diff options
Diffstat (limited to 'rust/kernel/task.rs')
| -rw-r--r-- | rust/kernel/task.rs | 427 |
1 files changed, 427 insertions, 0 deletions
diff --git a/rust/kernel/task.rs b/rust/kernel/task.rs new file mode 100644 index 000000000000..49fad6de0674 --- /dev/null +++ b/rust/kernel/task.rs @@ -0,0 +1,427 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Tasks (threads and processes). +//! +//! C header: [`include/linux/sched.h`](srctree/include/linux/sched.h). + +use crate::{ + bindings, + ffi::{c_int, c_long, c_uint}, + mm::MmWithUser, + pid_namespace::PidNamespace, + sync::aref::ARef, + types::{NotThreadSafe, Opaque}, +}; +use core::{ + cmp::{Eq, PartialEq}, + ops::Deref, + ptr, +}; + +/// A sentinel value used for infinite timeouts. +pub const MAX_SCHEDULE_TIMEOUT: c_long = c_long::MAX; + +/// Bitmask for tasks that are sleeping in an interruptible state. +pub const TASK_INTERRUPTIBLE: c_int = bindings::TASK_INTERRUPTIBLE as c_int; +/// Bitmask for tasks that are sleeping in an uninterruptible state. +pub const TASK_UNINTERRUPTIBLE: c_int = bindings::TASK_UNINTERRUPTIBLE as c_int; +/// Bitmask for tasks that are sleeping in a freezable state. +pub const TASK_FREEZABLE: c_int = bindings::TASK_FREEZABLE as c_int; +/// Convenience constant for waking up tasks regardless of whether they are in interruptible or +/// uninterruptible sleep. +pub const TASK_NORMAL: c_uint = bindings::TASK_NORMAL as c_uint; + +/// Returns the currently running task. +#[macro_export] +macro_rules! current { + () => { + // SAFETY: This expression creates a temporary value that is dropped at the end of the + // caller's scope. The following mechanisms ensure that the resulting `&CurrentTask` cannot + // leave current task context: + // + // * To return to userspace, the caller must leave the current scope. + // * Operations such as `begin_new_exec()` are necessarily unsafe and the caller of + // `begin_new_exec()` is responsible for safety. + // * Rust abstractions for things such as a `kthread_use_mm()` scope must require the + // closure to be `Send`, so the `NotThreadSafe` field of `CurrentTask` ensures that the + // `&CurrentTask` cannot cross the scope in either direction. + unsafe { &*$crate::task::Task::current() } + }; +} + +/// Wraps the kernel's `struct task_struct`. +/// +/// # Invariants +/// +/// All instances are valid tasks created by the C portion of the kernel. +/// +/// Instances of this type are always refcounted, that is, a call to `get_task_struct` ensures +/// that the allocation remains valid at least until the matching call to `put_task_struct`. +/// +/// # Examples +/// +/// The following is an example of getting the PID of the current thread with zero additional cost +/// when compared to the C version: +/// +/// ``` +/// let pid = current!().pid(); +/// ``` +/// +/// Getting the PID of the current process, also zero additional cost: +/// +/// ``` +/// let pid = current!().group_leader().pid(); +/// ``` +/// +/// Getting the current task and storing it in some struct. The reference count is automatically +/// incremented when creating `State` and decremented when it is dropped: +/// +/// ``` +/// use kernel::{task::Task, sync::aref::ARef}; +/// +/// struct State { +/// creator: ARef<Task>, +/// index: u32, +/// } +/// +/// impl State { +/// fn new() -> Self { +/// Self { +/// creator: ARef::from(&**current!()), +/// index: 0, +/// } +/// } +/// } +/// ``` +#[repr(transparent)] +pub struct Task(pub(crate) Opaque<bindings::task_struct>); + +// SAFETY: By design, the only way to access a `Task` is via the `current` function or via an +// `ARef<Task>` obtained through the `AlwaysRefCounted` impl. This means that the only situation in +// which a `Task` can be accessed mutably is when the refcount drops to zero and the destructor +// runs. It is safe for that to happen on any thread, so it is ok for this type to be `Send`. +unsafe impl Send for Task {} + +// SAFETY: It's OK to access `Task` through shared references from other threads because we're +// either accessing properties that don't change (e.g., `pid`, `group_leader`) or that are properly +// synchronised by C code (e.g., `signal_pending`). +unsafe impl Sync for Task {} + +/// Represents the [`Task`] in the `current` global. +/// +/// This type exists to provide more efficient operations that are only valid on the current task. +/// For example, to retrieve the pid-namespace of a task, you must use rcu protection unless it is +/// the current task. +/// +/// # Invariants +/// +/// Each value of this type must only be accessed from the task context it was created within. +/// +/// Of course, every thread is in a different task context, but for the purposes of this invariant, +/// these operations also permanently leave the task context: +/// +/// * Returning to userspace from system call context. +/// * Calling `release_task()`. +/// * Calling `begin_new_exec()` in a binary format loader. +/// +/// Other operations temporarily create a new sub-context: +/// +/// * Calling `kthread_use_mm()` creates a new context, and `kthread_unuse_mm()` returns to the +/// old context. +/// +/// This means that a `CurrentTask` obtained before a `kthread_use_mm()` call may be used again +/// once `kthread_unuse_mm()` is called, but it must not be used between these two calls. +/// Conversely, a `CurrentTask` obtained between a `kthread_use_mm()`/`kthread_unuse_mm()` pair +/// must not be used after `kthread_unuse_mm()`. +#[repr(transparent)] +pub struct CurrentTask(Task, NotThreadSafe); + +// Make all `Task` methods available on `CurrentTask`. +impl Deref for CurrentTask { + type Target = Task; + #[inline] + fn deref(&self) -> &Task { + &self.0 + } +} + +/// The type of process identifiers (PIDs). +pub type Pid = bindings::pid_t; + +/// The type of user identifiers (UIDs). +#[derive(Copy, Clone)] +pub struct Kuid { + kuid: bindings::kuid_t, +} + +impl Task { + /// Returns a raw pointer to the current task. + /// + /// It is up to the user to use the pointer correctly. + #[inline] + pub fn current_raw() -> *mut bindings::task_struct { + // SAFETY: Getting the current pointer is always safe. + unsafe { bindings::get_current() } + } + + /// Returns a task reference for the currently executing task/thread. + /// + /// The recommended way to get the current task/thread is to use the + /// [`current`] macro because it is safe. + /// + /// # Safety + /// + /// Callers must ensure that the returned object is only used to access a [`CurrentTask`] + /// within the task context that was active when this function was called. For more details, + /// see the invariants section for [`CurrentTask`]. + #[inline] + pub unsafe fn current() -> impl Deref<Target = CurrentTask> { + struct TaskRef { + task: *const CurrentTask, + } + + impl Deref for TaskRef { + type Target = CurrentTask; + + fn deref(&self) -> &Self::Target { + // SAFETY: The returned reference borrows from this `TaskRef`, so it cannot outlive + // the `TaskRef`, which the caller of `Task::current()` has promised will not + // outlive the task/thread for which `self.task` is the `current` pointer. Thus, it + // is okay to return a `CurrentTask` reference here. + unsafe { &*self.task } + } + } + + TaskRef { + // CAST: The layout of `struct task_struct` and `CurrentTask` is identical. + task: Task::current_raw().cast(), + } + } + + /// Returns a raw pointer to the task. + #[inline] + pub fn as_ptr(&self) -> *mut bindings::task_struct { + self.0.get() + } + + /// Returns the group leader of the given task. + pub fn group_leader(&self) -> &Task { + // SAFETY: The group leader of a task never changes after initialization, so reading this + // field is not a data race. + let ptr = unsafe { *ptr::addr_of!((*self.as_ptr()).group_leader) }; + + // SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`, + // and given that a task has a reference to its group leader, we know it must be valid for + // the lifetime of the returned task reference. + unsafe { &*ptr.cast() } + } + + /// Returns the PID of the given task. + pub fn pid(&self) -> Pid { + // SAFETY: The pid of a task never changes after initialization, so reading this field is + // not a data race. + unsafe { *ptr::addr_of!((*self.as_ptr()).pid) } + } + + /// Returns the UID of the given task. + #[inline] + pub fn uid(&self) -> Kuid { + // SAFETY: It's always safe to call `task_uid` on a valid task. + Kuid::from_raw(unsafe { bindings::task_uid(self.as_ptr()) }) + } + + /// Returns the effective UID of the given task. + #[inline] + pub fn euid(&self) -> Kuid { + // SAFETY: It's always safe to call `task_euid` on a valid task. + Kuid::from_raw(unsafe { bindings::task_euid(self.as_ptr()) }) + } + + /// Determines whether the given task has pending signals. + #[inline] + pub fn signal_pending(&self) -> bool { + // SAFETY: It's always safe to call `signal_pending` on a valid task. + unsafe { bindings::signal_pending(self.as_ptr()) != 0 } + } + + /// Returns task's pid namespace with elevated reference count + #[inline] + pub fn get_pid_ns(&self) -> Option<ARef<PidNamespace>> { + // SAFETY: By the type invariant, we know that `self.0` is valid. + let ptr = unsafe { bindings::task_get_pid_ns(self.as_ptr()) }; + if ptr.is_null() { + None + } else { + // SAFETY: `ptr` is valid by the safety requirements of this function. And we own a + // reference count via `task_get_pid_ns()`. + // CAST: `Self` is a `repr(transparent)` wrapper around `bindings::pid_namespace`. + Some(unsafe { ARef::from_raw(ptr::NonNull::new_unchecked(ptr.cast::<PidNamespace>())) }) + } + } + + /// Returns the given task's pid in the provided pid namespace. + #[doc(alias = "task_tgid_nr_ns")] + #[inline] + pub fn tgid_nr_ns(&self, pidns: Option<&PidNamespace>) -> Pid { + let pidns = match pidns { + Some(pidns) => pidns.as_ptr(), + None => core::ptr::null_mut(), + }; + // SAFETY: By the type invariant, we know that `self.0` is valid. We received a valid + // PidNamespace that we can use as a pointer or we received an empty PidNamespace and + // thus pass a null pointer. The underlying C function is safe to be used with NULL + // pointers. + unsafe { bindings::task_tgid_nr_ns(self.as_ptr(), pidns) } + } + + /// Wakes up the task. + #[inline] + pub fn wake_up(&self) { + // SAFETY: It's always safe to call `wake_up_process` on a valid task, even if the task + // running. + unsafe { bindings::wake_up_process(self.as_ptr()) }; + } +} + +impl CurrentTask { + /// Access the address space of the current task. + /// + /// This function does not touch the refcount of the mm. + #[inline] + pub fn mm(&self) -> Option<&MmWithUser> { + // SAFETY: The `mm` field of `current` is not modified from other threads, so reading it is + // not a data race. + let mm = unsafe { (*self.as_ptr()).mm }; + + if mm.is_null() { + return None; + } + + // SAFETY: If `current->mm` is non-null, then it references a valid mm with a non-zero + // value of `mm_users`. Furthermore, the returned `&MmWithUser` borrows from this + // `CurrentTask`, so it cannot escape the scope in which the current pointer was obtained. + // + // This is safe even if `kthread_use_mm()`/`kthread_unuse_mm()` are used. There are two + // relevant cases: + // * If the `&CurrentTask` was created before `kthread_use_mm()`, then it cannot be + // accessed during the `kthread_use_mm()`/`kthread_unuse_mm()` scope due to the + // `NotThreadSafe` field of `CurrentTask`. + // * If the `&CurrentTask` was created within a `kthread_use_mm()`/`kthread_unuse_mm()` + // scope, then the `&CurrentTask` cannot escape that scope, so the returned `&MmWithUser` + // also cannot escape that scope. + // In either case, it's not possible to read `current->mm` and keep using it after the + // scope is ended with `kthread_unuse_mm()`. + Some(unsafe { MmWithUser::from_raw(mm) }) + } + + /// Access the pid namespace of the current task. + /// + /// This function does not touch the refcount of the namespace or use RCU protection. + /// + /// To access the pid namespace of another task, see [`Task::get_pid_ns`]. + #[doc(alias = "task_active_pid_ns")] + #[inline] + pub fn active_pid_ns(&self) -> Option<&PidNamespace> { + // SAFETY: It is safe to call `task_active_pid_ns` without RCU protection when calling it + // on the current task. + let active_ns = unsafe { bindings::task_active_pid_ns(self.as_ptr()) }; + + if active_ns.is_null() { + return None; + } + + // The lifetime of `PidNamespace` is bound to `Task` and `struct pid`. + // + // The `PidNamespace` of a `Task` doesn't ever change once the `Task` is alive. + // + // From system call context retrieving the `PidNamespace` for the current task is always + // safe and requires neither RCU locking nor a reference count to be held. Retrieving the + // `PidNamespace` after `release_task()` for current will return `NULL` but no codepath + // like that is exposed to Rust. + // + // SAFETY: If `current`'s pid ns is non-null, then it references a valid pid ns. + // Furthermore, the returned `&PidNamespace` borrows from this `CurrentTask`, so it cannot + // escape the scope in which the current pointer was obtained, e.g. it cannot live past a + // `release_task()` call. + Some(unsafe { PidNamespace::from_ptr(active_ns) }) + } +} + +// SAFETY: The type invariants guarantee that `Task` is always refcounted. +unsafe impl crate::sync::aref::AlwaysRefCounted for Task { + #[inline] + fn inc_ref(&self) { + // SAFETY: The existence of a shared reference means that the refcount is nonzero. + unsafe { bindings::get_task_struct(self.as_ptr()) }; + } + + #[inline] + unsafe fn dec_ref(obj: ptr::NonNull<Self>) { + // SAFETY: The safety requirements guarantee that the refcount is nonzero. + unsafe { bindings::put_task_struct(obj.cast().as_ptr()) } + } +} + +impl Kuid { + /// Get the current euid. + #[inline] + pub fn current_euid() -> Kuid { + // SAFETY: Just an FFI call. + Self::from_raw(unsafe { bindings::current_euid() }) + } + + /// Create a `Kuid` given the raw C type. + #[inline] + pub fn from_raw(kuid: bindings::kuid_t) -> Self { + Self { kuid } + } + + /// Turn this kuid into the raw C type. + #[inline] + pub fn into_raw(self) -> bindings::kuid_t { + self.kuid + } + + /// Converts this kernel UID into a userspace UID. + /// + /// Uses the namespace of the current task. + #[inline] + pub fn into_uid_in_current_ns(self) -> bindings::uid_t { + // SAFETY: Just an FFI call. + unsafe { bindings::from_kuid(bindings::current_user_ns(), self.kuid) } + } +} + +impl PartialEq for Kuid { + #[inline] + fn eq(&self, other: &Kuid) -> bool { + // SAFETY: Just an FFI call. + unsafe { bindings::uid_eq(self.kuid, other.kuid) } + } +} + +impl Eq for Kuid {} + +/// Annotation for functions that can sleep. +/// +/// Equivalent to the C side [`might_sleep()`], this function serves as +/// a debugging aid and a potential scheduling point. +/// +/// This function can only be used in a nonatomic context. +/// +/// [`might_sleep()`]: https://docs.kernel.org/driver-api/basics.html#c.might_sleep +#[track_caller] +#[inline] +pub fn might_sleep() { + #[cfg(CONFIG_DEBUG_ATOMIC_SLEEP)] + { + let loc = core::panic::Location::caller(); + let file = kernel::file_from_location(loc); + + // SAFETY: `file.as_ptr()` is valid for reading and guaranteed to be nul-terminated. + unsafe { crate::bindings::__might_sleep(file.as_ptr().cast(), loc.line() as i32) } + } + + // SAFETY: Always safe to call. + unsafe { crate::bindings::might_resched() } +} |
