diff options
Diffstat (limited to 'rust/kernel/sync/lock.rs')
| -rw-r--r-- | rust/kernel/sync/lock.rs | 317 |
1 files changed, 317 insertions, 0 deletions
diff --git a/rust/kernel/sync/lock.rs b/rust/kernel/sync/lock.rs new file mode 100644 index 000000000000..46a57d1fc309 --- /dev/null +++ b/rust/kernel/sync/lock.rs @@ -0,0 +1,317 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Generic kernel lock and guard. +//! +//! It contains a generic Rust lock and guard that allow for different backends (e.g., mutexes, +//! spinlocks, raw spinlocks) to be provided with minimal effort. + +use super::LockClassKey; +use crate::{ + str::{CStr, CStrExt as _}, + types::{NotThreadSafe, Opaque, ScopeGuard}, +}; +use core::{cell::UnsafeCell, marker::PhantomPinned, pin::Pin}; +use pin_init::{pin_data, pin_init, PinInit, Wrapper}; + +pub mod mutex; +pub mod spinlock; + +pub(super) mod global; +pub use global::{GlobalGuard, GlobalLock, GlobalLockBackend, GlobalLockedBy}; + +/// The "backend" of a lock. +/// +/// It is the actual implementation of the lock, without the need to repeat patterns used in all +/// locks. +/// +/// # Safety +/// +/// - Implementers must ensure that only one thread/CPU may access the protected data once the lock +/// is owned, that is, between calls to [`lock`] and [`unlock`]. +/// - Implementers must also ensure that [`relock`] uses the same locking method as the original +/// lock operation. +/// +/// [`lock`]: Backend::lock +/// [`unlock`]: Backend::unlock +/// [`relock`]: Backend::relock +pub unsafe trait Backend { + /// The state required by the lock. + type State; + + /// The state required to be kept between [`lock`] and [`unlock`]. + /// + /// [`lock`]: Backend::lock + /// [`unlock`]: Backend::unlock + type GuardState; + + /// Initialises the lock. + /// + /// # Safety + /// + /// `ptr` must be valid for write for the duration of the call, while `name` and `key` must + /// remain valid for read indefinitely. + unsafe fn init( + ptr: *mut Self::State, + name: *const crate::ffi::c_char, + key: *mut bindings::lock_class_key, + ); + + /// Acquires the lock, making the caller its owner. + /// + /// # Safety + /// + /// Callers must ensure that [`Backend::init`] has been previously called. + #[must_use] + unsafe fn lock(ptr: *mut Self::State) -> Self::GuardState; + + /// Tries to acquire the lock. + /// + /// # Safety + /// + /// Callers must ensure that [`Backend::init`] has been previously called. + unsafe fn try_lock(ptr: *mut Self::State) -> Option<Self::GuardState>; + + /// Releases the lock, giving up its ownership. + /// + /// # Safety + /// + /// It must only be called by the current owner of the lock. + unsafe fn unlock(ptr: *mut Self::State, guard_state: &Self::GuardState); + + /// Reacquires the lock, making the caller its owner. + /// + /// # Safety + /// + /// Callers must ensure that `guard_state` comes from a previous call to [`Backend::lock`] (or + /// variant) that has been unlocked with [`Backend::unlock`] and will be relocked now. + unsafe fn relock(ptr: *mut Self::State, guard_state: &mut Self::GuardState) { + // SAFETY: The safety requirements ensure that the lock is initialised. + *guard_state = unsafe { Self::lock(ptr) }; + } + + /// Asserts that the lock is held using lockdep. + /// + /// # Safety + /// + /// Callers must ensure that [`Backend::init`] has been previously called. + unsafe fn assert_is_held(ptr: *mut Self::State); +} + +/// A mutual exclusion primitive. +/// +/// Exposes one of the kernel locking primitives. Which one is exposed depends on the lock +/// [`Backend`] specified as the generic parameter `B`. +#[repr(C)] +#[pin_data] +pub struct Lock<T: ?Sized, B: Backend> { + /// The kernel lock object. + #[pin] + state: Opaque<B::State>, + + /// Some locks are known to be self-referential (e.g., mutexes), while others are architecture + /// or config defined (e.g., spinlocks). So we conservatively require them to be pinned in case + /// some architecture uses self-references now or in the future. + #[pin] + _pin: PhantomPinned, + + /// The data protected by the lock. + #[pin] + pub(crate) data: UnsafeCell<T>, +} + +// SAFETY: `Lock` can be transferred across thread boundaries iff the data it protects can. +unsafe impl<T: ?Sized + Send, B: Backend> Send for Lock<T, B> {} + +// SAFETY: `Lock` serialises the interior mutability it provides, so it is `Sync` as long as the +// data it protects is `Send`. +unsafe impl<T: ?Sized + Send, B: Backend> Sync for Lock<T, B> {} + +impl<T, B: Backend> Lock<T, B> { + /// Constructs a new lock initialiser. + pub fn new( + t: impl PinInit<T>, + name: &'static CStr, + key: Pin<&'static LockClassKey>, + ) -> impl PinInit<Self> { + pin_init!(Self { + data <- UnsafeCell::pin_init(t), + _pin: PhantomPinned, + // SAFETY: `slot` is valid while the closure is called and both `name` and `key` have + // static lifetimes so they live indefinitely. + state <- Opaque::ffi_init(|slot| unsafe { + B::init(slot, name.as_char_ptr(), key.as_ptr()) + }), + }) + } +} + +impl<B: Backend> Lock<(), B> { + /// Constructs a [`Lock`] from a raw pointer. + /// + /// This can be useful for interacting with a lock which was initialised outside of Rust. + /// + /// # Safety + /// + /// The caller promises that `ptr` points to a valid initialised instance of [`State`] during + /// the whole lifetime of `'a`. + /// + /// [`State`]: Backend::State + pub unsafe fn from_raw<'a>(ptr: *mut B::State) -> &'a Self { + // SAFETY: + // - By the safety contract `ptr` must point to a valid initialised instance of `B::State` + // - Since the lock data type is `()` which is a ZST, `state` is the only non-ZST member of + // the struct + // - Combined with `#[repr(C)]`, this guarantees `Self` has an equivalent data layout to + // `B::State`. + unsafe { &*ptr.cast() } + } +} + +impl<T: ?Sized, B: Backend> Lock<T, B> { + /// Acquires the lock and gives the caller access to the data protected by it. + pub fn lock(&self) -> Guard<'_, T, B> { + // SAFETY: The constructor of the type calls `init`, so the existence of the object proves + // that `init` was called. + let state = unsafe { B::lock(self.state.get()) }; + // SAFETY: The lock was just acquired. + unsafe { Guard::new(self, state) } + } + + /// Tries to acquire the lock. + /// + /// Returns a guard that can be used to access the data protected by the lock if successful. + // `Option<T>` is not `#[must_use]` even if `T` is, thus the attribute is needed here. + #[must_use = "if unused, the lock will be immediately unlocked"] + pub fn try_lock(&self) -> Option<Guard<'_, T, B>> { + // SAFETY: The constructor of the type calls `init`, so the existence of the object proves + // that `init` was called. + unsafe { B::try_lock(self.state.get()).map(|state| Guard::new(self, state)) } + } +} + +/// A lock guard. +/// +/// Allows mutual exclusion primitives that implement the [`Backend`] trait to automatically unlock +/// when a guard goes out of scope. It also provides a safe and convenient way to access the data +/// protected by the lock. +#[must_use = "the lock unlocks immediately when the guard is unused"] +pub struct Guard<'a, T: ?Sized, B: Backend> { + pub(crate) lock: &'a Lock<T, B>, + pub(crate) state: B::GuardState, + _not_send: NotThreadSafe, +} + +// SAFETY: `Guard` is sync when the data protected by the lock is also sync. +unsafe impl<T: Sync + ?Sized, B: Backend> Sync for Guard<'_, T, B> {} + +impl<'a, T: ?Sized, B: Backend> Guard<'a, T, B> { + /// Returns the lock that this guard originates from. + /// + /// # Examples + /// + /// The following example shows how to use [`Guard::lock_ref()`] to assert the corresponding + /// lock is held. + /// + /// ``` + /// # use kernel::{new_spinlock, sync::lock::{Backend, Guard, Lock}}; + /// # use pin_init::stack_pin_init; + /// + /// fn assert_held<T, B: Backend>(guard: &Guard<'_, T, B>, lock: &Lock<T, B>) { + /// // Address-equal means the same lock. + /// assert!(core::ptr::eq(guard.lock_ref(), lock)); + /// } + /// + /// // Creates a new lock on the stack. + /// stack_pin_init!{ + /// let l = new_spinlock!(42) + /// } + /// + /// let g = l.lock(); + /// + /// // `g` originates from `l`. + /// assert_held(&g, &l); + /// ``` + pub fn lock_ref(&self) -> &'a Lock<T, B> { + self.lock + } + + pub(crate) fn do_unlocked<U>(&mut self, cb: impl FnOnce() -> U) -> U { + // SAFETY: The caller owns the lock, so it is safe to unlock it. + unsafe { B::unlock(self.lock.state.get(), &self.state) }; + + let _relock = ScopeGuard::new(|| + // SAFETY: The lock was just unlocked above and is being relocked now. + unsafe { B::relock(self.lock.state.get(), &mut self.state) }); + + cb() + } + + /// Returns a pinned mutable reference to the protected data. + /// + /// The guard implements [`DerefMut`] when `T: Unpin`, so for [`Unpin`] + /// types [`DerefMut`] should be used instead of this function. + /// + /// [`DerefMut`]: core::ops::DerefMut + /// [`Unpin`]: core::marker::Unpin + /// + /// # Examples + /// + /// ``` + /// # use kernel::sync::{Mutex, MutexGuard}; + /// # use core::{pin::Pin, marker::PhantomPinned}; + /// struct Data(PhantomPinned); + /// + /// fn example(mutex: &Mutex<Data>) { + /// let mut data: MutexGuard<'_, Data> = mutex.lock(); + /// let mut data: Pin<&mut Data> = data.as_mut(); + /// } + /// ``` + pub fn as_mut(&mut self) -> Pin<&mut T> { + // SAFETY: `self.lock.data` is structurally pinned. + unsafe { Pin::new_unchecked(&mut *self.lock.data.get()) } + } +} + +impl<T: ?Sized, B: Backend> core::ops::Deref for Guard<'_, T, B> { + type Target = T; + + fn deref(&self) -> &Self::Target { + // SAFETY: The caller owns the lock, so it is safe to deref the protected data. + unsafe { &*self.lock.data.get() } + } +} + +impl<T: ?Sized, B: Backend> core::ops::DerefMut for Guard<'_, T, B> +where + T: Unpin, +{ + fn deref_mut(&mut self) -> &mut Self::Target { + // SAFETY: The caller owns the lock, so it is safe to deref the protected data. + unsafe { &mut *self.lock.data.get() } + } +} + +impl<T: ?Sized, B: Backend> Drop for Guard<'_, T, B> { + fn drop(&mut self) { + // SAFETY: The caller owns the lock, so it is safe to unlock it. + unsafe { B::unlock(self.lock.state.get(), &self.state) }; + } +} + +impl<'a, T: ?Sized, B: Backend> Guard<'a, T, B> { + /// Constructs a new immutable lock guard. + /// + /// # Safety + /// + /// The caller must ensure that it owns the lock. + pub unsafe fn new(lock: &'a Lock<T, B>, state: B::GuardState) -> Self { + // SAFETY: The caller can only hold the lock if `Backend::init` has already been called. + unsafe { B::assert_is_held(lock.state.get()) }; + + Self { + lock, + state, + _not_send: NotThreadSafe, + } + } +} |
