diff options
Diffstat (limited to 'rust/kernel/alloc.rs')
-rw-r--r-- | rust/kernel/alloc.rs | 224 |
1 files changed, 224 insertions, 0 deletions
diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs new file mode 100644 index 000000000000..fc9c9c41cd79 --- /dev/null +++ b/rust/kernel/alloc.rs @@ -0,0 +1,224 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Implementation of the kernel's memory allocation infrastructure. + +#[cfg(not(any(test, testlib)))] +pub mod allocator; +pub mod kbox; +pub mod kvec; +pub mod layout; + +#[cfg(any(test, testlib))] +pub mod allocator_test; + +#[cfg(any(test, testlib))] +pub use self::allocator_test as allocator; + +pub use self::kbox::Box; +pub use self::kbox::KBox; +pub use self::kbox::KVBox; +pub use self::kbox::VBox; + +pub use self::kvec::IntoIter; +pub use self::kvec::KVVec; +pub use self::kvec::KVec; +pub use self::kvec::VVec; +pub use self::kvec::Vec; + +/// Indicates an allocation error. +#[derive(Copy, Clone, PartialEq, Eq, Debug)] +pub struct AllocError; +use core::{alloc::Layout, ptr::NonNull}; + +/// Flags to be used when allocating memory. +/// +/// They can be combined with the operators `|`, `&`, and `!`. +/// +/// Values can be used from the [`flags`] module. +#[derive(Clone, Copy, PartialEq)] +pub struct Flags(u32); + +impl Flags { + /// Get the raw representation of this flag. + pub(crate) fn as_raw(self) -> u32 { + self.0 + } + + /// Check whether `flags` is contained in `self`. + pub fn contains(self, flags: Flags) -> bool { + (self & flags) == flags + } +} + +impl core::ops::BitOr for Flags { + type Output = Self; + fn bitor(self, rhs: Self) -> Self::Output { + Self(self.0 | rhs.0) + } +} + +impl core::ops::BitAnd for Flags { + type Output = Self; + fn bitand(self, rhs: Self) -> Self::Output { + Self(self.0 & rhs.0) + } +} + +impl core::ops::Not for Flags { + type Output = Self; + fn not(self) -> Self::Output { + Self(!self.0) + } +} + +/// Allocation flags. +/// +/// These are meant to be used in functions that can allocate memory. +pub mod flags { + use super::Flags; + + /// Zeroes out the allocated memory. + /// + /// This is normally or'd with other flags. + pub const __GFP_ZERO: Flags = Flags(bindings::__GFP_ZERO); + + /// Allow the allocation to be in high memory. + /// + /// Allocations in high memory may not be mapped into the kernel's address space, so this can't + /// be used with `kmalloc` and other similar methods. + /// + /// This is normally or'd with other flags. + pub const __GFP_HIGHMEM: Flags = Flags(bindings::__GFP_HIGHMEM); + + /// Users can not sleep and need the allocation to succeed. + /// + /// A lower watermark is applied to allow access to "atomic reserves". The current + /// implementation doesn't support NMI and few other strict non-preemptive contexts (e.g. + /// raw_spin_lock). The same applies to [`GFP_NOWAIT`]. + pub const GFP_ATOMIC: Flags = Flags(bindings::GFP_ATOMIC); + + /// Typical for kernel-internal allocations. The caller requires ZONE_NORMAL or a lower zone + /// for direct access but can direct reclaim. + pub const GFP_KERNEL: Flags = Flags(bindings::GFP_KERNEL); + + /// The same as [`GFP_KERNEL`], except the allocation is accounted to kmemcg. + pub const GFP_KERNEL_ACCOUNT: Flags = Flags(bindings::GFP_KERNEL_ACCOUNT); + + /// For kernel allocations that should not stall for direct reclaim, start physical IO or + /// use any filesystem callback. It is very likely to fail to allocate memory, even for very + /// small allocations. + pub const GFP_NOWAIT: Flags = Flags(bindings::GFP_NOWAIT); + + /// Suppresses allocation failure reports. + /// + /// This is normally or'd with other flags. + pub const __GFP_NOWARN: Flags = Flags(bindings::__GFP_NOWARN); +} + +/// The kernel's [`Allocator`] trait. +/// +/// An implementation of [`Allocator`] can allocate, re-allocate and free memory buffers described +/// via [`Layout`]. +/// +/// [`Allocator`] is designed to be implemented as a ZST; [`Allocator`] functions do not operate on +/// an object instance. +/// +/// In order to be able to support `#[derive(CoercePointee)]` later on, we need to avoid a design +/// that requires an `Allocator` to be instantiated, hence its functions must not contain any kind +/// of `self` parameter. +/// +/// # Safety +/// +/// - A memory allocation returned from an allocator must remain valid until it is explicitly freed. +/// +/// - Any pointer to a valid memory allocation must be valid to be passed to any other [`Allocator`] +/// function of the same type. +/// +/// - Implementers must ensure that all trait functions abide by the guarantees documented in the +/// `# Guarantees` sections. +pub unsafe trait Allocator { + /// Allocate memory based on `layout` and `flags`. + /// + /// On success, returns a buffer represented as `NonNull<[u8]>` that satisfies the layout + /// constraints (i.e. minimum size and alignment as specified by `layout`). + /// + /// This function is equivalent to `realloc` when called with `None`. + /// + /// # Guarantees + /// + /// When the return value is `Ok(ptr)`, then `ptr` is + /// - valid for reads and writes for `layout.size()` bytes, until it is passed to + /// [`Allocator::free`] or [`Allocator::realloc`], + /// - aligned to `layout.align()`, + /// + /// Additionally, `Flags` are honored as documented in + /// <https://docs.kernel.org/core-api/mm-api.html#mm-api-gfp-flags>. + fn alloc(layout: Layout, flags: Flags) -> Result<NonNull<[u8]>, AllocError> { + // SAFETY: Passing `None` to `realloc` is valid by its safety requirements and asks for a + // new memory allocation. + unsafe { Self::realloc(None, layout, Layout::new::<()>(), flags) } + } + + /// Re-allocate an existing memory allocation to satisfy the requested `layout`. + /// + /// If the requested size is zero, `realloc` behaves equivalent to `free`. + /// + /// If the requested size is larger than the size of the existing allocation, a successful call + /// to `realloc` guarantees that the new or grown buffer has at least `Layout::size` bytes, but + /// may also be larger. + /// + /// If the requested size is smaller than the size of the existing allocation, `realloc` may or + /// may not shrink the buffer; this is implementation specific to the allocator. + /// + /// On allocation failure, the existing buffer, if any, remains valid. + /// + /// The buffer is represented as `NonNull<[u8]>`. + /// + /// # Safety + /// + /// - If `ptr == Some(p)`, then `p` must point to an existing and valid memory allocation + /// created by this [`Allocator`]; if `old_layout` is zero-sized `p` does not need to be a + /// pointer returned by this [`Allocator`]. + /// - `ptr` is allowed to be `None`; in this case a new memory allocation is created and + /// `old_layout` is ignored. + /// - `old_layout` must match the `Layout` the allocation has been created with. + /// + /// # Guarantees + /// + /// This function has the same guarantees as [`Allocator::alloc`]. When `ptr == Some(p)`, then + /// it additionally guarantees that: + /// - the contents of the memory pointed to by `p` are preserved up to the lesser of the new + /// and old size, i.e. `ret_ptr[0..min(layout.size(), old_layout.size())] == + /// p[0..min(layout.size(), old_layout.size())]`. + /// - when the return value is `Err(AllocError)`, then `ptr` is still valid. + unsafe fn realloc( + ptr: Option<NonNull<u8>>, + layout: Layout, + old_layout: Layout, + flags: Flags, + ) -> Result<NonNull<[u8]>, AllocError>; + + /// Free an existing memory allocation. + /// + /// # Safety + /// + /// - `ptr` must point to an existing and valid memory allocation created by this [`Allocator`]; + /// if `old_layout` is zero-sized `p` does not need to be a pointer returned by this + /// [`Allocator`]. + /// - `layout` must match the `Layout` the allocation has been created with. + /// - The memory allocation at `ptr` must never again be read from or written to. + unsafe fn free(ptr: NonNull<u8>, layout: Layout) { + // SAFETY: The caller guarantees that `ptr` points at a valid allocation created by this + // allocator. We are passing a `Layout` with the smallest possible alignment, so it is + // smaller than or equal to the alignment previously used with this allocation. + let _ = unsafe { Self::realloc(Some(ptr), Layout::new::<()>(), layout, Flags(0)) }; + } +} + +/// Returns a properly aligned dangling pointer from the given `layout`. +pub(crate) fn dangling_from_layout(layout: Layout) -> NonNull<u8> { + let ptr = layout.align() as *mut u8; + + // SAFETY: `layout.align()` (and hence `ptr`) is guaranteed to be non-zero. + unsafe { NonNull::new_unchecked(ptr) } +} |