summaryrefslogtreecommitdiff
path: root/rust/kernel/sync/condvar.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/kernel/sync/condvar.rs')
-rw-r--r--rust/kernel/sync/condvar.rs258
1 files changed, 258 insertions, 0 deletions
diff --git a/rust/kernel/sync/condvar.rs b/rust/kernel/sync/condvar.rs
new file mode 100644
index 000000000000..69d58dfbad7b
--- /dev/null
+++ b/rust/kernel/sync/condvar.rs
@@ -0,0 +1,258 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! A condition variable.
+//!
+//! This module allows Rust code to use the kernel's [`struct wait_queue_head`] as a condition
+//! variable.
+
+use super::{lock::Backend, lock::Guard, LockClassKey};
+use crate::{
+ ffi::{c_int, c_long},
+ str::{CStr, CStrExt as _},
+ task::{
+ MAX_SCHEDULE_TIMEOUT, TASK_FREEZABLE, TASK_INTERRUPTIBLE, TASK_NORMAL, TASK_UNINTERRUPTIBLE,
+ },
+ time::Jiffies,
+ types::Opaque,
+};
+use core::{marker::PhantomPinned, pin::Pin, ptr};
+use pin_init::{pin_data, pin_init, PinInit};
+
+/// Creates a [`CondVar`] initialiser with the given name and a newly-created lock class.
+#[macro_export]
+macro_rules! new_condvar {
+ ($($name:literal)?) => {
+ $crate::sync::CondVar::new($crate::optional_name!($($name)?), $crate::static_lock_class!())
+ };
+}
+pub use new_condvar;
+
+/// A conditional variable.
+///
+/// Exposes the kernel's [`struct wait_queue_head`] as a condition variable. It allows the caller to
+/// atomically release the given lock and go to sleep. It reacquires the lock when it wakes up. And
+/// it wakes up when notified by another thread (via [`CondVar::notify_one`] or
+/// [`CondVar::notify_all`]) or because the thread received a signal. It may also wake up
+/// spuriously.
+///
+/// Instances of [`CondVar`] need a lock class and to be pinned. The recommended way to create such
+/// instances is with the [`pin_init`](pin_init::pin_init!) and [`new_condvar`] macros.
+///
+/// # Examples
+///
+/// The following is an example of using a condvar with a mutex:
+///
+/// ```
+/// use kernel::sync::{new_condvar, new_mutex, CondVar, Mutex};
+///
+/// #[pin_data]
+/// pub struct Example {
+/// #[pin]
+/// value: Mutex<u32>,
+///
+/// #[pin]
+/// value_changed: CondVar,
+/// }
+///
+/// /// Waits for `e.value` to become `v`.
+/// fn wait_for_value(e: &Example, v: u32) {
+/// let mut guard = e.value.lock();
+/// while *guard != v {
+/// e.value_changed.wait(&mut guard);
+/// }
+/// }
+///
+/// /// Increments `e.value` and notifies all potential waiters.
+/// fn increment(e: &Example) {
+/// *e.value.lock() += 1;
+/// e.value_changed.notify_all();
+/// }
+///
+/// /// Allocates a new boxed `Example`.
+/// fn new_example() -> Result<Pin<KBox<Example>>> {
+/// KBox::pin_init(pin_init!(Example {
+/// value <- new_mutex!(0),
+/// value_changed <- new_condvar!(),
+/// }), GFP_KERNEL)
+/// }
+/// ```
+///
+/// [`struct wait_queue_head`]: srctree/include/linux/wait.h
+#[pin_data]
+pub struct CondVar {
+ #[pin]
+ pub(crate) wait_queue_head: Opaque<bindings::wait_queue_head>,
+
+ /// A condvar needs to be pinned because it contains a [`struct list_head`] that is
+ /// self-referential, so it cannot be safely moved once it is initialised.
+ ///
+ /// [`struct list_head`]: srctree/include/linux/types.h
+ #[pin]
+ _pin: PhantomPinned,
+}
+
+// SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on any thread.
+unsafe impl Send for CondVar {}
+
+// SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on multiple threads
+// concurrently.
+unsafe impl Sync for CondVar {}
+
+impl CondVar {
+ /// Constructs a new condvar initialiser.
+ pub fn new(name: &'static CStr, key: Pin<&'static LockClassKey>) -> impl PinInit<Self> {
+ pin_init!(Self {
+ _pin: PhantomPinned,
+ // SAFETY: `slot` is valid while the closure is called and both `name` and `key` have
+ // static lifetimes so they live indefinitely.
+ wait_queue_head <- Opaque::ffi_init(|slot| unsafe {
+ bindings::__init_waitqueue_head(slot, name.as_char_ptr(), key.as_ptr())
+ }),
+ })
+ }
+
+ fn wait_internal<T: ?Sized, B: Backend>(
+ &self,
+ wait_state: c_int,
+ guard: &mut Guard<'_, T, B>,
+ timeout_in_jiffies: c_long,
+ ) -> c_long {
+ let wait = Opaque::<bindings::wait_queue_entry>::uninit();
+
+ // SAFETY: `wait` points to valid memory.
+ unsafe { bindings::init_wait(wait.get()) };
+
+ // SAFETY: Both `wait` and `wait_queue_head` point to valid memory.
+ unsafe {
+ bindings::prepare_to_wait_exclusive(self.wait_queue_head.get(), wait.get(), wait_state)
+ };
+
+ // SAFETY: Switches to another thread. The timeout can be any number.
+ let ret = guard.do_unlocked(|| unsafe { bindings::schedule_timeout(timeout_in_jiffies) });
+
+ // SAFETY: Both `wait` and `wait_queue_head` point to valid memory.
+ unsafe { bindings::finish_wait(self.wait_queue_head.get(), wait.get()) };
+
+ ret
+ }
+
+ /// Releases the lock and waits for a notification in uninterruptible mode.
+ ///
+ /// Atomically releases the given lock (whose ownership is proven by the guard) and puts the
+ /// thread to sleep, reacquiring the lock on wake up. It wakes up when notified by
+ /// [`CondVar::notify_one`] or [`CondVar::notify_all`]. Note that it may also wake up
+ /// spuriously.
+ pub fn wait<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) {
+ self.wait_internal(TASK_UNINTERRUPTIBLE, guard, MAX_SCHEDULE_TIMEOUT);
+ }
+
+ /// Releases the lock and waits for a notification in interruptible mode.
+ ///
+ /// Similar to [`CondVar::wait`], except that the wait is interruptible. That is, the thread may
+ /// wake up due to signals. It may also wake up spuriously.
+ ///
+ /// Returns whether there is a signal pending.
+ #[must_use = "wait_interruptible returns if a signal is pending, so the caller must check the return value"]
+ pub fn wait_interruptible<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) -> bool {
+ self.wait_internal(TASK_INTERRUPTIBLE, guard, MAX_SCHEDULE_TIMEOUT);
+ crate::current!().signal_pending()
+ }
+
+ /// Releases the lock and waits for a notification in interruptible and freezable mode.
+ ///
+ /// The process is allowed to be frozen during this sleep. No lock should be held when calling
+ /// this function, and there is a lockdep assertion for this. Freezing a task that holds a lock
+ /// can trivially deadlock vs another task that needs that lock to complete before it too can
+ /// hit freezable.
+ #[must_use = "wait_interruptible_freezable returns if a signal is pending, so the caller must check the return value"]
+ pub fn wait_interruptible_freezable<T: ?Sized, B: Backend>(
+ &self,
+ guard: &mut Guard<'_, T, B>,
+ ) -> bool {
+ self.wait_internal(
+ TASK_INTERRUPTIBLE | TASK_FREEZABLE,
+ guard,
+ MAX_SCHEDULE_TIMEOUT,
+ );
+ crate::current!().signal_pending()
+ }
+
+ /// Releases the lock and waits for a notification in interruptible mode.
+ ///
+ /// Atomically releases the given lock (whose ownership is proven by the guard) and puts the
+ /// thread to sleep. It wakes up when notified by [`CondVar::notify_one`] or
+ /// [`CondVar::notify_all`], or when a timeout occurs, or when the thread receives a signal.
+ #[must_use = "wait_interruptible_timeout returns if a signal is pending, so the caller must check the return value"]
+ pub fn wait_interruptible_timeout<T: ?Sized, B: Backend>(
+ &self,
+ guard: &mut Guard<'_, T, B>,
+ jiffies: Jiffies,
+ ) -> CondVarTimeoutResult {
+ let jiffies = jiffies.try_into().unwrap_or(MAX_SCHEDULE_TIMEOUT);
+ let res = self.wait_internal(TASK_INTERRUPTIBLE, guard, jiffies);
+
+ match (res as Jiffies, crate::current!().signal_pending()) {
+ (jiffies, true) => CondVarTimeoutResult::Signal { jiffies },
+ (0, false) => CondVarTimeoutResult::Timeout,
+ (jiffies, false) => CondVarTimeoutResult::Woken { jiffies },
+ }
+ }
+
+ /// Calls the kernel function to notify the appropriate number of threads.
+ fn notify(&self, count: c_int) {
+ // SAFETY: `wait_queue_head` points to valid memory.
+ unsafe {
+ bindings::__wake_up(
+ self.wait_queue_head.get(),
+ TASK_NORMAL,
+ count,
+ ptr::null_mut(),
+ )
+ };
+ }
+
+ /// Calls the kernel function to notify one thread synchronously.
+ ///
+ /// This method behaves like `notify_one`, except that it hints to the scheduler that the
+ /// current thread is about to go to sleep, so it should schedule the target thread on the same
+ /// CPU.
+ #[inline]
+ pub fn notify_sync(&self) {
+ // SAFETY: `wait_queue_head` points to valid memory.
+ unsafe { bindings::__wake_up_sync(self.wait_queue_head.get(), TASK_NORMAL) };
+ }
+
+ /// Wakes a single waiter up, if any.
+ ///
+ /// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost
+ /// completely (as opposed to automatically waking up the next waiter).
+ #[inline]
+ pub fn notify_one(&self) {
+ self.notify(1);
+ }
+
+ /// Wakes all waiters up, if any.
+ ///
+ /// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost
+ /// completely (as opposed to automatically waking up the next waiter).
+ #[inline]
+ pub fn notify_all(&self) {
+ self.notify(0);
+ }
+}
+
+/// The return type of `wait_timeout`.
+pub enum CondVarTimeoutResult {
+ /// The timeout was reached.
+ Timeout,
+ /// Somebody woke us up.
+ Woken {
+ /// Remaining sleep duration.
+ jiffies: Jiffies,
+ },
+ /// A signal occurred.
+ Signal {
+ /// Remaining sleep duration.
+ jiffies: Jiffies,
+ },
+}