diff options
Diffstat (limited to 'rust/kernel/sync/lock.rs')
-rw-r--r-- | rust/kernel/sync/lock.rs | 109 |
1 files changed, 97 insertions, 12 deletions
diff --git a/rust/kernel/sync/lock.rs b/rust/kernel/sync/lock.rs index 5b5c8efe427a..e82fa5be289c 100644 --- a/rust/kernel/sync/lock.rs +++ b/rust/kernel/sync/lock.rs @@ -6,13 +6,19 @@ //! spinlocks, raw spinlocks) to be provided with minimal effort. use super::LockClassKey; -use crate::{bindings, init::PinInit, pin_init, str::CStr, types::Opaque, types::ScopeGuard}; -use core::{cell::UnsafeCell, marker::PhantomData, marker::PhantomPinned}; -use macros::pin_data; +use crate::{ + str::CStr, + types::{NotThreadSafe, Opaque, ScopeGuard}, +}; +use core::{cell::UnsafeCell, marker::PhantomPinned, pin::Pin}; +use pin_init::{pin_data, pin_init, PinInit}; pub mod mutex; pub mod spinlock; +pub(super) mod global; +pub use global::{GlobalGuard, GlobalLock, GlobalLockBackend, GlobalLockedBy}; + /// The "backend" of a lock. /// /// It is the actual implementation of the lock, without the need to repeat patterns used in all @@ -46,7 +52,7 @@ pub unsafe trait Backend { /// remain valid for read indefinitely. unsafe fn init( ptr: *mut Self::State, - name: *const core::ffi::c_char, + name: *const crate::ffi::c_char, key: *mut bindings::lock_class_key, ); @@ -58,6 +64,13 @@ pub unsafe trait Backend { #[must_use] unsafe fn lock(ptr: *mut Self::State) -> Self::GuardState; + /// Tries to acquire the lock. + /// + /// # Safety + /// + /// Callers must ensure that [`Backend::init`] has been previously called. + unsafe fn try_lock(ptr: *mut Self::State) -> Option<Self::GuardState>; + /// Releases the lock, giving up its ownership. /// /// # Safety @@ -75,12 +88,20 @@ pub unsafe trait Backend { // SAFETY: The safety requirements ensure that the lock is initialised. *guard_state = unsafe { Self::lock(ptr) }; } + + /// Asserts that the lock is held using lockdep. + /// + /// # Safety + /// + /// Callers must ensure that [`Backend::init`] has been previously called. + unsafe fn assert_is_held(ptr: *mut Self::State); } /// A mutual exclusion primitive. /// /// Exposes one of the kernel locking primitives. Which one is exposed depends on the lock /// [`Backend`] specified as the generic parameter `B`. +#[repr(C)] #[pin_data] pub struct Lock<T: ?Sized, B: Backend> { /// The kernel lock object. @@ -106,7 +127,7 @@ unsafe impl<T: ?Sized + Send, B: Backend> Sync for Lock<T, B> {} impl<T, B: Backend> Lock<T, B> { /// Constructs a new lock initialiser. - pub fn new(t: T, name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> { + pub fn new(t: T, name: &'static CStr, key: Pin<&'static LockClassKey>) -> impl PinInit<Self> { pin_init!(Self { data: UnsafeCell::new(t), _pin: PhantomPinned, @@ -119,6 +140,28 @@ impl<T, B: Backend> Lock<T, B> { } } +impl<B: Backend> Lock<(), B> { + /// Constructs a [`Lock`] from a raw pointer. + /// + /// This can be useful for interacting with a lock which was initialised outside of Rust. + /// + /// # Safety + /// + /// The caller promises that `ptr` points to a valid initialised instance of [`State`] during + /// the whole lifetime of `'a`. + /// + /// [`State`]: Backend::State + pub unsafe fn from_raw<'a>(ptr: *mut B::State) -> &'a Self { + // SAFETY: + // - By the safety contract `ptr` must point to a valid initialised instance of `B::State` + // - Since the lock data type is `()` which is a ZST, `state` is the only non-ZST member of + // the struct + // - Combined with `#[repr(C)]`, this guarantees `Self` has an equivalent data layout to + // `B::State`. + unsafe { &*ptr.cast() } + } +} + impl<T: ?Sized, B: Backend> Lock<T, B> { /// Acquires the lock and gives the caller access to the data protected by it. pub fn lock(&self) -> Guard<'_, T, B> { @@ -128,6 +171,15 @@ impl<T: ?Sized, B: Backend> Lock<T, B> { // SAFETY: The lock was just acquired. unsafe { Guard::new(self, state) } } + + /// Tries to acquire the lock. + /// + /// Returns a guard that can be used to access the data protected by the lock if successful. + pub fn try_lock(&self) -> Option<Guard<'_, T, B>> { + // SAFETY: The constructor of the type calls `init`, so the existence of the object proves + // that `init` was called. + unsafe { B::try_lock(self.state.get()).map(|state| Guard::new(self, state)) } + } } /// A lock guard. @@ -139,20 +191,50 @@ impl<T: ?Sized, B: Backend> Lock<T, B> { pub struct Guard<'a, T: ?Sized, B: Backend> { pub(crate) lock: &'a Lock<T, B>, pub(crate) state: B::GuardState, - _not_send: PhantomData<*mut ()>, + _not_send: NotThreadSafe, } // SAFETY: `Guard` is sync when the data protected by the lock is also sync. unsafe impl<T: Sync + ?Sized, B: Backend> Sync for Guard<'_, T, B> {} -impl<T: ?Sized, B: Backend> Guard<'_, T, B> { +impl<'a, T: ?Sized, B: Backend> Guard<'a, T, B> { + /// Returns the lock that this guard originates from. + /// + /// # Examples + /// + /// The following example shows how to use [`Guard::lock_ref()`] to assert the corresponding + /// lock is held. + /// + /// ``` + /// # use kernel::{new_spinlock, sync::lock::{Backend, Guard, Lock}}; + /// # use pin_init::stack_pin_init; + /// + /// fn assert_held<T, B: Backend>(guard: &Guard<'_, T, B>, lock: &Lock<T, B>) { + /// // Address-equal means the same lock. + /// assert!(core::ptr::eq(guard.lock_ref(), lock)); + /// } + /// + /// // Creates a new lock on the stack. + /// stack_pin_init!{ + /// let l = new_spinlock!(42) + /// } + /// + /// let g = l.lock(); + /// + /// // `g` originates from `l`. + /// assert_held(&g, &l); + /// ``` + pub fn lock_ref(&self) -> &'a Lock<T, B> { + self.lock + } + pub(crate) fn do_unlocked<U>(&mut self, cb: impl FnOnce() -> U) -> U { // SAFETY: The caller owns the lock, so it is safe to unlock it. unsafe { B::unlock(self.lock.state.get(), &self.state) }; - // SAFETY: The lock was just unlocked above and is being relocked now. - let _relock = - ScopeGuard::new(|| unsafe { B::relock(self.lock.state.get(), &mut self.state) }); + let _relock = ScopeGuard::new(|| + // SAFETY: The lock was just unlocked above and is being relocked now. + unsafe { B::relock(self.lock.state.get(), &mut self.state) }); cb() } @@ -187,11 +269,14 @@ impl<'a, T: ?Sized, B: Backend> Guard<'a, T, B> { /// # Safety /// /// The caller must ensure that it owns the lock. - pub(crate) unsafe fn new(lock: &'a Lock<T, B>, state: B::GuardState) -> Self { + pub unsafe fn new(lock: &'a Lock<T, B>, state: B::GuardState) -> Self { + // SAFETY: The caller can only hold the lock if `Backend::init` has already been called. + unsafe { B::assert_is_held(lock.state.get()) }; + Self { lock, state, - _not_send: PhantomData, + _not_send: NotThreadSafe, } } } |