summaryrefslogtreecommitdiff
path: root/tools/testing/selftests/arm64/signal/test_signals_utils.h
diff options
context:
space:
mode:
Diffstat (limited to 'tools/testing/selftests/arm64/signal/test_signals_utils.h')
-rw-r--r--tools/testing/selftests/arm64/signal/test_signals_utils.h187
1 files changed, 187 insertions, 0 deletions
diff --git a/tools/testing/selftests/arm64/signal/test_signals_utils.h b/tools/testing/selftests/arm64/signal/test_signals_utils.h
new file mode 100644
index 000000000000..36fc12b3cd60
--- /dev/null
+++ b/tools/testing/selftests/arm64/signal/test_signals_utils.h
@@ -0,0 +1,187 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/* Copyright (C) 2019 ARM Limited */
+
+#ifndef __TEST_SIGNALS_UTILS_H__
+#define __TEST_SIGNALS_UTILS_H__
+
+#include <assert.h>
+#include <stdio.h>
+#include <stdint.h>
+#include <string.h>
+
+#include <linux/compiler.h>
+
+#include "test_signals.h"
+
+int test_init(struct tdescr *td);
+int test_setup(struct tdescr *td);
+void test_cleanup(struct tdescr *td);
+int test_run(struct tdescr *td);
+void test_result(struct tdescr *td);
+
+#ifndef __NR_prctl
+#define __NR_prctl 167
+#endif
+
+/*
+ * The prctl takes 1 argument but we need to ensure that the other
+ * values passed in registers to the syscall are zero since the kernel
+ * validates them.
+ */
+#define gcs_set_state(state) \
+ ({ \
+ register long _num __asm__ ("x8") = __NR_prctl; \
+ register long _arg1 __asm__ ("x0") = PR_SET_SHADOW_STACK_STATUS; \
+ register long _arg2 __asm__ ("x1") = (long)(state); \
+ register long _arg3 __asm__ ("x2") = 0; \
+ register long _arg4 __asm__ ("x3") = 0; \
+ register long _arg5 __asm__ ("x4") = 0; \
+ \
+ __asm__ volatile ( \
+ "svc #0\n" \
+ : "=r"(_arg1) \
+ : "r"(_arg1), "r"(_arg2), \
+ "r"(_arg3), "r"(_arg4), \
+ "r"(_arg5), "r"(_num) \
+ : "memory", "cc" \
+ ); \
+ _arg1; \
+ })
+
+static inline __attribute__((always_inline)) uint64_t get_gcspr_el0(void)
+{
+ uint64_t val;
+
+ asm volatile("mrs %0, S3_3_C2_C5_1" : "=r" (val));
+
+ return val;
+}
+
+static inline bool feats_ok(struct tdescr *td)
+{
+ if (td->feats_incompatible & td->feats_supported)
+ return false;
+ return (td->feats_required & td->feats_supported) == td->feats_required;
+}
+
+/*
+ * Obtaining a valid and full-blown ucontext_t from userspace is tricky:
+ * libc getcontext does() not save all the regs and messes with some of
+ * them (pstate value in particular is not reliable).
+ *
+ * Here we use a service signal to grab the ucontext_t from inside a
+ * dedicated signal handler, since there, it is populated by Kernel
+ * itself in setup_sigframe(). The grabbed context is then stored and
+ * made available in td->live_uc.
+ *
+ * As service-signal is used a SIGTRAP induced by a 'brk' instruction,
+ * because here we have to avoid syscalls to trigger the signal since
+ * they would cause any SVE sigframe content (if any) to be removed.
+ *
+ * Anyway this function really serves a dual purpose:
+ *
+ * 1. grab a valid sigcontext into td->live_uc for result analysis: in
+ * such case it returns 1.
+ *
+ * 2. detect if, somehow, a previously grabbed live_uc context has been
+ * used actively with a sigreturn: in such a case the execution would have
+ * magically resumed in the middle of this function itself (seen_already==1):
+ * in such a case return 0, since in fact we have not just simply grabbed
+ * the context.
+ *
+ * This latter case is useful to detect when a fake_sigreturn test-case has
+ * unexpectedly survived without hitting a SEGV.
+ *
+ * Note that the case of runtime dynamically sized sigframes (like in SVE
+ * context) is still NOT addressed: sigframe size is supposed to be fixed
+ * at sizeof(ucontext_t).
+ */
+static __always_inline bool get_current_context(struct tdescr *td,
+ ucontext_t *dest_uc,
+ size_t dest_sz)
+{
+ static volatile bool seen_already;
+ int i;
+ char *uc = (char *)dest_uc;
+
+ assert(td && dest_uc);
+ /* it's a genuine invocation..reinit */
+ seen_already = 0;
+ td->live_uc_valid = 0;
+ td->live_sz = dest_sz;
+
+ /*
+ * This is a memset() but we don't want the compiler to
+ * optimise it into either instructions or a library call
+ * which might be incompatible with streaming mode.
+ */
+ for (i = 0; i < td->live_sz; i++) {
+ uc[i] = 0;
+ OPTIMIZER_HIDE_VAR(uc[0]);
+ }
+
+ td->live_uc = dest_uc;
+ /*
+ * Grab ucontext_t triggering a SIGTRAP.
+ *
+ * Note that:
+ * - live_uc_valid is declared volatile sig_atomic_t in
+ * struct tdescr since it will be changed inside the
+ * sig_copyctx handler
+ * - the additional 'memory' clobber is there to avoid possible
+ * compiler's assumption on live_uc_valid and the content
+ * pointed by dest_uc, which are all changed inside the signal
+ * handler
+ * - BRK causes a debug exception which is handled by the Kernel
+ * and finally causes the SIGTRAP signal to be delivered to this
+ * test thread. Since such delivery happens on the ret_to_user()
+ * /do_notify_resume() debug exception return-path, we are sure
+ * that the registered SIGTRAP handler has been run to completion
+ * before the execution path is restored here: as a consequence
+ * we can be sure that the volatile sig_atomic_t live_uc_valid
+ * carries a meaningful result. Being in a single thread context
+ * we'll also be sure that any access to memory modified by the
+ * handler (namely ucontext_t) will be visible once returned.
+ * - note that since we are using a breakpoint instruction here
+ * to cause a SIGTRAP, the ucontext_t grabbed from the signal
+ * handler would naturally contain a PC pointing exactly to this
+ * BRK line, which means that, on return from the signal handler,
+ * or if we place the ucontext_t on the stack to fake a sigreturn,
+ * we'll end up in an infinite loop of BRK-SIGTRAP-handler.
+ * For this reason we take care to artificially move forward the
+ * PC to the next instruction while inside the signal handler.
+ */
+ asm volatile ("brk #666"
+ : "+m" (*dest_uc)
+ :
+ : "memory");
+
+ /*
+ * If we were grabbing a streaming mode context then we may
+ * have entered streaming mode behind the system's back and
+ * libc or compiler generated code might decide to do
+ * something invalid in streaming mode, or potentially even
+ * the state of ZA. Issue a SMSTOP to exit both now we have
+ * grabbed the state.
+ */
+ if (td->feats_supported & FEAT_SME)
+ asm volatile("msr S0_3_C4_C6_3, xzr");
+
+ /*
+ * If we get here with seen_already==1 it implies the td->live_uc
+ * context has been used to get back here....this probably means
+ * a test has failed to cause a SEGV...anyway live_uc does not
+ * point to a just acquired copy of ucontext_t...so return 0
+ */
+ if (seen_already) {
+ fprintf(stdout,
+ "Unexpected successful sigreturn detected: live_uc is stale !\n");
+ return 0;
+ }
+ seen_already = 1;
+
+ return td->live_uc_valid;
+}
+
+int fake_sigreturn(void *sigframe, size_t sz, int misalign_bytes);
+#endif