summaryrefslogtreecommitdiff
path: root/rust/kernel/str.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/kernel/str.rs')
-rw-r--r--rust/kernel/str.rs885
1 files changed, 885 insertions, 0 deletions
diff --git a/rust/kernel/str.rs b/rust/kernel/str.rs
new file mode 100644
index 000000000000..fa87779d2253
--- /dev/null
+++ b/rust/kernel/str.rs
@@ -0,0 +1,885 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! String representations.
+
+use crate::{
+ alloc::{flags::*, AllocError, KVec},
+ error::{to_result, Result},
+ fmt::{self, Write},
+ prelude::*,
+};
+use core::{
+ marker::PhantomData,
+ ops::{Deref, DerefMut, Index},
+};
+
+pub use crate::prelude::CStr;
+
+pub mod parse_int;
+
+/// Byte string without UTF-8 validity guarantee.
+#[repr(transparent)]
+pub struct BStr([u8]);
+
+impl BStr {
+ /// Returns the length of this string.
+ #[inline]
+ pub const fn len(&self) -> usize {
+ self.0.len()
+ }
+
+ /// Returns `true` if the string is empty.
+ #[inline]
+ pub const fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ /// Creates a [`BStr`] from a `[u8]`.
+ #[inline]
+ pub const fn from_bytes(bytes: &[u8]) -> &Self {
+ // SAFETY: `BStr` is transparent to `[u8]`.
+ unsafe { &*(core::ptr::from_ref(bytes) as *const BStr) }
+ }
+
+ /// Strip a prefix from `self`. Delegates to [`slice::strip_prefix`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use kernel::b_str;
+ /// assert_eq!(Some(b_str!("bar")), b_str!("foobar").strip_prefix(b_str!("foo")));
+ /// assert_eq!(None, b_str!("foobar").strip_prefix(b_str!("bar")));
+ /// assert_eq!(Some(b_str!("foobar")), b_str!("foobar").strip_prefix(b_str!("")));
+ /// assert_eq!(Some(b_str!("")), b_str!("foobar").strip_prefix(b_str!("foobar")));
+ /// ```
+ pub fn strip_prefix(&self, pattern: impl AsRef<Self>) -> Option<&BStr> {
+ self.deref()
+ .strip_prefix(pattern.as_ref().deref())
+ .map(Self::from_bytes)
+ }
+}
+
+impl fmt::Display for BStr {
+ /// Formats printable ASCII characters, escaping the rest.
+ ///
+ /// ```
+ /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
+ /// let ascii = b_str!("Hello, BStr!");
+ /// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
+ /// assert_eq!(s.to_bytes(), "Hello, BStr!".as_bytes());
+ ///
+ /// let non_ascii = b_str!("🦀");
+ /// let s = CString::try_from_fmt(fmt!("{non_ascii}"))?;
+ /// assert_eq!(s.to_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes());
+ /// # Ok::<(), kernel::error::Error>(())
+ /// ```
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ for &b in &self.0 {
+ match b {
+ // Common escape codes.
+ b'\t' => f.write_str("\\t")?,
+ b'\n' => f.write_str("\\n")?,
+ b'\r' => f.write_str("\\r")?,
+ // Printable characters.
+ 0x20..=0x7e => f.write_char(b as char)?,
+ _ => write!(f, "\\x{b:02x}")?,
+ }
+ }
+ Ok(())
+ }
+}
+
+impl fmt::Debug for BStr {
+ /// Formats printable ASCII characters with a double quote on either end,
+ /// escaping the rest.
+ ///
+ /// ```
+ /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
+ /// // Embedded double quotes are escaped.
+ /// let ascii = b_str!("Hello, \"BStr\"!");
+ /// let s = CString::try_from_fmt(fmt!("{ascii:?}"))?;
+ /// assert_eq!(s.to_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes());
+ ///
+ /// let non_ascii = b_str!("😺");
+ /// let s = CString::try_from_fmt(fmt!("{non_ascii:?}"))?;
+ /// assert_eq!(s.to_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes());
+ /// # Ok::<(), kernel::error::Error>(())
+ /// ```
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.write_char('"')?;
+ for &b in &self.0 {
+ match b {
+ // Common escape codes.
+ b'\t' => f.write_str("\\t")?,
+ b'\n' => f.write_str("\\n")?,
+ b'\r' => f.write_str("\\r")?,
+ // String escape characters.
+ b'\"' => f.write_str("\\\"")?,
+ b'\\' => f.write_str("\\\\")?,
+ // Printable characters.
+ 0x20..=0x7e => f.write_char(b as char)?,
+ _ => write!(f, "\\x{b:02x}")?,
+ }
+ }
+ f.write_char('"')
+ }
+}
+
+impl Deref for BStr {
+ type Target = [u8];
+
+ #[inline]
+ fn deref(&self) -> &Self::Target {
+ &self.0
+ }
+}
+
+impl PartialEq for BStr {
+ fn eq(&self, other: &Self) -> bool {
+ self.deref().eq(other.deref())
+ }
+}
+
+impl<Idx> Index<Idx> for BStr
+where
+ [u8]: Index<Idx, Output = [u8]>,
+{
+ type Output = Self;
+
+ fn index(&self, index: Idx) -> &Self::Output {
+ BStr::from_bytes(&self.0[index])
+ }
+}
+
+impl AsRef<BStr> for [u8] {
+ fn as_ref(&self) -> &BStr {
+ BStr::from_bytes(self)
+ }
+}
+
+impl AsRef<BStr> for BStr {
+ fn as_ref(&self) -> &BStr {
+ self
+ }
+}
+
+/// Creates a new [`BStr`] from a string literal.
+///
+/// `b_str!` converts the supplied string literal to byte string, so non-ASCII
+/// characters can be included.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::b_str;
+/// # use kernel::str::BStr;
+/// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
+/// ```
+#[macro_export]
+macro_rules! b_str {
+ ($str:literal) => {{
+ const S: &'static str = $str;
+ const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes());
+ C
+ }};
+}
+
+/// Returns a C pointer to the string.
+// It is a free function rather than a method on an extension trait because:
+//
+// - error[E0379]: functions in trait impls cannot be declared const
+#[inline]
+pub const fn as_char_ptr_in_const_context(c_str: &CStr) -> *const c_char {
+ c_str.as_ptr().cast()
+}
+
+mod private {
+ pub trait Sealed {}
+
+ impl Sealed for super::CStr {}
+}
+
+/// Extensions to [`CStr`].
+pub trait CStrExt: private::Sealed {
+ /// Wraps a raw C string pointer.
+ ///
+ /// # Safety
+ ///
+ /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
+ /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
+ /// must not be mutated.
+ // This function exists to paper over the fact that `CStr::from_ptr` takes a `*const
+ // core::ffi::c_char` rather than a `*const crate::ffi::c_char`.
+ unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self;
+
+ /// Creates a mutable [`CStr`] from a `[u8]` without performing any
+ /// additional checks.
+ ///
+ /// # Safety
+ ///
+ /// `bytes` *must* end with a `NUL` byte, and should only have a single
+ /// `NUL` byte (or the string will be truncated).
+ unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut Self;
+
+ /// Returns a C pointer to the string.
+ // This function exists to paper over the fact that `CStr::as_ptr` returns a `*const
+ // core::ffi::c_char` rather than a `*const crate::ffi::c_char`.
+ fn as_char_ptr(&self) -> *const c_char;
+
+ /// Convert this [`CStr`] into a [`CString`] by allocating memory and
+ /// copying over the string data.
+ fn to_cstring(&self) -> Result<CString, AllocError>;
+
+ /// Converts this [`CStr`] to its ASCII lower case equivalent in-place.
+ ///
+ /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
+ /// but non-ASCII letters are unchanged.
+ ///
+ /// To return a new lowercased value without modifying the existing one, use
+ /// [`to_ascii_lowercase()`].
+ ///
+ /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
+ fn make_ascii_lowercase(&mut self);
+
+ /// Converts this [`CStr`] to its ASCII upper case equivalent in-place.
+ ///
+ /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
+ /// but non-ASCII letters are unchanged.
+ ///
+ /// To return a new uppercased value without modifying the existing one, use
+ /// [`to_ascii_uppercase()`].
+ ///
+ /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
+ fn make_ascii_uppercase(&mut self);
+
+ /// Returns a copy of this [`CString`] where each character is mapped to its
+ /// ASCII lower case equivalent.
+ ///
+ /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
+ /// but non-ASCII letters are unchanged.
+ ///
+ /// To lowercase the value in-place, use [`make_ascii_lowercase`].
+ ///
+ /// [`make_ascii_lowercase`]: str::make_ascii_lowercase
+ fn to_ascii_lowercase(&self) -> Result<CString, AllocError>;
+
+ /// Returns a copy of this [`CString`] where each character is mapped to its
+ /// ASCII upper case equivalent.
+ ///
+ /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
+ /// but non-ASCII letters are unchanged.
+ ///
+ /// To uppercase the value in-place, use [`make_ascii_uppercase`].
+ ///
+ /// [`make_ascii_uppercase`]: str::make_ascii_uppercase
+ fn to_ascii_uppercase(&self) -> Result<CString, AllocError>;
+}
+
+impl fmt::Display for CStr {
+ /// Formats printable ASCII characters, escaping the rest.
+ ///
+ /// ```
+ /// # use kernel::prelude::fmt;
+ /// # use kernel::str::CStr;
+ /// # use kernel::str::CString;
+ /// let penguin = c"🐧";
+ /// let s = CString::try_from_fmt(fmt!("{penguin}"))?;
+ /// assert_eq!(s.to_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
+ ///
+ /// let ascii = c"so \"cool\"";
+ /// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
+ /// assert_eq!(s.to_bytes_with_nul(), "so \"cool\"\0".as_bytes());
+ /// # Ok::<(), kernel::error::Error>(())
+ /// ```
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ for &c in self.to_bytes() {
+ if (0x20..0x7f).contains(&c) {
+ // Printable character.
+ f.write_char(c as char)?;
+ } else {
+ write!(f, "\\x{c:02x}")?;
+ }
+ }
+ Ok(())
+ }
+}
+
+/// Converts a mutable C string to a mutable byte slice.
+///
+/// # Safety
+///
+/// The caller must ensure that the slice ends in a NUL byte and contains no other NUL bytes before
+/// the borrow ends and the underlying [`CStr`] is used.
+unsafe fn to_bytes_mut(s: &mut CStr) -> &mut [u8] {
+ // SAFETY: the cast from `&CStr` to `&[u8]` is safe since `CStr` has the same layout as `&[u8]`
+ // (this is technically not guaranteed, but we rely on it here). The pointer dereference is
+ // safe since it comes from a mutable reference which is guaranteed to be valid for writes.
+ unsafe { &mut *(core::ptr::from_mut(s) as *mut [u8]) }
+}
+
+impl CStrExt for CStr {
+ #[inline]
+ unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self {
+ // SAFETY: The safety preconditions are the same as for `CStr::from_ptr`.
+ unsafe { CStr::from_ptr(ptr.cast()) }
+ }
+
+ #[inline]
+ unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut Self {
+ // SAFETY: the cast from `&[u8]` to `&CStr` is safe since the properties of `bytes` are
+ // guaranteed by the safety precondition and `CStr` has the same layout as `&[u8]` (this is
+ // technically not guaranteed, but we rely on it here). The pointer dereference is safe
+ // since it comes from a mutable reference which is guaranteed to be valid for writes.
+ unsafe { &mut *(core::ptr::from_mut(bytes) as *mut CStr) }
+ }
+
+ #[inline]
+ fn as_char_ptr(&self) -> *const c_char {
+ self.as_ptr().cast()
+ }
+
+ fn to_cstring(&self) -> Result<CString, AllocError> {
+ CString::try_from(self)
+ }
+
+ fn make_ascii_lowercase(&mut self) {
+ // SAFETY: This doesn't introduce or remove NUL bytes in the C string.
+ unsafe { to_bytes_mut(self) }.make_ascii_lowercase();
+ }
+
+ fn make_ascii_uppercase(&mut self) {
+ // SAFETY: This doesn't introduce or remove NUL bytes in the C string.
+ unsafe { to_bytes_mut(self) }.make_ascii_uppercase();
+ }
+
+ fn to_ascii_lowercase(&self) -> Result<CString, AllocError> {
+ let mut s = self.to_cstring()?;
+
+ s.make_ascii_lowercase();
+
+ Ok(s)
+ }
+
+ fn to_ascii_uppercase(&self) -> Result<CString, AllocError> {
+ let mut s = self.to_cstring()?;
+
+ s.make_ascii_uppercase();
+
+ Ok(s)
+ }
+}
+
+impl AsRef<BStr> for CStr {
+ #[inline]
+ fn as_ref(&self) -> &BStr {
+ BStr::from_bytes(self.to_bytes())
+ }
+}
+
+/// Creates a new [`CStr`] from a string literal.
+///
+/// The string literal should not contain any `NUL` bytes.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::c_str;
+/// # use kernel::str::CStr;
+/// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
+/// ```
+#[macro_export]
+macro_rules! c_str {
+ ($str:expr) => {{
+ const S: &str = concat!($str, "\0");
+ const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
+ Ok(v) => v,
+ Err(_) => panic!("string contains interior NUL"),
+ };
+ C
+ }};
+}
+
+#[kunit_tests(rust_kernel_str)]
+mod tests {
+ use super::*;
+
+ impl From<core::ffi::FromBytesWithNulError> for Error {
+ #[inline]
+ fn from(_: core::ffi::FromBytesWithNulError) -> Error {
+ EINVAL
+ }
+ }
+
+ macro_rules! format {
+ ($($f:tt)*) => ({
+ CString::try_from_fmt(fmt!($($f)*))?.to_str()?
+ })
+ }
+
+ const ALL_ASCII_CHARS: &str =
+ "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\
+ \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \
+ !\"#$%&'()*+,-./0123456789:;<=>?@\
+ ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\
+ \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\
+ \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\
+ \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\
+ \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\
+ \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\
+ \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\
+ \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\
+ \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff";
+
+ #[test]
+ fn test_cstr_to_str() -> Result {
+ let cstr = c"\xf0\x9f\xa6\x80";
+ let checked_str = cstr.to_str()?;
+ assert_eq!(checked_str, "🦀");
+ Ok(())
+ }
+
+ #[test]
+ fn test_cstr_to_str_invalid_utf8() -> Result {
+ let cstr = c"\xc3\x28";
+ assert!(cstr.to_str().is_err());
+ Ok(())
+ }
+
+ #[test]
+ fn test_cstr_display() -> Result {
+ let hello_world = c"hello, world!";
+ assert_eq!(format!("{hello_world}"), "hello, world!");
+ let non_printables = c"\x01\x09\x0a";
+ assert_eq!(format!("{non_printables}"), "\\x01\\x09\\x0a");
+ let non_ascii = c"d\xe9j\xe0 vu";
+ assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
+ let good_bytes = c"\xf0\x9f\xa6\x80";
+ assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
+ Ok(())
+ }
+
+ #[test]
+ fn test_cstr_display_all_bytes() -> Result {
+ let mut bytes: [u8; 256] = [0; 256];
+ // fill `bytes` with [1..=255] + [0]
+ for i in u8::MIN..=u8::MAX {
+ bytes[i as usize] = i.wrapping_add(1);
+ }
+ let cstr = CStr::from_bytes_with_nul(&bytes)?;
+ assert_eq!(format!("{cstr}"), ALL_ASCII_CHARS);
+ Ok(())
+ }
+
+ #[test]
+ fn test_cstr_debug() -> Result {
+ let hello_world = c"hello, world!";
+ assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
+ let non_printables = c"\x01\x09\x0a";
+ assert_eq!(format!("{non_printables:?}"), "\"\\x01\\t\\n\"");
+ let non_ascii = c"d\xe9j\xe0 vu";
+ assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
+ Ok(())
+ }
+
+ #[test]
+ fn test_bstr_display() -> Result {
+ let hello_world = BStr::from_bytes(b"hello, world!");
+ assert_eq!(format!("{hello_world}"), "hello, world!");
+ let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
+ assert_eq!(format!("{escapes}"), "_\\t_\\n_\\r_\\_'_\"_");
+ let others = BStr::from_bytes(b"\x01");
+ assert_eq!(format!("{others}"), "\\x01");
+ let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
+ assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
+ let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
+ assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
+ Ok(())
+ }
+
+ #[test]
+ fn test_bstr_debug() -> Result {
+ let hello_world = BStr::from_bytes(b"hello, world!");
+ assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
+ let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
+ assert_eq!(format!("{escapes:?}"), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\"");
+ let others = BStr::from_bytes(b"\x01");
+ assert_eq!(format!("{others:?}"), "\"\\x01\"");
+ let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
+ assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
+ let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
+ assert_eq!(format!("{good_bytes:?}"), "\"\\xf0\\x9f\\xa6\\x80\"");
+ Ok(())
+ }
+}
+
+/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
+///
+/// It does not fail if callers write past the end of the buffer so that they can calculate the
+/// size required to fit everything.
+///
+/// # Invariants
+///
+/// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
+/// is less than `end`.
+pub struct RawFormatter {
+ // Use `usize` to use `saturating_*` functions.
+ beg: usize,
+ pos: usize,
+ end: usize,
+}
+
+impl RawFormatter {
+ /// Creates a new instance of [`RawFormatter`] with an empty buffer.
+ fn new() -> Self {
+ // INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
+ Self {
+ beg: 0,
+ pos: 0,
+ end: 0,
+ }
+ }
+
+ /// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
+ ///
+ /// # Safety
+ ///
+ /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
+ /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
+ pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
+ // INVARIANT: The safety requirements guarantee the type invariants.
+ Self {
+ beg: pos as usize,
+ pos: pos as usize,
+ end: end as usize,
+ }
+ }
+
+ /// Creates a new instance of [`RawFormatter`] with the given buffer.
+ ///
+ /// # Safety
+ ///
+ /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
+ /// for the lifetime of the returned [`RawFormatter`].
+ pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
+ let pos = buf as usize;
+ // INVARIANT: We ensure that `end` is never less than `buf`, and the safety requirements
+ // guarantees that the memory region is valid for writes.
+ Self {
+ pos,
+ beg: pos,
+ end: pos.saturating_add(len),
+ }
+ }
+
+ /// Returns the current insert position.
+ ///
+ /// N.B. It may point to invalid memory.
+ pub(crate) fn pos(&self) -> *mut u8 {
+ self.pos as *mut u8
+ }
+
+ /// Returns the number of bytes written to the formatter.
+ pub fn bytes_written(&self) -> usize {
+ self.pos - self.beg
+ }
+}
+
+impl fmt::Write for RawFormatter {
+ fn write_str(&mut self, s: &str) -> fmt::Result {
+ // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
+ // don't want it to wrap around to 0.
+ let pos_new = self.pos.saturating_add(s.len());
+
+ // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
+ let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
+
+ if len_to_copy > 0 {
+ // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
+ // yet, so it is valid for write per the type invariants.
+ unsafe {
+ core::ptr::copy_nonoverlapping(
+ s.as_bytes().as_ptr(),
+ self.pos as *mut u8,
+ len_to_copy,
+ )
+ };
+ }
+
+ self.pos = pos_new;
+ Ok(())
+ }
+}
+
+/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
+///
+/// Fails if callers attempt to write more than will fit in the buffer.
+pub struct Formatter<'a>(RawFormatter, PhantomData<&'a mut ()>);
+
+impl Formatter<'_> {
+ /// Creates a new instance of [`Formatter`] with the given buffer.
+ ///
+ /// # Safety
+ ///
+ /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
+ /// for the lifetime of the returned [`Formatter`].
+ pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
+ // SAFETY: The safety requirements of this function satisfy those of the callee.
+ Self(unsafe { RawFormatter::from_buffer(buf, len) }, PhantomData)
+ }
+
+ /// Create a new [`Self`] instance.
+ pub fn new(buffer: &mut [u8]) -> Self {
+ // SAFETY: `buffer` is valid for writes for the entire length for
+ // the lifetime of `Self`.
+ unsafe { Formatter::from_buffer(buffer.as_mut_ptr(), buffer.len()) }
+ }
+}
+
+impl Deref for Formatter<'_> {
+ type Target = RawFormatter;
+
+ fn deref(&self) -> &Self::Target {
+ &self.0
+ }
+}
+
+impl fmt::Write for Formatter<'_> {
+ fn write_str(&mut self, s: &str) -> fmt::Result {
+ self.0.write_str(s)?;
+
+ // Fail the request if we go past the end of the buffer.
+ if self.0.pos > self.0.end {
+ Err(fmt::Error)
+ } else {
+ Ok(())
+ }
+ }
+}
+
+/// A mutable reference to a byte buffer where a string can be written into.
+///
+/// The buffer will be automatically null terminated after the last written character.
+///
+/// # Invariants
+///
+/// * The first byte of `buffer` is always zero.
+/// * The length of `buffer` is at least 1.
+pub(crate) struct NullTerminatedFormatter<'a> {
+ buffer: &'a mut [u8],
+}
+
+impl<'a> NullTerminatedFormatter<'a> {
+ /// Create a new [`Self`] instance.
+ pub(crate) fn new(buffer: &'a mut [u8]) -> Option<NullTerminatedFormatter<'a>> {
+ *(buffer.first_mut()?) = 0;
+
+ // INVARIANT:
+ // - We wrote zero to the first byte above.
+ // - If buffer was not at least length 1, `buffer.first_mut()` would return None.
+ Some(Self { buffer })
+ }
+}
+
+impl Write for NullTerminatedFormatter<'_> {
+ fn write_str(&mut self, s: &str) -> fmt::Result {
+ let bytes = s.as_bytes();
+ let len = bytes.len();
+
+ // We want space for a zero. By type invariant, buffer length is always at least 1, so no
+ // underflow.
+ if len > self.buffer.len() - 1 {
+ return Err(fmt::Error);
+ }
+
+ let buffer = core::mem::take(&mut self.buffer);
+ // We break the zero start invariant for a short while.
+ buffer[..len].copy_from_slice(bytes);
+ // INVARIANT: We checked above that buffer will have size at least 1 after this assignment.
+ self.buffer = &mut buffer[len..];
+
+ // INVARIANT: We write zero to the first byte of the buffer.
+ self.buffer[0] = 0;
+
+ Ok(())
+ }
+}
+
+/// # Safety
+///
+/// - `string` must point to a null terminated string that is valid for read.
+unsafe fn kstrtobool_raw(string: *const u8) -> Result<bool> {
+ let mut result: bool = false;
+
+ // SAFETY:
+ // - By function safety requirement, `string` is a valid null-terminated string.
+ // - `result` is a valid `bool` that we own.
+ to_result(unsafe { bindings::kstrtobool(string, &mut result) })?;
+ Ok(result)
+}
+
+/// Convert common user inputs into boolean values using the kernel's `kstrtobool` function.
+///
+/// This routine returns `Ok(bool)` if the first character is one of 'YyTt1NnFf0', or
+/// \[oO\]\[NnFf\] for "on" and "off". Otherwise it will return `Err(EINVAL)`.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::str::kstrtobool;
+///
+/// // Lowercase
+/// assert_eq!(kstrtobool(c"true"), Ok(true));
+/// assert_eq!(kstrtobool(c"tr"), Ok(true));
+/// assert_eq!(kstrtobool(c"t"), Ok(true));
+/// assert_eq!(kstrtobool(c"twrong"), Ok(true));
+/// assert_eq!(kstrtobool(c"false"), Ok(false));
+/// assert_eq!(kstrtobool(c"f"), Ok(false));
+/// assert_eq!(kstrtobool(c"yes"), Ok(true));
+/// assert_eq!(kstrtobool(c"no"), Ok(false));
+/// assert_eq!(kstrtobool(c"on"), Ok(true));
+/// assert_eq!(kstrtobool(c"off"), Ok(false));
+///
+/// // Camel case
+/// assert_eq!(kstrtobool(c"True"), Ok(true));
+/// assert_eq!(kstrtobool(c"False"), Ok(false));
+/// assert_eq!(kstrtobool(c"Yes"), Ok(true));
+/// assert_eq!(kstrtobool(c"No"), Ok(false));
+/// assert_eq!(kstrtobool(c"On"), Ok(true));
+/// assert_eq!(kstrtobool(c"Off"), Ok(false));
+///
+/// // All caps
+/// assert_eq!(kstrtobool(c"TRUE"), Ok(true));
+/// assert_eq!(kstrtobool(c"FALSE"), Ok(false));
+/// assert_eq!(kstrtobool(c"YES"), Ok(true));
+/// assert_eq!(kstrtobool(c"NO"), Ok(false));
+/// assert_eq!(kstrtobool(c"ON"), Ok(true));
+/// assert_eq!(kstrtobool(c"OFF"), Ok(false));
+///
+/// // Numeric
+/// assert_eq!(kstrtobool(c"1"), Ok(true));
+/// assert_eq!(kstrtobool(c"0"), Ok(false));
+///
+/// // Invalid input
+/// assert_eq!(kstrtobool(c"invalid"), Err(EINVAL));
+/// assert_eq!(kstrtobool(c"2"), Err(EINVAL));
+/// ```
+pub fn kstrtobool(string: &CStr) -> Result<bool> {
+ // SAFETY:
+ // - The pointer returned by `CStr::as_char_ptr` is guaranteed to be
+ // null terminated.
+ // - `string` is live and thus the string is valid for read.
+ unsafe { kstrtobool_raw(string.as_char_ptr()) }
+}
+
+/// Convert `&[u8]` to `bool` by deferring to [`kernel::str::kstrtobool`].
+///
+/// Only considers at most the first two bytes of `bytes`.
+pub fn kstrtobool_bytes(bytes: &[u8]) -> Result<bool> {
+ // `ktostrbool` only considers the first two bytes of the input.
+ let stack_string = [*bytes.first().unwrap_or(&0), *bytes.get(1).unwrap_or(&0), 0];
+ // SAFETY: `stack_string` is null terminated and it is live on the stack so
+ // it is valid for read.
+ unsafe { kstrtobool_raw(stack_string.as_ptr()) }
+}
+
+/// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
+///
+/// Used for interoperability with kernel APIs that take C strings.
+///
+/// # Invariants
+///
+/// The string is always `NUL`-terminated and contains no other `NUL` bytes.
+///
+/// # Examples
+///
+/// ```
+/// use kernel::{str::CString, prelude::fmt};
+///
+/// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20))?;
+/// assert_eq!(s.to_bytes_with_nul(), "abc1020\0".as_bytes());
+///
+/// let tmp = "testing";
+/// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123))?;
+/// assert_eq!(s.to_bytes_with_nul(), "testing123\0".as_bytes());
+///
+/// // This fails because it has an embedded `NUL` byte.
+/// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
+/// assert_eq!(s.is_ok(), false);
+/// # Ok::<(), kernel::error::Error>(())
+/// ```
+pub struct CString {
+ buf: KVec<u8>,
+}
+
+impl CString {
+ /// Creates an instance of [`CString`] from the given formatted arguments.
+ pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
+ // Calculate the size needed (formatted string plus `NUL` terminator).
+ let mut f = RawFormatter::new();
+ f.write_fmt(args)?;
+ f.write_str("\0")?;
+ let size = f.bytes_written();
+
+ // Allocate a vector with the required number of bytes, and write to it.
+ let mut buf = KVec::with_capacity(size, GFP_KERNEL)?;
+ // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
+ let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
+ f.write_fmt(args)?;
+ f.write_str("\0")?;
+
+ // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
+ // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
+ unsafe { buf.inc_len(f.bytes_written()) };
+
+ // Check that there are no `NUL` bytes before the end.
+ // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
+ // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
+ // so `f.bytes_written() - 1` doesn't underflow.
+ let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, f.bytes_written() - 1) };
+ if !ptr.is_null() {
+ return Err(EINVAL);
+ }
+
+ // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
+ // exist in the buffer.
+ Ok(Self { buf })
+ }
+}
+
+impl Deref for CString {
+ type Target = CStr;
+
+ fn deref(&self) -> &Self::Target {
+ // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
+ // other `NUL` bytes exist.
+ unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
+ }
+}
+
+impl DerefMut for CString {
+ fn deref_mut(&mut self) -> &mut Self::Target {
+ // SAFETY: A `CString` is always NUL-terminated and contains no other
+ // NUL bytes.
+ unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) }
+ }
+}
+
+impl<'a> TryFrom<&'a CStr> for CString {
+ type Error = AllocError;
+
+ fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
+ let mut buf = KVec::new();
+
+ buf.extend_from_slice(cstr.to_bytes_with_nul(), GFP_KERNEL)?;
+
+ // INVARIANT: The `CStr` and `CString` types have the same invariants for
+ // the string data, and we copied it over without changes.
+ Ok(CString { buf })
+ }
+}
+
+impl fmt::Debug for CString {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Debug::fmt(&**self, f)
+ }
+}