summaryrefslogtreecommitdiff
path: root/rust/kernel/device.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/kernel/device.rs')
-rw-r--r--rust/kernel/device.rs928
1 files changed, 928 insertions, 0 deletions
diff --git a/rust/kernel/device.rs b/rust/kernel/device.rs
new file mode 100644
index 000000000000..c79be2e2bfe3
--- /dev/null
+++ b/rust/kernel/device.rs
@@ -0,0 +1,928 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Generic devices that are part of the kernel's driver model.
+//!
+//! C header: [`include/linux/device.h`](srctree/include/linux/device.h)
+
+use crate::{
+ bindings, fmt,
+ prelude::*,
+ sync::aref::ARef,
+ types::{ForeignOwnable, Opaque},
+};
+use core::{any::TypeId, marker::PhantomData, ptr};
+
+#[cfg(CONFIG_PRINTK)]
+use crate::c_str;
+use crate::str::CStrExt as _;
+
+pub mod property;
+
+// Assert that we can `read()` / `write()` a `TypeId` instance from / into `struct driver_type`.
+static_assert!(core::mem::size_of::<bindings::driver_type>() >= core::mem::size_of::<TypeId>());
+
+/// The core representation of a device in the kernel's driver model.
+///
+/// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either
+/// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a
+/// certain scope or as [`ARef<Device>`], owning a dedicated reference count.
+///
+/// # Device Types
+///
+/// A [`Device`] can represent either a bus device or a class device.
+///
+/// ## Bus Devices
+///
+/// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of
+/// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific
+/// bus type, which facilitates matching devices with appropriate drivers based on IDs or other
+/// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`.
+///
+/// ## Class Devices
+///
+/// A class device is a [`Device`] that is associated with a logical category of functionality
+/// rather than a physical bus. Examples of classes include block devices, network interfaces, sound
+/// cards, and input devices. Class devices are grouped under a common class and exposed to
+/// userspace via entries in `/sys/class/<class-name>/`.
+///
+/// # Device Context
+///
+/// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of
+/// a [`Device`].
+///
+/// As the name indicates, this type state represents the context of the scope the [`Device`]
+/// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is
+/// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference.
+///
+/// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`].
+///
+/// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by
+/// itself has no additional requirements.
+///
+/// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`]
+/// type for the corresponding scope the [`Device`] reference is created in.
+///
+/// All [`DeviceContext`] types other than [`Normal`] are intended to be used with
+/// [bus devices](#bus-devices) only.
+///
+/// # Implementing Bus Devices
+///
+/// This section provides a guideline to implement bus specific devices, such as [`pci::Device`] or
+/// [`platform::Device`].
+///
+/// A bus specific device should be defined as follows.
+///
+/// ```ignore
+/// #[repr(transparent)]
+/// pub struct Device<Ctx: device::DeviceContext = device::Normal>(
+/// Opaque<bindings::bus_device_type>,
+/// PhantomData<Ctx>,
+/// );
+/// ```
+///
+/// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device`
+/// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other
+/// [`DeviceContext`], since all other device context types are only valid within a certain scope.
+///
+/// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device
+/// implementations should call the [`impl_device_context_deref`] macro as shown below.
+///
+/// ```ignore
+/// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s
+/// // generic argument.
+/// kernel::impl_device_context_deref!(unsafe { Device });
+/// ```
+///
+/// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement
+/// the following macro call.
+///
+/// ```ignore
+/// kernel::impl_device_context_into_aref!(Device);
+/// ```
+///
+/// Bus devices should also implement the following [`AsRef`] implementation, such that users can
+/// easily derive a generic [`Device`] reference.
+///
+/// ```ignore
+/// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> {
+/// fn as_ref(&self) -> &device::Device<Ctx> {
+/// ...
+/// }
+/// }
+/// ```
+///
+/// # Implementing Class Devices
+///
+/// Class device implementations require less infrastructure and depend slightly more on the
+/// specific subsystem.
+///
+/// An example implementation for a class device could look like this.
+///
+/// ```ignore
+/// #[repr(C)]
+/// pub struct Device<T: class::Driver> {
+/// dev: Opaque<bindings::class_device_type>,
+/// data: T::Data,
+/// }
+/// ```
+///
+/// This class device uses the sub-classing pattern to embed the driver's private data within the
+/// allocation of the class device. For this to be possible the class device is generic over the
+/// class specific `Driver` trait implementation.
+///
+/// Just like any device, class devices are reference counted and should hence implement
+/// [`AlwaysRefCounted`] for `Device`.
+///
+/// Class devices should also implement the following [`AsRef`] implementation, such that users can
+/// easily derive a generic [`Device`] reference.
+///
+/// ```ignore
+/// impl<T: class::Driver> AsRef<device::Device> for Device<T> {
+/// fn as_ref(&self) -> &device::Device {
+/// ...
+/// }
+/// }
+/// ```
+///
+/// An example for a class device implementation is
+#[cfg_attr(CONFIG_DRM = "y", doc = "[`drm::Device`](kernel::drm::Device).")]
+#[cfg_attr(not(CONFIG_DRM = "y"), doc = "`drm::Device`.")]
+///
+/// # Invariants
+///
+/// A `Device` instance represents a valid `struct device` created by the C portion of the kernel.
+///
+/// Instances of this type are always reference-counted, that is, a call to `get_device` ensures
+/// that the allocation remains valid at least until the matching call to `put_device`.
+///
+/// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be
+/// dropped from any thread.
+///
+/// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
+/// [`impl_device_context_deref`]: kernel::impl_device_context_deref
+/// [`pci::Device`]: kernel::pci::Device
+/// [`platform::Device`]: kernel::platform::Device
+#[repr(transparent)]
+pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>);
+
+impl Device {
+ /// Creates a new reference-counted abstraction instance of an existing `struct device` pointer.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
+ /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
+ /// can't drop to zero, for the duration of this function call.
+ ///
+ /// It must also be ensured that `bindings::device::release` can be called from any thread.
+ /// While not officially documented, this should be the case for any `struct device`.
+ pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> {
+ // SAFETY: By the safety requirements ptr is valid
+ unsafe { Self::from_raw(ptr) }.into()
+ }
+
+ /// Convert a [`&Device`](Device) into a [`&Device<Bound>`](Device<Bound>).
+ ///
+ /// # Safety
+ ///
+ /// The caller is responsible to ensure that the returned [`&Device<Bound>`](Device<Bound>)
+ /// only lives as long as it can be guaranteed that the [`Device`] is actually bound.
+ pub unsafe fn as_bound(&self) -> &Device<Bound> {
+ let ptr = core::ptr::from_ref(self);
+
+ // CAST: By the safety requirements the caller is responsible to guarantee that the
+ // returned reference only lives as long as the device is actually bound.
+ let ptr = ptr.cast();
+
+ // SAFETY:
+ // - `ptr` comes from `from_ref(self)` above, hence it's guaranteed to be valid.
+ // - Any valid `Device` pointer is also a valid pointer for `Device<Bound>`.
+ unsafe { &*ptr }
+ }
+}
+
+impl Device<CoreInternal> {
+ fn set_type_id<T: 'static>(&self) {
+ // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
+ let private = unsafe { (*self.as_raw()).p };
+
+ // SAFETY: For a bound device (implied by the `CoreInternal` device context), `private` is
+ // guaranteed to be a valid pointer to a `struct device_private`.
+ let driver_type = unsafe { &raw mut (*private).driver_type };
+
+ // SAFETY: `driver_type` is valid for (unaligned) writes of a `TypeId`.
+ unsafe {
+ driver_type
+ .cast::<TypeId>()
+ .write_unaligned(TypeId::of::<T>())
+ };
+ }
+
+ /// Store a pointer to the bound driver's private data.
+ pub fn set_drvdata<T: 'static>(&self, data: impl PinInit<T, Error>) -> Result {
+ let data = KBox::pin_init(data, GFP_KERNEL)?;
+
+ // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
+ unsafe { bindings::dev_set_drvdata(self.as_raw(), data.into_foreign().cast()) };
+ self.set_type_id::<T>();
+
+ Ok(())
+ }
+
+ /// Take ownership of the private data stored in this [`Device`].
+ ///
+ /// # Safety
+ ///
+ /// - Must only be called once after a preceding call to [`Device::set_drvdata`].
+ /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
+ /// [`Device::set_drvdata`].
+ pub unsafe fn drvdata_obtain<T: 'static>(&self) -> Pin<KBox<T>> {
+ // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
+ let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
+
+ // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
+ unsafe { bindings::dev_set_drvdata(self.as_raw(), core::ptr::null_mut()) };
+
+ // SAFETY:
+ // - By the safety requirements of this function, `ptr` comes from a previous call to
+ // `into_foreign()`.
+ // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
+ // in `into_foreign()`.
+ unsafe { Pin::<KBox<T>>::from_foreign(ptr.cast()) }
+ }
+
+ /// Borrow the driver's private data bound to this [`Device`].
+ ///
+ /// # Safety
+ ///
+ /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before
+ /// [`Device::drvdata_obtain`].
+ /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
+ /// [`Device::set_drvdata`].
+ pub unsafe fn drvdata_borrow<T: 'static>(&self) -> Pin<&T> {
+ // SAFETY: `drvdata_unchecked()` has the exact same safety requirements as the ones
+ // required by this method.
+ unsafe { self.drvdata_unchecked() }
+ }
+}
+
+impl Device<Bound> {
+ /// Borrow the driver's private data bound to this [`Device`].
+ ///
+ /// # Safety
+ ///
+ /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before
+ /// [`Device::drvdata_obtain`].
+ /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
+ /// [`Device::set_drvdata`].
+ unsafe fn drvdata_unchecked<T: 'static>(&self) -> Pin<&T> {
+ // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
+ let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
+
+ // SAFETY:
+ // - By the safety requirements of this function, `ptr` comes from a previous call to
+ // `into_foreign()`.
+ // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
+ // in `into_foreign()`.
+ unsafe { Pin::<KBox<T>>::borrow(ptr.cast()) }
+ }
+
+ fn match_type_id<T: 'static>(&self) -> Result {
+ // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
+ let private = unsafe { (*self.as_raw()).p };
+
+ // SAFETY: For a bound device, `private` is guaranteed to be a valid pointer to a
+ // `struct device_private`.
+ let driver_type = unsafe { &raw mut (*private).driver_type };
+
+ // SAFETY:
+ // - `driver_type` is valid for (unaligned) reads of a `TypeId`.
+ // - A bound device guarantees that `driver_type` contains a valid `TypeId` value.
+ let type_id = unsafe { driver_type.cast::<TypeId>().read_unaligned() };
+
+ if type_id != TypeId::of::<T>() {
+ return Err(EINVAL);
+ }
+
+ Ok(())
+ }
+
+ /// Access a driver's private data.
+ ///
+ /// Returns a pinned reference to the driver's private data or [`EINVAL`] if it doesn't match
+ /// the asserted type `T`.
+ pub fn drvdata<T: 'static>(&self) -> Result<Pin<&T>> {
+ // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
+ if unsafe { bindings::dev_get_drvdata(self.as_raw()) }.is_null() {
+ return Err(ENOENT);
+ }
+
+ self.match_type_id::<T>()?;
+
+ // SAFETY:
+ // - The above check of `dev_get_drvdata()` guarantees that we are called after
+ // `set_drvdata()` and before `drvdata_obtain()`.
+ // - We've just checked that the type of the driver's private data is in fact `T`.
+ Ok(unsafe { self.drvdata_unchecked() })
+ }
+}
+
+impl<Ctx: DeviceContext> Device<Ctx> {
+ /// Obtain the raw `struct device *`.
+ pub(crate) fn as_raw(&self) -> *mut bindings::device {
+ self.0.get()
+ }
+
+ /// Returns a reference to the parent device, if any.
+ #[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))]
+ pub(crate) fn parent(&self) -> Option<&Device> {
+ // SAFETY:
+ // - By the type invariant `self.as_raw()` is always valid.
+ // - The parent device is only ever set at device creation.
+ let parent = unsafe { (*self.as_raw()).parent };
+
+ if parent.is_null() {
+ None
+ } else {
+ // SAFETY:
+ // - Since `parent` is not NULL, it must be a valid pointer to a `struct device`.
+ // - `parent` is valid for the lifetime of `self`, since a `struct device` holds a
+ // reference count of its parent.
+ Some(unsafe { Device::from_raw(parent) })
+ }
+ }
+
+ /// Convert a raw C `struct device` pointer to a `&'a Device`.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
+ /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
+ /// can't drop to zero, for the duration of this function call and the entire duration when the
+ /// returned reference exists.
+ pub unsafe fn from_raw<'a>(ptr: *mut bindings::device) -> &'a Self {
+ // SAFETY: Guaranteed by the safety requirements of the function.
+ unsafe { &*ptr.cast() }
+ }
+
+ /// Prints an emergency-level message (level 0) prefixed with device information.
+ ///
+ /// More details are available from [`dev_emerg`].
+ ///
+ /// [`dev_emerg`]: crate::dev_emerg
+ pub fn pr_emerg(&self, args: fmt::Arguments<'_>) {
+ // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
+ unsafe { self.printk(bindings::KERN_EMERG, args) };
+ }
+
+ /// Prints an alert-level message (level 1) prefixed with device information.
+ ///
+ /// More details are available from [`dev_alert`].
+ ///
+ /// [`dev_alert`]: crate::dev_alert
+ pub fn pr_alert(&self, args: fmt::Arguments<'_>) {
+ // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
+ unsafe { self.printk(bindings::KERN_ALERT, args) };
+ }
+
+ /// Prints a critical-level message (level 2) prefixed with device information.
+ ///
+ /// More details are available from [`dev_crit`].
+ ///
+ /// [`dev_crit`]: crate::dev_crit
+ pub fn pr_crit(&self, args: fmt::Arguments<'_>) {
+ // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
+ unsafe { self.printk(bindings::KERN_CRIT, args) };
+ }
+
+ /// Prints an error-level message (level 3) prefixed with device information.
+ ///
+ /// More details are available from [`dev_err`].
+ ///
+ /// [`dev_err`]: crate::dev_err
+ pub fn pr_err(&self, args: fmt::Arguments<'_>) {
+ // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
+ unsafe { self.printk(bindings::KERN_ERR, args) };
+ }
+
+ /// Prints a warning-level message (level 4) prefixed with device information.
+ ///
+ /// More details are available from [`dev_warn`].
+ ///
+ /// [`dev_warn`]: crate::dev_warn
+ pub fn pr_warn(&self, args: fmt::Arguments<'_>) {
+ // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
+ unsafe { self.printk(bindings::KERN_WARNING, args) };
+ }
+
+ /// Prints a notice-level message (level 5) prefixed with device information.
+ ///
+ /// More details are available from [`dev_notice`].
+ ///
+ /// [`dev_notice`]: crate::dev_notice
+ pub fn pr_notice(&self, args: fmt::Arguments<'_>) {
+ // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
+ unsafe { self.printk(bindings::KERN_NOTICE, args) };
+ }
+
+ /// Prints an info-level message (level 6) prefixed with device information.
+ ///
+ /// More details are available from [`dev_info`].
+ ///
+ /// [`dev_info`]: crate::dev_info
+ pub fn pr_info(&self, args: fmt::Arguments<'_>) {
+ // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
+ unsafe { self.printk(bindings::KERN_INFO, args) };
+ }
+
+ /// Prints a debug-level message (level 7) prefixed with device information.
+ ///
+ /// More details are available from [`dev_dbg`].
+ ///
+ /// [`dev_dbg`]: crate::dev_dbg
+ pub fn pr_dbg(&self, args: fmt::Arguments<'_>) {
+ if cfg!(debug_assertions) {
+ // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
+ unsafe { self.printk(bindings::KERN_DEBUG, args) };
+ }
+ }
+
+ /// Prints the provided message to the console.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that `klevel` is null-terminated; in particular, one of the
+ /// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc.
+ #[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))]
+ unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) {
+ // SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw`
+ // is valid because `self` is valid. The "%pA" format string expects a pointer to
+ // `fmt::Arguments`, which is what we're passing as the last argument.
+ #[cfg(CONFIG_PRINTK)]
+ unsafe {
+ bindings::_dev_printk(
+ klevel.as_ptr().cast::<crate::ffi::c_char>(),
+ self.as_raw(),
+ c_str!("%pA").as_char_ptr(),
+ core::ptr::from_ref(&msg).cast::<crate::ffi::c_void>(),
+ )
+ };
+ }
+
+ /// Obtain the [`FwNode`](property::FwNode) corresponding to this [`Device`].
+ pub fn fwnode(&self) -> Option<&property::FwNode> {
+ // SAFETY: `self` is valid.
+ let fwnode_handle = unsafe { bindings::__dev_fwnode(self.as_raw()) };
+ if fwnode_handle.is_null() {
+ return None;
+ }
+ // SAFETY: `fwnode_handle` is valid. Its lifetime is tied to `&self`. We
+ // return a reference instead of an `ARef<FwNode>` because `dev_fwnode()`
+ // doesn't increment the refcount. It is safe to cast from a
+ // `struct fwnode_handle*` to a `*const FwNode` because `FwNode` is
+ // defined as a `#[repr(transparent)]` wrapper around `fwnode_handle`.
+ Some(unsafe { &*fwnode_handle.cast() })
+ }
+}
+
+// SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic
+// argument.
+kernel::impl_device_context_deref!(unsafe { Device });
+kernel::impl_device_context_into_aref!(Device);
+
+// SAFETY: Instances of `Device` are always reference-counted.
+unsafe impl crate::sync::aref::AlwaysRefCounted for Device {
+ fn inc_ref(&self) {
+ // SAFETY: The existence of a shared reference guarantees that the refcount is non-zero.
+ unsafe { bindings::get_device(self.as_raw()) };
+ }
+
+ unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
+ // SAFETY: The safety requirements guarantee that the refcount is non-zero.
+ unsafe { bindings::put_device(obj.cast().as_ptr()) }
+ }
+}
+
+// SAFETY: As by the type invariant `Device` can be sent to any thread.
+unsafe impl Send for Device {}
+
+// SAFETY: `Device` can be shared among threads because all immutable methods are protected by the
+// synchronization in `struct device`.
+unsafe impl Sync for Device {}
+
+/// Marker trait for the context or scope of a bus specific device.
+///
+/// [`DeviceContext`] is a marker trait for types representing the context of a bus specific
+/// [`Device`].
+///
+/// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`].
+///
+/// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that
+/// defines which [`DeviceContext`] type can be derived from another. For instance, any
+/// [`Device<Core>`] can dereference to a [`Device<Bound>`].
+///
+/// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types.
+///
+/// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`]
+///
+/// Bus devices can automatically implement the dereference hierarchy by using
+/// [`impl_device_context_deref`].
+///
+/// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes
+/// from the specific scope the [`Device`] reference is valid in.
+///
+/// [`impl_device_context_deref`]: kernel::impl_device_context_deref
+pub trait DeviceContext: private::Sealed {}
+
+/// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`].
+///
+/// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid
+/// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement
+/// [`AlwaysRefCounted`] for.
+///
+/// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
+pub struct Normal;
+
+/// The [`Core`] context is the context of a bus specific device when it appears as argument of
+/// any bus specific callback, such as `probe()`.
+///
+/// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus
+/// callback it appears in. It is intended to be used for synchronization purposes. Bus device
+/// implementations can implement methods for [`Device<Core>`], such that they can only be called
+/// from bus callbacks.
+pub struct Core;
+
+/// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus
+/// abstraction.
+///
+/// The internal core context is intended to be used in exactly the same way as the [`Core`]
+/// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus
+/// abstraction.
+///
+/// This context mainly exists to share generic [`Device`] infrastructure that should only be called
+/// from bus callbacks with bus abstractions, but without making them accessible for drivers.
+pub struct CoreInternal;
+
+/// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to
+/// be bound to a driver.
+///
+/// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`]
+/// reference, the [`Device`] is guaranteed to be bound to a driver.
+///
+/// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound,
+/// which can be proven with the [`Bound`] device context.
+///
+/// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should
+/// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit
+/// from optimizations for accessing device resources, see also [`Devres::access`].
+///
+/// [`Devres`]: kernel::devres::Devres
+/// [`Devres::access`]: kernel::devres::Devres::access
+/// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation
+pub struct Bound;
+
+mod private {
+ pub trait Sealed {}
+
+ impl Sealed for super::Bound {}
+ impl Sealed for super::Core {}
+ impl Sealed for super::CoreInternal {}
+ impl Sealed for super::Normal {}
+}
+
+impl DeviceContext for Bound {}
+impl DeviceContext for Core {}
+impl DeviceContext for CoreInternal {}
+impl DeviceContext for Normal {}
+
+/// Convert device references to bus device references.
+///
+/// Bus devices can implement this trait to allow abstractions to provide the bus device in
+/// class device callbacks.
+///
+/// This must not be used by drivers and is intended for bus and class device abstractions only.
+///
+/// # Safety
+///
+/// `AsBusDevice::OFFSET` must be the offset of the embedded base `struct device` field within a
+/// bus device structure.
+pub unsafe trait AsBusDevice<Ctx: DeviceContext>: AsRef<Device<Ctx>> {
+ /// The relative offset to the device field.
+ ///
+ /// Use `offset_of!(bindings, field)` macro to avoid breakage.
+ const OFFSET: usize;
+
+ /// Convert a reference to [`Device`] into `Self`.
+ ///
+ /// # Safety
+ ///
+ /// `dev` must be contained in `Self`.
+ unsafe fn from_device(dev: &Device<Ctx>) -> &Self
+ where
+ Self: Sized,
+ {
+ let raw = dev.as_raw();
+ // SAFETY: `raw - Self::OFFSET` is guaranteed by the safety requirements
+ // to be a valid pointer to `Self`.
+ unsafe { &*raw.byte_sub(Self::OFFSET).cast::<Self>() }
+ }
+}
+
+/// # Safety
+///
+/// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
+/// generic argument of `$device`.
+#[doc(hidden)]
+#[macro_export]
+macro_rules! __impl_device_context_deref {
+ (unsafe { $device:ident, $src:ty => $dst:ty }) => {
+ impl ::core::ops::Deref for $device<$src> {
+ type Target = $device<$dst>;
+
+ fn deref(&self) -> &Self::Target {
+ let ptr: *const Self = self;
+
+ // CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the
+ // safety requirement of the macro.
+ let ptr = ptr.cast::<Self::Target>();
+
+ // SAFETY: `ptr` was derived from `&self`.
+ unsafe { &*ptr }
+ }
+ }
+ };
+}
+
+/// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus
+/// specific) device.
+///
+/// # Safety
+///
+/// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
+/// generic argument of `$device`.
+#[macro_export]
+macro_rules! impl_device_context_deref {
+ (unsafe { $device:ident }) => {
+ // SAFETY: This macro has the exact same safety requirement as
+ // `__impl_device_context_deref!`.
+ ::kernel::__impl_device_context_deref!(unsafe {
+ $device,
+ $crate::device::CoreInternal => $crate::device::Core
+ });
+
+ // SAFETY: This macro has the exact same safety requirement as
+ // `__impl_device_context_deref!`.
+ ::kernel::__impl_device_context_deref!(unsafe {
+ $device,
+ $crate::device::Core => $crate::device::Bound
+ });
+
+ // SAFETY: This macro has the exact same safety requirement as
+ // `__impl_device_context_deref!`.
+ ::kernel::__impl_device_context_deref!(unsafe {
+ $device,
+ $crate::device::Bound => $crate::device::Normal
+ });
+ };
+}
+
+#[doc(hidden)]
+#[macro_export]
+macro_rules! __impl_device_context_into_aref {
+ ($src:ty, $device:tt) => {
+ impl ::core::convert::From<&$device<$src>> for $crate::sync::aref::ARef<$device> {
+ fn from(dev: &$device<$src>) -> Self {
+ (&**dev).into()
+ }
+ }
+ };
+}
+
+/// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an
+/// `ARef<Device>`.
+#[macro_export]
+macro_rules! impl_device_context_into_aref {
+ ($device:tt) => {
+ ::kernel::__impl_device_context_into_aref!($crate::device::CoreInternal, $device);
+ ::kernel::__impl_device_context_into_aref!($crate::device::Core, $device);
+ ::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device);
+ };
+}
+
+#[doc(hidden)]
+#[macro_export]
+macro_rules! dev_printk {
+ ($method:ident, $dev:expr, $($f:tt)*) => {
+ {
+ ($dev).$method($crate::prelude::fmt!($($f)*));
+ }
+ }
+}
+
+/// Prints an emergency-level message (level 0) prefixed with device information.
+///
+/// This level should be used if the system is unusable.
+///
+/// Equivalent to the kernel's `dev_emerg` macro.
+///
+/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
+/// [`core::fmt`] and [`std::format!`].
+///
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::device::Device;
+///
+/// fn example(dev: &Device) {
+/// dev_emerg!(dev, "hello {}\n", "there");
+/// }
+/// ```
+#[macro_export]
+macro_rules! dev_emerg {
+ ($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); }
+}
+
+/// Prints an alert-level message (level 1) prefixed with device information.
+///
+/// This level should be used if action must be taken immediately.
+///
+/// Equivalent to the kernel's `dev_alert` macro.
+///
+/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
+/// [`core::fmt`] and [`std::format!`].
+///
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::device::Device;
+///
+/// fn example(dev: &Device) {
+/// dev_alert!(dev, "hello {}\n", "there");
+/// }
+/// ```
+#[macro_export]
+macro_rules! dev_alert {
+ ($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); }
+}
+
+/// Prints a critical-level message (level 2) prefixed with device information.
+///
+/// This level should be used in critical conditions.
+///
+/// Equivalent to the kernel's `dev_crit` macro.
+///
+/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
+/// [`core::fmt`] and [`std::format!`].
+///
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::device::Device;
+///
+/// fn example(dev: &Device) {
+/// dev_crit!(dev, "hello {}\n", "there");
+/// }
+/// ```
+#[macro_export]
+macro_rules! dev_crit {
+ ($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); }
+}
+
+/// Prints an error-level message (level 3) prefixed with device information.
+///
+/// This level should be used in error conditions.
+///
+/// Equivalent to the kernel's `dev_err` macro.
+///
+/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
+/// [`core::fmt`] and [`std::format!`].
+///
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::device::Device;
+///
+/// fn example(dev: &Device) {
+/// dev_err!(dev, "hello {}\n", "there");
+/// }
+/// ```
+#[macro_export]
+macro_rules! dev_err {
+ ($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); }
+}
+
+/// Prints a warning-level message (level 4) prefixed with device information.
+///
+/// This level should be used in warning conditions.
+///
+/// Equivalent to the kernel's `dev_warn` macro.
+///
+/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
+/// [`core::fmt`] and [`std::format!`].
+///
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::device::Device;
+///
+/// fn example(dev: &Device) {
+/// dev_warn!(dev, "hello {}\n", "there");
+/// }
+/// ```
+#[macro_export]
+macro_rules! dev_warn {
+ ($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); }
+}
+
+/// Prints a notice-level message (level 5) prefixed with device information.
+///
+/// This level should be used in normal but significant conditions.
+///
+/// Equivalent to the kernel's `dev_notice` macro.
+///
+/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
+/// [`core::fmt`] and [`std::format!`].
+///
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::device::Device;
+///
+/// fn example(dev: &Device) {
+/// dev_notice!(dev, "hello {}\n", "there");
+/// }
+/// ```
+#[macro_export]
+macro_rules! dev_notice {
+ ($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); }
+}
+
+/// Prints an info-level message (level 6) prefixed with device information.
+///
+/// This level should be used for informational messages.
+///
+/// Equivalent to the kernel's `dev_info` macro.
+///
+/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
+/// [`core::fmt`] and [`std::format!`].
+///
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::device::Device;
+///
+/// fn example(dev: &Device) {
+/// dev_info!(dev, "hello {}\n", "there");
+/// }
+/// ```
+#[macro_export]
+macro_rules! dev_info {
+ ($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); }
+}
+
+/// Prints a debug-level message (level 7) prefixed with device information.
+///
+/// This level should be used for debug messages.
+///
+/// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet.
+///
+/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
+/// [`core::fmt`] and [`std::format!`].
+///
+/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
+/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::device::Device;
+///
+/// fn example(dev: &Device) {
+/// dev_dbg!(dev, "hello {}\n", "there");
+/// }
+/// ```
+#[macro_export]
+macro_rules! dev_dbg {
+ ($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); }
+}