diff options
Diffstat (limited to 'rust/kernel/time')
| -rw-r--r-- | rust/kernel/time/delay.rs | 86 | ||||
| -rw-r--r-- | rust/kernel/time/hrtimer.rs | 784 | ||||
| -rw-r--r-- | rust/kernel/time/hrtimer/arc.rs | 111 | ||||
| -rw-r--r-- | rust/kernel/time/hrtimer/pin.rs | 115 | ||||
| -rw-r--r-- | rust/kernel/time/hrtimer/pin_mut.rs | 118 | ||||
| -rw-r--r-- | rust/kernel/time/hrtimer/tbox.rs | 131 |
6 files changed, 1345 insertions, 0 deletions
diff --git a/rust/kernel/time/delay.rs b/rust/kernel/time/delay.rs new file mode 100644 index 000000000000..b5b1b42797a0 --- /dev/null +++ b/rust/kernel/time/delay.rs @@ -0,0 +1,86 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Delay and sleep primitives. +//! +//! This module contains the kernel APIs related to delay and sleep that +//! have been ported or wrapped for usage by Rust code in the kernel. +//! +//! C header: [`include/linux/delay.h`](srctree/include/linux/delay.h). + +use super::Delta; +use crate::prelude::*; + +/// Sleeps for a given duration at least. +/// +/// Equivalent to the C side [`fsleep()`], flexible sleep function, +/// which automatically chooses the best sleep method based on a duration. +/// +/// `delta` must be within `[0, i32::MAX]` microseconds; +/// otherwise, it is erroneous behavior. That is, it is considered a bug +/// to call this function with an out-of-range value, in which case the function +/// will sleep for at least the maximum value in the range and may warn +/// in the future. +/// +/// The behavior above differs from the C side [`fsleep()`] for which out-of-range +/// values mean "infinite timeout" instead. +/// +/// This function can only be used in a nonatomic context. +/// +/// [`fsleep()`]: https://docs.kernel.org/timers/delay_sleep_functions.html#c.fsleep +pub fn fsleep(delta: Delta) { + // The maximum value is set to `i32::MAX` microseconds to prevent integer + // overflow inside fsleep, which could lead to unintentional infinite sleep. + const MAX_DELTA: Delta = Delta::from_micros(i32::MAX as i64); + + let delta = if (Delta::ZERO..=MAX_DELTA).contains(&delta) { + delta + } else { + // TODO: Add WARN_ONCE() when it's supported. + MAX_DELTA + }; + + // SAFETY: It is always safe to call `fsleep()` with any duration. + unsafe { + // Convert the duration to microseconds and round up to preserve + // the guarantee; `fsleep()` sleeps for at least the provided duration, + // but that it may sleep for longer under some circumstances. + bindings::fsleep(delta.as_micros_ceil() as c_ulong) + } +} + +/// Inserts a delay based on microseconds with busy waiting. +/// +/// Equivalent to the C side [`udelay()`], which delays in microseconds. +/// +/// `delta` must be within `[0, MAX_UDELAY_MS]` in milliseconds; +/// otherwise, it is erroneous behavior. That is, it is considered a bug to +/// call this function with an out-of-range value. +/// +/// The behavior above differs from the C side [`udelay()`] for which out-of-range +/// values could lead to an overflow and unexpected behavior. +/// +/// [`udelay()`]: https://docs.kernel.org/timers/delay_sleep_functions.html#c.udelay +pub fn udelay(delta: Delta) { + const MAX_UDELAY_DELTA: Delta = Delta::from_millis(bindings::MAX_UDELAY_MS as i64); + + debug_assert!(delta.as_nanos() >= 0); + debug_assert!(delta <= MAX_UDELAY_DELTA); + + let delta = if (Delta::ZERO..=MAX_UDELAY_DELTA).contains(&delta) { + delta + } else { + MAX_UDELAY_DELTA + }; + + // SAFETY: It is always safe to call `udelay()` with any duration. + // Note that the kernel is compiled with `-fno-strict-overflow` + // so any out-of-range value could lead to unexpected behavior + // but won't lead to undefined behavior. + unsafe { + // Convert the duration to microseconds and round up to preserve + // the guarantee; `udelay()` inserts a delay for at least + // the provided duration, but that it may delay for longer + // under some circumstances. + bindings::udelay(delta.as_micros_ceil() as c_ulong) + } +} diff --git a/rust/kernel/time/hrtimer.rs b/rust/kernel/time/hrtimer.rs new file mode 100644 index 000000000000..856d2d929a00 --- /dev/null +++ b/rust/kernel/time/hrtimer.rs @@ -0,0 +1,784 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Intrusive high resolution timers. +//! +//! Allows running timer callbacks without doing allocations at the time of +//! starting the timer. For now, only one timer per type is allowed. +//! +//! # Vocabulary +//! +//! States: +//! +//! - Stopped: initialized but not started, or cancelled, or not restarted. +//! - Started: initialized and started or restarted. +//! - Running: executing the callback. +//! +//! Operations: +//! +//! * Start +//! * Cancel +//! * Restart +//! +//! Events: +//! +//! * Expire +//! +//! ## State Diagram +//! +//! ```text +//! Return NoRestart +//! +---------------------------------------------------------------------+ +//! | | +//! | | +//! | | +//! | Return Restart | +//! | +------------------------+ | +//! | | | | +//! | | | | +//! v v | | +//! +-----------------+ Start +------------------+ +--------+-----+--+ +//! | +---------------->| | | | +//! Init | | | | Expire | | +//! --------->| Stopped | | Started +---------->| Running | +//! | | Cancel | | | | +//! | |<----------------+ | | | +//! +-----------------+ +---------------+--+ +-----------------+ +//! ^ | +//! | | +//! +---------+ +//! Restart +//! ``` +//! +//! +//! A timer is initialized in the **stopped** state. A stopped timer can be +//! **started** by the `start` operation, with an **expiry** time. After the +//! `start` operation, the timer is in the **started** state. When the timer +//! **expires**, the timer enters the **running** state and the handler is +//! executed. After the handler has returned, the timer may enter the +//! **started* or **stopped** state, depending on the return value of the +//! handler. A timer in the **started** or **running** state may be **canceled** +//! by the `cancel` operation. A timer that is cancelled enters the **stopped** +//! state. +//! +//! A `cancel` or `restart` operation on a timer in the **running** state takes +//! effect after the handler has returned and the timer has transitioned +//! out of the **running** state. +//! +//! A `restart` operation on a timer in the **stopped** state is equivalent to a +//! `start` operation. + +use super::{ClockSource, Delta, Instant}; +use crate::{prelude::*, types::Opaque}; +use core::{marker::PhantomData, ptr::NonNull}; +use pin_init::PinInit; + +/// A type-alias to refer to the [`Instant<C>`] for a given `T` from [`HrTimer<T>`]. +/// +/// Where `C` is the [`ClockSource`] of the [`HrTimer`]. +pub type HrTimerInstant<T> = Instant<<<T as HasHrTimer<T>>::TimerMode as HrTimerMode>::Clock>; + +/// A timer backed by a C `struct hrtimer`. +/// +/// # Invariants +/// +/// * `self.timer` is initialized by `bindings::hrtimer_setup`. +#[pin_data] +#[repr(C)] +pub struct HrTimer<T> { + #[pin] + timer: Opaque<bindings::hrtimer>, + _t: PhantomData<T>, +} + +// SAFETY: Ownership of an `HrTimer` can be moved to other threads and +// used/dropped from there. +unsafe impl<T> Send for HrTimer<T> {} + +// SAFETY: Timer operations are locked on the C side, so it is safe to operate +// on a timer from multiple threads. +unsafe impl<T> Sync for HrTimer<T> {} + +impl<T> HrTimer<T> { + /// Return an initializer for a new timer instance. + pub fn new() -> impl PinInit<Self> + where + T: HrTimerCallback, + T: HasHrTimer<T>, + { + pin_init!(Self { + // INVARIANT: We initialize `timer` with `hrtimer_setup` below. + timer <- Opaque::ffi_init(move |place: *mut bindings::hrtimer| { + // SAFETY: By design of `pin_init!`, `place` is a pointer to a + // live allocation. hrtimer_setup will initialize `place` and + // does not require `place` to be initialized prior to the call. + unsafe { + bindings::hrtimer_setup( + place, + Some(T::Pointer::run), + <<T as HasHrTimer<T>>::TimerMode as HrTimerMode>::Clock::ID, + <T as HasHrTimer<T>>::TimerMode::C_MODE, + ); + } + }), + _t: PhantomData, + }) + } + + /// Get a pointer to the contained `bindings::hrtimer`. + /// + /// This function is useful to get access to the value without creating + /// intermediate references. + /// + /// # Safety + /// + /// `this` must point to a live allocation of at least the size of `Self`. + unsafe fn raw_get(this: *const Self) -> *mut bindings::hrtimer { + // SAFETY: The field projection to `timer` does not go out of bounds, + // because the caller of this function promises that `this` points to an + // allocation of at least the size of `Self`. + unsafe { Opaque::cast_into(core::ptr::addr_of!((*this).timer)) } + } + + /// Cancel an initialized and potentially running timer. + /// + /// If the timer handler is running, this function will block until the + /// handler returns. + /// + /// Note that the timer might be started by a concurrent start operation. If + /// so, the timer might not be in the **stopped** state when this function + /// returns. + /// + /// Users of the `HrTimer` API would not usually call this method directly. + /// Instead they would use the safe [`HrTimerHandle::cancel`] on the handle + /// returned when the timer was started. + /// + /// This function is useful to get access to the value without creating + /// intermediate references. + /// + /// # Safety + /// + /// `this` must point to a valid `Self`. + pub(crate) unsafe fn raw_cancel(this: *const Self) -> bool { + // SAFETY: `this` points to an allocation of at least `HrTimer` size. + let c_timer_ptr = unsafe { HrTimer::raw_get(this) }; + + // If the handler is running, this will wait for the handler to return + // before returning. + // SAFETY: `c_timer_ptr` is initialized and valid. Synchronization is + // handled on the C side. + unsafe { bindings::hrtimer_cancel(c_timer_ptr) != 0 } + } + + /// Forward the timer expiry for a given timer pointer. + /// + /// # Safety + /// + /// - `self_ptr` must point to a valid `Self`. + /// - The caller must either have exclusive access to the data pointed at by `self_ptr`, or be + /// within the context of the timer callback. + #[inline] + unsafe fn raw_forward(self_ptr: *mut Self, now: HrTimerInstant<T>, interval: Delta) -> u64 + where + T: HasHrTimer<T>, + { + // SAFETY: + // * The C API requirements for this function are fulfilled by our safety contract. + // * `self_ptr` is guaranteed to point to a valid `Self` via our safety contract + unsafe { + bindings::hrtimer_forward(Self::raw_get(self_ptr), now.as_nanos(), interval.as_nanos()) + } + } + + /// Conditionally forward the timer. + /// + /// If the timer expires after `now`, this function does nothing and returns 0. If the timer + /// expired at or before `now`, this function forwards the timer by `interval` until the timer + /// expires after `now` and then returns the number of times the timer was forwarded by + /// `interval`. + /// + /// This function is mainly useful for timer types which can provide exclusive access to the + /// timer when the timer is not running. For forwarding the timer from within the timer callback + /// context, see [`HrTimerCallbackContext::forward()`]. + /// + /// Returns the number of overruns that occurred as a result of the timer expiry change. + pub fn forward(self: Pin<&mut Self>, now: HrTimerInstant<T>, interval: Delta) -> u64 + where + T: HasHrTimer<T>, + { + // SAFETY: `raw_forward` does not move `Self` + let this = unsafe { self.get_unchecked_mut() }; + + // SAFETY: By existence of `Pin<&mut Self>`, the pointer passed to `raw_forward` points to a + // valid `Self` that we have exclusive access to. + unsafe { Self::raw_forward(this, now, interval) } + } + + /// Conditionally forward the timer. + /// + /// This is a variant of [`forward()`](Self::forward) that uses an interval after the current + /// time of the base clock for the [`HrTimer`]. + pub fn forward_now(self: Pin<&mut Self>, interval: Delta) -> u64 + where + T: HasHrTimer<T>, + { + self.forward(HrTimerInstant::<T>::now(), interval) + } + + /// Return the time expiry for this [`HrTimer`]. + /// + /// This value should only be used as a snapshot, as the actual expiry time could change after + /// this function is called. + pub fn expires(&self) -> HrTimerInstant<T> + where + T: HasHrTimer<T>, + { + // SAFETY: `self` is an immutable reference and thus always points to a valid `HrTimer`. + let c_timer_ptr = unsafe { HrTimer::raw_get(self) }; + + // SAFETY: + // - Timers cannot have negative ktime_t values as their expiration time. + // - There's no actual locking here, a racy read is fine and expected + unsafe { + Instant::from_ktime( + // This `read_volatile` is intended to correspond to a READ_ONCE call. + // FIXME(read_once): Replace with `read_once` when available on the Rust side. + core::ptr::read_volatile(&raw const ((*c_timer_ptr).node.expires)), + ) + } + } +} + +/// Implemented by pointer types that point to structs that contain a [`HrTimer`]. +/// +/// `Self` must be [`Sync`] because it is passed to timer callbacks in another +/// thread of execution (hard or soft interrupt context). +/// +/// Starting a timer returns a [`HrTimerHandle`] that can be used to manipulate +/// the timer. Note that it is OK to call the start function repeatedly, and +/// that more than one [`HrTimerHandle`] associated with a [`HrTimerPointer`] may +/// exist. A timer can be manipulated through any of the handles, and a handle +/// may represent a cancelled timer. +pub trait HrTimerPointer: Sync + Sized { + /// The operational mode associated with this timer. + /// + /// This defines how the expiration value is interpreted. + type TimerMode: HrTimerMode; + + /// A handle representing a started or restarted timer. + /// + /// If the timer is running or if the timer callback is executing when the + /// handle is dropped, the drop method of [`HrTimerHandle`] should not return + /// until the timer is stopped and the callback has completed. + /// + /// Note: When implementing this trait, consider that it is not unsafe to + /// leak the handle. + type TimerHandle: HrTimerHandle; + + /// Start the timer with expiry after `expires` time units. If the timer was + /// already running, it is restarted with the new expiry time. + fn start(self, expires: <Self::TimerMode as HrTimerMode>::Expires) -> Self::TimerHandle; +} + +/// Unsafe version of [`HrTimerPointer`] for situations where leaking the +/// [`HrTimerHandle`] returned by `start` would be unsound. This is the case for +/// stack allocated timers. +/// +/// Typical implementers are pinned references such as [`Pin<&T>`]. +/// +/// # Safety +/// +/// Implementers of this trait must ensure that instances of types implementing +/// [`UnsafeHrTimerPointer`] outlives any associated [`HrTimerPointer::TimerHandle`] +/// instances. +pub unsafe trait UnsafeHrTimerPointer: Sync + Sized { + /// The operational mode associated with this timer. + /// + /// This defines how the expiration value is interpreted. + type TimerMode: HrTimerMode; + + /// A handle representing a running timer. + /// + /// # Safety + /// + /// If the timer is running, or if the timer callback is executing when the + /// handle is dropped, the drop method of [`Self::TimerHandle`] must not return + /// until the timer is stopped and the callback has completed. + type TimerHandle: HrTimerHandle; + + /// Start the timer after `expires` time units. If the timer was already + /// running, it is restarted at the new expiry time. + /// + /// # Safety + /// + /// Caller promises keep the timer structure alive until the timer is dead. + /// Caller can ensure this by not leaking the returned [`Self::TimerHandle`]. + unsafe fn start(self, expires: <Self::TimerMode as HrTimerMode>::Expires) -> Self::TimerHandle; +} + +/// A trait for stack allocated timers. +/// +/// # Safety +/// +/// Implementers must ensure that `start_scoped` does not return until the +/// timer is dead and the timer handler is not running. +pub unsafe trait ScopedHrTimerPointer { + /// The operational mode associated with this timer. + /// + /// This defines how the expiration value is interpreted. + type TimerMode: HrTimerMode; + + /// Start the timer to run after `expires` time units and immediately + /// after call `f`. When `f` returns, the timer is cancelled. + fn start_scoped<T, F>(self, expires: <Self::TimerMode as HrTimerMode>::Expires, f: F) -> T + where + F: FnOnce() -> T; +} + +// SAFETY: By the safety requirement of [`UnsafeHrTimerPointer`], dropping the +// handle returned by [`UnsafeHrTimerPointer::start`] ensures that the timer is +// killed. +unsafe impl<T> ScopedHrTimerPointer for T +where + T: UnsafeHrTimerPointer, +{ + type TimerMode = T::TimerMode; + + fn start_scoped<U, F>( + self, + expires: <<T as UnsafeHrTimerPointer>::TimerMode as HrTimerMode>::Expires, + f: F, + ) -> U + where + F: FnOnce() -> U, + { + // SAFETY: We drop the timer handle below before returning. + let handle = unsafe { UnsafeHrTimerPointer::start(self, expires) }; + let t = f(); + drop(handle); + t + } +} + +/// Implemented by [`HrTimerPointer`] implementers to give the C timer callback a +/// function to call. +// This is split from `HrTimerPointer` to make it easier to specify trait bounds. +pub trait RawHrTimerCallback { + /// Type of the parameter passed to [`HrTimerCallback::run`]. It may be + /// [`Self`], or a pointer type derived from [`Self`]. + type CallbackTarget<'a>; + + /// Callback to be called from C when timer fires. + /// + /// # Safety + /// + /// Only to be called by C code in the `hrtimer` subsystem. `this` must point + /// to the `bindings::hrtimer` structure that was used to start the timer. + unsafe extern "C" fn run(this: *mut bindings::hrtimer) -> bindings::hrtimer_restart; +} + +/// Implemented by structs that can be the target of a timer callback. +pub trait HrTimerCallback { + /// The type whose [`RawHrTimerCallback::run`] method will be invoked when + /// the timer expires. + type Pointer<'a>: RawHrTimerCallback; + + /// Called by the timer logic when the timer fires. + fn run( + this: <Self::Pointer<'_> as RawHrTimerCallback>::CallbackTarget<'_>, + ctx: HrTimerCallbackContext<'_, Self>, + ) -> HrTimerRestart + where + Self: Sized, + Self: HasHrTimer<Self>; +} + +/// A handle representing a potentially running timer. +/// +/// More than one handle representing the same timer might exist. +/// +/// # Safety +/// +/// When dropped, the timer represented by this handle must be cancelled, if it +/// is running. If the timer handler is running when the handle is dropped, the +/// drop method must wait for the handler to return before returning. +/// +/// Note: One way to satisfy the safety requirement is to call `Self::cancel` in +/// the drop implementation for `Self.` +pub unsafe trait HrTimerHandle { + /// Cancel the timer. If the timer is in the running state, block till the + /// handler has returned. + /// + /// Note that the timer might be started by a concurrent start operation. If + /// so, the timer might not be in the **stopped** state when this function + /// returns. + /// + /// Returns `true` if the timer was running. + fn cancel(&mut self) -> bool; +} + +/// Implemented by structs that contain timer nodes. +/// +/// Clients of the timer API would usually safely implement this trait by using +/// the [`crate::impl_has_hr_timer`] macro. +/// +/// # Safety +/// +/// Implementers of this trait must ensure that the implementer has a +/// [`HrTimer`] field and that all trait methods are implemented according to +/// their documentation. All the methods of this trait must operate on the same +/// field. +pub unsafe trait HasHrTimer<T> { + /// The operational mode associated with this timer. + /// + /// This defines how the expiration value is interpreted. + type TimerMode: HrTimerMode; + + /// Return a pointer to the [`HrTimer`] within `Self`. + /// + /// This function is useful to get access to the value without creating + /// intermediate references. + /// + /// # Safety + /// + /// `this` must be a valid pointer. + unsafe fn raw_get_timer(this: *const Self) -> *const HrTimer<T>; + + /// Return a pointer to the struct that is containing the [`HrTimer`] pointed + /// to by `ptr`. + /// + /// This function is useful to get access to the value without creating + /// intermediate references. + /// + /// # Safety + /// + /// `ptr` must point to a [`HrTimer<T>`] field in a struct of type `Self`. + unsafe fn timer_container_of(ptr: *mut HrTimer<T>) -> *mut Self + where + Self: Sized; + + /// Get pointer to the contained `bindings::hrtimer` struct. + /// + /// This function is useful to get access to the value without creating + /// intermediate references. + /// + /// # Safety + /// + /// `this` must be a valid pointer. + unsafe fn c_timer_ptr(this: *const Self) -> *const bindings::hrtimer { + // SAFETY: `this` is a valid pointer to a `Self`. + let timer_ptr = unsafe { Self::raw_get_timer(this) }; + + // SAFETY: timer_ptr points to an allocation of at least `HrTimer` size. + unsafe { HrTimer::raw_get(timer_ptr) } + } + + /// Start the timer contained in the `Self` pointed to by `self_ptr`. If + /// it is already running it is removed and inserted. + /// + /// # Safety + /// + /// - `this` must point to a valid `Self`. + /// - Caller must ensure that the pointee of `this` lives until the timer + /// fires or is canceled. + unsafe fn start(this: *const Self, expires: <Self::TimerMode as HrTimerMode>::Expires) { + // SAFETY: By function safety requirement, `this` is a valid `Self`. + unsafe { + bindings::hrtimer_start_range_ns( + Self::c_timer_ptr(this).cast_mut(), + expires.as_nanos(), + 0, + <Self::TimerMode as HrTimerMode>::C_MODE, + ); + } + } +} + +/// Restart policy for timers. +#[derive(Copy, Clone, PartialEq, Eq, Debug)] +#[repr(u32)] +pub enum HrTimerRestart { + /// Timer should not be restarted. + NoRestart = bindings::hrtimer_restart_HRTIMER_NORESTART, + /// Timer should be restarted. + Restart = bindings::hrtimer_restart_HRTIMER_RESTART, +} + +impl HrTimerRestart { + fn into_c(self) -> bindings::hrtimer_restart { + self as bindings::hrtimer_restart + } +} + +/// Time representations that can be used as expiration values in [`HrTimer`]. +pub trait HrTimerExpires { + /// Converts the expiration time into a nanosecond representation. + /// + /// This value corresponds to a raw ktime_t value, suitable for passing to kernel + /// timer functions. The interpretation (absolute vs relative) depends on the + /// associated [HrTimerMode] in use. + fn as_nanos(&self) -> i64; +} + +impl<C: ClockSource> HrTimerExpires for Instant<C> { + #[inline] + fn as_nanos(&self) -> i64 { + Instant::<C>::as_nanos(self) + } +} + +impl HrTimerExpires for Delta { + #[inline] + fn as_nanos(&self) -> i64 { + Delta::as_nanos(*self) + } +} + +mod private { + use crate::time::ClockSource; + + pub trait Sealed {} + + impl<C: ClockSource> Sealed for super::AbsoluteMode<C> {} + impl<C: ClockSource> Sealed for super::RelativeMode<C> {} + impl<C: ClockSource> Sealed for super::AbsolutePinnedMode<C> {} + impl<C: ClockSource> Sealed for super::RelativePinnedMode<C> {} + impl<C: ClockSource> Sealed for super::AbsoluteSoftMode<C> {} + impl<C: ClockSource> Sealed for super::RelativeSoftMode<C> {} + impl<C: ClockSource> Sealed for super::AbsolutePinnedSoftMode<C> {} + impl<C: ClockSource> Sealed for super::RelativePinnedSoftMode<C> {} + impl<C: ClockSource> Sealed for super::AbsoluteHardMode<C> {} + impl<C: ClockSource> Sealed for super::RelativeHardMode<C> {} + impl<C: ClockSource> Sealed for super::AbsolutePinnedHardMode<C> {} + impl<C: ClockSource> Sealed for super::RelativePinnedHardMode<C> {} +} + +/// Operational mode of [`HrTimer`]. +pub trait HrTimerMode: private::Sealed { + /// The C representation of hrtimer mode. + const C_MODE: bindings::hrtimer_mode; + + /// Type representing the clock source. + type Clock: ClockSource; + + /// Type representing the expiration specification (absolute or relative time). + type Expires: HrTimerExpires; +} + +/// Timer that expires at a fixed point in time. +pub struct AbsoluteMode<C: ClockSource>(PhantomData<C>); + +impl<C: ClockSource> HrTimerMode for AbsoluteMode<C> { + const C_MODE: bindings::hrtimer_mode = bindings::hrtimer_mode_HRTIMER_MODE_ABS; + + type Clock = C; + type Expires = Instant<C>; +} + +/// Timer that expires after a delay from now. +pub struct RelativeMode<C: ClockSource>(PhantomData<C>); + +impl<C: ClockSource> HrTimerMode for RelativeMode<C> { + const C_MODE: bindings::hrtimer_mode = bindings::hrtimer_mode_HRTIMER_MODE_REL; + + type Clock = C; + type Expires = Delta; +} + +/// Timer with absolute expiration time, pinned to its current CPU. +pub struct AbsolutePinnedMode<C: ClockSource>(PhantomData<C>); +impl<C: ClockSource> HrTimerMode for AbsolutePinnedMode<C> { + const C_MODE: bindings::hrtimer_mode = bindings::hrtimer_mode_HRTIMER_MODE_ABS_PINNED; + + type Clock = C; + type Expires = Instant<C>; +} + +/// Timer with relative expiration time, pinned to its current CPU. +pub struct RelativePinnedMode<C: ClockSource>(PhantomData<C>); +impl<C: ClockSource> HrTimerMode for RelativePinnedMode<C> { + const C_MODE: bindings::hrtimer_mode = bindings::hrtimer_mode_HRTIMER_MODE_REL_PINNED; + + type Clock = C; + type Expires = Delta; +} + +/// Timer with absolute expiration, handled in soft irq context. +pub struct AbsoluteSoftMode<C: ClockSource>(PhantomData<C>); +impl<C: ClockSource> HrTimerMode for AbsoluteSoftMode<C> { + const C_MODE: bindings::hrtimer_mode = bindings::hrtimer_mode_HRTIMER_MODE_ABS_SOFT; + + type Clock = C; + type Expires = Instant<C>; +} + +/// Timer with relative expiration, handled in soft irq context. +pub struct RelativeSoftMode<C: ClockSource>(PhantomData<C>); +impl<C: ClockSource> HrTimerMode for RelativeSoftMode<C> { + const C_MODE: bindings::hrtimer_mode = bindings::hrtimer_mode_HRTIMER_MODE_REL_SOFT; + + type Clock = C; + type Expires = Delta; +} + +/// Timer with absolute expiration, pinned to CPU and handled in soft irq context. +pub struct AbsolutePinnedSoftMode<C: ClockSource>(PhantomData<C>); +impl<C: ClockSource> HrTimerMode for AbsolutePinnedSoftMode<C> { + const C_MODE: bindings::hrtimer_mode = bindings::hrtimer_mode_HRTIMER_MODE_ABS_PINNED_SOFT; + + type Clock = C; + type Expires = Instant<C>; +} + +/// Timer with absolute expiration, pinned to CPU and handled in soft irq context. +pub struct RelativePinnedSoftMode<C: ClockSource>(PhantomData<C>); +impl<C: ClockSource> HrTimerMode for RelativePinnedSoftMode<C> { + const C_MODE: bindings::hrtimer_mode = bindings::hrtimer_mode_HRTIMER_MODE_REL_PINNED_SOFT; + + type Clock = C; + type Expires = Delta; +} + +/// Timer with absolute expiration, handled in hard irq context. +pub struct AbsoluteHardMode<C: ClockSource>(PhantomData<C>); +impl<C: ClockSource> HrTimerMode for AbsoluteHardMode<C> { + const C_MODE: bindings::hrtimer_mode = bindings::hrtimer_mode_HRTIMER_MODE_ABS_HARD; + + type Clock = C; + type Expires = Instant<C>; +} + +/// Timer with relative expiration, handled in hard irq context. +pub struct RelativeHardMode<C: ClockSource>(PhantomData<C>); +impl<C: ClockSource> HrTimerMode for RelativeHardMode<C> { + const C_MODE: bindings::hrtimer_mode = bindings::hrtimer_mode_HRTIMER_MODE_REL_HARD; + + type Clock = C; + type Expires = Delta; +} + +/// Timer with absolute expiration, pinned to CPU and handled in hard irq context. +pub struct AbsolutePinnedHardMode<C: ClockSource>(PhantomData<C>); +impl<C: ClockSource> HrTimerMode for AbsolutePinnedHardMode<C> { + const C_MODE: bindings::hrtimer_mode = bindings::hrtimer_mode_HRTIMER_MODE_ABS_PINNED_HARD; + + type Clock = C; + type Expires = Instant<C>; +} + +/// Timer with relative expiration, pinned to CPU and handled in hard irq context. +pub struct RelativePinnedHardMode<C: ClockSource>(PhantomData<C>); +impl<C: ClockSource> HrTimerMode for RelativePinnedHardMode<C> { + const C_MODE: bindings::hrtimer_mode = bindings::hrtimer_mode_HRTIMER_MODE_REL_PINNED_HARD; + + type Clock = C; + type Expires = Delta; +} + +/// Privileged smart-pointer for a [`HrTimer`] callback context. +/// +/// Many [`HrTimer`] methods can only be called in two situations: +/// +/// * When the caller has exclusive access to the `HrTimer` and the `HrTimer` is guaranteed not to +/// be running. +/// * From within the context of an `HrTimer`'s callback method. +/// +/// This type provides access to said methods from within a timer callback context. +/// +/// # Invariants +/// +/// * The existence of this type means the caller is currently within the callback for an +/// [`HrTimer`]. +/// * `self.0` always points to a live instance of [`HrTimer<T>`]. +pub struct HrTimerCallbackContext<'a, T: HasHrTimer<T>>(NonNull<HrTimer<T>>, PhantomData<&'a ()>); + +impl<'a, T: HasHrTimer<T>> HrTimerCallbackContext<'a, T> { + /// Create a new [`HrTimerCallbackContext`]. + /// + /// # Safety + /// + /// This function relies on the caller being within the context of a timer callback, so it must + /// not be used anywhere except for within implementations of [`RawHrTimerCallback::run`]. The + /// caller promises that `timer` points to a valid initialized instance of + /// [`bindings::hrtimer`]. + /// + /// The returned `Self` must not outlive the function context of [`RawHrTimerCallback::run`] + /// where this function is called. + pub(crate) unsafe fn from_raw(timer: *mut HrTimer<T>) -> Self { + // SAFETY: The caller guarantees `timer` is a valid pointer to an initialized + // `bindings::hrtimer` + // INVARIANT: Our safety contract ensures that we're within the context of a timer callback + // and that `timer` points to a live instance of `HrTimer<T>`. + Self(unsafe { NonNull::new_unchecked(timer) }, PhantomData) + } + + /// Conditionally forward the timer. + /// + /// This function is identical to [`HrTimer::forward()`] except that it may only be used from + /// within the context of a [`HrTimer`] callback. + pub fn forward(&mut self, now: HrTimerInstant<T>, interval: Delta) -> u64 { + // SAFETY: + // - We are guaranteed to be within the context of a timer callback by our type invariants + // - By our type invariants, `self.0` always points to a valid `HrTimer<T>` + unsafe { HrTimer::<T>::raw_forward(self.0.as_ptr(), now, interval) } + } + + /// Conditionally forward the timer. + /// + /// This is a variant of [`HrTimerCallbackContext::forward()`] that uses an interval after the + /// current time of the base clock for the [`HrTimer`]. + pub fn forward_now(&mut self, duration: Delta) -> u64 { + self.forward(HrTimerInstant::<T>::now(), duration) + } +} + +/// Use to implement the [`HasHrTimer<T>`] trait. +/// +/// See [`module`] documentation for an example. +/// +/// [`module`]: crate::time::hrtimer +#[macro_export] +macro_rules! impl_has_hr_timer { + ( + impl$({$($generics:tt)*})? + HasHrTimer<$timer_type:ty> + for $self:ty + { + mode : $mode:ty, + field : self.$field:ident $(,)? + } + $($rest:tt)* + ) => { + // SAFETY: This implementation of `raw_get_timer` only compiles if the + // field has the right type. + unsafe impl$(<$($generics)*>)? $crate::time::hrtimer::HasHrTimer<$timer_type> for $self { + type TimerMode = $mode; + + #[inline] + unsafe fn raw_get_timer( + this: *const Self, + ) -> *const $crate::time::hrtimer::HrTimer<$timer_type> { + // SAFETY: The caller promises that the pointer is not dangling. + unsafe { ::core::ptr::addr_of!((*this).$field) } + } + + #[inline] + unsafe fn timer_container_of( + ptr: *mut $crate::time::hrtimer::HrTimer<$timer_type>, + ) -> *mut Self { + // SAFETY: As per the safety requirement of this function, `ptr` + // is pointing inside a `$timer_type`. + unsafe { ::kernel::container_of!(ptr, $timer_type, $field) } + } + } + } +} + +mod arc; +pub use arc::ArcHrTimerHandle; +mod pin; +pub use pin::PinHrTimerHandle; +mod pin_mut; +pub use pin_mut::PinMutHrTimerHandle; +// `box` is a reserved keyword, so prefix with `t` for timer +mod tbox; +pub use tbox::BoxHrTimerHandle; diff --git a/rust/kernel/time/hrtimer/arc.rs b/rust/kernel/time/hrtimer/arc.rs new file mode 100644 index 000000000000..7be82bcb352a --- /dev/null +++ b/rust/kernel/time/hrtimer/arc.rs @@ -0,0 +1,111 @@ +// SPDX-License-Identifier: GPL-2.0 + +use super::HasHrTimer; +use super::HrTimer; +use super::HrTimerCallback; +use super::HrTimerCallbackContext; +use super::HrTimerHandle; +use super::HrTimerMode; +use super::HrTimerPointer; +use super::RawHrTimerCallback; +use crate::sync::Arc; +use crate::sync::ArcBorrow; + +/// A handle for an `Arc<HasHrTimer<T>>` returned by a call to +/// [`HrTimerPointer::start`]. +pub struct ArcHrTimerHandle<T> +where + T: HasHrTimer<T>, +{ + pub(crate) inner: Arc<T>, +} + +// SAFETY: We implement drop below, and we cancel the timer in the drop +// implementation. +unsafe impl<T> HrTimerHandle for ArcHrTimerHandle<T> +where + T: HasHrTimer<T>, +{ + fn cancel(&mut self) -> bool { + let self_ptr = Arc::as_ptr(&self.inner); + + // SAFETY: As we obtained `self_ptr` from a valid reference above, it + // must point to a valid `T`. + let timer_ptr = unsafe { <T as HasHrTimer<T>>::raw_get_timer(self_ptr) }; + + // SAFETY: As `timer_ptr` points into `T` and `T` is valid, `timer_ptr` + // must point to a valid `HrTimer` instance. + unsafe { HrTimer::<T>::raw_cancel(timer_ptr) } + } +} + +impl<T> Drop for ArcHrTimerHandle<T> +where + T: HasHrTimer<T>, +{ + fn drop(&mut self) { + self.cancel(); + } +} + +impl<T> HrTimerPointer for Arc<T> +where + T: 'static, + T: Send + Sync, + T: HasHrTimer<T>, + T: for<'a> HrTimerCallback<Pointer<'a> = Self>, +{ + type TimerMode = <T as HasHrTimer<T>>::TimerMode; + type TimerHandle = ArcHrTimerHandle<T>; + + fn start( + self, + expires: <<T as HasHrTimer<T>>::TimerMode as HrTimerMode>::Expires, + ) -> ArcHrTimerHandle<T> { + // SAFETY: + // - We keep `self` alive by wrapping it in a handle below. + // - Since we generate the pointer passed to `start` from a valid + // reference, it is a valid pointer. + unsafe { T::start(Arc::as_ptr(&self), expires) }; + ArcHrTimerHandle { inner: self } + } +} + +impl<T> RawHrTimerCallback for Arc<T> +where + T: 'static, + T: HasHrTimer<T>, + T: for<'a> HrTimerCallback<Pointer<'a> = Self>, +{ + type CallbackTarget<'a> = ArcBorrow<'a, T>; + + unsafe extern "C" fn run(ptr: *mut bindings::hrtimer) -> bindings::hrtimer_restart { + // `HrTimer` is `repr(C)` + let timer_ptr = ptr.cast::<super::HrTimer<T>>(); + + // SAFETY: By C API contract `ptr` is the pointer we passed when + // queuing the timer, so it is a `HrTimer<T>` embedded in a `T`. + let data_ptr = unsafe { T::timer_container_of(timer_ptr) }; + + // SAFETY: + // - `data_ptr` is derived form the pointer to the `T` that was used to + // queue the timer. + // - As per the safety requirements of the trait `HrTimerHandle`, the + // `ArcHrTimerHandle` associated with this timer is guaranteed to + // be alive until this method returns. That handle borrows the `T` + // behind `data_ptr` thus guaranteeing the validity of + // the `ArcBorrow` created below. + // - We own one refcount in the `ArcTimerHandle` associated with this + // timer, so it is not possible to get a `UniqueArc` to this + // allocation from other `Arc` clones. + let receiver = unsafe { ArcBorrow::from_raw(data_ptr) }; + + // SAFETY: + // - By C API contract `timer_ptr` is the pointer that we passed when queuing the timer, so + // it is a valid pointer to a `HrTimer<T>` embedded in a `T`. + // - We are within `RawHrTimerCallback::run` + let context = unsafe { HrTimerCallbackContext::from_raw(timer_ptr) }; + + T::run(receiver, context).into_c() + } +} diff --git a/rust/kernel/time/hrtimer/pin.rs b/rust/kernel/time/hrtimer/pin.rs new file mode 100644 index 000000000000..4d39ef781697 --- /dev/null +++ b/rust/kernel/time/hrtimer/pin.rs @@ -0,0 +1,115 @@ +// SPDX-License-Identifier: GPL-2.0 + +use super::HasHrTimer; +use super::HrTimer; +use super::HrTimerCallback; +use super::HrTimerCallbackContext; +use super::HrTimerHandle; +use super::HrTimerMode; +use super::RawHrTimerCallback; +use super::UnsafeHrTimerPointer; +use core::pin::Pin; + +/// A handle for a `Pin<&HasHrTimer>`. When the handle exists, the timer might be +/// running. +pub struct PinHrTimerHandle<'a, T> +where + T: HasHrTimer<T>, +{ + pub(crate) inner: Pin<&'a T>, +} + +// SAFETY: We cancel the timer when the handle is dropped. The implementation of +// the `cancel` method will block if the timer handler is running. +unsafe impl<'a, T> HrTimerHandle for PinHrTimerHandle<'a, T> +where + T: HasHrTimer<T>, +{ + fn cancel(&mut self) -> bool { + let self_ptr: *const T = self.inner.get_ref(); + + // SAFETY: As we got `self_ptr` from a reference above, it must point to + // a valid `T`. + let timer_ptr = unsafe { <T as HasHrTimer<T>>::raw_get_timer(self_ptr) }; + + // SAFETY: As `timer_ptr` is derived from a reference, it must point to + // a valid and initialized `HrTimer`. + unsafe { HrTimer::<T>::raw_cancel(timer_ptr) } + } +} + +impl<'a, T> Drop for PinHrTimerHandle<'a, T> +where + T: HasHrTimer<T>, +{ + fn drop(&mut self) { + self.cancel(); + } +} + +// SAFETY: We capture the lifetime of `Self` when we create a `PinHrTimerHandle`, +// so `Self` will outlive the handle. +unsafe impl<'a, T> UnsafeHrTimerPointer for Pin<&'a T> +where + T: Send + Sync, + T: HasHrTimer<T>, + T: HrTimerCallback<Pointer<'a> = Self>, +{ + type TimerMode = <T as HasHrTimer<T>>::TimerMode; + type TimerHandle = PinHrTimerHandle<'a, T>; + + unsafe fn start( + self, + expires: <<T as HasHrTimer<T>>::TimerMode as HrTimerMode>::Expires, + ) -> Self::TimerHandle { + // Cast to pointer + let self_ptr: *const T = self.get_ref(); + + // SAFETY: + // - As we derive `self_ptr` from a reference above, it must point to a + // valid `T`. + // - We keep `self` alive by wrapping it in a handle below. + unsafe { T::start(self_ptr, expires) }; + + PinHrTimerHandle { inner: self } + } +} + +impl<'a, T> RawHrTimerCallback for Pin<&'a T> +where + T: HasHrTimer<T>, + T: HrTimerCallback<Pointer<'a> = Self>, +{ + type CallbackTarget<'b> = Self; + + unsafe extern "C" fn run(ptr: *mut bindings::hrtimer) -> bindings::hrtimer_restart { + // `HrTimer` is `repr(C)` + let timer_ptr = ptr.cast::<HrTimer<T>>(); + + // SAFETY: By the safety requirement of this function, `timer_ptr` + // points to a `HrTimer<T>` contained in an `T`. + let receiver_ptr = unsafe { T::timer_container_of(timer_ptr) }; + + // SAFETY: + // - By the safety requirement of this function, `timer_ptr` + // points to a `HrTimer<T>` contained in an `T`. + // - As per the safety requirements of the trait `HrTimerHandle`, the + // `PinHrTimerHandle` associated with this timer is guaranteed to + // be alive until this method returns. That handle borrows the `T` + // behind `receiver_ptr`, thus guaranteeing the validity of + // the reference created below. + let receiver_ref = unsafe { &*receiver_ptr }; + + // SAFETY: `receiver_ref` only exists as pinned, so it is safe to pin it + // here. + let receiver_pin = unsafe { Pin::new_unchecked(receiver_ref) }; + + // SAFETY: + // - By C API contract `timer_ptr` is the pointer that we passed when queuing the timer, so + // it is a valid pointer to a `HrTimer<T>` embedded in a `T`. + // - We are within `RawHrTimerCallback::run` + let context = unsafe { HrTimerCallbackContext::from_raw(timer_ptr) }; + + T::run(receiver_pin, context).into_c() + } +} diff --git a/rust/kernel/time/hrtimer/pin_mut.rs b/rust/kernel/time/hrtimer/pin_mut.rs new file mode 100644 index 000000000000..9d9447d4d57e --- /dev/null +++ b/rust/kernel/time/hrtimer/pin_mut.rs @@ -0,0 +1,118 @@ +// SPDX-License-Identifier: GPL-2.0 + +use super::{ + HasHrTimer, HrTimer, HrTimerCallback, HrTimerCallbackContext, HrTimerHandle, HrTimerMode, + RawHrTimerCallback, UnsafeHrTimerPointer, +}; +use core::{marker::PhantomData, pin::Pin, ptr::NonNull}; + +/// A handle for a `Pin<&mut HasHrTimer>`. When the handle exists, the timer might +/// be running. +pub struct PinMutHrTimerHandle<'a, T> +where + T: HasHrTimer<T>, +{ + pub(crate) inner: NonNull<T>, + _p: PhantomData<&'a mut T>, +} + +// SAFETY: We cancel the timer when the handle is dropped. The implementation of +// the `cancel` method will block if the timer handler is running. +unsafe impl<'a, T> HrTimerHandle for PinMutHrTimerHandle<'a, T> +where + T: HasHrTimer<T>, +{ + fn cancel(&mut self) -> bool { + let self_ptr = self.inner.as_ptr(); + + // SAFETY: As we got `self_ptr` from a reference above, it must point to + // a valid `T`. + let timer_ptr = unsafe { <T as HasHrTimer<T>>::raw_get_timer(self_ptr) }; + + // SAFETY: As `timer_ptr` is derived from a reference, it must point to + // a valid and initialized `HrTimer`. + unsafe { HrTimer::<T>::raw_cancel(timer_ptr) } + } +} + +impl<'a, T> Drop for PinMutHrTimerHandle<'a, T> +where + T: HasHrTimer<T>, +{ + fn drop(&mut self) { + self.cancel(); + } +} + +// SAFETY: We capture the lifetime of `Self` when we create a +// `PinMutHrTimerHandle`, so `Self` will outlive the handle. +unsafe impl<'a, T> UnsafeHrTimerPointer for Pin<&'a mut T> +where + T: Send + Sync, + T: HasHrTimer<T>, + T: HrTimerCallback<Pointer<'a> = Self>, +{ + type TimerMode = <T as HasHrTimer<T>>::TimerMode; + type TimerHandle = PinMutHrTimerHandle<'a, T>; + + unsafe fn start( + mut self, + expires: <<T as HasHrTimer<T>>::TimerMode as HrTimerMode>::Expires, + ) -> Self::TimerHandle { + // SAFETY: + // - We promise not to move out of `self`. We only pass `self` + // back to the caller as a `Pin<&mut self>`. + // - The return value of `get_unchecked_mut` is guaranteed not to be null. + let self_ptr = unsafe { NonNull::new_unchecked(self.as_mut().get_unchecked_mut()) }; + + // SAFETY: + // - As we derive `self_ptr` from a reference above, it must point to a + // valid `T`. + // - We keep `self` alive by wrapping it in a handle below. + unsafe { T::start(self_ptr.as_ptr(), expires) }; + + PinMutHrTimerHandle { + inner: self_ptr, + _p: PhantomData, + } + } +} + +impl<'a, T> RawHrTimerCallback for Pin<&'a mut T> +where + T: HasHrTimer<T>, + T: HrTimerCallback<Pointer<'a> = Self>, +{ + type CallbackTarget<'b> = Self; + + unsafe extern "C" fn run(ptr: *mut bindings::hrtimer) -> bindings::hrtimer_restart { + // `HrTimer` is `repr(C)` + let timer_ptr = ptr.cast::<HrTimer<T>>(); + + // SAFETY: By the safety requirement of this function, `timer_ptr` + // points to a `HrTimer<T>` contained in an `T`. + let receiver_ptr = unsafe { T::timer_container_of(timer_ptr) }; + + // SAFETY: + // - By the safety requirement of this function, `timer_ptr` + // points to a `HrTimer<T>` contained in an `T`. + // - As per the safety requirements of the trait `HrTimerHandle`, the + // `PinMutHrTimerHandle` associated with this timer is guaranteed to + // be alive until this method returns. That handle borrows the `T` + // behind `receiver_ptr` mutably thus guaranteeing the validity of + // the reference created below. + let receiver_ref = unsafe { &mut *receiver_ptr }; + + // SAFETY: `receiver_ref` only exists as pinned, so it is safe to pin it + // here. + let receiver_pin = unsafe { Pin::new_unchecked(receiver_ref) }; + + // SAFETY: + // - By C API contract `timer_ptr` is the pointer that we passed when queuing the timer, so + // it is a valid pointer to a `HrTimer<T>` embedded in a `T`. + // - We are within `RawHrTimerCallback::run` + let context = unsafe { HrTimerCallbackContext::from_raw(timer_ptr) }; + + T::run(receiver_pin, context).into_c() + } +} diff --git a/rust/kernel/time/hrtimer/tbox.rs b/rust/kernel/time/hrtimer/tbox.rs new file mode 100644 index 000000000000..aa1ee31a7195 --- /dev/null +++ b/rust/kernel/time/hrtimer/tbox.rs @@ -0,0 +1,131 @@ +// SPDX-License-Identifier: GPL-2.0 + +use super::HasHrTimer; +use super::HrTimer; +use super::HrTimerCallback; +use super::HrTimerCallbackContext; +use super::HrTimerHandle; +use super::HrTimerMode; +use super::HrTimerPointer; +use super::RawHrTimerCallback; +use crate::prelude::*; +use core::ptr::NonNull; + +/// A handle for a [`Box<HasHrTimer<T>>`] returned by a call to +/// [`HrTimerPointer::start`]. +/// +/// # Invariants +/// +/// - `self.inner` comes from a `Box::into_raw` call. +pub struct BoxHrTimerHandle<T, A> +where + T: HasHrTimer<T>, + A: crate::alloc::Allocator, +{ + pub(crate) inner: NonNull<T>, + _p: core::marker::PhantomData<A>, +} + +// SAFETY: We implement drop below, and we cancel the timer in the drop +// implementation. +unsafe impl<T, A> HrTimerHandle for BoxHrTimerHandle<T, A> +where + T: HasHrTimer<T>, + A: crate::alloc::Allocator, +{ + fn cancel(&mut self) -> bool { + // SAFETY: As we obtained `self.inner` from a valid reference when we + // created `self`, it must point to a valid `T`. + let timer_ptr = unsafe { <T as HasHrTimer<T>>::raw_get_timer(self.inner.as_ptr()) }; + + // SAFETY: As `timer_ptr` points into `T` and `T` is valid, `timer_ptr` + // must point to a valid `HrTimer` instance. + unsafe { HrTimer::<T>::raw_cancel(timer_ptr) } + } +} + +impl<T, A> Drop for BoxHrTimerHandle<T, A> +where + T: HasHrTimer<T>, + A: crate::alloc::Allocator, +{ + fn drop(&mut self) { + self.cancel(); + // SAFETY: By type invariant, `self.inner` came from a `Box::into_raw` + // call. + drop(unsafe { Box::<T, A>::from_raw(self.inner.as_ptr()) }) + } +} + +impl<T, A> HrTimerPointer for Pin<Box<T, A>> +where + T: 'static, + T: Send + Sync, + T: HasHrTimer<T>, + T: for<'a> HrTimerCallback<Pointer<'a> = Pin<Box<T, A>>>, + A: crate::alloc::Allocator, +{ + type TimerMode = <T as HasHrTimer<T>>::TimerMode; + type TimerHandle = BoxHrTimerHandle<T, A>; + + fn start( + self, + expires: <<T as HasHrTimer<T>>::TimerMode as HrTimerMode>::Expires, + ) -> Self::TimerHandle { + // SAFETY: + // - We will not move out of this box during timer callback (we pass an + // immutable reference to the callback). + // - `Box::into_raw` is guaranteed to return a valid pointer. + let inner = + unsafe { NonNull::new_unchecked(Box::into_raw(Pin::into_inner_unchecked(self))) }; + + // SAFETY: + // - We keep `self` alive by wrapping it in a handle below. + // - Since we generate the pointer passed to `start` from a valid + // reference, it is a valid pointer. + unsafe { T::start(inner.as_ptr(), expires) }; + + // INVARIANT: `inner` came from `Box::into_raw` above. + BoxHrTimerHandle { + inner, + _p: core::marker::PhantomData, + } + } +} + +impl<T, A> RawHrTimerCallback for Pin<Box<T, A>> +where + T: 'static, + T: HasHrTimer<T>, + T: for<'a> HrTimerCallback<Pointer<'a> = Pin<Box<T, A>>>, + A: crate::alloc::Allocator, +{ + type CallbackTarget<'a> = Pin<&'a mut T>; + + unsafe extern "C" fn run(ptr: *mut bindings::hrtimer) -> bindings::hrtimer_restart { + // `HrTimer` is `repr(C)` + let timer_ptr = ptr.cast::<super::HrTimer<T>>(); + + // SAFETY: By C API contract `ptr` is the pointer we passed when + // queuing the timer, so it is a `HrTimer<T>` embedded in a `T`. + let data_ptr = unsafe { T::timer_container_of(timer_ptr) }; + + // SAFETY: + // - As per the safety requirements of the trait `HrTimerHandle`, the + // `BoxHrTimerHandle` associated with this timer is guaranteed to + // be alive until this method returns. That handle owns the `T` + // behind `data_ptr` thus guaranteeing the validity of + // the reference created below. + // - As `data_ptr` comes from a `Pin<Box<T>>`, only pinned references to + // `data_ptr` exist. + let data_mut_ref = unsafe { Pin::new_unchecked(&mut *data_ptr) }; + + // SAFETY: + // - By C API contract `timer_ptr` is the pointer that we passed when queuing the timer, so + // it is a valid pointer to a `HrTimer<T>` embedded in a `T`. + // - We are within `RawHrTimerCallback::run` + let context = unsafe { HrTimerCallbackContext::from_raw(timer_ptr) }; + + T::run(data_mut_ref, context).into_c() + } +} |
