diff options
Diffstat (limited to 'rust/kernel/device.rs')
| -rw-r--r-- | rust/kernel/device.rs | 928 |
1 files changed, 928 insertions, 0 deletions
diff --git a/rust/kernel/device.rs b/rust/kernel/device.rs new file mode 100644 index 000000000000..c79be2e2bfe3 --- /dev/null +++ b/rust/kernel/device.rs @@ -0,0 +1,928 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Generic devices that are part of the kernel's driver model. +//! +//! C header: [`include/linux/device.h`](srctree/include/linux/device.h) + +use crate::{ + bindings, fmt, + prelude::*, + sync::aref::ARef, + types::{ForeignOwnable, Opaque}, +}; +use core::{any::TypeId, marker::PhantomData, ptr}; + +#[cfg(CONFIG_PRINTK)] +use crate::c_str; +use crate::str::CStrExt as _; + +pub mod property; + +// Assert that we can `read()` / `write()` a `TypeId` instance from / into `struct driver_type`. +static_assert!(core::mem::size_of::<bindings::driver_type>() >= core::mem::size_of::<TypeId>()); + +/// The core representation of a device in the kernel's driver model. +/// +/// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either +/// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a +/// certain scope or as [`ARef<Device>`], owning a dedicated reference count. +/// +/// # Device Types +/// +/// A [`Device`] can represent either a bus device or a class device. +/// +/// ## Bus Devices +/// +/// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of +/// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific +/// bus type, which facilitates matching devices with appropriate drivers based on IDs or other +/// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`. +/// +/// ## Class Devices +/// +/// A class device is a [`Device`] that is associated with a logical category of functionality +/// rather than a physical bus. Examples of classes include block devices, network interfaces, sound +/// cards, and input devices. Class devices are grouped under a common class and exposed to +/// userspace via entries in `/sys/class/<class-name>/`. +/// +/// # Device Context +/// +/// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of +/// a [`Device`]. +/// +/// As the name indicates, this type state represents the context of the scope the [`Device`] +/// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is +/// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference. +/// +/// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`]. +/// +/// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by +/// itself has no additional requirements. +/// +/// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`] +/// type for the corresponding scope the [`Device`] reference is created in. +/// +/// All [`DeviceContext`] types other than [`Normal`] are intended to be used with +/// [bus devices](#bus-devices) only. +/// +/// # Implementing Bus Devices +/// +/// This section provides a guideline to implement bus specific devices, such as [`pci::Device`] or +/// [`platform::Device`]. +/// +/// A bus specific device should be defined as follows. +/// +/// ```ignore +/// #[repr(transparent)] +/// pub struct Device<Ctx: device::DeviceContext = device::Normal>( +/// Opaque<bindings::bus_device_type>, +/// PhantomData<Ctx>, +/// ); +/// ``` +/// +/// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device` +/// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other +/// [`DeviceContext`], since all other device context types are only valid within a certain scope. +/// +/// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device +/// implementations should call the [`impl_device_context_deref`] macro as shown below. +/// +/// ```ignore +/// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s +/// // generic argument. +/// kernel::impl_device_context_deref!(unsafe { Device }); +/// ``` +/// +/// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement +/// the following macro call. +/// +/// ```ignore +/// kernel::impl_device_context_into_aref!(Device); +/// ``` +/// +/// Bus devices should also implement the following [`AsRef`] implementation, such that users can +/// easily derive a generic [`Device`] reference. +/// +/// ```ignore +/// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> { +/// fn as_ref(&self) -> &device::Device<Ctx> { +/// ... +/// } +/// } +/// ``` +/// +/// # Implementing Class Devices +/// +/// Class device implementations require less infrastructure and depend slightly more on the +/// specific subsystem. +/// +/// An example implementation for a class device could look like this. +/// +/// ```ignore +/// #[repr(C)] +/// pub struct Device<T: class::Driver> { +/// dev: Opaque<bindings::class_device_type>, +/// data: T::Data, +/// } +/// ``` +/// +/// This class device uses the sub-classing pattern to embed the driver's private data within the +/// allocation of the class device. For this to be possible the class device is generic over the +/// class specific `Driver` trait implementation. +/// +/// Just like any device, class devices are reference counted and should hence implement +/// [`AlwaysRefCounted`] for `Device`. +/// +/// Class devices should also implement the following [`AsRef`] implementation, such that users can +/// easily derive a generic [`Device`] reference. +/// +/// ```ignore +/// impl<T: class::Driver> AsRef<device::Device> for Device<T> { +/// fn as_ref(&self) -> &device::Device { +/// ... +/// } +/// } +/// ``` +/// +/// An example for a class device implementation is +#[cfg_attr(CONFIG_DRM = "y", doc = "[`drm::Device`](kernel::drm::Device).")] +#[cfg_attr(not(CONFIG_DRM = "y"), doc = "`drm::Device`.")] +/// +/// # Invariants +/// +/// A `Device` instance represents a valid `struct device` created by the C portion of the kernel. +/// +/// Instances of this type are always reference-counted, that is, a call to `get_device` ensures +/// that the allocation remains valid at least until the matching call to `put_device`. +/// +/// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be +/// dropped from any thread. +/// +/// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted +/// [`impl_device_context_deref`]: kernel::impl_device_context_deref +/// [`pci::Device`]: kernel::pci::Device +/// [`platform::Device`]: kernel::platform::Device +#[repr(transparent)] +pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>); + +impl Device { + /// Creates a new reference-counted abstraction instance of an existing `struct device` pointer. + /// + /// # Safety + /// + /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count, + /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to + /// can't drop to zero, for the duration of this function call. + /// + /// It must also be ensured that `bindings::device::release` can be called from any thread. + /// While not officially documented, this should be the case for any `struct device`. + pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> { + // SAFETY: By the safety requirements ptr is valid + unsafe { Self::from_raw(ptr) }.into() + } + + /// Convert a [`&Device`](Device) into a [`&Device<Bound>`](Device<Bound>). + /// + /// # Safety + /// + /// The caller is responsible to ensure that the returned [`&Device<Bound>`](Device<Bound>) + /// only lives as long as it can be guaranteed that the [`Device`] is actually bound. + pub unsafe fn as_bound(&self) -> &Device<Bound> { + let ptr = core::ptr::from_ref(self); + + // CAST: By the safety requirements the caller is responsible to guarantee that the + // returned reference only lives as long as the device is actually bound. + let ptr = ptr.cast(); + + // SAFETY: + // - `ptr` comes from `from_ref(self)` above, hence it's guaranteed to be valid. + // - Any valid `Device` pointer is also a valid pointer for `Device<Bound>`. + unsafe { &*ptr } + } +} + +impl Device<CoreInternal> { + fn set_type_id<T: 'static>(&self) { + // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. + let private = unsafe { (*self.as_raw()).p }; + + // SAFETY: For a bound device (implied by the `CoreInternal` device context), `private` is + // guaranteed to be a valid pointer to a `struct device_private`. + let driver_type = unsafe { &raw mut (*private).driver_type }; + + // SAFETY: `driver_type` is valid for (unaligned) writes of a `TypeId`. + unsafe { + driver_type + .cast::<TypeId>() + .write_unaligned(TypeId::of::<T>()) + }; + } + + /// Store a pointer to the bound driver's private data. + pub fn set_drvdata<T: 'static>(&self, data: impl PinInit<T, Error>) -> Result { + let data = KBox::pin_init(data, GFP_KERNEL)?; + + // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. + unsafe { bindings::dev_set_drvdata(self.as_raw(), data.into_foreign().cast()) }; + self.set_type_id::<T>(); + + Ok(()) + } + + /// Take ownership of the private data stored in this [`Device`]. + /// + /// # Safety + /// + /// - Must only be called once after a preceding call to [`Device::set_drvdata`]. + /// - The type `T` must match the type of the `ForeignOwnable` previously stored by + /// [`Device::set_drvdata`]. + pub unsafe fn drvdata_obtain<T: 'static>(&self) -> Pin<KBox<T>> { + // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. + let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) }; + + // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. + unsafe { bindings::dev_set_drvdata(self.as_raw(), core::ptr::null_mut()) }; + + // SAFETY: + // - By the safety requirements of this function, `ptr` comes from a previous call to + // `into_foreign()`. + // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()` + // in `into_foreign()`. + unsafe { Pin::<KBox<T>>::from_foreign(ptr.cast()) } + } + + /// Borrow the driver's private data bound to this [`Device`]. + /// + /// # Safety + /// + /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before + /// [`Device::drvdata_obtain`]. + /// - The type `T` must match the type of the `ForeignOwnable` previously stored by + /// [`Device::set_drvdata`]. + pub unsafe fn drvdata_borrow<T: 'static>(&self) -> Pin<&T> { + // SAFETY: `drvdata_unchecked()` has the exact same safety requirements as the ones + // required by this method. + unsafe { self.drvdata_unchecked() } + } +} + +impl Device<Bound> { + /// Borrow the driver's private data bound to this [`Device`]. + /// + /// # Safety + /// + /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before + /// [`Device::drvdata_obtain`]. + /// - The type `T` must match the type of the `ForeignOwnable` previously stored by + /// [`Device::set_drvdata`]. + unsafe fn drvdata_unchecked<T: 'static>(&self) -> Pin<&T> { + // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. + let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) }; + + // SAFETY: + // - By the safety requirements of this function, `ptr` comes from a previous call to + // `into_foreign()`. + // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()` + // in `into_foreign()`. + unsafe { Pin::<KBox<T>>::borrow(ptr.cast()) } + } + + fn match_type_id<T: 'static>(&self) -> Result { + // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. + let private = unsafe { (*self.as_raw()).p }; + + // SAFETY: For a bound device, `private` is guaranteed to be a valid pointer to a + // `struct device_private`. + let driver_type = unsafe { &raw mut (*private).driver_type }; + + // SAFETY: + // - `driver_type` is valid for (unaligned) reads of a `TypeId`. + // - A bound device guarantees that `driver_type` contains a valid `TypeId` value. + let type_id = unsafe { driver_type.cast::<TypeId>().read_unaligned() }; + + if type_id != TypeId::of::<T>() { + return Err(EINVAL); + } + + Ok(()) + } + + /// Access a driver's private data. + /// + /// Returns a pinned reference to the driver's private data or [`EINVAL`] if it doesn't match + /// the asserted type `T`. + pub fn drvdata<T: 'static>(&self) -> Result<Pin<&T>> { + // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. + if unsafe { bindings::dev_get_drvdata(self.as_raw()) }.is_null() { + return Err(ENOENT); + } + + self.match_type_id::<T>()?; + + // SAFETY: + // - The above check of `dev_get_drvdata()` guarantees that we are called after + // `set_drvdata()` and before `drvdata_obtain()`. + // - We've just checked that the type of the driver's private data is in fact `T`. + Ok(unsafe { self.drvdata_unchecked() }) + } +} + +impl<Ctx: DeviceContext> Device<Ctx> { + /// Obtain the raw `struct device *`. + pub(crate) fn as_raw(&self) -> *mut bindings::device { + self.0.get() + } + + /// Returns a reference to the parent device, if any. + #[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))] + pub(crate) fn parent(&self) -> Option<&Device> { + // SAFETY: + // - By the type invariant `self.as_raw()` is always valid. + // - The parent device is only ever set at device creation. + let parent = unsafe { (*self.as_raw()).parent }; + + if parent.is_null() { + None + } else { + // SAFETY: + // - Since `parent` is not NULL, it must be a valid pointer to a `struct device`. + // - `parent` is valid for the lifetime of `self`, since a `struct device` holds a + // reference count of its parent. + Some(unsafe { Device::from_raw(parent) }) + } + } + + /// Convert a raw C `struct device` pointer to a `&'a Device`. + /// + /// # Safety + /// + /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count, + /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to + /// can't drop to zero, for the duration of this function call and the entire duration when the + /// returned reference exists. + pub unsafe fn from_raw<'a>(ptr: *mut bindings::device) -> &'a Self { + // SAFETY: Guaranteed by the safety requirements of the function. + unsafe { &*ptr.cast() } + } + + /// Prints an emergency-level message (level 0) prefixed with device information. + /// + /// More details are available from [`dev_emerg`]. + /// + /// [`dev_emerg`]: crate::dev_emerg + pub fn pr_emerg(&self, args: fmt::Arguments<'_>) { + // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. + unsafe { self.printk(bindings::KERN_EMERG, args) }; + } + + /// Prints an alert-level message (level 1) prefixed with device information. + /// + /// More details are available from [`dev_alert`]. + /// + /// [`dev_alert`]: crate::dev_alert + pub fn pr_alert(&self, args: fmt::Arguments<'_>) { + // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. + unsafe { self.printk(bindings::KERN_ALERT, args) }; + } + + /// Prints a critical-level message (level 2) prefixed with device information. + /// + /// More details are available from [`dev_crit`]. + /// + /// [`dev_crit`]: crate::dev_crit + pub fn pr_crit(&self, args: fmt::Arguments<'_>) { + // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. + unsafe { self.printk(bindings::KERN_CRIT, args) }; + } + + /// Prints an error-level message (level 3) prefixed with device information. + /// + /// More details are available from [`dev_err`]. + /// + /// [`dev_err`]: crate::dev_err + pub fn pr_err(&self, args: fmt::Arguments<'_>) { + // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. + unsafe { self.printk(bindings::KERN_ERR, args) }; + } + + /// Prints a warning-level message (level 4) prefixed with device information. + /// + /// More details are available from [`dev_warn`]. + /// + /// [`dev_warn`]: crate::dev_warn + pub fn pr_warn(&self, args: fmt::Arguments<'_>) { + // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. + unsafe { self.printk(bindings::KERN_WARNING, args) }; + } + + /// Prints a notice-level message (level 5) prefixed with device information. + /// + /// More details are available from [`dev_notice`]. + /// + /// [`dev_notice`]: crate::dev_notice + pub fn pr_notice(&self, args: fmt::Arguments<'_>) { + // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. + unsafe { self.printk(bindings::KERN_NOTICE, args) }; + } + + /// Prints an info-level message (level 6) prefixed with device information. + /// + /// More details are available from [`dev_info`]. + /// + /// [`dev_info`]: crate::dev_info + pub fn pr_info(&self, args: fmt::Arguments<'_>) { + // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. + unsafe { self.printk(bindings::KERN_INFO, args) }; + } + + /// Prints a debug-level message (level 7) prefixed with device information. + /// + /// More details are available from [`dev_dbg`]. + /// + /// [`dev_dbg`]: crate::dev_dbg + pub fn pr_dbg(&self, args: fmt::Arguments<'_>) { + if cfg!(debug_assertions) { + // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. + unsafe { self.printk(bindings::KERN_DEBUG, args) }; + } + } + + /// Prints the provided message to the console. + /// + /// # Safety + /// + /// Callers must ensure that `klevel` is null-terminated; in particular, one of the + /// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc. + #[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))] + unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) { + // SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw` + // is valid because `self` is valid. The "%pA" format string expects a pointer to + // `fmt::Arguments`, which is what we're passing as the last argument. + #[cfg(CONFIG_PRINTK)] + unsafe { + bindings::_dev_printk( + klevel.as_ptr().cast::<crate::ffi::c_char>(), + self.as_raw(), + c_str!("%pA").as_char_ptr(), + core::ptr::from_ref(&msg).cast::<crate::ffi::c_void>(), + ) + }; + } + + /// Obtain the [`FwNode`](property::FwNode) corresponding to this [`Device`]. + pub fn fwnode(&self) -> Option<&property::FwNode> { + // SAFETY: `self` is valid. + let fwnode_handle = unsafe { bindings::__dev_fwnode(self.as_raw()) }; + if fwnode_handle.is_null() { + return None; + } + // SAFETY: `fwnode_handle` is valid. Its lifetime is tied to `&self`. We + // return a reference instead of an `ARef<FwNode>` because `dev_fwnode()` + // doesn't increment the refcount. It is safe to cast from a + // `struct fwnode_handle*` to a `*const FwNode` because `FwNode` is + // defined as a `#[repr(transparent)]` wrapper around `fwnode_handle`. + Some(unsafe { &*fwnode_handle.cast() }) + } +} + +// SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic +// argument. +kernel::impl_device_context_deref!(unsafe { Device }); +kernel::impl_device_context_into_aref!(Device); + +// SAFETY: Instances of `Device` are always reference-counted. +unsafe impl crate::sync::aref::AlwaysRefCounted for Device { + fn inc_ref(&self) { + // SAFETY: The existence of a shared reference guarantees that the refcount is non-zero. + unsafe { bindings::get_device(self.as_raw()) }; + } + + unsafe fn dec_ref(obj: ptr::NonNull<Self>) { + // SAFETY: The safety requirements guarantee that the refcount is non-zero. + unsafe { bindings::put_device(obj.cast().as_ptr()) } + } +} + +// SAFETY: As by the type invariant `Device` can be sent to any thread. +unsafe impl Send for Device {} + +// SAFETY: `Device` can be shared among threads because all immutable methods are protected by the +// synchronization in `struct device`. +unsafe impl Sync for Device {} + +/// Marker trait for the context or scope of a bus specific device. +/// +/// [`DeviceContext`] is a marker trait for types representing the context of a bus specific +/// [`Device`]. +/// +/// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`]. +/// +/// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that +/// defines which [`DeviceContext`] type can be derived from another. For instance, any +/// [`Device<Core>`] can dereference to a [`Device<Bound>`]. +/// +/// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types. +/// +/// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`] +/// +/// Bus devices can automatically implement the dereference hierarchy by using +/// [`impl_device_context_deref`]. +/// +/// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes +/// from the specific scope the [`Device`] reference is valid in. +/// +/// [`impl_device_context_deref`]: kernel::impl_device_context_deref +pub trait DeviceContext: private::Sealed {} + +/// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`]. +/// +/// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid +/// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement +/// [`AlwaysRefCounted`] for. +/// +/// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted +pub struct Normal; + +/// The [`Core`] context is the context of a bus specific device when it appears as argument of +/// any bus specific callback, such as `probe()`. +/// +/// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus +/// callback it appears in. It is intended to be used for synchronization purposes. Bus device +/// implementations can implement methods for [`Device<Core>`], such that they can only be called +/// from bus callbacks. +pub struct Core; + +/// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus +/// abstraction. +/// +/// The internal core context is intended to be used in exactly the same way as the [`Core`] +/// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus +/// abstraction. +/// +/// This context mainly exists to share generic [`Device`] infrastructure that should only be called +/// from bus callbacks with bus abstractions, but without making them accessible for drivers. +pub struct CoreInternal; + +/// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to +/// be bound to a driver. +/// +/// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`] +/// reference, the [`Device`] is guaranteed to be bound to a driver. +/// +/// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound, +/// which can be proven with the [`Bound`] device context. +/// +/// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should +/// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit +/// from optimizations for accessing device resources, see also [`Devres::access`]. +/// +/// [`Devres`]: kernel::devres::Devres +/// [`Devres::access`]: kernel::devres::Devres::access +/// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation +pub struct Bound; + +mod private { + pub trait Sealed {} + + impl Sealed for super::Bound {} + impl Sealed for super::Core {} + impl Sealed for super::CoreInternal {} + impl Sealed for super::Normal {} +} + +impl DeviceContext for Bound {} +impl DeviceContext for Core {} +impl DeviceContext for CoreInternal {} +impl DeviceContext for Normal {} + +/// Convert device references to bus device references. +/// +/// Bus devices can implement this trait to allow abstractions to provide the bus device in +/// class device callbacks. +/// +/// This must not be used by drivers and is intended for bus and class device abstractions only. +/// +/// # Safety +/// +/// `AsBusDevice::OFFSET` must be the offset of the embedded base `struct device` field within a +/// bus device structure. +pub unsafe trait AsBusDevice<Ctx: DeviceContext>: AsRef<Device<Ctx>> { + /// The relative offset to the device field. + /// + /// Use `offset_of!(bindings, field)` macro to avoid breakage. + const OFFSET: usize; + + /// Convert a reference to [`Device`] into `Self`. + /// + /// # Safety + /// + /// `dev` must be contained in `Self`. + unsafe fn from_device(dev: &Device<Ctx>) -> &Self + where + Self: Sized, + { + let raw = dev.as_raw(); + // SAFETY: `raw - Self::OFFSET` is guaranteed by the safety requirements + // to be a valid pointer to `Self`. + unsafe { &*raw.byte_sub(Self::OFFSET).cast::<Self>() } + } +} + +/// # Safety +/// +/// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the +/// generic argument of `$device`. +#[doc(hidden)] +#[macro_export] +macro_rules! __impl_device_context_deref { + (unsafe { $device:ident, $src:ty => $dst:ty }) => { + impl ::core::ops::Deref for $device<$src> { + type Target = $device<$dst>; + + fn deref(&self) -> &Self::Target { + let ptr: *const Self = self; + + // CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the + // safety requirement of the macro. + let ptr = ptr.cast::<Self::Target>(); + + // SAFETY: `ptr` was derived from `&self`. + unsafe { &*ptr } + } + } + }; +} + +/// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus +/// specific) device. +/// +/// # Safety +/// +/// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the +/// generic argument of `$device`. +#[macro_export] +macro_rules! impl_device_context_deref { + (unsafe { $device:ident }) => { + // SAFETY: This macro has the exact same safety requirement as + // `__impl_device_context_deref!`. + ::kernel::__impl_device_context_deref!(unsafe { + $device, + $crate::device::CoreInternal => $crate::device::Core + }); + + // SAFETY: This macro has the exact same safety requirement as + // `__impl_device_context_deref!`. + ::kernel::__impl_device_context_deref!(unsafe { + $device, + $crate::device::Core => $crate::device::Bound + }); + + // SAFETY: This macro has the exact same safety requirement as + // `__impl_device_context_deref!`. + ::kernel::__impl_device_context_deref!(unsafe { + $device, + $crate::device::Bound => $crate::device::Normal + }); + }; +} + +#[doc(hidden)] +#[macro_export] +macro_rules! __impl_device_context_into_aref { + ($src:ty, $device:tt) => { + impl ::core::convert::From<&$device<$src>> for $crate::sync::aref::ARef<$device> { + fn from(dev: &$device<$src>) -> Self { + (&**dev).into() + } + } + }; +} + +/// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an +/// `ARef<Device>`. +#[macro_export] +macro_rules! impl_device_context_into_aref { + ($device:tt) => { + ::kernel::__impl_device_context_into_aref!($crate::device::CoreInternal, $device); + ::kernel::__impl_device_context_into_aref!($crate::device::Core, $device); + ::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device); + }; +} + +#[doc(hidden)] +#[macro_export] +macro_rules! dev_printk { + ($method:ident, $dev:expr, $($f:tt)*) => { + { + ($dev).$method($crate::prelude::fmt!($($f)*)); + } + } +} + +/// Prints an emergency-level message (level 0) prefixed with device information. +/// +/// This level should be used if the system is unusable. +/// +/// Equivalent to the kernel's `dev_emerg` macro. +/// +/// Mimics the interface of [`std::print!`]. More information about the syntax is available from +/// [`core::fmt`] and [`std::format!`]. +/// +/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html +/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html +/// +/// # Examples +/// +/// ``` +/// # use kernel::device::Device; +/// +/// fn example(dev: &Device) { +/// dev_emerg!(dev, "hello {}\n", "there"); +/// } +/// ``` +#[macro_export] +macro_rules! dev_emerg { + ($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); } +} + +/// Prints an alert-level message (level 1) prefixed with device information. +/// +/// This level should be used if action must be taken immediately. +/// +/// Equivalent to the kernel's `dev_alert` macro. +/// +/// Mimics the interface of [`std::print!`]. More information about the syntax is available from +/// [`core::fmt`] and [`std::format!`]. +/// +/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html +/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html +/// +/// # Examples +/// +/// ``` +/// # use kernel::device::Device; +/// +/// fn example(dev: &Device) { +/// dev_alert!(dev, "hello {}\n", "there"); +/// } +/// ``` +#[macro_export] +macro_rules! dev_alert { + ($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); } +} + +/// Prints a critical-level message (level 2) prefixed with device information. +/// +/// This level should be used in critical conditions. +/// +/// Equivalent to the kernel's `dev_crit` macro. +/// +/// Mimics the interface of [`std::print!`]. More information about the syntax is available from +/// [`core::fmt`] and [`std::format!`]. +/// +/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html +/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html +/// +/// # Examples +/// +/// ``` +/// # use kernel::device::Device; +/// +/// fn example(dev: &Device) { +/// dev_crit!(dev, "hello {}\n", "there"); +/// } +/// ``` +#[macro_export] +macro_rules! dev_crit { + ($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); } +} + +/// Prints an error-level message (level 3) prefixed with device information. +/// +/// This level should be used in error conditions. +/// +/// Equivalent to the kernel's `dev_err` macro. +/// +/// Mimics the interface of [`std::print!`]. More information about the syntax is available from +/// [`core::fmt`] and [`std::format!`]. +/// +/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html +/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html +/// +/// # Examples +/// +/// ``` +/// # use kernel::device::Device; +/// +/// fn example(dev: &Device) { +/// dev_err!(dev, "hello {}\n", "there"); +/// } +/// ``` +#[macro_export] +macro_rules! dev_err { + ($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); } +} + +/// Prints a warning-level message (level 4) prefixed with device information. +/// +/// This level should be used in warning conditions. +/// +/// Equivalent to the kernel's `dev_warn` macro. +/// +/// Mimics the interface of [`std::print!`]. More information about the syntax is available from +/// [`core::fmt`] and [`std::format!`]. +/// +/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html +/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html +/// +/// # Examples +/// +/// ``` +/// # use kernel::device::Device; +/// +/// fn example(dev: &Device) { +/// dev_warn!(dev, "hello {}\n", "there"); +/// } +/// ``` +#[macro_export] +macro_rules! dev_warn { + ($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); } +} + +/// Prints a notice-level message (level 5) prefixed with device information. +/// +/// This level should be used in normal but significant conditions. +/// +/// Equivalent to the kernel's `dev_notice` macro. +/// +/// Mimics the interface of [`std::print!`]. More information about the syntax is available from +/// [`core::fmt`] and [`std::format!`]. +/// +/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html +/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html +/// +/// # Examples +/// +/// ``` +/// # use kernel::device::Device; +/// +/// fn example(dev: &Device) { +/// dev_notice!(dev, "hello {}\n", "there"); +/// } +/// ``` +#[macro_export] +macro_rules! dev_notice { + ($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); } +} + +/// Prints an info-level message (level 6) prefixed with device information. +/// +/// This level should be used for informational messages. +/// +/// Equivalent to the kernel's `dev_info` macro. +/// +/// Mimics the interface of [`std::print!`]. More information about the syntax is available from +/// [`core::fmt`] and [`std::format!`]. +/// +/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html +/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html +/// +/// # Examples +/// +/// ``` +/// # use kernel::device::Device; +/// +/// fn example(dev: &Device) { +/// dev_info!(dev, "hello {}\n", "there"); +/// } +/// ``` +#[macro_export] +macro_rules! dev_info { + ($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); } +} + +/// Prints a debug-level message (level 7) prefixed with device information. +/// +/// This level should be used for debug messages. +/// +/// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet. +/// +/// Mimics the interface of [`std::print!`]. More information about the syntax is available from +/// [`core::fmt`] and [`std::format!`]. +/// +/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html +/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html +/// +/// # Examples +/// +/// ``` +/// # use kernel::device::Device; +/// +/// fn example(dev: &Device) { +/// dev_dbg!(dev, "hello {}\n", "there"); +/// } +/// ``` +#[macro_export] +macro_rules! dev_dbg { + ($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); } +} |
