix_del_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
{
- if (x->sk_state != TCP_LISTEN) {
- scan_inflight(x, func, hitlist);
- } else {
- struct sk_buff *skb;
- struct sk_buff *next;
- struct unix_sock *u;
- LIST_HEAD(embryos);
+ struct unix_vertex *vertex = edge->predecessor->vertex;
- /* For a listening socket collect the queued embryos
- * and perform a scan on them as well.
- */
- spin_lock(&x->sk_receive_queue.lock);
- skb_queue_walk_safe(&x->sk_receive_queue, skb, next) {
- u = unix_sk(skb->sk);
+ if (!fpl->dead)
+ unix_update_graph(unix_edge_successor(edge));
- /* An embryo cannot be in-flight, so it's safe
- * to use the list link.
- */
- BUG_ON(!list_empty(&u->link));
- list_add_tail(&u->link, &embryos);
- }
- spin_unlock(&x->sk_receive_queue.lock);
+ list_del(&edge->vertex_entry);
+ vertex->out_degree--;
- while (!list_empty(&embryos)) {
- u = list_entry(embryos.next, struct unix_sock, link);
- scan_inflight(&u->sk, func, hitlist);
- list_del_init(&u->link);
- }
+ if (!vertex->out_degree) {
+ edge->predecessor->vertex = NULL;
+ list_move_tail(&vertex->entry, &fpl->vertices);
}
}
-static void dec_inflight(struct unix_sock *usk)
+static void unix_free_vertices(struct scm_fp_list *fpl)
{
- atomic_long_dec(&usk->inflight);
+ struct unix_vertex *vertex, *next_vertex;
+
+ list_for_each_entry_safe(vertex, next_vertex, &fpl->vertices, entry) {
+ list_del(&vertex->entry);
+ kfree(vertex);
+ }
}
-static void inc_inflight(struct unix_sock *usk)
+static DEFINE_SPINLOCK(unix_gc_lock);
+
+void unix_add_edges(struct scm_fp_list *fpl, struct unix_sock *receiver)
{
- atomic_long_inc(&usk->inflight);
+ int i = 0, j = 0;
+
+ spin_lock(&unix_gc_lock);
+
+ if (!fpl->count_unix)
+ goto out;
+
+ do {
+ struct unix_sock *inflight = unix_get_socket(fpl->fp[j++]);
+ struct unix_edge *edge;
+
+ if (!inflight)
+ continue;
+
+ edge = fpl->edges + i++;
+ edge->predecessor = inflight;
+ edge->successor = receiver;
+
+ unix_add_edge(fpl, edge);
+ } while (i < fpl->count_unix);
+
+ receiver->scm_stat.nr_unix_fds += fpl->count_unix;
+out:
+ WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight + fpl->count);
+
+ spin_unlock(&unix_gc_lock);
+
+ fpl->inflight = true;
+
+ unix_free_vertices(fpl);
}
-static void inc_inflight_move_tail(struct unix_sock *u)
+void unix_del_edges(struct scm_fp_list *fpl)
{
- atomic_long_inc(&u->inflight);
- /* If this still might be part of a cycle, move it to the end
- * of the list, so that it's checked even if it was already
- * passed over
+ struct unix_sock *receiver;
+ int i = 0;
+
+ spin_lock(&unix_gc_lock);
+
+ if (!fpl->count_unix)
+ goto out;
+
+ do {
+ struct unix_edge *edge = fpl->edges + i++;
+
+ unix_del_edge(fpl, edge);
+ } while (i < fpl->count_unix);
+
+ if (!fpl->dead) {
+ receiver = fpl->edges[0].successor;
+ receiver->scm_stat.nr_unix_fds -= fpl->count_unix;
+ }
+out:
+ WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight - fpl->count);
+
+ spin_unlock(&unix_gc_lock);
+
+ fpl->inflight = false;
+}
+
+void unix_update_edges(struct unix_sock *receiver)
+{
+ /* nr_unix_fds is only updated under unix_state_lock().
+ * If it's 0 here, the embryo socket is not part of the
+ * inflight graph, and GC will not see it, so no lock needed.
*/
- if (test_bit(UNIX_GC_MAYBE_CYCLE, &u->gc_flags))
- list_move_tail(&u->link, &gc_candidates);
+ if (!receiver->scm_stat.nr_unix_fds) {
+ receiver->listener = NULL;
+ } else {
+ spin_lock(&unix_gc_lock);
+ unix_update_graph(unix_sk(receiver->listener)->vertex);
+ receiver->listener = NULL;
+ spin_unlock(&unix_gc_lock);
+ }
}
-static bool gc_in_progress;
-#define UNIX_INFLIGHT_TRIGGER_GC 16000
+int unix_prepare_fpl(struct scm_fp_list *fpl)
+{
+ struct unix_vertex *vertex;
+ int i;
-void wait_for_unix_gc(void)
+ if (!fpl->count_unix)
+ return 0;
+
+ for (i = 0; i < fpl->count_unix; i++) {
+ vertex = kmalloc(sizeof(*vertex), GFP_KERNEL);
+ if (!vertex)
+ goto err;
+
+ list_add(&vertex->entry, &fpl->vertices);
+ }
+
+ fpl->edges = kvmalloc_array(fpl->count_unix, sizeof(*fpl->edges),
+ GFP_KERNEL_ACCOUNT);
+ if (!fpl->edges)
+ goto err;
+
+ unix_schedule_gc(fpl->user);
+
+ return 0;
+
+err:
+ unix_free_vertices(fpl);
+ return -ENOMEM;
+}
+
+void unix_destroy_fpl(struct scm_fp_list *fpl)
{
- /* If number of inflight sockets is insane,
- * force a garbage collect right now.
- */
- if (unix_tot_inflight > UNIX_INFLIGHT_TRIGGER_GC && !gc_in_progress)
- unix_gc();
- wait_event(unix_gc_wait, gc_in_progress == false);
+ if (fpl->inflight)
+ unix_del_edges(fpl);
+
+ kvfree(fpl->edges);
+ unix_free_vertices(fpl);
}
-/* The external entry point: unix_gc() */
-void unix_gc(void)
+static bool unix_vertex_dead(struct unix_vertex *vertex)
{
+ struct unix_edge *edge;
struct unix_sock *u;
- struct unix_sock *next;
- struct sk_buff_head hitlist;
- struct list_head cursor;
- LIST_HEAD(not_cycle_list);
+ long total_ref;
- spin_lock(&unix_gc_lock);
+ list_for_each_entry(edge, &vertex->edges, vertex_entry) {
+ struct unix_vertex *next_vertex = unix_edge_successor(edge);
- /* Avoid a recursive GC. */
- if (gc_in_progress)
- goto out;
+ /* The vertex's fd can be received by a non-inflight socket. */
+ if (!next_vertex)
+ return false;
- gc_in_progress = true;
- /* First, select candidates for garbage collection. Only
- * in-flight sockets are considered, and from those only ones
- * which don't have any external reference.
- *
- * Holding unix_gc_lock will protect these candidates from
- * being detached, and hence from gaining an external
- * reference. Since there are no possible receivers, all
- * buffers currently on the candidates' queues stay there
- * during the garbage collection.
- *
- * We also know that no new candidate can be added onto the
- * receive queues. Other, non candidate sockets _can_ be
- * added to queue, so we must make sure only to touch
- * candidates.
- */
- list_for_each_entry_safe(u, next, &gc_inflight_list, link) {
- long total_refs;
- long inflight_refs;
-
- total_refs = file_count(u->sk.sk_socket->file);
- inflight_refs = atomic_long_read(&u->inflight);
-
- BUG_ON(inflight_refs < 1);
- BUG_ON(total_refs < inflight_refs);
- if (total_refs == inflight_refs) {
- list_move_tail(&u->link, &gc_candidates);
- __set_bit(UNIX_GC_CANDIDATE, &u->gc_flags);
- __set_bit(UNIX_GC_MAYBE_CYCLE, &u->gc_flags);
+ /* The vertex's fd can be received by an inflight socket in
+ * another SCC.
+ */
+ if (next_vertex->scc_index != vertex->scc_index)
+ return false;
+ }
+
+ /* No receiver exists out of the same SCC. */
+
+ edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry);
+ u = edge->predecessor;
+ total_ref = file_count(u->sk.sk_socket->file);
+
+ /* If not close()d, total_ref > out_degree. */
+ if (total_ref != vertex->out_degree)
+ return false;
+
+ return true;
+}
+
+static void unix_collect_skb(struct list_head *scc, struct sk_buff_head *hitlist)
+{
+ struct unix_vertex *vertex;
+
+ list_for_each_entry_reverse(vertex, scc, scc_entry) {
+ struct sk_buff_head *queue;
+ struct unix_edge *edge;
+ struct unix_sock *u;
+
+ edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry);
+ u = edge->predecessor;
+ queue = &u->sk.sk_receive_queue;
+
+ spin_lock(&queue->lock);
+
+ if (u->sk.sk_state == TCP_LISTEN) {
+ struct sk_buff *skb;
+
+ skb_queue_walk(queue, skb) {
+ struct sk_buff_head *embryo_queue = &skb->sk->sk_receive_queue;
+
+ spin_lock(&embryo_queue->lock);
+ skb_queue_splice_init(embryo_queue, hitlist);
+ spin_unlock(&embryo_queue->lock);
+ }
+ } else {
+ skb_queue_splice_init(queue, hitlist);
}
+
+ spin_unlock(&queue->lock);
}
+}
- /* Now remove all internal in-flight reference to children of
- * the candidates.
- */
- list_for_each_entry(u, &gc_candidates, link)
- scan_children(&u->sk, dec_inflight, NULL);
-
- /* Restore the references for children of all candidates,
- * which have remaining references. Do this recursively, so
- * only those remain, which form cyclic references.
- *
- * Use a "cursor" link, to make the list traversal safe, even
- * though elements might be moved about.
+static bool unix_scc_cyclic(struct list_head *scc)
+{
+ struct unix_vertex *vertex;
+ struct unix_edge *edge;
+
+ /* SCC containing multiple vertices ? */
+ if (!list_is_singular(scc))
+ return true;
+
+ vertex = list_first_entry(scc, typeof(*vertex), scc_entry);
+
+ /* Self-reference or a embryo-listener circle ? */
+ list_for_each_entry(edge, &vertex->edges, vertex_entry) {
+ if (unix_edge_successor(edge) == vertex)
+ return true;
+ }
+
+ return false;
+}
+
+static LIST_HEAD(unix_visited_vertices);
+static unsigned long unix_vertex_grouped_index = UNIX_VERTEX_INDEX_MARK2;
+
+static unsigned long __unix_walk_scc(struct unix_vertex *vertex,
+ unsigned long *last_index,
+ struct sk_buff_head *hitlist)
+{
+ unsigned long cyclic_sccs = 0;
+ LIST_HEAD(vertex_stack);
+ struct unix_edge *edge;
+ LIST_HEAD(edge_stack);
+
+next_vertex:
+ /* Push vertex to vertex_stack and mark it as on-stack
+ * (index >= UNIX_VERTEX_INDEX_START).
+ * The vertex will be popped when finalising SCC later.
*/
- list_add(&cursor, &gc_candidates);
- while (cursor.next != &gc_candidates) {
- u = list_entry(cursor.next, struct unix_sock, link);
+ list_add(&vertex->scc_entry, &vertex_stack);
- /* Move cursor to after the current position. */
- list_move(&cursor, &u->link);
+ vertex->index = *last_index;
+ vertex->scc_index = *last_index;
+ (*last_index)++;
- if (atomic_long_read(&u->inflight) > 0) {
- list_move_tail(&u->link, &not_cycle_list);
- __clear_bit(UNIX_GC_MAYBE_CYCLE, &u->gc_flags);
- scan_children(&u->sk, inc_inflight_move_tail, NULL);
+ /* Explore neighbour vertices (receivers of the current vertex's fd). */
+ list_for_each_entry(edge, &vertex->edges, vertex_entry) {
+ struct unix_vertex *next_vertex = unix_edge_successor(edge);
+
+ if (!next_vertex)
+ continue;
+
+ if (next_vertex->index == unix_vertex_unvisited_index) {
+ /* Iterative deepening depth first search
+ *
+ * 1. Push a forward edge to edge_stack and set
+ * the successor to vertex for the next iteration.
+ */
+ list_add(&edge->stack_entry, &edge_stack);
+
+ vertex = next_vertex;
+ goto next_vertex;
+
+ /* 2. Pop the edge directed to the current vertex
+ * and restore the ancestor for backtracking.
+ */
+prev_vertex:
+ edge = list_first_entry(&edge_stack, typeof(*edge), stack_entry);
+ list_del_init(&edge->stack_entry);
+
+ next_vertex = vertex;
+ vertex = edge->predecessor->vertex;
+
+ /* If the successor has a smaller scc_index, two vertices
+ * are in the same SCC, so propagate the smaller scc_index
+ * to skip SCC finalisation.
+ */
+ vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index);
+ } else if (next_vertex->index != unix_vertex_grouped_index) {
+ /* Loop detected by a back/cross edge.
+ *
+ * The successor is on vertex_stack, so two vertices are in
+ * the same SCC. If the successor has a smaller *scc_index*,
+ * propagate it to skip SCC finalisation.
+ */
+ vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index);
+ } else {
+ /* The successor was already grouped as another SCC */
}
}
- list_del(&cursor);
- /* Now gc_candidates contains only garbage. Restore original
- * inflight counters for these as well, and remove the skbuffs
- * which are creating the cycle(s).
- */
- skb_queue_head_init(&hitlist);
- list_for_each_entry(u, &gc_candidates, link)
- scan_children(&u->sk, inc_inflight, &hitlist);
+ if (vertex->index == vertex->scc_index) {
+ struct unix_vertex *v;
+ struct list_head scc;
+ bool scc_dead = true;
+
+ /* SCC finalised.
+ *
+ * If the scc_index was not updated, all the vertices above on
+ * vertex_stack are in the same SCC. Group them using scc_entry.
+ */
+ __list_cut_position(&scc, &vertex_stack, &vertex->scc_entry);
+
+ list_for_each_entry_reverse(v, &scc, scc_entry) {
+ /* Don't restart DFS from this vertex in unix_walk_scc(). */
+ list_move_tail(&v->entry, &unix_visited_vertices);
+
+ /* Mark vertex as off-stack. */
+ v->index = unix_vertex_grouped_index;
+
+ if (scc_dead)
+ scc_dead = unix_vertex_dead(v);
+ }
+
+ if (scc_dead) {
+ unix_collect_skb(&scc, hitlist);
+ } else {
+ if (unix_vertex_max_scc_index < vertex->scc_index)
+ unix_vertex_max_scc_index = vertex->scc_index;
+
+ if (unix_scc_cyclic(&scc))
+ cyclic_sccs++;
+ }
+
+ list_del(&scc);
+ }
+
+ /* Need backtracking ? */
+ if (!list_empty(&edge_stack))
+ goto prev_vertex;
- /* not_cycle_list contains those sockets which do not make up a
- * cycle. Restore these to the inflight list.
+ return cyclic_sccs;
+}
+
+static unsigned long unix_graph_cyclic_sccs;
+
+static void unix_walk_scc(struct sk_buff_head *hitlist)
+{
+ unsigned long last_index = UNIX_VERTEX_INDEX_START;
+ unsigned long cyclic_sccs = 0;
+
+ unix_vertex_max_scc_index = UNIX_VERTEX_INDEX_START;
+
+ /* Visit every vertex exactly once.
+ * __unix_walk_scc() moves visited vertices to unix_visited_vertices.
*/
- while (!list_empty(&not_cycle_list)) {
- u = list_entry(not_cycle_list.next, struct unix_sock, link);
- __clear_bit(UNIX_GC_CANDIDATE, &u->gc_flags);
- list_move_tail(&u->link, &gc_inflight_list);
+ while (!list_empty(&unix_unvisited_vertices)) {
+ struct unix_vertex *vertex;
+
+ vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry);
+ cyclic_sccs += __unix_walk_scc(vertex, &last_index, hitlist);
}
- spin_unlock(&unix_gc_lock);
+ list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices);
+ swap(unix_vertex_unvisited_index, unix_vertex_grouped_index);
+
+ WRITE_ONCE(unix_graph_cyclic_sccs, cyclic_sccs);
+ WRITE_ONCE(unix_graph_state,
+ cyclic_sccs ? UNIX_GRAPH_CYCLIC : UNIX_GRAPH_NOT_CYCLIC);
+}
+
+static void unix_walk_scc_fast(struct sk_buff_head *hitlist)
+{
+ unsigned long cyclic_sccs = unix_graph_cyclic_sccs;
- /* Here we are. Hitlist is filled. Die. */
- __skb_queue_purge(&hitlist);
+ while (!list_empty(&unix_unvisited_vertices)) {
+ struct unix_vertex *vertex;
+ struct list_head scc;
+ bool scc_dead = true;
+
+ vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry);
+ list_add(&scc, &vertex->scc_entry);
+
+ list_for_each_entry_reverse(vertex, &scc, scc_entry) {
+ list_move_tail(&vertex->entry, &unix_visited_vertices);
+
+ if (scc_dead)
+ scc_dead = unix_vertex_dead(vertex);
+ }
+
+ if (scc_dead) {
+ cyclic_sccs--;
+ unix_collect_skb(&scc, hitlist);
+ }
+
+ list_del(&scc);
+ }
+
+ list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices);
+
+ WRITE_ONCE(unix_graph_cyclic_sccs, cyclic_sccs);
+ WRITE_ONCE(unix_graph_state,
+ cyclic_sccs ? UNIX_GRAPH_CYCLIC : UNIX_GRAPH_NOT_CYCLIC);
+}
+
+static bool gc_in_progress;
+
+static void unix_gc(struct work_struct *work)
+{
+ struct sk_buff_head hitlist;
+ struct sk_buff *skb;
spin_lock(&unix_gc_lock);
- /* All candidates should have been detached by now. */
- BUG_ON(!list_empty(&gc_candidates));
- gc_in_progress = false;
- wake_up(&unix_gc_wait);
+ if (unix_graph_state == UNIX_GRAPH_NOT_CYCLIC) {
+ spin_unlock(&unix_gc_lock);
+ goto skip_gc;
+ }
+
+ __skb_queue_head_init(&hitlist);
+
+ if (unix_graph_state == UNIX_GRAPH_CYCLIC)
+ unix_walk_scc_fast(&hitlist);
+ else
+ unix_walk_scc(&hitlist);
- out:
spin_unlock(&unix_gc_lock);
+
+ skb_queue_walk(&hitlist, skb) {
+ if (UNIXCB(skb).fp)
+ UNIXCB(skb).fp->dead = true;
+ }
+
+ __skb_queue_purge_reason(&hitlist, SKB_DROP_REASON_SOCKET_CLOSE);
+skip_gc:
+ WRITE_ONCE(gc_in_progress, false);
+}
+
+static DECLARE_WORK(unix_gc_work, unix_gc);
+
+#define UNIX_INFLIGHT_SANE_USER (SCM_MAX_FD * 8)
+
+void unix_schedule_gc(struct user_struct *user)
+{
+ if (READ_ONCE(unix_graph_state) == UNIX_GRAPH_NOT_CYCLIC)
+ return;
+
+ /* Penalise users who want to send AF_UNIX sockets
+ * but whose sockets have not been received yet.
+ */
+ if (user &&
+ READ_ONCE(user->unix_inflight) < UNIX_INFLIGHT_SANE_USER)
+ return;
+
+ if (!READ_ONCE(gc_in_progress)) {
+ WRITE_ONCE(gc_in_progress, true);
+ queue_work(system_dfl_wq, &unix_gc_work);
+ }
+
+ if (user && READ_ONCE(unix_graph_cyclic_sccs))
+ flush_work(&unix_gc_work);
}