summaryrefslogtreecommitdiff
path: root/rust/kernel/alloc
diff options
context:
space:
mode:
Diffstat (limited to 'rust/kernel/alloc')
-rw-r--r--rust/kernel/alloc/allocator.rs308
-rw-r--r--rust/kernel/alloc/allocator/iter.rs102
-rw-r--r--rust/kernel/alloc/kbox.rs720
-rw-r--r--rust/kernel/alloc/kvec.rs1401
-rw-r--r--rust/kernel/alloc/kvec/errors.rs61
-rw-r--r--rust/kernel/alloc/layout.rs115
6 files changed, 2707 insertions, 0 deletions
diff --git a/rust/kernel/alloc/allocator.rs b/rust/kernel/alloc/allocator.rs
new file mode 100644
index 000000000000..63bfb91b3671
--- /dev/null
+++ b/rust/kernel/alloc/allocator.rs
@@ -0,0 +1,308 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Allocator support.
+//!
+//! Documentation for the kernel's memory allocators can found in the "Memory Allocation Guide"
+//! linked below. For instance, this includes the concept of "get free page" (GFP) flags and the
+//! typical application of the different kernel allocators.
+//!
+//! Reference: <https://docs.kernel.org/core-api/memory-allocation.html>
+
+use super::Flags;
+use core::alloc::Layout;
+use core::ptr;
+use core::ptr::NonNull;
+
+use crate::alloc::{AllocError, Allocator, NumaNode};
+use crate::bindings;
+use crate::page;
+
+const ARCH_KMALLOC_MINALIGN: usize = bindings::ARCH_KMALLOC_MINALIGN;
+
+mod iter;
+pub use self::iter::VmallocPageIter;
+
+/// The contiguous kernel allocator.
+///
+/// `Kmalloc` is typically used for physically contiguous allocations up to page size, but also
+/// supports larger allocations up to `bindings::KMALLOC_MAX_SIZE`, which is hardware specific.
+///
+/// For more details see [self].
+pub struct Kmalloc;
+
+/// The virtually contiguous kernel allocator.
+///
+/// `Vmalloc` allocates pages from the page level allocator and maps them into the contiguous kernel
+/// virtual space. It is typically used for large allocations. The memory allocated with this
+/// allocator is not physically contiguous.
+///
+/// For more details see [self].
+pub struct Vmalloc;
+
+/// The kvmalloc kernel allocator.
+///
+/// `KVmalloc` attempts to allocate memory with `Kmalloc` first, but falls back to `Vmalloc` upon
+/// failure. This allocator is typically used when the size for the requested allocation is not
+/// known and may exceed the capabilities of `Kmalloc`.
+///
+/// For more details see [self].
+pub struct KVmalloc;
+
+/// # Invariants
+///
+/// One of the following: `krealloc_node_align`, `vrealloc_node_align`, `kvrealloc_node_align`.
+struct ReallocFunc(
+ unsafe extern "C" fn(
+ *const crate::ffi::c_void,
+ usize,
+ crate::ffi::c_ulong,
+ u32,
+ crate::ffi::c_int,
+ ) -> *mut crate::ffi::c_void,
+);
+
+impl ReallocFunc {
+ // INVARIANT: `krealloc_node_align` satisfies the type invariants.
+ const KREALLOC: Self = Self(bindings::krealloc_node_align);
+
+ // INVARIANT: `vrealloc_node_align` satisfies the type invariants.
+ const VREALLOC: Self = Self(bindings::vrealloc_node_align);
+
+ // INVARIANT: `kvrealloc_node_align` satisfies the type invariants.
+ const KVREALLOC: Self = Self(bindings::kvrealloc_node_align);
+
+ /// # Safety
+ ///
+ /// This method has the same safety requirements as [`Allocator::realloc`].
+ ///
+ /// # Guarantees
+ ///
+ /// This method has the same guarantees as `Allocator::realloc`. Additionally
+ /// - it accepts any pointer to a valid memory allocation allocated by this function.
+ /// - memory allocated by this function remains valid until it is passed to this function.
+ #[inline]
+ unsafe fn call(
+ &self,
+ ptr: Option<NonNull<u8>>,
+ layout: Layout,
+ old_layout: Layout,
+ flags: Flags,
+ nid: NumaNode,
+ ) -> Result<NonNull<[u8]>, AllocError> {
+ let size = layout.size();
+ let ptr = match ptr {
+ Some(ptr) => {
+ if old_layout.size() == 0 {
+ ptr::null()
+ } else {
+ ptr.as_ptr()
+ }
+ }
+ None => ptr::null(),
+ };
+
+ // SAFETY:
+ // - `self.0` is one of `krealloc`, `vrealloc`, `kvrealloc` and thus only requires that
+ // `ptr` is NULL or valid.
+ // - `ptr` is either NULL or valid by the safety requirements of this function.
+ //
+ // GUARANTEE:
+ // - `self.0` is one of `krealloc`, `vrealloc`, `kvrealloc`.
+ // - Those functions provide the guarantees of this function.
+ let raw_ptr = unsafe {
+ // If `size == 0` and `ptr != NULL` the memory behind the pointer is freed.
+ self.0(ptr.cast(), size, layout.align(), flags.0, nid.0).cast()
+ };
+
+ let ptr = if size == 0 {
+ crate::alloc::dangling_from_layout(layout)
+ } else {
+ NonNull::new(raw_ptr).ok_or(AllocError)?
+ };
+
+ Ok(NonNull::slice_from_raw_parts(ptr, size))
+ }
+}
+
+impl Kmalloc {
+ /// Returns a [`Layout`] that makes [`Kmalloc`] fulfill the requested size and alignment of
+ /// `layout`.
+ pub fn aligned_layout(layout: Layout) -> Layout {
+ // Note that `layout.size()` (after padding) is guaranteed to be a multiple of
+ // `layout.align()` which together with the slab guarantees means that `Kmalloc` will return
+ // a properly aligned object (see comments in `kmalloc()` for more information).
+ layout.pad_to_align()
+ }
+}
+
+// SAFETY: `realloc` delegates to `ReallocFunc::call`, which guarantees that
+// - memory remains valid until it is explicitly freed,
+// - passing a pointer to a valid memory allocation is OK,
+// - `realloc` satisfies the guarantees, since `ReallocFunc::call` has the same.
+unsafe impl Allocator for Kmalloc {
+ const MIN_ALIGN: usize = ARCH_KMALLOC_MINALIGN;
+
+ #[inline]
+ unsafe fn realloc(
+ ptr: Option<NonNull<u8>>,
+ layout: Layout,
+ old_layout: Layout,
+ flags: Flags,
+ nid: NumaNode,
+ ) -> Result<NonNull<[u8]>, AllocError> {
+ let layout = Kmalloc::aligned_layout(layout);
+
+ // SAFETY: `ReallocFunc::call` has the same safety requirements as `Allocator::realloc`.
+ unsafe { ReallocFunc::KREALLOC.call(ptr, layout, old_layout, flags, nid) }
+ }
+}
+
+impl Vmalloc {
+ /// Convert a pointer to a [`Vmalloc`] allocation to a [`page::BorrowedPage`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use core::ptr::{NonNull, from_mut};
+ /// # use kernel::{page, prelude::*};
+ /// use kernel::alloc::allocator::Vmalloc;
+ ///
+ /// let mut vbox = VBox::<[u8; page::PAGE_SIZE]>::new_uninit(GFP_KERNEL)?;
+ ///
+ /// {
+ /// // SAFETY: By the type invariant of `Box` the inner pointer of `vbox` is non-null.
+ /// let ptr = unsafe { NonNull::new_unchecked(from_mut(&mut *vbox)) };
+ ///
+ /// // SAFETY:
+ /// // `ptr` is a valid pointer to a `Vmalloc` allocation.
+ /// // `ptr` is valid for the entire lifetime of `page`.
+ /// let page = unsafe { Vmalloc::to_page(ptr.cast()) };
+ ///
+ /// // SAFETY: There is no concurrent read or write to the same page.
+ /// unsafe { page.fill_zero_raw(0, page::PAGE_SIZE)? };
+ /// }
+ /// # Ok::<(), Error>(())
+ /// ```
+ ///
+ /// # Safety
+ ///
+ /// - `ptr` must be a valid pointer to a [`Vmalloc`] allocation.
+ /// - `ptr` must remain valid for the entire duration of `'a`.
+ pub unsafe fn to_page<'a>(ptr: NonNull<u8>) -> page::BorrowedPage<'a> {
+ // SAFETY: `ptr` is a valid pointer to `Vmalloc` memory.
+ let page = unsafe { bindings::vmalloc_to_page(ptr.as_ptr().cast()) };
+
+ // SAFETY: `vmalloc_to_page` returns a valid pointer to a `struct page` for a valid pointer
+ // to `Vmalloc` memory.
+ let page = unsafe { NonNull::new_unchecked(page) };
+
+ // SAFETY:
+ // - `page` is a valid pointer to a `struct page`, given that by the safety requirements of
+ // this function `ptr` is a valid pointer to a `Vmalloc` allocation.
+ // - By the safety requirements of this function `ptr` is valid for the entire lifetime of
+ // `'a`.
+ unsafe { page::BorrowedPage::from_raw(page) }
+ }
+}
+
+// SAFETY: `realloc` delegates to `ReallocFunc::call`, which guarantees that
+// - memory remains valid until it is explicitly freed,
+// - passing a pointer to a valid memory allocation is OK,
+// - `realloc` satisfies the guarantees, since `ReallocFunc::call` has the same.
+unsafe impl Allocator for Vmalloc {
+ const MIN_ALIGN: usize = kernel::page::PAGE_SIZE;
+
+ #[inline]
+ unsafe fn realloc(
+ ptr: Option<NonNull<u8>>,
+ layout: Layout,
+ old_layout: Layout,
+ flags: Flags,
+ nid: NumaNode,
+ ) -> Result<NonNull<[u8]>, AllocError> {
+ // SAFETY: If not `None`, `ptr` is guaranteed to point to valid memory, which was previously
+ // allocated with this `Allocator`.
+ unsafe { ReallocFunc::VREALLOC.call(ptr, layout, old_layout, flags, nid) }
+ }
+}
+
+// SAFETY: `realloc` delegates to `ReallocFunc::call`, which guarantees that
+// - memory remains valid until it is explicitly freed,
+// - passing a pointer to a valid memory allocation is OK,
+// - `realloc` satisfies the guarantees, since `ReallocFunc::call` has the same.
+unsafe impl Allocator for KVmalloc {
+ const MIN_ALIGN: usize = ARCH_KMALLOC_MINALIGN;
+
+ #[inline]
+ unsafe fn realloc(
+ ptr: Option<NonNull<u8>>,
+ layout: Layout,
+ old_layout: Layout,
+ flags: Flags,
+ nid: NumaNode,
+ ) -> Result<NonNull<[u8]>, AllocError> {
+ // `KVmalloc` may use the `Kmalloc` backend, hence we have to enforce a `Kmalloc`
+ // compatible layout.
+ let layout = Kmalloc::aligned_layout(layout);
+
+ // SAFETY: If not `None`, `ptr` is guaranteed to point to valid memory, which was previously
+ // allocated with this `Allocator`.
+ unsafe { ReallocFunc::KVREALLOC.call(ptr, layout, old_layout, flags, nid) }
+ }
+}
+
+#[macros::kunit_tests(rust_allocator)]
+mod tests {
+ use super::*;
+ use core::mem::MaybeUninit;
+ use kernel::prelude::*;
+
+ #[test]
+ fn test_alignment() -> Result {
+ const TEST_SIZE: usize = 1024;
+ const TEST_LARGE_ALIGN_SIZE: usize = kernel::page::PAGE_SIZE * 4;
+
+ // These two structs are used to test allocating aligned memory.
+ // they don't need to be accessed, so they're marked as dead_code.
+ #[expect(dead_code)]
+ #[repr(align(128))]
+ struct Blob([u8; TEST_SIZE]);
+ #[expect(dead_code)]
+ #[repr(align(8192))]
+ struct LargeAlignBlob([u8; TEST_LARGE_ALIGN_SIZE]);
+
+ struct TestAlign<T, A: Allocator>(Box<MaybeUninit<T>, A>);
+ impl<T, A: Allocator> TestAlign<T, A> {
+ fn new() -> Result<Self> {
+ Ok(Self(Box::<_, A>::new_uninit(GFP_KERNEL)?))
+ }
+
+ fn is_aligned_to(&self, align: usize) -> bool {
+ assert!(align.is_power_of_two());
+
+ let addr = self.0.as_ptr() as usize;
+ addr & (align - 1) == 0
+ }
+ }
+
+ let ta = TestAlign::<Blob, Kmalloc>::new()?;
+ assert!(ta.is_aligned_to(128));
+
+ let ta = TestAlign::<LargeAlignBlob, Kmalloc>::new()?;
+ assert!(ta.is_aligned_to(8192));
+
+ let ta = TestAlign::<Blob, Vmalloc>::new()?;
+ assert!(ta.is_aligned_to(128));
+
+ let ta = TestAlign::<LargeAlignBlob, Vmalloc>::new()?;
+ assert!(ta.is_aligned_to(8192));
+
+ let ta = TestAlign::<Blob, KVmalloc>::new()?;
+ assert!(ta.is_aligned_to(128));
+
+ let ta = TestAlign::<LargeAlignBlob, KVmalloc>::new()?;
+ assert!(ta.is_aligned_to(8192));
+
+ Ok(())
+ }
+}
diff --git a/rust/kernel/alloc/allocator/iter.rs b/rust/kernel/alloc/allocator/iter.rs
new file mode 100644
index 000000000000..5759f86029b7
--- /dev/null
+++ b/rust/kernel/alloc/allocator/iter.rs
@@ -0,0 +1,102 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use super::Vmalloc;
+use crate::page;
+use core::marker::PhantomData;
+use core::ptr::NonNull;
+
+/// An [`Iterator`] of [`page::BorrowedPage`] items owned by a [`Vmalloc`] allocation.
+///
+/// # Guarantees
+///
+/// The pages iterated by the [`Iterator`] appear in the order as they are mapped in the CPU's
+/// virtual address space ascendingly.
+///
+/// # Invariants
+///
+/// - `buf` is a valid and [`page::PAGE_SIZE`] aligned pointer into a [`Vmalloc`] allocation.
+/// - `size` is the number of bytes from `buf` until the end of the [`Vmalloc`] allocation `buf`
+/// points to.
+pub struct VmallocPageIter<'a> {
+ /// The base address of the [`Vmalloc`] buffer.
+ buf: NonNull<u8>,
+ /// The size of the buffer pointed to by `buf` in bytes.
+ size: usize,
+ /// The current page index of the [`Iterator`].
+ index: usize,
+ _p: PhantomData<page::BorrowedPage<'a>>,
+}
+
+impl<'a> Iterator for VmallocPageIter<'a> {
+ type Item = page::BorrowedPage<'a>;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ let offset = self.index.checked_mul(page::PAGE_SIZE)?;
+
+ // Even though `self.size()` may be smaller than `Self::page_count() * page::PAGE_SIZE`, it
+ // is always a number between `(Self::page_count() - 1) * page::PAGE_SIZE` and
+ // `Self::page_count() * page::PAGE_SIZE`, hence the check below is sufficient.
+ if offset < self.size() {
+ self.index += 1;
+ } else {
+ return None;
+ }
+
+ // TODO: Use `NonNull::add()` instead, once the minimum supported compiler version is
+ // bumped to 1.80 or later.
+ //
+ // SAFETY: `offset` is in the interval `[0, (self.page_count() - 1) * page::PAGE_SIZE]`,
+ // hence the resulting pointer is guaranteed to be within the same allocation.
+ let ptr = unsafe { self.buf.as_ptr().add(offset) };
+
+ // SAFETY: `ptr` is guaranteed to be non-null given that it is derived from `self.buf`.
+ let ptr = unsafe { NonNull::new_unchecked(ptr) };
+
+ // SAFETY:
+ // - `ptr` is a valid pointer to a `Vmalloc` allocation.
+ // - `ptr` is valid for the duration of `'a`.
+ Some(unsafe { Vmalloc::to_page(ptr) })
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let remaining = self.page_count().saturating_sub(self.index);
+
+ (remaining, Some(remaining))
+ }
+}
+
+impl<'a> VmallocPageIter<'a> {
+ /// Creates a new [`VmallocPageIter`] instance.
+ ///
+ /// # Safety
+ ///
+ /// - `buf` must be a [`page::PAGE_SIZE`] aligned pointer into a [`Vmalloc`] allocation.
+ /// - `buf` must be valid for at least the lifetime of `'a`.
+ /// - `size` must be the number of bytes from `buf` until the end of the [`Vmalloc`] allocation
+ /// `buf` points to.
+ pub unsafe fn new(buf: NonNull<u8>, size: usize) -> Self {
+ // INVARIANT: By the safety requirements, `buf` is a valid and `page::PAGE_SIZE` aligned
+ // pointer into a [`Vmalloc`] allocation.
+ Self {
+ buf,
+ size,
+ index: 0,
+ _p: PhantomData,
+ }
+ }
+
+ /// Returns the size of the backing [`Vmalloc`] allocation in bytes.
+ ///
+ /// Note that this is the size the [`Vmalloc`] allocation has been allocated with. Hence, this
+ /// number may be smaller than `[`Self::page_count`] * [`page::PAGE_SIZE`]`.
+ #[inline]
+ pub fn size(&self) -> usize {
+ self.size
+ }
+
+ /// Returns the number of pages owned by the backing [`Vmalloc`] allocation.
+ #[inline]
+ pub fn page_count(&self) -> usize {
+ self.size().div_ceil(page::PAGE_SIZE)
+ }
+}
diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs
new file mode 100644
index 000000000000..622b3529edfc
--- /dev/null
+++ b/rust/kernel/alloc/kbox.rs
@@ -0,0 +1,720 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Implementation of [`Box`].
+
+#[allow(unused_imports)] // Used in doc comments.
+use super::allocator::{KVmalloc, Kmalloc, Vmalloc, VmallocPageIter};
+use super::{AllocError, Allocator, Flags, NumaNode};
+use core::alloc::Layout;
+use core::borrow::{Borrow, BorrowMut};
+use core::marker::PhantomData;
+use core::mem::ManuallyDrop;
+use core::mem::MaybeUninit;
+use core::ops::{Deref, DerefMut};
+use core::pin::Pin;
+use core::ptr::NonNull;
+use core::result::Result;
+
+use crate::ffi::c_void;
+use crate::fmt;
+use crate::init::InPlaceInit;
+use crate::page::AsPageIter;
+use crate::types::ForeignOwnable;
+use pin_init::{InPlaceWrite, Init, PinInit, ZeroableOption};
+
+/// The kernel's [`Box`] type -- a heap allocation for a single value of type `T`.
+///
+/// This is the kernel's version of the Rust stdlib's `Box`. There are several differences,
+/// for example no `noalias` attribute is emitted and partially moving out of a `Box` is not
+/// supported. There are also several API differences, e.g. `Box` always requires an [`Allocator`]
+/// implementation to be passed as generic, page [`Flags`] when allocating memory and all functions
+/// that may allocate memory are fallible.
+///
+/// `Box` works with any of the kernel's allocators, e.g. [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`].
+/// There are aliases for `Box` with these allocators ([`KBox`], [`VBox`], [`KVBox`]).
+///
+/// When dropping a [`Box`], the value is also dropped and the heap memory is automatically freed.
+///
+/// # Examples
+///
+/// ```
+/// let b = KBox::<u64>::new(24_u64, GFP_KERNEL)?;
+///
+/// assert_eq!(*b, 24_u64);
+/// # Ok::<(), Error>(())
+/// ```
+///
+/// ```
+/// # use kernel::bindings;
+/// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1;
+/// struct Huge([u8; SIZE]);
+///
+/// assert!(KBox::<Huge>::new_uninit(GFP_KERNEL | __GFP_NOWARN).is_err());
+/// ```
+///
+/// ```
+/// # use kernel::bindings;
+/// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1;
+/// struct Huge([u8; SIZE]);
+///
+/// assert!(KVBox::<Huge>::new_uninit(GFP_KERNEL).is_ok());
+/// ```
+///
+/// [`Box`]es can also be used to store trait objects by coercing their type:
+///
+/// ```
+/// trait FooTrait {}
+///
+/// struct FooStruct;
+/// impl FooTrait for FooStruct {}
+///
+/// let _ = KBox::new(FooStruct, GFP_KERNEL)? as KBox<dyn FooTrait>;
+/// # Ok::<(), Error>(())
+/// ```
+///
+/// # Invariants
+///
+/// `self.0` is always properly aligned and either points to memory allocated with `A` or, for
+/// zero-sized types, is a dangling, well aligned pointer.
+#[repr(transparent)]
+#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
+pub struct Box<#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, pointee)] T: ?Sized, A: Allocator>(
+ NonNull<T>,
+ PhantomData<A>,
+);
+
+// This is to allow coercion from `Box<T, A>` to `Box<U, A>` if `T` can be converted to the
+// dynamically-sized type (DST) `U`.
+#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
+impl<T, U, A> core::ops::CoerceUnsized<Box<U, A>> for Box<T, A>
+where
+ T: ?Sized + core::marker::Unsize<U>,
+ U: ?Sized,
+ A: Allocator,
+{
+}
+
+// This is to allow `Box<U, A>` to be dispatched on when `Box<T, A>` can be coerced into `Box<U,
+// A>`.
+#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
+impl<T, U, A> core::ops::DispatchFromDyn<Box<U, A>> for Box<T, A>
+where
+ T: ?Sized + core::marker::Unsize<U>,
+ U: ?Sized,
+ A: Allocator,
+{
+}
+
+/// Type alias for [`Box`] with a [`Kmalloc`] allocator.
+///
+/// # Examples
+///
+/// ```
+/// let b = KBox::new(24_u64, GFP_KERNEL)?;
+///
+/// assert_eq!(*b, 24_u64);
+/// # Ok::<(), Error>(())
+/// ```
+pub type KBox<T> = Box<T, super::allocator::Kmalloc>;
+
+/// Type alias for [`Box`] with a [`Vmalloc`] allocator.
+///
+/// # Examples
+///
+/// ```
+/// let b = VBox::new(24_u64, GFP_KERNEL)?;
+///
+/// assert_eq!(*b, 24_u64);
+/// # Ok::<(), Error>(())
+/// ```
+pub type VBox<T> = Box<T, super::allocator::Vmalloc>;
+
+/// Type alias for [`Box`] with a [`KVmalloc`] allocator.
+///
+/// # Examples
+///
+/// ```
+/// let b = KVBox::new(24_u64, GFP_KERNEL)?;
+///
+/// assert_eq!(*b, 24_u64);
+/// # Ok::<(), Error>(())
+/// ```
+pub type KVBox<T> = Box<T, super::allocator::KVmalloc>;
+
+// SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee:
+// <https://doc.rust-lang.org/stable/std/option/index.html#representation>).
+unsafe impl<T, A: Allocator> ZeroableOption for Box<T, A> {}
+
+// SAFETY: `Box` is `Send` if `T` is `Send` because the `Box` owns a `T`.
+unsafe impl<T, A> Send for Box<T, A>
+where
+ T: Send + ?Sized,
+ A: Allocator,
+{
+}
+
+// SAFETY: `Box` is `Sync` if `T` is `Sync` because the `Box` owns a `T`.
+unsafe impl<T, A> Sync for Box<T, A>
+where
+ T: Sync + ?Sized,
+ A: Allocator,
+{
+}
+
+impl<T, A> Box<T, A>
+where
+ T: ?Sized,
+ A: Allocator,
+{
+ /// Creates a new `Box<T, A>` from a raw pointer.
+ ///
+ /// # Safety
+ ///
+ /// For non-ZSTs, `raw` must point at an allocation allocated with `A` that is sufficiently
+ /// aligned for and holds a valid `T`. The caller passes ownership of the allocation to the
+ /// `Box`.
+ ///
+ /// For ZSTs, `raw` must be a dangling, well aligned pointer.
+ #[inline]
+ pub const unsafe fn from_raw(raw: *mut T) -> Self {
+ // INVARIANT: Validity of `raw` is guaranteed by the safety preconditions of this function.
+ // SAFETY: By the safety preconditions of this function, `raw` is not a NULL pointer.
+ Self(unsafe { NonNull::new_unchecked(raw) }, PhantomData)
+ }
+
+ /// Consumes the `Box<T, A>` and returns a raw pointer.
+ ///
+ /// This will not run the destructor of `T` and for non-ZSTs the allocation will stay alive
+ /// indefinitely. Use [`Box::from_raw`] to recover the [`Box`], drop the value and free the
+ /// allocation, if any.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let x = KBox::new(24, GFP_KERNEL)?;
+ /// let ptr = KBox::into_raw(x);
+ /// // SAFETY: `ptr` comes from a previous call to `KBox::into_raw`.
+ /// let x = unsafe { KBox::from_raw(ptr) };
+ ///
+ /// assert_eq!(*x, 24);
+ /// # Ok::<(), Error>(())
+ /// ```
+ #[inline]
+ pub fn into_raw(b: Self) -> *mut T {
+ ManuallyDrop::new(b).0.as_ptr()
+ }
+
+ /// Consumes and leaks the `Box<T, A>` and returns a mutable reference.
+ ///
+ /// See [`Box::into_raw`] for more details.
+ #[inline]
+ pub fn leak<'a>(b: Self) -> &'a mut T {
+ // SAFETY: `Box::into_raw` always returns a properly aligned and dereferenceable pointer
+ // which points to an initialized instance of `T`.
+ unsafe { &mut *Box::into_raw(b) }
+ }
+}
+
+impl<T, A> Box<MaybeUninit<T>, A>
+where
+ A: Allocator,
+{
+ /// Converts a `Box<MaybeUninit<T>, A>` to a `Box<T, A>`.
+ ///
+ /// It is undefined behavior to call this function while the value inside of `b` is not yet
+ /// fully initialized.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that the value inside of `b` is in an initialized state.
+ pub unsafe fn assume_init(self) -> Box<T, A> {
+ let raw = Self::into_raw(self);
+
+ // SAFETY: `raw` comes from a previous call to `Box::into_raw`. By the safety requirements
+ // of this function, the value inside the `Box` is in an initialized state. Hence, it is
+ // safe to reconstruct the `Box` as `Box<T, A>`.
+ unsafe { Box::from_raw(raw.cast()) }
+ }
+
+ /// Writes the value and converts to `Box<T, A>`.
+ pub fn write(mut self, value: T) -> Box<T, A> {
+ (*self).write(value);
+
+ // SAFETY: We've just initialized `b`'s value.
+ unsafe { self.assume_init() }
+ }
+}
+
+impl<T, A> Box<T, A>
+where
+ A: Allocator,
+{
+ /// Creates a new `Box<T, A>` and initializes its contents with `x`.
+ ///
+ /// New memory is allocated with `A`. The allocation may fail, in which case an error is
+ /// returned. For ZSTs no memory is allocated.
+ pub fn new(x: T, flags: Flags) -> Result<Self, AllocError> {
+ let b = Self::new_uninit(flags)?;
+ Ok(Box::write(b, x))
+ }
+
+ /// Creates a new `Box<T, A>` with uninitialized contents.
+ ///
+ /// New memory is allocated with `A`. The allocation may fail, in which case an error is
+ /// returned. For ZSTs no memory is allocated.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let b = KBox::<u64>::new_uninit(GFP_KERNEL)?;
+ /// let b = KBox::write(b, 24);
+ ///
+ /// assert_eq!(*b, 24_u64);
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn new_uninit(flags: Flags) -> Result<Box<MaybeUninit<T>, A>, AllocError> {
+ let layout = Layout::new::<MaybeUninit<T>>();
+ let ptr = A::alloc(layout, flags, NumaNode::NO_NODE)?;
+
+ // INVARIANT: `ptr` is either a dangling pointer or points to memory allocated with `A`,
+ // which is sufficient in size and alignment for storing a `T`.
+ Ok(Box(ptr.cast(), PhantomData))
+ }
+
+ /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then `x` will be
+ /// pinned in memory and can't be moved.
+ #[inline]
+ pub fn pin(x: T, flags: Flags) -> Result<Pin<Box<T, A>>, AllocError>
+ where
+ A: 'static,
+ {
+ Ok(Self::new(x, flags)?.into())
+ }
+
+ /// Construct a pinned slice of elements `Pin<Box<[T], A>>`.
+ ///
+ /// This is a convenient means for creation of e.g. slices of structrures containing spinlocks
+ /// or mutexes.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::sync::{new_spinlock, SpinLock};
+ ///
+ /// struct Inner {
+ /// a: u32,
+ /// b: u32,
+ /// }
+ ///
+ /// #[pin_data]
+ /// struct Example {
+ /// c: u32,
+ /// #[pin]
+ /// d: SpinLock<Inner>,
+ /// }
+ ///
+ /// impl Example {
+ /// fn new() -> impl PinInit<Self, Error> {
+ /// try_pin_init!(Self {
+ /// c: 10,
+ /// d <- new_spinlock!(Inner { a: 20, b: 30 }),
+ /// })
+ /// }
+ /// }
+ ///
+ /// // Allocate a boxed slice of 10 `Example`s.
+ /// let s = KBox::pin_slice(
+ /// | _i | Example::new(),
+ /// 10,
+ /// GFP_KERNEL
+ /// )?;
+ ///
+ /// assert_eq!(s[5].c, 10);
+ /// assert_eq!(s[3].d.lock().a, 20);
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn pin_slice<Func, Item, E>(
+ mut init: Func,
+ len: usize,
+ flags: Flags,
+ ) -> Result<Pin<Box<[T], A>>, E>
+ where
+ Func: FnMut(usize) -> Item,
+ Item: PinInit<T, E>,
+ E: From<AllocError>,
+ {
+ let mut buffer = super::Vec::<T, A>::with_capacity(len, flags)?;
+ for i in 0..len {
+ let ptr = buffer.spare_capacity_mut().as_mut_ptr().cast();
+ // SAFETY:
+ // - `ptr` is a valid pointer to uninitialized memory.
+ // - `ptr` is not used if an error is returned.
+ // - `ptr` won't be moved until it is dropped, i.e. it is pinned.
+ unsafe { init(i).__pinned_init(ptr)? };
+
+ // SAFETY:
+ // - `i + 1 <= len`, hence we don't exceed the capacity, due to the call to
+ // `with_capacity()` above.
+ // - The new value at index buffer.len() + 1 is the only element being added here, and
+ // it has been initialized above by `init(i).__pinned_init(ptr)`.
+ unsafe { buffer.inc_len(1) };
+ }
+
+ let (ptr, _, _) = buffer.into_raw_parts();
+ let slice = core::ptr::slice_from_raw_parts_mut(ptr, len);
+
+ // SAFETY: `slice` points to an allocation allocated with `A` (`buffer`) and holds a valid
+ // `[T]`.
+ Ok(Pin::from(unsafe { Box::from_raw(slice) }))
+ }
+
+ /// Convert a [`Box<T,A>`] to a [`Pin<Box<T,A>>`]. If `T` does not implement
+ /// [`Unpin`], then `x` will be pinned in memory and can't be moved.
+ pub fn into_pin(this: Self) -> Pin<Self> {
+ this.into()
+ }
+
+ /// Forgets the contents (does not run the destructor), but keeps the allocation.
+ fn forget_contents(this: Self) -> Box<MaybeUninit<T>, A> {
+ let ptr = Self::into_raw(this);
+
+ // SAFETY: `ptr` is valid, because it came from `Box::into_raw`.
+ unsafe { Box::from_raw(ptr.cast()) }
+ }
+
+ /// Drops the contents, but keeps the allocation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let value = KBox::new([0; 32], GFP_KERNEL)?;
+ /// assert_eq!(*value, [0; 32]);
+ /// let value = KBox::drop_contents(value);
+ /// // Now we can re-use `value`:
+ /// let value = KBox::write(value, [1; 32]);
+ /// assert_eq!(*value, [1; 32]);
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn drop_contents(this: Self) -> Box<MaybeUninit<T>, A> {
+ let ptr = this.0.as_ptr();
+
+ // SAFETY: `ptr` is valid, because it came from `this`. After this call we never access the
+ // value stored in `this` again.
+ unsafe { core::ptr::drop_in_place(ptr) };
+
+ Self::forget_contents(this)
+ }
+
+ /// Moves the `Box`'s value out of the `Box` and consumes the `Box`.
+ pub fn into_inner(b: Self) -> T {
+ // SAFETY: By the type invariant `&*b` is valid for `read`.
+ let value = unsafe { core::ptr::read(&*b) };
+ let _ = Self::forget_contents(b);
+ value
+ }
+}
+
+impl<T, A> From<Box<T, A>> for Pin<Box<T, A>>
+where
+ T: ?Sized,
+ A: Allocator,
+{
+ /// Converts a `Box<T, A>` into a `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
+ /// `*b` will be pinned in memory and can't be moved.
+ ///
+ /// This moves `b` into `Pin` without moving `*b` or allocating and copying any memory.
+ fn from(b: Box<T, A>) -> Self {
+ // SAFETY: The value wrapped inside a `Pin<Box<T, A>>` cannot be moved or replaced as long
+ // as `T` does not implement `Unpin`.
+ unsafe { Pin::new_unchecked(b) }
+ }
+}
+
+impl<T, A> InPlaceWrite<T> for Box<MaybeUninit<T>, A>
+where
+ A: Allocator + 'static,
+{
+ type Initialized = Box<T, A>;
+
+ fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
+ let slot = self.as_mut_ptr();
+ // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
+ // slot is valid.
+ unsafe { init.__init(slot)? };
+ // SAFETY: All fields have been initialized.
+ Ok(unsafe { Box::assume_init(self) })
+ }
+
+ fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
+ let slot = self.as_mut_ptr();
+ // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
+ // slot is valid and will not be moved, because we pin it later.
+ unsafe { init.__pinned_init(slot)? };
+ // SAFETY: All fields have been initialized.
+ Ok(unsafe { Box::assume_init(self) }.into())
+ }
+}
+
+impl<T, A> InPlaceInit<T> for Box<T, A>
+where
+ A: Allocator + 'static,
+{
+ type PinnedSelf = Pin<Self>;
+
+ #[inline]
+ fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E>
+ where
+ E: From<AllocError>,
+ {
+ Box::<_, A>::new_uninit(flags)?.write_pin_init(init)
+ }
+
+ #[inline]
+ fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
+ where
+ E: From<AllocError>,
+ {
+ Box::<_, A>::new_uninit(flags)?.write_init(init)
+ }
+}
+
+// SAFETY: The pointer returned by `into_foreign` comes from a well aligned
+// pointer to `T` allocated by `A`.
+unsafe impl<T: 'static, A> ForeignOwnable for Box<T, A>
+where
+ A: Allocator,
+{
+ const FOREIGN_ALIGN: usize = if core::mem::align_of::<T>() < A::MIN_ALIGN {
+ A::MIN_ALIGN
+ } else {
+ core::mem::align_of::<T>()
+ };
+
+ type Borrowed<'a> = &'a T;
+ type BorrowedMut<'a> = &'a mut T;
+
+ fn into_foreign(self) -> *mut c_void {
+ Box::into_raw(self).cast()
+ }
+
+ unsafe fn from_foreign(ptr: *mut c_void) -> Self {
+ // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
+ // call to `Self::into_foreign`.
+ unsafe { Box::from_raw(ptr.cast()) }
+ }
+
+ unsafe fn borrow<'a>(ptr: *mut c_void) -> &'a T {
+ // SAFETY: The safety requirements of this method ensure that the object remains alive and
+ // immutable for the duration of 'a.
+ unsafe { &*ptr.cast() }
+ }
+
+ unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> &'a mut T {
+ let ptr = ptr.cast();
+ // SAFETY: The safety requirements of this method ensure that the pointer is valid and that
+ // nothing else will access the value for the duration of 'a.
+ unsafe { &mut *ptr }
+ }
+}
+
+// SAFETY: The pointer returned by `into_foreign` comes from a well aligned
+// pointer to `T` allocated by `A`.
+unsafe impl<T: 'static, A> ForeignOwnable for Pin<Box<T, A>>
+where
+ A: Allocator,
+{
+ const FOREIGN_ALIGN: usize = <Box<T, A> as ForeignOwnable>::FOREIGN_ALIGN;
+ type Borrowed<'a> = Pin<&'a T>;
+ type BorrowedMut<'a> = Pin<&'a mut T>;
+
+ fn into_foreign(self) -> *mut c_void {
+ // SAFETY: We are still treating the box as pinned.
+ Box::into_raw(unsafe { Pin::into_inner_unchecked(self) }).cast()
+ }
+
+ unsafe fn from_foreign(ptr: *mut c_void) -> Self {
+ // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
+ // call to `Self::into_foreign`.
+ unsafe { Pin::new_unchecked(Box::from_raw(ptr.cast())) }
+ }
+
+ unsafe fn borrow<'a>(ptr: *mut c_void) -> Pin<&'a T> {
+ // SAFETY: The safety requirements for this function ensure that the object is still alive,
+ // so it is safe to dereference the raw pointer.
+ // The safety requirements of `from_foreign` also ensure that the object remains alive for
+ // the lifetime of the returned value.
+ let r = unsafe { &*ptr.cast() };
+
+ // SAFETY: This pointer originates from a `Pin<Box<T>>`.
+ unsafe { Pin::new_unchecked(r) }
+ }
+
+ unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> Pin<&'a mut T> {
+ let ptr = ptr.cast();
+ // SAFETY: The safety requirements for this function ensure that the object is still alive,
+ // so it is safe to dereference the raw pointer.
+ // The safety requirements of `from_foreign` also ensure that the object remains alive for
+ // the lifetime of the returned value.
+ let r = unsafe { &mut *ptr };
+
+ // SAFETY: This pointer originates from a `Pin<Box<T>>`.
+ unsafe { Pin::new_unchecked(r) }
+ }
+}
+
+impl<T, A> Deref for Box<T, A>
+where
+ T: ?Sized,
+ A: Allocator,
+{
+ type Target = T;
+
+ fn deref(&self) -> &T {
+ // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized
+ // instance of `T`.
+ unsafe { self.0.as_ref() }
+ }
+}
+
+impl<T, A> DerefMut for Box<T, A>
+where
+ T: ?Sized,
+ A: Allocator,
+{
+ fn deref_mut(&mut self) -> &mut T {
+ // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized
+ // instance of `T`.
+ unsafe { self.0.as_mut() }
+ }
+}
+
+/// # Examples
+///
+/// ```
+/// # use core::borrow::Borrow;
+/// # use kernel::alloc::KBox;
+/// struct Foo<B: Borrow<u32>>(B);
+///
+/// // Owned instance.
+/// let owned = Foo(1);
+///
+/// // Owned instance using `KBox`.
+/// let owned_kbox = Foo(KBox::new(1, GFP_KERNEL)?);
+///
+/// let i = 1;
+/// // Borrowed from `i`.
+/// let borrowed = Foo(&i);
+/// # Ok::<(), Error>(())
+/// ```
+impl<T, A> Borrow<T> for Box<T, A>
+where
+ T: ?Sized,
+ A: Allocator,
+{
+ fn borrow(&self) -> &T {
+ self.deref()
+ }
+}
+
+/// # Examples
+///
+/// ```
+/// # use core::borrow::BorrowMut;
+/// # use kernel::alloc::KBox;
+/// struct Foo<B: BorrowMut<u32>>(B);
+///
+/// // Owned instance.
+/// let owned = Foo(1);
+///
+/// // Owned instance using `KBox`.
+/// let owned_kbox = Foo(KBox::new(1, GFP_KERNEL)?);
+///
+/// let mut i = 1;
+/// // Borrowed from `i`.
+/// let borrowed = Foo(&mut i);
+/// # Ok::<(), Error>(())
+/// ```
+impl<T, A> BorrowMut<T> for Box<T, A>
+where
+ T: ?Sized,
+ A: Allocator,
+{
+ fn borrow_mut(&mut self) -> &mut T {
+ self.deref_mut()
+ }
+}
+
+impl<T, A> fmt::Display for Box<T, A>
+where
+ T: ?Sized + fmt::Display,
+ A: Allocator,
+{
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ <T as fmt::Display>::fmt(&**self, f)
+ }
+}
+
+impl<T, A> fmt::Debug for Box<T, A>
+where
+ T: ?Sized + fmt::Debug,
+ A: Allocator,
+{
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ <T as fmt::Debug>::fmt(&**self, f)
+ }
+}
+
+impl<T, A> Drop for Box<T, A>
+where
+ T: ?Sized,
+ A: Allocator,
+{
+ fn drop(&mut self) {
+ let layout = Layout::for_value::<T>(self);
+
+ // SAFETY: The pointer in `self.0` is guaranteed to be valid by the type invariant.
+ unsafe { core::ptr::drop_in_place::<T>(self.deref_mut()) };
+
+ // SAFETY:
+ // - `self.0` was previously allocated with `A`.
+ // - `layout` is equal to the `Layout´ `self.0` was allocated with.
+ unsafe { A::free(self.0.cast(), layout) };
+ }
+}
+
+/// # Examples
+///
+/// ```
+/// # use kernel::prelude::*;
+/// use kernel::alloc::allocator::VmallocPageIter;
+/// use kernel::page::{AsPageIter, PAGE_SIZE};
+///
+/// let mut vbox = VBox::new((), GFP_KERNEL)?;
+///
+/// assert!(vbox.page_iter().next().is_none());
+///
+/// let mut vbox = VBox::<[u8; PAGE_SIZE]>::new_uninit(GFP_KERNEL)?;
+///
+/// let page = vbox.page_iter().next().expect("At least one page should be available.\n");
+///
+/// // SAFETY: There is no concurrent read or write to the same page.
+/// unsafe { page.fill_zero_raw(0, PAGE_SIZE)? };
+/// # Ok::<(), Error>(())
+/// ```
+impl<T> AsPageIter for VBox<T> {
+ type Iter<'a>
+ = VmallocPageIter<'a>
+ where
+ T: 'a;
+
+ fn page_iter(&mut self) -> Self::Iter<'_> {
+ let ptr = self.0.cast();
+ let size = core::mem::size_of::<T>();
+
+ // SAFETY:
+ // - `ptr` is a valid pointer to the beginning of a `Vmalloc` allocation.
+ // - `ptr` is guaranteed to be valid for the lifetime of `'a`.
+ // - `size` is the size of the `Vmalloc` allocation `ptr` points to.
+ unsafe { VmallocPageIter::new(ptr, size) }
+ }
+}
diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs
new file mode 100644
index 000000000000..ac8d6f763ae8
--- /dev/null
+++ b/rust/kernel/alloc/kvec.rs
@@ -0,0 +1,1401 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Implementation of [`Vec`].
+
+use super::{
+ allocator::{KVmalloc, Kmalloc, Vmalloc, VmallocPageIter},
+ layout::ArrayLayout,
+ AllocError, Allocator, Box, Flags, NumaNode,
+};
+use crate::{
+ fmt,
+ page::AsPageIter, //
+};
+use core::{
+ borrow::{Borrow, BorrowMut},
+ marker::PhantomData,
+ mem::{ManuallyDrop, MaybeUninit},
+ ops::Deref,
+ ops::DerefMut,
+ ops::Index,
+ ops::IndexMut,
+ ptr,
+ ptr::NonNull,
+ slice,
+ slice::SliceIndex,
+};
+
+mod errors;
+pub use self::errors::{InsertError, PushError, RemoveError};
+
+/// Create a [`KVec`] containing the arguments.
+///
+/// New memory is allocated with `GFP_KERNEL`.
+///
+/// # Examples
+///
+/// ```
+/// let mut v = kernel::kvec![];
+/// v.push(1, GFP_KERNEL)?;
+/// assert_eq!(v, [1]);
+///
+/// let mut v = kernel::kvec![1; 3]?;
+/// v.push(4, GFP_KERNEL)?;
+/// assert_eq!(v, [1, 1, 1, 4]);
+///
+/// let mut v = kernel::kvec![1, 2, 3]?;
+/// v.push(4, GFP_KERNEL)?;
+/// assert_eq!(v, [1, 2, 3, 4]);
+///
+/// # Ok::<(), Error>(())
+/// ```
+#[macro_export]
+macro_rules! kvec {
+ () => (
+ $crate::alloc::KVec::new()
+ );
+ ($elem:expr; $n:expr) => (
+ $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
+ );
+ ($($x:expr),+ $(,)?) => (
+ match $crate::alloc::KBox::new_uninit(GFP_KERNEL) {
+ Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))),
+ Err(e) => Err(e),
+ }
+ );
+}
+
+/// The kernel's [`Vec`] type.
+///
+/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
+/// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec<T, A>`.
+///
+/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
+/// the most common allocators the type aliases [`KVec`], [`VVec`] and [`KVVec`] exist.
+///
+/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
+///
+/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
+/// capacity of the vector (the number of elements that currently fit into the vector), its length
+/// (the number of elements that are currently stored in the vector) and the `Allocator` type used
+/// to allocate (and free) the backing buffer.
+///
+/// A [`Vec`] can be deconstructed into and (re-)constructed from its previously named raw parts
+/// and manually modified.
+///
+/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
+/// are added to the vector.
+///
+/// # Invariants
+///
+/// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for
+/// zero-sized types, is a dangling, well aligned pointer.
+///
+/// - `self.len` always represents the exact number of elements stored in the vector.
+///
+/// - `self.layout` represents the absolute number of elements that can be stored within the vector
+/// without re-allocation. For ZSTs `self.layout`'s capacity is zero. However, it is legal for the
+/// backing buffer to be larger than `layout`.
+///
+/// - `self.len()` is always less than or equal to `self.capacity()`.
+///
+/// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer
+/// was allocated with (and must be freed with).
+pub struct Vec<T, A: Allocator> {
+ ptr: NonNull<T>,
+ /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes.
+ ///
+ /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of
+ /// elements we can still store without reallocating.
+ layout: ArrayLayout<T>,
+ len: usize,
+ _p: PhantomData<A>,
+}
+
+/// Type alias for [`Vec`] with a [`Kmalloc`] allocator.
+///
+/// # Examples
+///
+/// ```
+/// let mut v = KVec::new();
+/// v.push(1, GFP_KERNEL)?;
+/// assert_eq!(&v, &[1]);
+///
+/// # Ok::<(), Error>(())
+/// ```
+pub type KVec<T> = Vec<T, Kmalloc>;
+
+/// Type alias for [`Vec`] with a [`Vmalloc`] allocator.
+///
+/// # Examples
+///
+/// ```
+/// let mut v = VVec::new();
+/// v.push(1, GFP_KERNEL)?;
+/// assert_eq!(&v, &[1]);
+///
+/// # Ok::<(), Error>(())
+/// ```
+pub type VVec<T> = Vec<T, Vmalloc>;
+
+/// Type alias for [`Vec`] with a [`KVmalloc`] allocator.
+///
+/// # Examples
+///
+/// ```
+/// let mut v = KVVec::new();
+/// v.push(1, GFP_KERNEL)?;
+/// assert_eq!(&v, &[1]);
+///
+/// # Ok::<(), Error>(())
+/// ```
+pub type KVVec<T> = Vec<T, KVmalloc>;
+
+// SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements.
+unsafe impl<T, A> Send for Vec<T, A>
+where
+ T: Send,
+ A: Allocator,
+{
+}
+
+// SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements.
+unsafe impl<T, A> Sync for Vec<T, A>
+where
+ T: Sync,
+ A: Allocator,
+{
+}
+
+impl<T, A> Vec<T, A>
+where
+ A: Allocator,
+{
+ #[inline]
+ const fn is_zst() -> bool {
+ core::mem::size_of::<T>() == 0
+ }
+
+ /// Returns the number of elements that can be stored within the vector without allocating
+ /// additional memory.
+ pub const fn capacity(&self) -> usize {
+ if const { Self::is_zst() } {
+ usize::MAX
+ } else {
+ self.layout.len()
+ }
+ }
+
+ /// Returns the number of elements stored within the vector.
+ #[inline]
+ pub const fn len(&self) -> usize {
+ self.len
+ }
+
+ /// Increments `self.len` by `additional`.
+ ///
+ /// # Safety
+ ///
+ /// - `additional` must be less than or equal to `self.capacity - self.len`.
+ /// - All elements within the interval [`self.len`,`self.len + additional`) must be initialized.
+ #[inline]
+ pub const unsafe fn inc_len(&mut self, additional: usize) {
+ // Guaranteed by the type invariant to never underflow.
+ debug_assert!(additional <= self.capacity() - self.len());
+ // INVARIANT: By the safety requirements of this method this represents the exact number of
+ // elements stored within `self`.
+ self.len += additional;
+ }
+
+ /// Decreases `self.len` by `count`.
+ ///
+ /// Returns a mutable slice to the elements forgotten by the vector. It is the caller's
+ /// responsibility to drop these elements if necessary.
+ ///
+ /// # Safety
+ ///
+ /// - `count` must be less than or equal to `self.len`.
+ unsafe fn dec_len(&mut self, count: usize) -> &mut [T] {
+ debug_assert!(count <= self.len());
+ // INVARIANT: We relinquish ownership of the elements within the range `[self.len - count,
+ // self.len)`, hence the updated value of `set.len` represents the exact number of elements
+ // stored within `self`.
+ self.len -= count;
+ // SAFETY: The memory after `self.len()` is guaranteed to contain `count` initialized
+ // elements of type `T`.
+ unsafe { slice::from_raw_parts_mut(self.as_mut_ptr().add(self.len), count) }
+ }
+
+ /// Returns a slice of the entire vector.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = KVec::new();
+ /// v.push(1, GFP_KERNEL)?;
+ /// v.push(2, GFP_KERNEL)?;
+ /// assert_eq!(v.as_slice(), &[1, 2]);
+ /// # Ok::<(), Error>(())
+ /// ```
+ #[inline]
+ pub fn as_slice(&self) -> &[T] {
+ self
+ }
+
+ /// Returns a mutable slice of the entire vector.
+ #[inline]
+ pub fn as_mut_slice(&mut self) -> &mut [T] {
+ self
+ }
+
+ /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a
+ /// dangling raw pointer.
+ #[inline]
+ pub fn as_mut_ptr(&mut self) -> *mut T {
+ self.ptr.as_ptr()
+ }
+
+ /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw
+ /// pointer.
+ #[inline]
+ pub const fn as_ptr(&self) -> *const T {
+ self.ptr.as_ptr()
+ }
+
+ /// Returns `true` if the vector contains no elements, `false` otherwise.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = KVec::new();
+ /// assert!(v.is_empty());
+ ///
+ /// v.push(1, GFP_KERNEL);
+ /// assert!(!v.is_empty());
+ /// ```
+ #[inline]
+ pub const fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ /// Creates a new, empty `Vec<T, A>`.
+ ///
+ /// This method does not allocate by itself.
+ #[inline]
+ pub const fn new() -> Self {
+ // INVARIANT: Since this is a new, empty `Vec` with no backing memory yet,
+ // - `ptr` is a properly aligned dangling pointer for type `T`,
+ // - `layout` is an empty `ArrayLayout` (zero capacity)
+ // - `len` is zero, since no elements can be or have been stored,
+ // - `A` is always valid.
+ Self {
+ ptr: NonNull::dangling(),
+ layout: ArrayLayout::empty(),
+ len: 0,
+ _p: PhantomData::<A>,
+ }
+ }
+
+ /// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector.
+ pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
+ // SAFETY:
+ // - `self.len` is smaller than `self.capacity` by the type invariant and hence, the
+ // resulting pointer is guaranteed to be part of the same allocated object.
+ // - `self.len` can not overflow `isize`.
+ let ptr = unsafe { self.as_mut_ptr().add(self.len) }.cast::<MaybeUninit<T>>();
+
+ // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
+ // and valid, but uninitialized.
+ unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) }
+ }
+
+ /// Appends an element to the back of the [`Vec`] instance.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = KVec::new();
+ /// v.push(1, GFP_KERNEL)?;
+ /// assert_eq!(&v, &[1]);
+ ///
+ /// v.push(2, GFP_KERNEL)?;
+ /// assert_eq!(&v, &[1, 2]);
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
+ self.reserve(1, flags)?;
+ // SAFETY: The call to `reserve` was successful, so the capacity is at least one greater
+ // than the length.
+ unsafe { self.push_within_capacity_unchecked(v) };
+ Ok(())
+ }
+
+ /// Appends an element to the back of the [`Vec`] instance without reallocating.
+ ///
+ /// Fails if the vector does not have capacity for the new element.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = KVec::with_capacity(10, GFP_KERNEL)?;
+ /// for i in 0..10 {
+ /// v.push_within_capacity(i)?;
+ /// }
+ ///
+ /// assert!(v.push_within_capacity(10).is_err());
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn push_within_capacity(&mut self, v: T) -> Result<(), PushError<T>> {
+ if self.len() < self.capacity() {
+ // SAFETY: The length is less than the capacity.
+ unsafe { self.push_within_capacity_unchecked(v) };
+ Ok(())
+ } else {
+ Err(PushError(v))
+ }
+ }
+
+ /// Appends an element to the back of the [`Vec`] instance without reallocating.
+ ///
+ /// # Safety
+ ///
+ /// The length must be less than the capacity.
+ unsafe fn push_within_capacity_unchecked(&mut self, v: T) {
+ let spare = self.spare_capacity_mut();
+
+ // SAFETY: By the safety requirements, `spare` is non-empty.
+ unsafe { spare.get_unchecked_mut(0) }.write(v);
+
+ // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
+ // by 1. We also know that the new length is <= capacity because the caller guarantees that
+ // the length is less than the capacity at the beginning of this function.
+ unsafe { self.inc_len(1) };
+ }
+
+ /// Inserts an element at the given index in the [`Vec`] instance.
+ ///
+ /// Fails if the vector does not have capacity for the new element. Panics if the index is out
+ /// of bounds.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::alloc::kvec::InsertError;
+ ///
+ /// let mut v = KVec::with_capacity(5, GFP_KERNEL)?;
+ /// for i in 0..5 {
+ /// v.insert_within_capacity(0, i)?;
+ /// }
+ ///
+ /// assert!(matches!(v.insert_within_capacity(0, 5), Err(InsertError::OutOfCapacity(_))));
+ /// assert!(matches!(v.insert_within_capacity(1000, 5), Err(InsertError::IndexOutOfBounds(_))));
+ /// assert_eq!(v, [4, 3, 2, 1, 0]);
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn insert_within_capacity(
+ &mut self,
+ index: usize,
+ element: T,
+ ) -> Result<(), InsertError<T>> {
+ let len = self.len();
+ if index > len {
+ return Err(InsertError::IndexOutOfBounds(element));
+ }
+
+ if len >= self.capacity() {
+ return Err(InsertError::OutOfCapacity(element));
+ }
+
+ // SAFETY: This is in bounds since `index <= len < capacity`.
+ let p = unsafe { self.as_mut_ptr().add(index) };
+ // INVARIANT: This breaks the Vec invariants by making `index` contain an invalid element,
+ // but we restore the invariants below.
+ // SAFETY: Both the src and dst ranges end no later than one element after the length.
+ // Since the length is less than the capacity, both ranges are in bounds of the allocation.
+ unsafe { ptr::copy(p, p.add(1), len - index) };
+ // INVARIANT: This restores the Vec invariants.
+ // SAFETY: The pointer is in-bounds of the allocation.
+ unsafe { ptr::write(p, element) };
+ // SAFETY: Index `len` contains a valid element due to the above copy and write.
+ unsafe { self.inc_len(1) };
+ Ok(())
+ }
+
+ /// Removes the last element from a vector and returns it, or `None` if it is empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = KVec::new();
+ /// v.push(1, GFP_KERNEL)?;
+ /// v.push(2, GFP_KERNEL)?;
+ /// assert_eq!(&v, &[1, 2]);
+ ///
+ /// assert_eq!(v.pop(), Some(2));
+ /// assert_eq!(v.pop(), Some(1));
+ /// assert_eq!(v.pop(), None);
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn pop(&mut self) -> Option<T> {
+ if self.is_empty() {
+ return None;
+ }
+
+ let removed: *mut T = {
+ // SAFETY: We just checked that the length is at least one.
+ let slice = unsafe { self.dec_len(1) };
+ // SAFETY: The argument to `dec_len` was 1 so this returns a slice of length 1.
+ unsafe { slice.get_unchecked_mut(0) }
+ };
+
+ // SAFETY: The guarantees of `dec_len` allow us to take ownership of this value.
+ Some(unsafe { removed.read() })
+ }
+
+ /// Removes the element at the given index.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = kernel::kvec![1, 2, 3]?;
+ /// assert_eq!(v.remove(1)?, 2);
+ /// assert_eq!(v, [1, 3]);
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn remove(&mut self, i: usize) -> Result<T, RemoveError> {
+ let value = {
+ let value_ref = self.get(i).ok_or(RemoveError)?;
+ // INVARIANT: This breaks the invariants by invalidating the value at index `i`, but we
+ // restore the invariants below.
+ // SAFETY: The value at index `i` is valid, because otherwise we would have already
+ // failed with `RemoveError`.
+ unsafe { ptr::read(value_ref) }
+ };
+
+ // SAFETY: We checked that `i` is in-bounds.
+ let p = unsafe { self.as_mut_ptr().add(i) };
+
+ // INVARIANT: After this call, the invalid value is at the last slot, so the Vec invariants
+ // are restored after the below call to `dec_len(1)`.
+ // SAFETY: `p.add(1).add(self.len - i - 1)` is `i+1+len-i-1 == len` elements after the
+ // beginning of the vector, so this is in-bounds of the vector's allocation.
+ unsafe { ptr::copy(p.add(1), p, self.len - i - 1) };
+
+ // SAFETY: Since the check at the beginning of this call did not fail with `RemoveError`,
+ // the length is at least one.
+ unsafe { self.dec_len(1) };
+
+ Ok(value)
+ }
+
+ /// Creates a new [`Vec`] instance with at least the given capacity.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
+ ///
+ /// assert!(v.capacity() >= 20);
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
+ let mut v = Vec::new();
+
+ v.reserve(capacity, flags)?;
+
+ Ok(v)
+ }
+
+ /// Creates a `Vec<T, A>` from a pointer, a length and a capacity using the allocator `A`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = kernel::kvec![1, 2, 3]?;
+ /// v.reserve(1, GFP_KERNEL)?;
+ ///
+ /// let (mut ptr, mut len, cap) = v.into_raw_parts();
+ ///
+ /// // SAFETY: We've just reserved memory for another element.
+ /// unsafe { ptr.add(len).write(4) };
+ /// len += 1;
+ ///
+ /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
+ /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
+ /// // from the exact same raw parts.
+ /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
+ ///
+ /// assert_eq!(v, [1, 2, 3, 4]);
+ ///
+ /// # Ok::<(), Error>(())
+ /// ```
+ ///
+ /// # Safety
+ ///
+ /// If `T` is a ZST:
+ ///
+ /// - `ptr` must be a dangling, well aligned pointer.
+ ///
+ /// Otherwise:
+ ///
+ /// - `ptr` must have been allocated with the allocator `A`.
+ /// - `ptr` must satisfy or exceed the alignment requirements of `T`.
+ /// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity` bytes.
+ /// - The allocated size in bytes must not be larger than `isize::MAX`.
+ /// - `length` must be less than or equal to `capacity`.
+ /// - The first `length` elements must be initialized values of type `T`.
+ ///
+ /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
+ /// `cap` and `len`.
+ pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
+ let layout = if Self::is_zst() {
+ ArrayLayout::empty()
+ } else {
+ // SAFETY: By the safety requirements of this function, `capacity * size_of::<T>()` is
+ // smaller than `isize::MAX`.
+ unsafe { ArrayLayout::new_unchecked(capacity) }
+ };
+
+ // INVARIANT: For ZSTs, we store an empty `ArrayLayout`, all other type invariants are
+ // covered by the safety requirements of this function.
+ Self {
+ // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
+ // memory allocation, allocated with `A`.
+ ptr: unsafe { NonNull::new_unchecked(ptr) },
+ layout,
+ len: length,
+ _p: PhantomData::<A>,
+ }
+ }
+
+ /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`.
+ ///
+ /// This will not run the destructor of the contained elements and for non-ZSTs the allocation
+ /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the
+ /// elements and free the allocation, if any.
+ pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
+ let mut me = ManuallyDrop::new(self);
+ let len = me.len();
+ let capacity = me.capacity();
+ let ptr = me.as_mut_ptr();
+ (ptr, len, capacity)
+ }
+
+ /// Clears the vector, removing all values.
+ ///
+ /// Note that this method has no effect on the allocated capacity
+ /// of the vector.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = kernel::kvec![1, 2, 3]?;
+ ///
+ /// v.clear();
+ ///
+ /// assert!(v.is_empty());
+ /// # Ok::<(), Error>(())
+ /// ```
+ #[inline]
+ pub fn clear(&mut self) {
+ self.truncate(0);
+ }
+
+ /// Ensures that the capacity exceeds the length by at least `additional` elements.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = KVec::new();
+ /// v.push(1, GFP_KERNEL)?;
+ ///
+ /// v.reserve(10, GFP_KERNEL)?;
+ /// let cap = v.capacity();
+ /// assert!(cap >= 10);
+ ///
+ /// v.reserve(10, GFP_KERNEL)?;
+ /// let new_cap = v.capacity();
+ /// assert_eq!(new_cap, cap);
+ ///
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
+ let len = self.len();
+ let cap = self.capacity();
+
+ if cap - len >= additional {
+ return Ok(());
+ }
+
+ if Self::is_zst() {
+ // The capacity is already `usize::MAX` for ZSTs, we can't go higher.
+ return Err(AllocError);
+ }
+
+ // We know that `cap <= isize::MAX` because of the type invariants of `Self`. So the
+ // multiplication by two won't overflow.
+ let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
+ let layout = ArrayLayout::new(new_cap).map_err(|_| AllocError)?;
+
+ // SAFETY:
+ // - `ptr` is valid because it's either `None` or comes from a previous call to
+ // `A::realloc`.
+ // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
+ let ptr = unsafe {
+ A::realloc(
+ Some(self.ptr.cast()),
+ layout.into(),
+ self.layout.into(),
+ flags,
+ NumaNode::NO_NODE,
+ )?
+ };
+
+ // INVARIANT:
+ // - `layout` is some `ArrayLayout::<T>`,
+ // - `ptr` has been created by `A::realloc` from `layout`.
+ self.ptr = ptr.cast();
+ self.layout = layout;
+
+ Ok(())
+ }
+
+ /// Shortens the vector, setting the length to `len` and drops the removed values.
+ /// If `len` is greater than or equal to the current length, this does nothing.
+ ///
+ /// This has no effect on the capacity and will not allocate.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = kernel::kvec![1, 2, 3]?;
+ /// v.truncate(1);
+ /// assert_eq!(v.len(), 1);
+ /// assert_eq!(&v, &[1]);
+ ///
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn truncate(&mut self, len: usize) {
+ if let Some(count) = self.len().checked_sub(len) {
+ // SAFETY: `count` is `self.len() - len` so it is guaranteed to be less than or
+ // equal to `self.len()`.
+ let ptr: *mut [T] = unsafe { self.dec_len(count) };
+
+ // SAFETY: the contract of `dec_len` guarantees that the elements in `ptr` are
+ // valid elements whose ownership has been transferred to the caller.
+ unsafe { ptr::drop_in_place(ptr) };
+ }
+ }
+
+ /// Takes ownership of all items in this vector without consuming the allocation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = kernel::kvec![0, 1, 2, 3]?;
+ ///
+ /// for (i, j) in v.drain_all().enumerate() {
+ /// assert_eq!(i, j);
+ /// }
+ ///
+ /// assert!(v.capacity() >= 4);
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn drain_all(&mut self) -> DrainAll<'_, T> {
+ // SAFETY: This does not underflow the length.
+ let elems = unsafe { self.dec_len(self.len()) };
+ // INVARIANT: The first `len` elements of the spare capacity are valid values, and as we
+ // just set the length to zero, we may transfer ownership to the `DrainAll` object.
+ DrainAll {
+ elements: elems.iter_mut(),
+ }
+ }
+
+ /// Removes all elements that don't match the provided closure.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = kernel::kvec![1, 2, 3, 4]?;
+ /// v.retain(|i| *i % 2 == 0);
+ /// assert_eq!(v, [2, 4]);
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn retain(&mut self, mut f: impl FnMut(&mut T) -> bool) {
+ let mut num_kept = 0;
+ let mut next_to_check = 0;
+ while let Some(to_check) = self.get_mut(next_to_check) {
+ if f(to_check) {
+ self.swap(num_kept, next_to_check);
+ num_kept += 1;
+ }
+ next_to_check += 1;
+ }
+ self.truncate(num_kept);
+ }
+}
+
+impl<T: Clone, A: Allocator> Vec<T, A> {
+ /// Extend the vector by `n` clones of `value`.
+ pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
+ if n == 0 {
+ return Ok(());
+ }
+
+ self.reserve(n, flags)?;
+
+ let spare = self.spare_capacity_mut();
+
+ for item in spare.iter_mut().take(n - 1) {
+ item.write(value.clone());
+ }
+
+ // We can write the last element directly without cloning needlessly.
+ spare[n - 1].write(value);
+
+ // SAFETY:
+ // - `self.len() + n < self.capacity()` due to the call to reserve above,
+ // - the loop and the line above initialized the next `n` elements.
+ unsafe { self.inc_len(n) };
+
+ Ok(())
+ }
+
+ /// Pushes clones of the elements of slice into the [`Vec`] instance.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = KVec::new();
+ /// v.push(1, GFP_KERNEL)?;
+ ///
+ /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
+ /// assert_eq!(&v, &[1, 20, 30, 40]);
+ ///
+ /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
+ /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> {
+ self.reserve(other.len(), flags)?;
+ for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
+ slot.write(item.clone());
+ }
+
+ // SAFETY:
+ // - `other.len()` spare entries have just been initialized, so it is safe to increase
+ // the length by the same number.
+ // - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve`
+ // call.
+ unsafe { self.inc_len(other.len()) };
+ Ok(())
+ }
+
+ /// Create a new `Vec<T, A>` and extend it by `n` clones of `value`.
+ pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
+ let mut v = Self::with_capacity(n, flags)?;
+
+ v.extend_with(n, value, flags)?;
+
+ Ok(v)
+ }
+
+ /// Resizes the [`Vec`] so that `len` is equal to `new_len`.
+ ///
+ /// If `new_len` is smaller than `len`, the `Vec` is [`Vec::truncate`]d.
+ /// If `new_len` is larger, each new slot is filled with clones of `value`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = kernel::kvec![1, 2, 3]?;
+ /// v.resize(1, 42, GFP_KERNEL)?;
+ /// assert_eq!(&v, &[1]);
+ ///
+ /// v.resize(3, 42, GFP_KERNEL)?;
+ /// assert_eq!(&v, &[1, 42, 42]);
+ ///
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn resize(&mut self, new_len: usize, value: T, flags: Flags) -> Result<(), AllocError> {
+ match new_len.checked_sub(self.len()) {
+ Some(n) => self.extend_with(n, value, flags),
+ None => {
+ self.truncate(new_len);
+ Ok(())
+ }
+ }
+ }
+}
+
+impl<T, A> Drop for Vec<T, A>
+where
+ A: Allocator,
+{
+ fn drop(&mut self) {
+ // SAFETY: `self.as_mut_ptr` is guaranteed to be valid by the type invariant.
+ unsafe {
+ ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
+ self.as_mut_ptr(),
+ self.len,
+ ))
+ };
+
+ // SAFETY:
+ // - `self.ptr` was previously allocated with `A`.
+ // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
+ unsafe { A::free(self.ptr.cast(), self.layout.into()) };
+ }
+}
+
+impl<T, A, const N: usize> From<Box<[T; N], A>> for Vec<T, A>
+where
+ A: Allocator,
+{
+ fn from(b: Box<[T; N], A>) -> Vec<T, A> {
+ let len = b.len();
+ let ptr = Box::into_raw(b);
+
+ // SAFETY:
+ // - `b` has been allocated with `A`,
+ // - `ptr` fulfills the alignment requirements for `T`,
+ // - `ptr` points to memory with at least a size of `size_of::<T>() * len`,
+ // - all elements within `b` are initialized values of `T`,
+ // - `len` does not exceed `isize::MAX`.
+ unsafe { Vec::from_raw_parts(ptr.cast(), len, len) }
+ }
+}
+
+impl<T, A: Allocator> Default for Vec<T, A> {
+ #[inline]
+ fn default() -> Self {
+ Self::new()
+ }
+}
+
+impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Debug::fmt(&**self, f)
+ }
+}
+
+impl<T, A> Deref for Vec<T, A>
+where
+ A: Allocator,
+{
+ type Target = [T];
+
+ #[inline]
+ fn deref(&self) -> &[T] {
+ // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
+ // initialized elements of type `T`.
+ unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
+ }
+}
+
+impl<T, A> DerefMut for Vec<T, A>
+where
+ A: Allocator,
+{
+ #[inline]
+ fn deref_mut(&mut self) -> &mut [T] {
+ // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
+ // initialized elements of type `T`.
+ unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
+ }
+}
+
+/// # Examples
+///
+/// ```
+/// # use core::borrow::Borrow;
+/// struct Foo<B: Borrow<[u32]>>(B);
+///
+/// // Owned array.
+/// let owned_array = Foo([1, 2, 3]);
+///
+/// // Owned vector.
+/// let owned_vec = Foo(KVec::from_elem(0, 3, GFP_KERNEL)?);
+///
+/// let arr = [1, 2, 3];
+/// // Borrowed slice from `arr`.
+/// let borrowed_slice = Foo(&arr[..]);
+/// # Ok::<(), Error>(())
+/// ```
+impl<T, A> Borrow<[T]> for Vec<T, A>
+where
+ A: Allocator,
+{
+ fn borrow(&self) -> &[T] {
+ self.as_slice()
+ }
+}
+
+/// # Examples
+///
+/// ```
+/// # use core::borrow::BorrowMut;
+/// struct Foo<B: BorrowMut<[u32]>>(B);
+///
+/// // Owned array.
+/// let owned_array = Foo([1, 2, 3]);
+///
+/// // Owned vector.
+/// let owned_vec = Foo(KVec::from_elem(0, 3, GFP_KERNEL)?);
+///
+/// let mut arr = [1, 2, 3];
+/// // Borrowed slice from `arr`.
+/// let borrowed_slice = Foo(&mut arr[..]);
+/// # Ok::<(), Error>(())
+/// ```
+impl<T, A> BorrowMut<[T]> for Vec<T, A>
+where
+ A: Allocator,
+{
+ fn borrow_mut(&mut self) -> &mut [T] {
+ self.as_mut_slice()
+ }
+}
+
+impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
+
+impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
+where
+ A: Allocator,
+{
+ type Output = I::Output;
+
+ #[inline]
+ fn index(&self, index: I) -> &Self::Output {
+ Index::index(&**self, index)
+ }
+}
+
+impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
+where
+ A: Allocator,
+{
+ #[inline]
+ fn index_mut(&mut self, index: I) -> &mut Self::Output {
+ IndexMut::index_mut(&mut **self, index)
+ }
+}
+
+macro_rules! impl_slice_eq {
+ ($([$($vars:tt)*] $lhs:ty, $rhs:ty,)*) => {
+ $(
+ impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
+ where
+ T: PartialEq<U>,
+ {
+ #[inline]
+ fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
+ }
+ )*
+ }
+}
+
+impl_slice_eq! {
+ [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2>,
+ [A: Allocator] Vec<T, A>, &[U],
+ [A: Allocator] Vec<T, A>, &mut [U],
+ [A: Allocator] &[T], Vec<U, A>,
+ [A: Allocator] &mut [T], Vec<U, A>,
+ [A: Allocator] Vec<T, A>, [U],
+ [A: Allocator] [T], Vec<U, A>,
+ [A: Allocator, const N: usize] Vec<T, A>, [U; N],
+ [A: Allocator, const N: usize] Vec<T, A>, &[U; N],
+}
+
+impl<'a, T, A> IntoIterator for &'a Vec<T, A>
+where
+ A: Allocator,
+{
+ type Item = &'a T;
+ type IntoIter = slice::Iter<'a, T>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ self.iter()
+ }
+}
+
+impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A>
+where
+ A: Allocator,
+{
+ type Item = &'a mut T;
+ type IntoIter = slice::IterMut<'a, T>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ self.iter_mut()
+ }
+}
+
+/// # Examples
+///
+/// ```
+/// # use kernel::prelude::*;
+/// use kernel::alloc::allocator::VmallocPageIter;
+/// use kernel::page::{AsPageIter, PAGE_SIZE};
+///
+/// let mut vec = VVec::<u8>::new();
+///
+/// assert!(vec.page_iter().next().is_none());
+///
+/// vec.reserve(PAGE_SIZE, GFP_KERNEL)?;
+///
+/// let page = vec.page_iter().next().expect("At least one page should be available.\n");
+///
+/// // SAFETY: There is no concurrent read or write to the same page.
+/// unsafe { page.fill_zero_raw(0, PAGE_SIZE)? };
+/// # Ok::<(), Error>(())
+/// ```
+impl<T> AsPageIter for VVec<T> {
+ type Iter<'a>
+ = VmallocPageIter<'a>
+ where
+ T: 'a;
+
+ fn page_iter(&mut self) -> Self::Iter<'_> {
+ let ptr = self.ptr.cast();
+ let size = self.layout.size();
+
+ // SAFETY:
+ // - `ptr` is a valid pointer to the beginning of a `Vmalloc` allocation.
+ // - `ptr` is guaranteed to be valid for the lifetime of `'a`.
+ // - `size` is the size of the `Vmalloc` allocation `ptr` points to.
+ unsafe { VmallocPageIter::new(ptr, size) }
+ }
+}
+
+/// An [`Iterator`] implementation for [`Vec`] that moves elements out of a vector.
+///
+/// This structure is created by the [`Vec::into_iter`] method on [`Vec`] (provided by the
+/// [`IntoIterator`] trait).
+///
+/// # Examples
+///
+/// ```
+/// let v = kernel::kvec![0, 1, 2]?;
+/// let iter = v.into_iter();
+///
+/// # Ok::<(), Error>(())
+/// ```
+pub struct IntoIter<T, A: Allocator> {
+ ptr: *mut T,
+ buf: NonNull<T>,
+ len: usize,
+ layout: ArrayLayout<T>,
+ _p: PhantomData<A>,
+}
+
+impl<T, A> IntoIter<T, A>
+where
+ A: Allocator,
+{
+ fn into_raw_parts(self) -> (*mut T, NonNull<T>, usize, usize) {
+ let me = ManuallyDrop::new(self);
+ let ptr = me.ptr;
+ let buf = me.buf;
+ let len = me.len;
+ let cap = me.layout.len();
+ (ptr, buf, len, cap)
+ }
+
+ /// Same as `Iterator::collect` but specialized for `Vec`'s `IntoIter`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = kernel::kvec![1, 2, 3]?;
+ /// let mut it = v.into_iter();
+ ///
+ /// assert_eq!(it.next(), Some(1));
+ ///
+ /// let v = it.collect(GFP_KERNEL);
+ /// assert_eq!(v, [2, 3]);
+ ///
+ /// # Ok::<(), Error>(())
+ /// ```
+ ///
+ /// # Implementation details
+ ///
+ /// Currently, we can't implement `FromIterator`. There are a couple of issues with this trait
+ /// in the kernel, namely:
+ ///
+ /// - Rust's specialization feature is unstable. This prevents us to optimize for the special
+ /// case where `I::IntoIter` equals `Vec`'s `IntoIter` type.
+ /// - We also can't use `I::IntoIter`'s type ID either to work around this, since `FromIterator`
+ /// doesn't require this type to be `'static`.
+ /// - `FromIterator::from_iter` does return `Self` instead of `Result<Self, AllocError>`, hence
+ /// we can't properly handle allocation failures.
+ /// - Neither `Iterator::collect` nor `FromIterator::from_iter` can handle additional allocation
+ /// flags.
+ ///
+ /// Instead, provide `IntoIter::collect`, such that we can at least convert a `IntoIter` into a
+ /// `Vec` again.
+ ///
+ /// Note that `IntoIter::collect` doesn't require `Flags`, since it re-uses the existing backing
+ /// buffer. However, this backing buffer may be shrunk to the actual count of elements.
+ pub fn collect(self, flags: Flags) -> Vec<T, A> {
+ let old_layout = self.layout;
+ let (mut ptr, buf, len, mut cap) = self.into_raw_parts();
+ let has_advanced = ptr != buf.as_ptr();
+
+ if has_advanced {
+ // Copy the contents we have advanced to at the beginning of the buffer.
+ //
+ // SAFETY:
+ // - `ptr` is valid for reads of `len * size_of::<T>()` bytes,
+ // - `buf.as_ptr()` is valid for writes of `len * size_of::<T>()` bytes,
+ // - `ptr` and `buf.as_ptr()` are not be subject to aliasing restrictions relative to
+ // each other,
+ // - both `ptr` and `buf.ptr()` are properly aligned.
+ unsafe { ptr::copy(ptr, buf.as_ptr(), len) };
+ ptr = buf.as_ptr();
+
+ // SAFETY: `len` is guaranteed to be smaller than `self.layout.len()` by the type
+ // invariant.
+ let layout = unsafe { ArrayLayout::<T>::new_unchecked(len) };
+
+ // SAFETY: `buf` points to the start of the backing buffer and `len` is guaranteed by
+ // the type invariant to be smaller than `cap`. Depending on `realloc` this operation
+ // may shrink the buffer or leave it as it is.
+ ptr = match unsafe {
+ A::realloc(
+ Some(buf.cast()),
+ layout.into(),
+ old_layout.into(),
+ flags,
+ NumaNode::NO_NODE,
+ )
+ } {
+ // If we fail to shrink, which likely can't even happen, continue with the existing
+ // buffer.
+ Err(_) => ptr,
+ Ok(ptr) => {
+ cap = len;
+ ptr.as_ptr().cast()
+ }
+ };
+ }
+
+ // SAFETY: If the iterator has been advanced, the advanced elements have been copied to
+ // the beginning of the buffer and `len` has been adjusted accordingly.
+ //
+ // - `ptr` is guaranteed to point to the start of the backing buffer.
+ // - `cap` is either the original capacity or, after shrinking the buffer, equal to `len`.
+ // - `alloc` is guaranteed to be unchanged since `into_iter` has been called on the original
+ // `Vec`.
+ unsafe { Vec::from_raw_parts(ptr, len, cap) }
+ }
+}
+
+impl<T, A> Iterator for IntoIter<T, A>
+where
+ A: Allocator,
+{
+ type Item = T;
+
+ /// # Examples
+ ///
+ /// ```
+ /// let v = kernel::kvec![1, 2, 3]?;
+ /// let mut it = v.into_iter();
+ ///
+ /// assert_eq!(it.next(), Some(1));
+ /// assert_eq!(it.next(), Some(2));
+ /// assert_eq!(it.next(), Some(3));
+ /// assert_eq!(it.next(), None);
+ ///
+ /// # Ok::<(), Error>(())
+ /// ```
+ fn next(&mut self) -> Option<T> {
+ if self.len == 0 {
+ return None;
+ }
+
+ let current = self.ptr;
+
+ // SAFETY: We can't overflow; decreasing `self.len` by one every time we advance `self.ptr`
+ // by one guarantees that.
+ unsafe { self.ptr = self.ptr.add(1) };
+
+ self.len -= 1;
+
+ // SAFETY: `current` is guaranteed to point at a valid element within the buffer.
+ Some(unsafe { current.read() })
+ }
+
+ /// # Examples
+ ///
+ /// ```
+ /// let v: KVec<u32> = kernel::kvec![1, 2, 3]?;
+ /// let mut iter = v.into_iter();
+ /// let size = iter.size_hint().0;
+ ///
+ /// iter.next();
+ /// assert_eq!(iter.size_hint().0, size - 1);
+ ///
+ /// iter.next();
+ /// assert_eq!(iter.size_hint().0, size - 2);
+ ///
+ /// iter.next();
+ /// assert_eq!(iter.size_hint().0, size - 3);
+ ///
+ /// # Ok::<(), Error>(())
+ /// ```
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (self.len, Some(self.len))
+ }
+}
+
+impl<T, A> Drop for IntoIter<T, A>
+where
+ A: Allocator,
+{
+ fn drop(&mut self) {
+ // SAFETY: `self.ptr` is guaranteed to be valid by the type invariant.
+ unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.ptr, self.len)) };
+
+ // SAFETY:
+ // - `self.buf` was previously allocated with `A`.
+ // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
+ unsafe { A::free(self.buf.cast(), self.layout.into()) };
+ }
+}
+
+impl<T, A> IntoIterator for Vec<T, A>
+where
+ A: Allocator,
+{
+ type Item = T;
+ type IntoIter = IntoIter<T, A>;
+
+ /// Consumes the `Vec<T, A>` and creates an `Iterator`, which moves each value out of the
+ /// vector (from start to end).
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = kernel::kvec![1, 2]?;
+ /// let mut v_iter = v.into_iter();
+ ///
+ /// let first_element: Option<u32> = v_iter.next();
+ ///
+ /// assert_eq!(first_element, Some(1));
+ /// assert_eq!(v_iter.next(), Some(2));
+ /// assert_eq!(v_iter.next(), None);
+ ///
+ /// # Ok::<(), Error>(())
+ /// ```
+ ///
+ /// ```
+ /// let v = kernel::kvec![];
+ /// let mut v_iter = v.into_iter();
+ ///
+ /// let first_element: Option<u32> = v_iter.next();
+ ///
+ /// assert_eq!(first_element, None);
+ ///
+ /// # Ok::<(), Error>(())
+ /// ```
+ #[inline]
+ fn into_iter(self) -> Self::IntoIter {
+ let buf = self.ptr;
+ let layout = self.layout;
+ let (ptr, len, _) = self.into_raw_parts();
+
+ IntoIter {
+ ptr,
+ buf,
+ len,
+ layout,
+ _p: PhantomData::<A>,
+ }
+ }
+}
+
+/// An iterator that owns all items in a vector, but does not own its allocation.
+///
+/// # Invariants
+///
+/// Every `&mut T` returned by the iterator references a `T` that the iterator may take ownership
+/// of.
+pub struct DrainAll<'vec, T> {
+ elements: slice::IterMut<'vec, T>,
+}
+
+impl<'vec, T> Iterator for DrainAll<'vec, T> {
+ type Item = T;
+
+ fn next(&mut self) -> Option<T> {
+ let elem: *mut T = self.elements.next()?;
+ // SAFETY: By the type invariants, we may take ownership of this value.
+ Some(unsafe { elem.read() })
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.elements.size_hint()
+ }
+}
+
+impl<'vec, T> Drop for DrainAll<'vec, T> {
+ fn drop(&mut self) {
+ if core::mem::needs_drop::<T>() {
+ let iter = core::mem::take(&mut self.elements);
+ let ptr: *mut [T] = iter.into_slice();
+ // SAFETY: By the type invariants, we own these values so we may destroy them.
+ unsafe { ptr::drop_in_place(ptr) };
+ }
+ }
+}
+
+#[macros::kunit_tests(rust_kvec)]
+mod tests {
+ use super::*;
+ use crate::prelude::*;
+
+ #[test]
+ fn test_kvec_retain() {
+ /// Verify correctness for one specific function.
+ #[expect(clippy::needless_range_loop)]
+ fn verify(c: &[bool]) {
+ let mut vec1: KVec<usize> = KVec::with_capacity(c.len(), GFP_KERNEL).unwrap();
+ let mut vec2: KVec<usize> = KVec::with_capacity(c.len(), GFP_KERNEL).unwrap();
+
+ for i in 0..c.len() {
+ vec1.push_within_capacity(i).unwrap();
+ if c[i] {
+ vec2.push_within_capacity(i).unwrap();
+ }
+ }
+
+ vec1.retain(|i| c[*i]);
+
+ assert_eq!(vec1, vec2);
+ }
+
+ /// Add one to a binary integer represented as a boolean array.
+ fn add(value: &mut [bool]) {
+ let mut carry = true;
+ for v in value {
+ let new_v = carry != *v;
+ carry = carry && *v;
+ *v = new_v;
+ }
+ }
+
+ // This boolean array represents a function from index to boolean. We check that `retain`
+ // behaves correctly for all possible boolean arrays of every possible length less than
+ // ten.
+ let mut func = KVec::with_capacity(10, GFP_KERNEL).unwrap();
+ for len in 0..10 {
+ for _ in 0u32..1u32 << len {
+ verify(&func);
+ add(&mut func);
+ }
+ func.push_within_capacity(false).unwrap();
+ }
+ }
+}
diff --git a/rust/kernel/alloc/kvec/errors.rs b/rust/kernel/alloc/kvec/errors.rs
new file mode 100644
index 000000000000..e7de5049ee47
--- /dev/null
+++ b/rust/kernel/alloc/kvec/errors.rs
@@ -0,0 +1,61 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Errors for the [`Vec`] type.
+
+use kernel::fmt;
+use kernel::prelude::*;
+
+/// Error type for [`Vec::push_within_capacity`].
+pub struct PushError<T>(pub T);
+
+impl<T> fmt::Debug for PushError<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "Not enough capacity")
+ }
+}
+
+impl<T> From<PushError<T>> for Error {
+ fn from(_: PushError<T>) -> Error {
+ // Returning ENOMEM isn't appropriate because the system is not out of memory. The vector
+ // is just full and we are refusing to resize it.
+ EINVAL
+ }
+}
+
+/// Error type for [`Vec::remove`].
+pub struct RemoveError;
+
+impl fmt::Debug for RemoveError {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "Index out of bounds")
+ }
+}
+
+impl From<RemoveError> for Error {
+ fn from(_: RemoveError) -> Error {
+ EINVAL
+ }
+}
+
+/// Error type for [`Vec::insert_within_capacity`].
+pub enum InsertError<T> {
+ /// The value could not be inserted because the index is out of bounds.
+ IndexOutOfBounds(T),
+ /// The value could not be inserted because the vector is out of capacity.
+ OutOfCapacity(T),
+}
+
+impl<T> fmt::Debug for InsertError<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ match self {
+ InsertError::IndexOutOfBounds(_) => write!(f, "Index out of bounds"),
+ InsertError::OutOfCapacity(_) => write!(f, "Not enough capacity"),
+ }
+ }
+}
+
+impl<T> From<InsertError<T>> for Error {
+ fn from(_: InsertError<T>) -> Error {
+ EINVAL
+ }
+}
diff --git a/rust/kernel/alloc/layout.rs b/rust/kernel/alloc/layout.rs
new file mode 100644
index 000000000000..9f8be72feb7a
--- /dev/null
+++ b/rust/kernel/alloc/layout.rs
@@ -0,0 +1,115 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Memory layout.
+//!
+//! Custom layout types extending or improving [`Layout`].
+
+use core::{alloc::Layout, marker::PhantomData};
+
+/// Error when constructing an [`ArrayLayout`].
+pub struct LayoutError;
+
+/// A layout for an array `[T; n]`.
+///
+/// # Invariants
+///
+/// - `len * size_of::<T>() <= isize::MAX`.
+pub struct ArrayLayout<T> {
+ len: usize,
+ _phantom: PhantomData<fn() -> T>,
+}
+
+impl<T> Clone for ArrayLayout<T> {
+ fn clone(&self) -> Self {
+ *self
+ }
+}
+impl<T> Copy for ArrayLayout<T> {}
+
+const ISIZE_MAX: usize = isize::MAX as usize;
+
+impl<T> ArrayLayout<T> {
+ /// Creates a new layout for `[T; 0]`.
+ pub const fn empty() -> Self {
+ // INVARIANT: `0 * size_of::<T>() <= isize::MAX`.
+ Self {
+ len: 0,
+ _phantom: PhantomData,
+ }
+ }
+
+ /// Creates a new layout for `[T; len]`.
+ ///
+ /// # Errors
+ ///
+ /// When `len * size_of::<T>()` overflows or when `len * size_of::<T>() > isize::MAX`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use kernel::alloc::layout::{ArrayLayout, LayoutError};
+ /// let layout = ArrayLayout::<i32>::new(15)?;
+ /// assert_eq!(layout.len(), 15);
+ ///
+ /// // Errors because `len * size_of::<T>()` overflows.
+ /// let layout = ArrayLayout::<i32>::new(isize::MAX as usize);
+ /// assert!(layout.is_err());
+ ///
+ /// // Errors because `len * size_of::<i32>() > isize::MAX`,
+ /// // even though `len < isize::MAX`.
+ /// let layout = ArrayLayout::<i32>::new(isize::MAX as usize / 2);
+ /// assert!(layout.is_err());
+ ///
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub const fn new(len: usize) -> Result<Self, LayoutError> {
+ match len.checked_mul(core::mem::size_of::<T>()) {
+ Some(size) if size <= ISIZE_MAX => {
+ // INVARIANT: We checked above that `len * size_of::<T>() <= isize::MAX`.
+ Ok(Self {
+ len,
+ _phantom: PhantomData,
+ })
+ }
+ _ => Err(LayoutError),
+ }
+ }
+
+ /// Creates a new layout for `[T; len]`.
+ ///
+ /// # Safety
+ ///
+ /// `len` must be a value, for which `len * size_of::<T>() <= isize::MAX` is true.
+ pub const unsafe fn new_unchecked(len: usize) -> Self {
+ // INVARIANT: By the safety requirements of this function
+ // `len * size_of::<T>() <= isize::MAX`.
+ Self {
+ len,
+ _phantom: PhantomData,
+ }
+ }
+
+ /// Returns the number of array elements represented by this layout.
+ pub const fn len(&self) -> usize {
+ self.len
+ }
+
+ /// Returns `true` when no array elements are represented by this layout.
+ pub const fn is_empty(&self) -> bool {
+ self.len == 0
+ }
+
+ /// Returns the size of the [`ArrayLayout`] in bytes.
+ pub const fn size(&self) -> usize {
+ self.len() * core::mem::size_of::<T>()
+ }
+}
+
+impl<T> From<ArrayLayout<T>> for Layout {
+ fn from(value: ArrayLayout<T>) -> Self {
+ let res = Layout::array::<T>(value.len);
+ // SAFETY: By the type invariant of `ArrayLayout` we have
+ // `len * size_of::<T>() <= isize::MAX` and thus the result must be `Ok`.
+ unsafe { res.unwrap_unchecked() }
+ }
+}