summaryrefslogtreecommitdiff
path: root/tools/include/linux/compiler.h
diff options
context:
space:
mode:
Diffstat (limited to 'tools/include/linux/compiler.h')
-rw-r--r--tools/include/linux/compiler.h156
1 files changed, 125 insertions, 31 deletions
diff --git a/tools/include/linux/compiler.h b/tools/include/linux/compiler.h
index d7a5604c38d7..f40bd2b04c29 100644
--- a/tools/include/linux/compiler.h
+++ b/tools/include/linux/compiler.h
@@ -1,14 +1,41 @@
+/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _TOOLS_LINUX_COMPILER_H_
#define _TOOLS_LINUX_COMPILER_H_
-#ifdef __GNUC__
-#include <linux/compiler-gcc.h>
-#endif
+#ifndef __ASSEMBLY__
+
+#include <linux/compiler_types.h>
#ifndef __compiletime_error
# define __compiletime_error(message)
#endif
+#ifdef __OPTIMIZE__
+# define __compiletime_assert(condition, msg, prefix, suffix) \
+ do { \
+ extern void prefix ## suffix(void) __compiletime_error(msg); \
+ if (!(condition)) \
+ prefix ## suffix(); \
+ } while (0)
+#else
+# define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)
+#endif
+
+#define _compiletime_assert(condition, msg, prefix, suffix) \
+ __compiletime_assert(condition, msg, prefix, suffix)
+
+/**
+ * compiletime_assert - break build and emit msg if condition is false
+ * @condition: a compile-time constant condition to check
+ * @msg: a message to emit if condition is false
+ *
+ * In tradition of POSIX assert, this macro will break the build if the
+ * supplied condition is *false*, emitting the supplied error message if the
+ * compiler has support to do so.
+ */
+#define compiletime_assert(condition, msg) \
+ _compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__)
+
/* Optimization barrier */
/* The "volatile" is due to gcc bugs */
#define barrier() __asm__ __volatile__("": : :"memory")
@@ -17,15 +44,65 @@
# define __always_inline inline __attribute__((always_inline))
#endif
+#ifndef __always_unused
+#define __always_unused __attribute__((__unused__))
+#endif
+
+#ifndef __noreturn
+#define __noreturn __attribute__((__noreturn__))
+#endif
+
+#ifndef unreachable
+#define unreachable() __builtin_unreachable()
+#endif
+
#ifndef noinline
#define noinline
#endif
+#ifndef __nocf_check
+#define __nocf_check __attribute__((nocf_check))
+#endif
+
+#ifndef __naked
+#define __naked __attribute__((__naked__))
+#endif
+
/* Are two types/vars the same type (ignoring qualifiers)? */
#ifndef __same_type
# define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b))
#endif
+/*
+ * This returns a constant expression while determining if an argument is
+ * a constant expression, most importantly without evaluating the argument.
+ * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
+ */
+#define __is_constexpr(x) \
+ (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
+
+/*
+ * Similar to statically_true() but produces a constant expression
+ *
+ * To be used in conjunction with macros, such as BUILD_BUG_ON_ZERO(),
+ * which require their input to be a constant expression and for which
+ * statically_true() would otherwise fail.
+ *
+ * This is a trade-off: const_true() requires all its operands to be
+ * compile time constants. Else, it would always returns false even on
+ * the most trivial cases like:
+ *
+ * true || non_const_var
+ *
+ * On the opposite, statically_true() is able to fold more complex
+ * tautologies and will return true on expressions such as:
+ *
+ * !(non_const_var * 8 % 4)
+ *
+ * For the general case, statically_true() is better.
+ */
+#define const_true(x) __builtin_choose_expr(__is_constexpr(x), x, false)
+
#ifdef __ANDROID__
/*
* FIXME: Big hammer to get rid of tons of:
@@ -61,6 +138,10 @@
# define __force
#endif
+#ifndef __iomem
+# define __iomem
+#endif
+
#ifndef __weak
# define __weak __attribute__((weak))
#endif
@@ -73,18 +154,6 @@
# define unlikely(x) __builtin_expect(!!(x), 0)
#endif
-#ifndef __init
-# define __init
-#endif
-
-#ifndef noinline
-# define noinline
-#endif
-
-#define uninitialized_var(x) x = *(&(x))
-
-#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
-
#include <linux/types.h>
/*
@@ -134,34 +203,59 @@ static __always_inline void __write_once_size(volatile void *p, void *res, int s
/*
* Prevent the compiler from merging or refetching reads or writes. The
* compiler is also forbidden from reordering successive instances of
- * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
- * compiler is aware of some particular ordering. One way to make the
- * compiler aware of ordering is to put the two invocations of READ_ONCE,
- * WRITE_ONCE or ACCESS_ONCE() in different C statements.
+ * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some
+ * particular ordering. One way to make the compiler aware of ordering is to
+ * put the two invocations of READ_ONCE or WRITE_ONCE in different C
+ * statements.
*
- * In contrast to ACCESS_ONCE these two macros will also work on aggregate
- * data types like structs or unions. If the size of the accessed data
- * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
- * READ_ONCE() and WRITE_ONCE() will fall back to memcpy and print a
- * compile-time warning.
+ * These two macros will also work on aggregate data types like structs or
+ * unions. If the size of the accessed data type exceeds the word size of
+ * the machine (e.g., 32 bits or 64 bits) READ_ONCE() and WRITE_ONCE() will
+ * fall back to memcpy and print a compile-time warning.
*
* Their two major use cases are: (1) Mediating communication between
* process-level code and irq/NMI handlers, all running on the same CPU,
- * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
+ * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
* mutilate accesses that either do not require ordering or that interact
* with an explicit memory barrier or atomic instruction that provides the
* required ordering.
*/
-#define READ_ONCE(x) \
- ({ union { typeof(x) __val; char __c[1]; } __u; __read_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })
+#define READ_ONCE(x) \
+({ \
+ union { typeof(x) __val; char __c[1]; } __u = \
+ { .__c = { 0 } }; \
+ __read_once_size(&(x), __u.__c, sizeof(x)); \
+ __u.__val; \
+})
-#define WRITE_ONCE(x, val) \
- ({ union { typeof(x) __val; char __c[1]; } __u = { .__val = (val) }; __write_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })
+#define WRITE_ONCE(x, val) \
+({ \
+ union { typeof(x) __val; char __c[1]; } __u = \
+ { .__val = (val) }; \
+ __write_once_size(&(x), __u.__c, sizeof(x)); \
+ __u.__val; \
+})
-#ifndef __fallthrough
-# define __fallthrough
+/* Indirect macros required for expanded argument pasting, eg. __LINE__. */
+#define ___PASTE(a, b) a##b
+#define __PASTE(a, b) ___PASTE(a, b)
+
+#ifndef OPTIMIZER_HIDE_VAR
+/* Make the optimizer believe the variable can be manipulated arbitrarily. */
+#define OPTIMIZER_HIDE_VAR(var) \
+ __asm__ ("" : "=r" (var) : "0" (var))
+#endif
+
+#ifndef __BUILD_BUG_ON_ZERO_MSG
+#if defined(__clang__)
+#define __BUILD_BUG_ON_ZERO_MSG(e, msg, ...) ((int)(sizeof(struct { int:(-!!(e)); })))
+#else
+#define __BUILD_BUG_ON_ZERO_MSG(e, msg, ...) ((int)sizeof(struct {_Static_assert(!(e), msg);}))
#endif
+#endif
+
+#endif /* __ASSEMBLY__ */
#endif /* _TOOLS_LINUX_COMPILER_H */