summaryrefslogtreecommitdiff
path: root/rust/kernel/sync/arc.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/kernel/sync/arc.rs')
-rw-r--r--rust/kernel/sync/arc.rs920
1 files changed, 920 insertions, 0 deletions
diff --git a/rust/kernel/sync/arc.rs b/rust/kernel/sync/arc.rs
new file mode 100644
index 000000000000..289f77abf415
--- /dev/null
+++ b/rust/kernel/sync/arc.rs
@@ -0,0 +1,920 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! A reference-counted pointer.
+//!
+//! This module implements a way for users to create reference-counted objects and pointers to
+//! them. Such a pointer automatically increments and decrements the count, and drops the
+//! underlying object when it reaches zero. It is also safe to use concurrently from multiple
+//! threads.
+//!
+//! It is different from the standard library's [`Arc`] in a few ways:
+//! 1. It is backed by the kernel's [`Refcount`] type.
+//! 2. It does not support weak references, which allows it to be half the size.
+//! 3. It saturates the reference count instead of aborting when it goes over a threshold.
+//! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
+//! 5. The object in [`Arc`] is pinned implicitly.
+//!
+//! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
+
+use crate::{
+ alloc::{AllocError, Flags, KBox},
+ ffi::c_void,
+ fmt,
+ init::InPlaceInit,
+ sync::Refcount,
+ try_init,
+ types::ForeignOwnable,
+};
+use core::{
+ alloc::Layout,
+ borrow::{Borrow, BorrowMut},
+ marker::PhantomData,
+ mem::{ManuallyDrop, MaybeUninit},
+ ops::{Deref, DerefMut},
+ pin::Pin,
+ ptr::NonNull,
+};
+use pin_init::{self, pin_data, InPlaceWrite, Init, PinInit};
+
+mod std_vendor;
+
+/// A reference-counted pointer to an instance of `T`.
+///
+/// The reference count is incremented when new instances of [`Arc`] are created, and decremented
+/// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
+///
+/// # Invariants
+///
+/// The reference count on an instance of [`Arc`] is always non-zero.
+/// The object pointed to by [`Arc`] is always pinned.
+///
+/// # Examples
+///
+/// ```
+/// use kernel::sync::Arc;
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// // Create a refcounted instance of `Example`.
+/// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
+///
+/// // Get a new pointer to `obj` and increment the refcount.
+/// let cloned = obj.clone();
+///
+/// // Assert that both `obj` and `cloned` point to the same underlying object.
+/// assert!(core::ptr::eq(&*obj, &*cloned));
+///
+/// // Destroy `obj` and decrement its refcount.
+/// drop(obj);
+///
+/// // Check that the values are still accessible through `cloned`.
+/// assert_eq!(cloned.a, 10);
+/// assert_eq!(cloned.b, 20);
+///
+/// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
+/// # Ok::<(), Error>(())
+/// ```
+///
+/// Using `Arc<T>` as the type of `self`:
+///
+/// ```
+/// use kernel::sync::Arc;
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// impl Example {
+/// fn take_over(self: Arc<Self>) {
+/// // ...
+/// }
+///
+/// fn use_reference(self: &Arc<Self>) {
+/// // ...
+/// }
+/// }
+///
+/// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
+/// obj.use_reference();
+/// obj.take_over();
+/// # Ok::<(), Error>(())
+/// ```
+///
+/// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
+///
+/// ```
+/// use kernel::sync::{Arc, ArcBorrow};
+///
+/// trait MyTrait {
+/// // Trait has a function whose `self` type is `Arc<Self>`.
+/// fn example1(self: Arc<Self>) {}
+///
+/// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
+/// fn example2(self: ArcBorrow<'_, Self>) {}
+/// }
+///
+/// struct Example;
+/// impl MyTrait for Example {}
+///
+/// // `obj` has type `Arc<Example>`.
+/// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
+///
+/// // `coerced` has type `Arc<dyn MyTrait>`.
+/// let coerced: Arc<dyn MyTrait> = obj;
+/// # Ok::<(), Error>(())
+/// ```
+#[repr(transparent)]
+#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
+pub struct Arc<T: ?Sized> {
+ ptr: NonNull<ArcInner<T>>,
+ // NB: this informs dropck that objects of type `ArcInner<T>` may be used in `<Arc<T> as
+ // Drop>::drop`. Note that dropck already assumes that objects of type `T` may be used in
+ // `<Arc<T> as Drop>::drop` and the distinction between `T` and `ArcInner<T>` is not presently
+ // meaningful with respect to dropck - but this may change in the future so this is left here
+ // out of an abundance of caution.
+ //
+ // See <https://doc.rust-lang.org/nomicon/phantom-data.html#generic-parameters-and-drop-checking>
+ // for more detail on the semantics of dropck in the presence of `PhantomData`.
+ _p: PhantomData<ArcInner<T>>,
+}
+
+#[pin_data]
+#[repr(C)]
+struct ArcInner<T: ?Sized> {
+ refcount: Refcount,
+ data: T,
+}
+
+impl<T: ?Sized> ArcInner<T> {
+ /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
+ ///
+ /// # Safety
+ ///
+ /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
+ /// not yet have been destroyed.
+ unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
+ let refcount_layout = Layout::new::<Refcount>();
+ // SAFETY: The caller guarantees that the pointer is valid.
+ let val_layout = Layout::for_value(unsafe { &*ptr });
+ // SAFETY: We're computing the layout of a real struct that existed when compiling this
+ // binary, so its layout is not so large that it can trigger arithmetic overflow.
+ let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
+
+ // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
+ // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
+ //
+ // This is documented at:
+ // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
+ let ptr = ptr as *const ArcInner<T>;
+
+ // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
+ // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
+ // still valid.
+ let ptr = unsafe { ptr.byte_sub(val_offset) };
+
+ // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
+ // address.
+ unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
+ }
+}
+
+// This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
+// dynamically-sized type (DST) `U`.
+#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
+impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
+
+// This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
+#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
+impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
+
+// SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
+// it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
+// `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
+// mutable reference when the reference count reaches zero and `T` is dropped.
+unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
+
+// SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
+// because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
+// it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
+// `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
+// the reference count reaches zero and `T` is dropped.
+unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
+
+impl<T> InPlaceInit<T> for Arc<T> {
+ type PinnedSelf = Self;
+
+ #[inline]
+ fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
+ where
+ E: From<AllocError>,
+ {
+ UniqueArc::try_pin_init(init, flags).map(|u| u.into())
+ }
+
+ #[inline]
+ fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
+ where
+ E: From<AllocError>,
+ {
+ UniqueArc::try_init(init, flags).map(|u| u.into())
+ }
+}
+
+impl<T> Arc<T> {
+ /// Constructs a new reference counted instance of `T`.
+ pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
+ // INVARIANT: The refcount is initialised to a non-zero value.
+ let value = ArcInner {
+ refcount: Refcount::new(1),
+ data: contents,
+ };
+
+ let inner = KBox::new(value, flags)?;
+ let inner = KBox::leak(inner).into();
+
+ // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
+ // `Arc` object.
+ Ok(unsafe { Self::from_inner(inner) })
+ }
+}
+
+impl<T: ?Sized> Arc<T> {
+ /// Constructs a new [`Arc`] from an existing [`ArcInner`].
+ ///
+ /// # Safety
+ ///
+ /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
+ /// count, one of which will be owned by the new [`Arc`] instance.
+ unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
+ // INVARIANT: By the safety requirements, the invariants hold.
+ Arc {
+ ptr: inner,
+ _p: PhantomData,
+ }
+ }
+
+ /// Convert the [`Arc`] into a raw pointer.
+ ///
+ /// The raw pointer has ownership of the refcount that this Arc object owned.
+ pub fn into_raw(self) -> *const T {
+ let ptr = self.ptr.as_ptr();
+ core::mem::forget(self);
+ // SAFETY: The pointer is valid.
+ unsafe { core::ptr::addr_of!((*ptr).data) }
+ }
+
+ /// Return a raw pointer to the data in this arc.
+ pub fn as_ptr(this: &Self) -> *const T {
+ let ptr = this.ptr.as_ptr();
+
+ // SAFETY: As `ptr` points to a valid allocation of type `ArcInner`,
+ // field projection to `data`is within bounds of the allocation.
+ unsafe { core::ptr::addr_of!((*ptr).data) }
+ }
+
+ /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
+ ///
+ /// # Safety
+ ///
+ /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
+ /// must not be called more than once for each previous call to [`Arc::into_raw`].
+ pub unsafe fn from_raw(ptr: *const T) -> Self {
+ // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
+ // `Arc` that is still valid.
+ let ptr = unsafe { ArcInner::container_of(ptr) };
+
+ // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
+ // reference count held then will be owned by the new `Arc` object.
+ unsafe { Self::from_inner(ptr) }
+ }
+
+ /// Returns an [`ArcBorrow`] from the given [`Arc`].
+ ///
+ /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
+ /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
+ #[inline]
+ pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
+ // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
+ // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
+ // reference can be created.
+ unsafe { ArcBorrow::new(self.ptr) }
+ }
+
+ /// Compare whether two [`Arc`] pointers reference the same underlying object.
+ pub fn ptr_eq(this: &Self, other: &Self) -> bool {
+ core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
+ }
+
+ /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique.
+ ///
+ /// When this destroys the `Arc`, it does so while properly avoiding races. This means that
+ /// this method will never call the destructor of the value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::sync::{Arc, UniqueArc};
+ ///
+ /// let arc = Arc::new(42, GFP_KERNEL)?;
+ /// let unique_arc = Arc::into_unique_or_drop(arc);
+ ///
+ /// // The above conversion should succeed since refcount of `arc` is 1.
+ /// assert!(unique_arc.is_some());
+ ///
+ /// assert_eq!(*(unique_arc.unwrap()), 42);
+ ///
+ /// # Ok::<(), Error>(())
+ /// ```
+ ///
+ /// ```
+ /// use kernel::sync::{Arc, UniqueArc};
+ ///
+ /// let arc = Arc::new(42, GFP_KERNEL)?;
+ /// let another = arc.clone();
+ ///
+ /// let unique_arc = Arc::into_unique_or_drop(arc);
+ ///
+ /// // The above conversion should fail since refcount of `arc` is >1.
+ /// assert!(unique_arc.is_none());
+ ///
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn into_unique_or_drop(this: Self) -> Option<Pin<UniqueArc<T>>> {
+ // We will manually manage the refcount in this method, so we disable the destructor.
+ let this = ManuallyDrop::new(this);
+ // SAFETY: We own a refcount, so the pointer is still valid.
+ let refcount = unsafe { &this.ptr.as_ref().refcount };
+
+ // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
+ // return without further touching the `Arc`. If the refcount reaches zero, then there are
+ // no other arcs, and we can create a `UniqueArc`.
+ if refcount.dec_and_test() {
+ refcount.set(1);
+
+ // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
+ // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
+ // their values.
+ Some(Pin::from(UniqueArc {
+ inner: ManuallyDrop::into_inner(this),
+ }))
+ } else {
+ None
+ }
+ }
+}
+
+// SAFETY: The pointer returned by `into_foreign` was originally allocated as an
+// `KBox<ArcInner<T>>`, so that type is what determines the alignment.
+unsafe impl<T: 'static> ForeignOwnable for Arc<T> {
+ const FOREIGN_ALIGN: usize = <KBox<ArcInner<T>> as ForeignOwnable>::FOREIGN_ALIGN;
+
+ type Borrowed<'a> = ArcBorrow<'a, T>;
+ type BorrowedMut<'a> = Self::Borrowed<'a>;
+
+ fn into_foreign(self) -> *mut c_void {
+ ManuallyDrop::new(self).ptr.as_ptr().cast()
+ }
+
+ unsafe fn from_foreign(ptr: *mut c_void) -> Self {
+ // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
+ // call to `Self::into_foreign`.
+ let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) };
+
+ // SAFETY: By the safety requirement of this function, we know that `ptr` came from
+ // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
+ // holds a reference count increment that is transferrable to us.
+ unsafe { Self::from_inner(inner) }
+ }
+
+ unsafe fn borrow<'a>(ptr: *mut c_void) -> ArcBorrow<'a, T> {
+ // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
+ // call to `Self::into_foreign`.
+ let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) };
+
+ // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
+ // for the lifetime of the returned value.
+ unsafe { ArcBorrow::new(inner) }
+ }
+
+ unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> ArcBorrow<'a, T> {
+ // SAFETY: The safety requirements for `borrow_mut` are a superset of the safety
+ // requirements for `borrow`.
+ unsafe { <Self as ForeignOwnable>::borrow(ptr) }
+ }
+}
+
+impl<T: ?Sized> Deref for Arc<T> {
+ type Target = T;
+
+ fn deref(&self) -> &Self::Target {
+ // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
+ // safe to dereference it.
+ unsafe { &self.ptr.as_ref().data }
+ }
+}
+
+impl<T: ?Sized> AsRef<T> for Arc<T> {
+ fn as_ref(&self) -> &T {
+ self.deref()
+ }
+}
+
+/// # Examples
+///
+/// ```
+/// # use core::borrow::Borrow;
+/// # use kernel::sync::Arc;
+/// struct Foo<B: Borrow<u32>>(B);
+///
+/// // Owned instance.
+/// let owned = Foo(1);
+///
+/// // Shared instance.
+/// let arc = Arc::new(1, GFP_KERNEL)?;
+/// let shared = Foo(arc.clone());
+///
+/// let i = 1;
+/// // Borrowed from `i`.
+/// let borrowed = Foo(&i);
+/// # Ok::<(), Error>(())
+/// ```
+impl<T: ?Sized> Borrow<T> for Arc<T> {
+ fn borrow(&self) -> &T {
+ self.deref()
+ }
+}
+
+impl<T: ?Sized> Clone for Arc<T> {
+ fn clone(&self) -> Self {
+ // INVARIANT: `Refcount` saturates the refcount, so it cannot overflow to zero.
+ // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
+ // safe to increment the refcount.
+ unsafe { self.ptr.as_ref() }.refcount.inc();
+
+ // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
+ unsafe { Self::from_inner(self.ptr) }
+ }
+}
+
+impl<T: ?Sized> Drop for Arc<T> {
+ fn drop(&mut self) {
+ // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
+ // this instance is being dropped, so the broken invariant is not observable.
+ // SAFETY: By the type invariant, there is necessarily a reference to the object.
+ let is_zero = unsafe { self.ptr.as_ref() }.refcount.dec_and_test();
+ if is_zero {
+ // The count reached zero, we must free the memory.
+ //
+ // SAFETY: The pointer was initialised from the result of `KBox::leak`.
+ unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) };
+ }
+ }
+}
+
+impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
+ fn from(item: UniqueArc<T>) -> Self {
+ item.inner
+ }
+}
+
+impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
+ fn from(item: Pin<UniqueArc<T>>) -> Self {
+ // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
+ unsafe { Pin::into_inner_unchecked(item).inner }
+ }
+}
+
+/// A borrowed reference to an [`Arc`] instance.
+///
+/// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
+/// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
+///
+/// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
+/// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
+/// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
+/// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
+/// needed.
+///
+/// # Invariants
+///
+/// There are no mutable references to the underlying [`Arc`], and it remains valid for the
+/// lifetime of the [`ArcBorrow`] instance.
+///
+/// # Examples
+///
+/// ```
+/// use kernel::sync::{Arc, ArcBorrow};
+///
+/// struct Example;
+///
+/// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
+/// e.into()
+/// }
+///
+/// let obj = Arc::new(Example, GFP_KERNEL)?;
+/// let cloned = do_something(obj.as_arc_borrow());
+///
+/// // Assert that both `obj` and `cloned` point to the same underlying object.
+/// assert!(core::ptr::eq(&*obj, &*cloned));
+/// # Ok::<(), Error>(())
+/// ```
+///
+/// Using `ArcBorrow<T>` as the type of `self`:
+///
+/// ```
+/// use kernel::sync::{Arc, ArcBorrow};
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// impl Example {
+/// fn use_reference(self: ArcBorrow<'_, Self>) {
+/// // ...
+/// }
+/// }
+///
+/// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
+/// obj.as_arc_borrow().use_reference();
+/// # Ok::<(), Error>(())
+/// ```
+#[repr(transparent)]
+#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
+pub struct ArcBorrow<'a, T: ?Sized + 'a> {
+ inner: NonNull<ArcInner<T>>,
+ _p: PhantomData<&'a ()>,
+}
+
+// This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
+// `ArcBorrow<U>`.
+#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
+impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
+ for ArcBorrow<'_, T>
+{
+}
+
+impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
+ fn clone(&self) -> Self {
+ *self
+ }
+}
+
+impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
+
+impl<T: ?Sized> ArcBorrow<'_, T> {
+ /// Creates a new [`ArcBorrow`] instance.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
+ /// 1. That `inner` remains valid;
+ /// 2. That no mutable references to `inner` are created.
+ unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
+ // INVARIANT: The safety requirements guarantee the invariants.
+ Self {
+ inner,
+ _p: PhantomData,
+ }
+ }
+
+ /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
+ /// [`Arc::into_raw`] or [`Arc::as_ptr`].
+ ///
+ /// # Safety
+ ///
+ /// * The provided pointer must originate from a call to [`Arc::into_raw`] or [`Arc::as_ptr`].
+ /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
+ /// not hit zero.
+ /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
+ /// [`UniqueArc`] reference to this value.
+ pub unsafe fn from_raw(ptr: *const T) -> Self {
+ // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
+ // `Arc` that is still valid.
+ let ptr = unsafe { ArcInner::container_of(ptr) };
+
+ // SAFETY: The caller promises that the value remains valid since the reference count must
+ // not hit zero, and no mutable reference will be created since that would involve a
+ // `UniqueArc`.
+ unsafe { Self::new(ptr) }
+ }
+}
+
+impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
+ fn from(b: ArcBorrow<'_, T>) -> Self {
+ // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
+ // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
+ // increment.
+ ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
+ .deref()
+ .clone()
+ }
+}
+
+impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
+ type Target = T;
+
+ fn deref(&self) -> &Self::Target {
+ // SAFETY: By the type invariant, the underlying object is still alive with no mutable
+ // references to it, so it is safe to create a shared reference.
+ unsafe { &self.inner.as_ref().data }
+ }
+}
+
+/// A refcounted object that is known to have a refcount of 1.
+///
+/// It is mutable and can be converted to an [`Arc`] so that it can be shared.
+///
+/// # Invariants
+///
+/// `inner` always has a reference count of 1.
+///
+/// # Examples
+///
+/// In the following example, we make changes to the inner object before turning it into an
+/// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
+/// cannot fail.
+///
+/// ```
+/// use kernel::sync::{Arc, UniqueArc};
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// fn test() -> Result<Arc<Example>> {
+/// let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
+/// x.a += 1;
+/// x.b += 1;
+/// Ok(x.into())
+/// }
+///
+/// # test().unwrap();
+/// ```
+///
+/// In the following example we first allocate memory for a refcounted `Example` but we don't
+/// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
+/// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
+/// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
+///
+/// ```
+/// use kernel::sync::{Arc, UniqueArc};
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// fn test() -> Result<Arc<Example>> {
+/// let x = UniqueArc::new_uninit(GFP_KERNEL)?;
+/// Ok(x.write(Example { a: 10, b: 20 }).into())
+/// }
+///
+/// # test().unwrap();
+/// ```
+///
+/// In the last example below, the caller gets a pinned instance of `Example` while converting to
+/// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
+/// initialisation, for example, when initialising fields that are wrapped in locks.
+///
+/// ```
+/// use kernel::sync::{Arc, UniqueArc};
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// fn test() -> Result<Arc<Example>> {
+/// let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
+/// // We can modify `pinned` because it is `Unpin`.
+/// pinned.as_mut().a += 1;
+/// Ok(pinned.into())
+/// }
+///
+/// # test().unwrap();
+/// ```
+pub struct UniqueArc<T: ?Sized> {
+ inner: Arc<T>,
+}
+
+impl<T> InPlaceInit<T> for UniqueArc<T> {
+ type PinnedSelf = Pin<Self>;
+
+ #[inline]
+ fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
+ where
+ E: From<AllocError>,
+ {
+ UniqueArc::new_uninit(flags)?.write_pin_init(init)
+ }
+
+ #[inline]
+ fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
+ where
+ E: From<AllocError>,
+ {
+ UniqueArc::new_uninit(flags)?.write_init(init)
+ }
+}
+
+impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> {
+ type Initialized = UniqueArc<T>;
+
+ fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
+ let slot = self.as_mut_ptr();
+ // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
+ // slot is valid.
+ unsafe { init.__init(slot)? };
+ // SAFETY: All fields have been initialized.
+ Ok(unsafe { self.assume_init() })
+ }
+
+ fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
+ let slot = self.as_mut_ptr();
+ // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
+ // slot is valid and will not be moved, because we pin it later.
+ unsafe { init.__pinned_init(slot)? };
+ // SAFETY: All fields have been initialized.
+ Ok(unsafe { self.assume_init() }.into())
+ }
+}
+
+impl<T> UniqueArc<T> {
+ /// Tries to allocate a new [`UniqueArc`] instance.
+ pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
+ Ok(Self {
+ // INVARIANT: The newly-created object has a refcount of 1.
+ inner: Arc::new(value, flags)?,
+ })
+ }
+
+ /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
+ pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
+ // INVARIANT: The refcount is initialised to a non-zero value.
+ let inner = KBox::try_init::<AllocError>(
+ try_init!(ArcInner {
+ refcount: Refcount::new(1),
+ data <- pin_init::uninit::<T, AllocError>(),
+ }? AllocError),
+ flags,
+ )?;
+ Ok(UniqueArc {
+ // INVARIANT: The newly-created object has a refcount of 1.
+ // SAFETY: The pointer from the `KBox` is valid.
+ inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) },
+ })
+ }
+}
+
+impl<T> UniqueArc<MaybeUninit<T>> {
+ /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
+ pub fn write(mut self, value: T) -> UniqueArc<T> {
+ self.deref_mut().write(value);
+ // SAFETY: We just wrote the value to be initialized.
+ unsafe { self.assume_init() }
+ }
+
+ /// Unsafely assume that `self` is initialized.
+ ///
+ /// # Safety
+ ///
+ /// The caller guarantees that the value behind this pointer has been initialized. It is
+ /// *immediate* UB to call this when the value is not initialized.
+ pub unsafe fn assume_init(self) -> UniqueArc<T> {
+ let inner = ManuallyDrop::new(self).inner.ptr;
+ UniqueArc {
+ // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
+ // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
+ inner: unsafe { Arc::from_inner(inner.cast()) },
+ }
+ }
+
+ /// Initialize `self` using the given initializer.
+ pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
+ // SAFETY: The supplied pointer is valid for initialization.
+ match unsafe { init.__init(self.as_mut_ptr()) } {
+ // SAFETY: Initialization completed successfully.
+ Ok(()) => Ok(unsafe { self.assume_init() }),
+ Err(err) => Err(err),
+ }
+ }
+
+ /// Pin-initialize `self` using the given pin-initializer.
+ pub fn pin_init_with<E>(
+ mut self,
+ init: impl PinInit<T, E>,
+ ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
+ // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
+ // to ensure it does not move.
+ match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
+ // SAFETY: Initialization completed successfully.
+ Ok(()) => Ok(unsafe { self.assume_init() }.into()),
+ Err(err) => Err(err),
+ }
+ }
+}
+
+impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
+ fn from(obj: UniqueArc<T>) -> Self {
+ // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
+ // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
+ unsafe { Pin::new_unchecked(obj) }
+ }
+}
+
+impl<T: ?Sized> Deref for UniqueArc<T> {
+ type Target = T;
+
+ fn deref(&self) -> &Self::Target {
+ self.inner.deref()
+ }
+}
+
+impl<T: ?Sized> DerefMut for UniqueArc<T> {
+ fn deref_mut(&mut self) -> &mut Self::Target {
+ // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
+ // it is safe to dereference it. Additionally, we know there is only one reference when
+ // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
+ unsafe { &mut self.inner.ptr.as_mut().data }
+ }
+}
+
+/// # Examples
+///
+/// ```
+/// # use core::borrow::Borrow;
+/// # use kernel::sync::UniqueArc;
+/// struct Foo<B: Borrow<u32>>(B);
+///
+/// // Owned instance.
+/// let owned = Foo(1);
+///
+/// // Owned instance using `UniqueArc`.
+/// let arc = UniqueArc::new(1, GFP_KERNEL)?;
+/// let shared = Foo(arc);
+///
+/// let i = 1;
+/// // Borrowed from `i`.
+/// let borrowed = Foo(&i);
+/// # Ok::<(), Error>(())
+/// ```
+impl<T: ?Sized> Borrow<T> for UniqueArc<T> {
+ fn borrow(&self) -> &T {
+ self.deref()
+ }
+}
+
+/// # Examples
+///
+/// ```
+/// # use core::borrow::BorrowMut;
+/// # use kernel::sync::UniqueArc;
+/// struct Foo<B: BorrowMut<u32>>(B);
+///
+/// // Owned instance.
+/// let owned = Foo(1);
+///
+/// // Owned instance using `UniqueArc`.
+/// let arc = UniqueArc::new(1, GFP_KERNEL)?;
+/// let shared = Foo(arc);
+///
+/// let mut i = 1;
+/// // Borrowed from `i`.
+/// let borrowed = Foo(&mut i);
+/// # Ok::<(), Error>(())
+/// ```
+impl<T: ?Sized> BorrowMut<T> for UniqueArc<T> {
+ fn borrow_mut(&mut self) -> &mut T {
+ self.deref_mut()
+ }
+}
+
+impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Display::fmt(self.deref(), f)
+ }
+}
+
+impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Display::fmt(self.deref(), f)
+ }
+}
+
+impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Debug::fmt(self.deref(), f)
+ }
+}
+
+impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Debug::fmt(self.deref(), f)
+ }
+}