summaryrefslogtreecommitdiff
path: root/rust/kernel/uaccess.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/kernel/uaccess.rs')
-rw-r--r--rust/kernel/uaccess.rs593
1 files changed, 593 insertions, 0 deletions
diff --git a/rust/kernel/uaccess.rs b/rust/kernel/uaccess.rs
new file mode 100644
index 000000000000..f989539a31b4
--- /dev/null
+++ b/rust/kernel/uaccess.rs
@@ -0,0 +1,593 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Slices to user space memory regions.
+//!
+//! C header: [`include/linux/uaccess.h`](srctree/include/linux/uaccess.h)
+
+use crate::{
+ alloc::{Allocator, Flags},
+ bindings,
+ error::Result,
+ ffi::{c_char, c_void},
+ fs::file,
+ prelude::*,
+ transmute::{AsBytes, FromBytes},
+};
+use core::mem::{size_of, MaybeUninit};
+
+/// A pointer into userspace.
+///
+/// This is the Rust equivalent to C pointers tagged with `__user`.
+#[repr(transparent)]
+#[derive(Copy, Clone)]
+pub struct UserPtr(*mut c_void);
+
+impl UserPtr {
+ /// Create a `UserPtr` from an integer representing the userspace address.
+ #[inline]
+ pub fn from_addr(addr: usize) -> Self {
+ Self(addr as *mut c_void)
+ }
+
+ /// Create a `UserPtr` from a pointer representing the userspace address.
+ #[inline]
+ pub fn from_ptr(addr: *mut c_void) -> Self {
+ Self(addr)
+ }
+
+ /// Cast this userspace pointer to a raw const void pointer.
+ ///
+ /// It is up to the caller to use the returned pointer correctly.
+ #[inline]
+ pub fn as_const_ptr(self) -> *const c_void {
+ self.0
+ }
+
+ /// Cast this userspace pointer to a raw mutable void pointer.
+ ///
+ /// It is up to the caller to use the returned pointer correctly.
+ #[inline]
+ pub fn as_mut_ptr(self) -> *mut c_void {
+ self.0
+ }
+
+ /// Increment this user pointer by `add` bytes.
+ ///
+ /// This addition is wrapping, so wrapping around the address space does not result in a panic
+ /// even if `CONFIG_RUST_OVERFLOW_CHECKS` is enabled.
+ #[inline]
+ pub fn wrapping_byte_add(self, add: usize) -> UserPtr {
+ UserPtr(self.0.wrapping_byte_add(add))
+ }
+}
+
+/// A pointer to an area in userspace memory, which can be either read-only or read-write.
+///
+/// All methods on this struct are safe: attempting to read or write on bad addresses (either out of
+/// the bound of the slice or unmapped addresses) will return [`EFAULT`]. Concurrent access,
+/// *including data races to/from userspace memory*, is permitted, because fundamentally another
+/// userspace thread/process could always be modifying memory at the same time (in the same way that
+/// userspace Rust's [`std::io`] permits data races with the contents of files on disk). In the
+/// presence of a race, the exact byte values read/written are unspecified but the operation is
+/// well-defined. Kernelspace code should validate its copy of data after completing a read, and not
+/// expect that multiple reads of the same address will return the same value.
+///
+/// These APIs are designed to make it difficult to accidentally write TOCTOU (time-of-check to
+/// time-of-use) bugs. Every time a memory location is read, the reader's position is advanced by
+/// the read length and the next read will start from there. This helps prevent accidentally reading
+/// the same location twice and causing a TOCTOU bug.
+///
+/// Creating a [`UserSliceReader`] and/or [`UserSliceWriter`] consumes the `UserSlice`, helping
+/// ensure that there aren't multiple readers or writers to the same location.
+///
+/// If double-fetching a memory location is necessary for some reason, then that is done by creating
+/// multiple readers to the same memory location, e.g. using [`clone_reader`].
+///
+/// # Examples
+///
+/// Takes a region of userspace memory from the current process, and modify it by adding one to
+/// every byte in the region.
+///
+/// ```no_run
+/// use kernel::ffi::c_void;
+/// use kernel::uaccess::{UserPtr, UserSlice};
+///
+/// fn bytes_add_one(uptr: UserPtr, len: usize) -> Result {
+/// let (read, mut write) = UserSlice::new(uptr, len).reader_writer();
+///
+/// let mut buf = KVec::new();
+/// read.read_all(&mut buf, GFP_KERNEL)?;
+///
+/// for b in &mut buf {
+/// *b = b.wrapping_add(1);
+/// }
+///
+/// write.write_slice(&buf)?;
+/// Ok(())
+/// }
+/// ```
+///
+/// Example illustrating a TOCTOU (time-of-check to time-of-use) bug.
+///
+/// ```no_run
+/// use kernel::ffi::c_void;
+/// use kernel::uaccess::{UserPtr, UserSlice};
+///
+/// /// Returns whether the data in this region is valid.
+/// fn is_valid(uptr: UserPtr, len: usize) -> Result<bool> {
+/// let read = UserSlice::new(uptr, len).reader();
+///
+/// let mut buf = KVec::new();
+/// read.read_all(&mut buf, GFP_KERNEL)?;
+///
+/// todo!()
+/// }
+///
+/// /// Returns the bytes behind this user pointer if they are valid.
+/// fn get_bytes_if_valid(uptr: UserPtr, len: usize) -> Result<KVec<u8>> {
+/// if !is_valid(uptr, len)? {
+/// return Err(EINVAL);
+/// }
+///
+/// let read = UserSlice::new(uptr, len).reader();
+///
+/// let mut buf = KVec::new();
+/// read.read_all(&mut buf, GFP_KERNEL)?;
+///
+/// // THIS IS A BUG! The bytes could have changed since we checked them.
+/// //
+/// // To avoid this kind of bug, don't call `UserSlice::new` multiple
+/// // times with the same address.
+/// Ok(buf)
+/// }
+/// ```
+///
+/// [`std::io`]: https://doc.rust-lang.org/std/io/index.html
+/// [`clone_reader`]: UserSliceReader::clone_reader
+pub struct UserSlice {
+ ptr: UserPtr,
+ length: usize,
+}
+
+impl UserSlice {
+ /// Constructs a user slice from a raw pointer and a length in bytes.
+ ///
+ /// Constructing a [`UserSlice`] performs no checks on the provided address and length, it can
+ /// safely be constructed inside a kernel thread with no current userspace process. Reads and
+ /// writes wrap the kernel APIs `copy_from_user` and `copy_to_user`, which check the memory map
+ /// of the current process and enforce that the address range is within the user range (no
+ /// additional calls to `access_ok` are needed). Validity of the pointer is checked when you
+ /// attempt to read or write, not in the call to `UserSlice::new`.
+ ///
+ /// Callers must be careful to avoid time-of-check-time-of-use (TOCTOU) issues. The simplest way
+ /// is to create a single instance of [`UserSlice`] per user memory block as it reads each byte
+ /// at most once.
+ pub fn new(ptr: UserPtr, length: usize) -> Self {
+ UserSlice { ptr, length }
+ }
+
+ /// Reads the entirety of the user slice, appending it to the end of the provided buffer.
+ ///
+ /// Fails with [`EFAULT`] if the read happens on a bad address.
+ pub fn read_all<A: Allocator>(self, buf: &mut Vec<u8, A>, flags: Flags) -> Result {
+ self.reader().read_all(buf, flags)
+ }
+
+ /// Constructs a [`UserSliceReader`].
+ pub fn reader(self) -> UserSliceReader {
+ UserSliceReader {
+ ptr: self.ptr,
+ length: self.length,
+ }
+ }
+
+ /// Constructs a [`UserSliceWriter`].
+ pub fn writer(self) -> UserSliceWriter {
+ UserSliceWriter {
+ ptr: self.ptr,
+ length: self.length,
+ }
+ }
+
+ /// Constructs both a [`UserSliceReader`] and a [`UserSliceWriter`].
+ ///
+ /// Usually when this is used, you will first read the data, and then overwrite it afterwards.
+ pub fn reader_writer(self) -> (UserSliceReader, UserSliceWriter) {
+ (
+ UserSliceReader {
+ ptr: self.ptr,
+ length: self.length,
+ },
+ UserSliceWriter {
+ ptr: self.ptr,
+ length: self.length,
+ },
+ )
+ }
+}
+
+/// A reader for [`UserSlice`].
+///
+/// Used to incrementally read from the user slice.
+pub struct UserSliceReader {
+ ptr: UserPtr,
+ length: usize,
+}
+
+impl UserSliceReader {
+ /// Skip the provided number of bytes.
+ ///
+ /// Returns an error if skipping more than the length of the buffer.
+ pub fn skip(&mut self, num_skip: usize) -> Result {
+ // Update `self.length` first since that's the fallible part of this operation.
+ self.length = self.length.checked_sub(num_skip).ok_or(EFAULT)?;
+ self.ptr = self.ptr.wrapping_byte_add(num_skip);
+ Ok(())
+ }
+
+ /// Create a reader that can access the same range of data.
+ ///
+ /// Reading from the clone does not advance the current reader.
+ ///
+ /// The caller should take care to not introduce TOCTOU issues, as described in the
+ /// documentation for [`UserSlice`].
+ pub fn clone_reader(&self) -> UserSliceReader {
+ UserSliceReader {
+ ptr: self.ptr,
+ length: self.length,
+ }
+ }
+
+ /// Returns the number of bytes left to be read from this reader.
+ ///
+ /// Note that even reading less than this number of bytes may fail.
+ pub fn len(&self) -> usize {
+ self.length
+ }
+
+ /// Returns `true` if no data is available in the io buffer.
+ pub fn is_empty(&self) -> bool {
+ self.length == 0
+ }
+
+ /// Reads raw data from the user slice into a kernel buffer.
+ ///
+ /// For a version that uses `&mut [u8]`, please see [`UserSliceReader::read_slice`].
+ ///
+ /// Fails with [`EFAULT`] if the read happens on a bad address, or if the read goes out of
+ /// bounds of this [`UserSliceReader`]. This call may modify `out` even if it returns an error.
+ ///
+ /// # Guarantees
+ ///
+ /// After a successful call to this method, all bytes in `out` are initialized.
+ pub fn read_raw(&mut self, out: &mut [MaybeUninit<u8>]) -> Result {
+ let len = out.len();
+ let out_ptr = out.as_mut_ptr().cast::<c_void>();
+ if len > self.length {
+ return Err(EFAULT);
+ }
+ // SAFETY: `out_ptr` points into a mutable slice of length `len`, so we may write
+ // that many bytes to it.
+ let res = unsafe { bindings::copy_from_user(out_ptr, self.ptr.as_const_ptr(), len) };
+ if res != 0 {
+ return Err(EFAULT);
+ }
+ self.ptr = self.ptr.wrapping_byte_add(len);
+ self.length -= len;
+ Ok(())
+ }
+
+ /// Reads raw data from the user slice into a kernel buffer.
+ ///
+ /// Fails with [`EFAULT`] if the read happens on a bad address, or if the read goes out of
+ /// bounds of this [`UserSliceReader`]. This call may modify `out` even if it returns an error.
+ pub fn read_slice(&mut self, out: &mut [u8]) -> Result {
+ // SAFETY: The types are compatible and `read_raw` doesn't write uninitialized bytes to
+ // `out`.
+ let out = unsafe { &mut *(core::ptr::from_mut(out) as *mut [MaybeUninit<u8>]) };
+ self.read_raw(out)
+ }
+
+ /// Reads raw data from the user slice into a kernel buffer partially.
+ ///
+ /// This is the same as [`Self::read_slice`] but considers the given `offset` into `out` and
+ /// truncates the read to the boundaries of `self` and `out`.
+ ///
+ /// On success, returns the number of bytes read.
+ pub fn read_slice_partial(&mut self, out: &mut [u8], offset: usize) -> Result<usize> {
+ let end = offset.saturating_add(self.len()).min(out.len());
+
+ let Some(dst) = out.get_mut(offset..end) else {
+ return Ok(0);
+ };
+
+ self.read_slice(dst)?;
+ Ok(dst.len())
+ }
+
+ /// Reads raw data from the user slice into a kernel buffer partially.
+ ///
+ /// This is the same as [`Self::read_slice_partial`] but updates the given [`file::Offset`] by
+ /// the number of bytes read.
+ ///
+ /// This is equivalent to C's `simple_write_to_buffer()`.
+ ///
+ /// On success, returns the number of bytes read.
+ pub fn read_slice_file(&mut self, out: &mut [u8], offset: &mut file::Offset) -> Result<usize> {
+ if offset.is_negative() {
+ return Err(EINVAL);
+ }
+
+ let Ok(offset_index) = (*offset).try_into() else {
+ return Ok(0);
+ };
+
+ let read = self.read_slice_partial(out, offset_index)?;
+
+ // OVERFLOW: `offset + read <= data.len() <= isize::MAX <= Offset::MAX`
+ *offset += read as i64;
+
+ Ok(read)
+ }
+
+ /// Reads a value of the specified type.
+ ///
+ /// Fails with [`EFAULT`] if the read happens on a bad address, or if the read goes out of
+ /// bounds of this [`UserSliceReader`].
+ pub fn read<T: FromBytes>(&mut self) -> Result<T> {
+ let len = size_of::<T>();
+ if len > self.length {
+ return Err(EFAULT);
+ }
+ let mut out: MaybeUninit<T> = MaybeUninit::uninit();
+ // SAFETY: The local variable `out` is valid for writing `size_of::<T>()` bytes.
+ //
+ // By using the _copy_from_user variant, we skip the check_object_size check that verifies
+ // the kernel pointer. This mirrors the logic on the C side that skips the check when the
+ // length is a compile-time constant.
+ let res = unsafe {
+ bindings::_copy_from_user(
+ out.as_mut_ptr().cast::<c_void>(),
+ self.ptr.as_const_ptr(),
+ len,
+ )
+ };
+ if res != 0 {
+ return Err(EFAULT);
+ }
+ self.ptr = self.ptr.wrapping_byte_add(len);
+ self.length -= len;
+ // SAFETY: The read above has initialized all bytes in `out`, and since `T` implements
+ // `FromBytes`, any bit-pattern is a valid value for this type.
+ Ok(unsafe { out.assume_init() })
+ }
+
+ /// Reads the entirety of the user slice, appending it to the end of the provided buffer.
+ ///
+ /// Fails with [`EFAULT`] if the read happens on a bad address.
+ pub fn read_all<A: Allocator>(mut self, buf: &mut Vec<u8, A>, flags: Flags) -> Result {
+ let len = self.length;
+ buf.reserve(len, flags)?;
+
+ // The call to `reserve` was successful, so the spare capacity is at least `len` bytes long.
+ self.read_raw(&mut buf.spare_capacity_mut()[..len])?;
+
+ // SAFETY: Since the call to `read_raw` was successful, so the next `len` bytes of the
+ // vector have been initialized.
+ unsafe { buf.inc_len(len) };
+ Ok(())
+ }
+
+ /// Read a NUL-terminated string from userspace and return it.
+ ///
+ /// The string is read into `buf` and a NUL-terminator is added if the end of `buf` is reached.
+ /// Since there must be space to add a NUL-terminator, the buffer must not be empty. The
+ /// returned `&CStr` points into `buf`.
+ ///
+ /// Fails with [`EFAULT`] if the read happens on a bad address (some data may have been
+ /// copied).
+ #[doc(alias = "strncpy_from_user")]
+ pub fn strcpy_into_buf<'buf>(self, buf: &'buf mut [u8]) -> Result<&'buf CStr> {
+ if buf.is_empty() {
+ return Err(EINVAL);
+ }
+
+ // SAFETY: The types are compatible and `strncpy_from_user` doesn't write uninitialized
+ // bytes to `buf`.
+ let mut dst = unsafe { &mut *(core::ptr::from_mut(buf) as *mut [MaybeUninit<u8>]) };
+
+ // We never read more than `self.length` bytes.
+ if dst.len() > self.length {
+ dst = &mut dst[..self.length];
+ }
+
+ let mut len = raw_strncpy_from_user(dst, self.ptr)?;
+ if len < dst.len() {
+ // Add one to include the NUL-terminator.
+ len += 1;
+ } else if len < buf.len() {
+ // This implies that `len == dst.len() < buf.len()`.
+ //
+ // This means that we could not fill the entire buffer, but we had to stop reading
+ // because we hit the `self.length` limit of this `UserSliceReader`. Since we did not
+ // fill the buffer, we treat this case as if we tried to read past the `self.length`
+ // limit and received a page fault, which is consistent with other `UserSliceReader`
+ // methods that also return page faults when you exceed `self.length`.
+ return Err(EFAULT);
+ } else {
+ // This implies that `len == buf.len()`.
+ //
+ // This means that we filled the buffer exactly. In this case, we add a NUL-terminator
+ // and return it. Unlike the `len < dst.len()` branch, don't modify `len` because it
+ // already represents the length including the NUL-terminator.
+ //
+ // SAFETY: Due to the check at the beginning, the buffer is not empty.
+ unsafe { *buf.last_mut().unwrap_unchecked() = 0 };
+ }
+
+ // This method consumes `self`, so it can only be called once, thus we do not need to
+ // update `self.length`. This sidesteps concerns such as whether `self.length` should be
+ // incremented by `len` or `len-1` in the `len == buf.len()` case.
+
+ // SAFETY: There are two cases:
+ // * If we hit the `len < dst.len()` case, then `raw_strncpy_from_user` guarantees that
+ // this slice contains exactly one NUL byte at the end of the string.
+ // * Otherwise, `raw_strncpy_from_user` guarantees that the string contained no NUL bytes,
+ // and we have since added a NUL byte at the end.
+ Ok(unsafe { CStr::from_bytes_with_nul_unchecked(&buf[..len]) })
+ }
+}
+
+/// A writer for [`UserSlice`].
+///
+/// Used to incrementally write into the user slice.
+pub struct UserSliceWriter {
+ ptr: UserPtr,
+ length: usize,
+}
+
+impl UserSliceWriter {
+ /// Returns the amount of space remaining in this buffer.
+ ///
+ /// Note that even writing less than this number of bytes may fail.
+ pub fn len(&self) -> usize {
+ self.length
+ }
+
+ /// Returns `true` if no more data can be written to this buffer.
+ pub fn is_empty(&self) -> bool {
+ self.length == 0
+ }
+
+ /// Writes raw data to this user pointer from a kernel buffer.
+ ///
+ /// Fails with [`EFAULT`] if the write happens on a bad address, or if the write goes out of
+ /// bounds of this [`UserSliceWriter`]. This call may modify the associated userspace slice even
+ /// if it returns an error.
+ pub fn write_slice(&mut self, data: &[u8]) -> Result {
+ let len = data.len();
+ let data_ptr = data.as_ptr().cast::<c_void>();
+ if len > self.length {
+ return Err(EFAULT);
+ }
+ // SAFETY: `data_ptr` points into an immutable slice of length `len`, so we may read
+ // that many bytes from it.
+ let res = unsafe { bindings::copy_to_user(self.ptr.as_mut_ptr(), data_ptr, len) };
+ if res != 0 {
+ return Err(EFAULT);
+ }
+ self.ptr = self.ptr.wrapping_byte_add(len);
+ self.length -= len;
+ Ok(())
+ }
+
+ /// Writes raw data to this user pointer from a kernel buffer partially.
+ ///
+ /// This is the same as [`Self::write_slice`] but considers the given `offset` into `data` and
+ /// truncates the write to the boundaries of `self` and `data`.
+ ///
+ /// On success, returns the number of bytes written.
+ pub fn write_slice_partial(&mut self, data: &[u8], offset: usize) -> Result<usize> {
+ let end = offset.saturating_add(self.len()).min(data.len());
+
+ let Some(src) = data.get(offset..end) else {
+ return Ok(0);
+ };
+
+ self.write_slice(src)?;
+ Ok(src.len())
+ }
+
+ /// Writes raw data to this user pointer from a kernel buffer partially.
+ ///
+ /// This is the same as [`Self::write_slice_partial`] but updates the given [`file::Offset`] by
+ /// the number of bytes written.
+ ///
+ /// This is equivalent to C's `simple_read_from_buffer()`.
+ ///
+ /// On success, returns the number of bytes written.
+ pub fn write_slice_file(&mut self, data: &[u8], offset: &mut file::Offset) -> Result<usize> {
+ if offset.is_negative() {
+ return Err(EINVAL);
+ }
+
+ let Ok(offset_index) = (*offset).try_into() else {
+ return Ok(0);
+ };
+
+ let written = self.write_slice_partial(data, offset_index)?;
+
+ // OVERFLOW: `offset + written <= data.len() <= isize::MAX <= Offset::MAX`
+ *offset += written as i64;
+
+ Ok(written)
+ }
+
+ /// Writes the provided Rust value to this userspace pointer.
+ ///
+ /// Fails with [`EFAULT`] if the write happens on a bad address, or if the write goes out of
+ /// bounds of this [`UserSliceWriter`]. This call may modify the associated userspace slice even
+ /// if it returns an error.
+ pub fn write<T: AsBytes>(&mut self, value: &T) -> Result {
+ let len = size_of::<T>();
+ if len > self.length {
+ return Err(EFAULT);
+ }
+ // SAFETY: The reference points to a value of type `T`, so it is valid for reading
+ // `size_of::<T>()` bytes.
+ //
+ // By using the _copy_to_user variant, we skip the check_object_size check that verifies the
+ // kernel pointer. This mirrors the logic on the C side that skips the check when the length
+ // is a compile-time constant.
+ let res = unsafe {
+ bindings::_copy_to_user(
+ self.ptr.as_mut_ptr(),
+ core::ptr::from_ref(value).cast::<c_void>(),
+ len,
+ )
+ };
+ if res != 0 {
+ return Err(EFAULT);
+ }
+ self.ptr = self.ptr.wrapping_byte_add(len);
+ self.length -= len;
+ Ok(())
+ }
+}
+
+/// Reads a nul-terminated string into `dst` and returns the length.
+///
+/// This reads from userspace until a NUL byte is encountered, or until `dst.len()` bytes have been
+/// read. Fails with [`EFAULT`] if a read happens on a bad address (some data may have been
+/// copied). When the end of the buffer is encountered, no NUL byte is added, so the string is
+/// *not* guaranteed to be NUL-terminated when `Ok(dst.len())` is returned.
+///
+/// # Guarantees
+///
+/// When this function returns `Ok(len)`, it is guaranteed that the first `len` bytes of `dst` are
+/// initialized and non-zero. Furthermore, if `len < dst.len()`, then `dst[len]` is a NUL byte.
+#[inline]
+fn raw_strncpy_from_user(dst: &mut [MaybeUninit<u8>], src: UserPtr) -> Result<usize> {
+ // CAST: Slice lengths are guaranteed to be `<= isize::MAX`.
+ let len = dst.len() as isize;
+
+ // SAFETY: `dst` is valid for writing `dst.len()` bytes.
+ let res = unsafe {
+ bindings::strncpy_from_user(
+ dst.as_mut_ptr().cast::<c_char>(),
+ src.as_const_ptr().cast::<c_char>(),
+ len,
+ )
+ };
+
+ if res < 0 {
+ return Err(Error::from_errno(res as i32));
+ }
+
+ #[cfg(CONFIG_RUST_OVERFLOW_CHECKS)]
+ assert!(res <= len);
+
+ // GUARANTEES: `strncpy_from_user` was successful, so `dst` has contents in accordance with the
+ // guarantees of this function.
+ Ok(res as usize)
+}