summaryrefslogtreecommitdiff
path: root/virt/kvm/kvm_main.c
diff options
context:
space:
mode:
Diffstat (limited to 'virt/kvm/kvm_main.c')
-rw-r--r--virt/kvm/kvm_main.c6326
1 files changed, 4848 insertions, 1478 deletions
diff --git a/virt/kvm/kvm_main.c b/virt/kvm/kvm_main.c
index 1580dd4ace4e..5fcd401a5897 100644
--- a/virt/kvm/kvm_main.c
+++ b/virt/kvm/kvm_main.c
@@ -1,8 +1,6 @@
+// SPDX-License-Identifier: GPL-2.0-only
/*
- * Kernel-based Virtual Machine driver for Linux
- *
- * This module enables machines with Intel VT-x extensions to run virtual
- * machines without emulation or binary translation.
+ * Kernel-based Virtual Machine (KVM) Hypervisor
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
@@ -10,13 +8,9 @@
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
- *
- * This work is licensed under the terms of the GNU GPL, version 2. See
- * the COPYING file in the top-level directory.
- *
*/
-#include "iodev.h"
+#include <kvm/iodev.h>
#include <linux/kvm_host.h>
#include <linux/kvm.h>
@@ -32,7 +26,9 @@
#include <linux/file.h>
#include <linux/syscore_ops.h>
#include <linux/cpu.h>
-#include <linux/sched.h>
+#include <linux/sched/signal.h>
+#include <linux/sched/mm.h>
+#include <linux/sched/stat.h>
#include <linux/cpumask.h>
#include <linux/smp.h>
#include <linux/anon_inodes.h>
@@ -49,369 +45,834 @@
#include <linux/slab.h>
#include <linux/sort.h>
#include <linux/bsearch.h>
+#include <linux/io.h>
+#include <linux/lockdep.h>
+#include <linux/kthread.h>
+#include <linux/suspend.h>
+#include <linux/rseq.h>
#include <asm/processor.h>
-#include <asm/io.h>
-#include <asm/uaccess.h>
-#include <asm/pgtable.h>
+#include <asm/ioctl.h>
+#include <linux/uaccess.h>
#include "coalesced_mmio.h"
#include "async_pf.h"
+#include "kvm_mm.h"
+#include "vfio.h"
+
+#include <trace/events/ipi.h>
#define CREATE_TRACE_POINTS
#include <trace/events/kvm.h>
+#include <linux/kvm_dirty_ring.h>
+
+
+/* Worst case buffer size needed for holding an integer. */
+#define ITOA_MAX_LEN 12
+
MODULE_AUTHOR("Qumranet");
+MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor");
MODULE_LICENSE("GPL");
+/* Architectures should define their poll value according to the halt latency */
+unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
+module_param(halt_poll_ns, uint, 0644);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns);
+
+/* Default doubles per-vcpu halt_poll_ns. */
+unsigned int halt_poll_ns_grow = 2;
+module_param(halt_poll_ns_grow, uint, 0644);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_grow);
+
+/* The start value to grow halt_poll_ns from */
+unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
+module_param(halt_poll_ns_grow_start, uint, 0644);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_grow_start);
+
+/* Default halves per-vcpu halt_poll_ns. */
+unsigned int halt_poll_ns_shrink = 2;
+module_param(halt_poll_ns_shrink, uint, 0644);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_shrink);
+
+/*
+ * Allow direct access (from KVM or the CPU) without MMU notifier protection
+ * to unpinned pages.
+ */
+static bool allow_unsafe_mappings;
+module_param(allow_unsafe_mappings, bool, 0444);
+
/*
* Ordering of locks:
*
- * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
+ * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
*/
-DEFINE_RAW_SPINLOCK(kvm_lock);
+DEFINE_MUTEX(kvm_lock);
LIST_HEAD(vm_list);
-static cpumask_var_t cpus_hardware_enabled;
-static int kvm_usage_count = 0;
-static atomic_t hardware_enable_failed;
-
-struct kmem_cache *kvm_vcpu_cache;
-EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
+static struct kmem_cache *kvm_vcpu_cache;
static __read_mostly struct preempt_ops kvm_preempt_ops;
+static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
+
+static struct dentry *kvm_debugfs_dir;
-struct dentry *kvm_debugfs_dir;
+static const struct file_operations stat_fops_per_vm;
static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
unsigned long arg);
-#ifdef CONFIG_COMPAT
+#ifdef CONFIG_KVM_COMPAT
static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
unsigned long arg);
+#define KVM_COMPAT(c) .compat_ioctl = (c)
+#else
+/*
+ * For architectures that don't implement a compat infrastructure,
+ * adopt a double line of defense:
+ * - Prevent a compat task from opening /dev/kvm
+ * - If the open has been done by a 64bit task, and the KVM fd
+ * passed to a compat task, let the ioctls fail.
+ */
+static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
+ unsigned long arg) { return -EINVAL; }
+
+static int kvm_no_compat_open(struct inode *inode, struct file *file)
+{
+ return is_compat_task() ? -ENODEV : 0;
+}
+#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
+ .open = kvm_no_compat_open
#endif
-static int hardware_enable_all(void);
-static void hardware_disable_all(void);
static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
-bool kvm_rebooting;
-EXPORT_SYMBOL_GPL(kvm_rebooting);
+#define KVM_EVENT_CREATE_VM 0
+#define KVM_EVENT_DESTROY_VM 1
+static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
+static unsigned long long kvm_createvm_count;
+static unsigned long long kvm_active_vms;
-static bool largepages_enabled = true;
+static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
-bool kvm_is_mmio_pfn(pfn_t pfn)
+__weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
{
- if (pfn_valid(pfn)) {
- int reserved;
- struct page *tail = pfn_to_page(pfn);
- struct page *head = compound_trans_head(tail);
- reserved = PageReserved(head);
- if (head != tail) {
- /*
- * "head" is not a dangling pointer
- * (compound_trans_head takes care of that)
- * but the hugepage may have been splitted
- * from under us (and we may not hold a
- * reference count on the head page so it can
- * be reused before we run PageReferenced), so
- * we've to check PageTail before returning
- * what we just read.
- */
- smp_rmb();
- if (PageTail(tail))
- return reserved;
- }
- return PageReserved(tail);
- }
-
- return true;
}
/*
* Switches to specified vcpu, until a matching vcpu_put()
*/
-int vcpu_load(struct kvm_vcpu *vcpu)
+void vcpu_load(struct kvm_vcpu *vcpu)
{
- int cpu;
+ int cpu = get_cpu();
- if (mutex_lock_killable(&vcpu->mutex))
- return -EINTR;
- if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
- /* The thread running this VCPU changed. */
- struct pid *oldpid = vcpu->pid;
- struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
- rcu_assign_pointer(vcpu->pid, newpid);
- synchronize_rcu();
- put_pid(oldpid);
- }
- cpu = get_cpu();
+ __this_cpu_write(kvm_running_vcpu, vcpu);
preempt_notifier_register(&vcpu->preempt_notifier);
kvm_arch_vcpu_load(vcpu, cpu);
put_cpu();
- return 0;
}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(vcpu_load);
void vcpu_put(struct kvm_vcpu *vcpu)
{
preempt_disable();
kvm_arch_vcpu_put(vcpu);
preempt_notifier_unregister(&vcpu->preempt_notifier);
+ __this_cpu_write(kvm_running_vcpu, NULL);
preempt_enable();
- mutex_unlock(&vcpu->mutex);
}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(vcpu_put);
-static void ack_flush(void *_completed)
+/* TODO: merge with kvm_arch_vcpu_should_kick */
+static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
{
+ int mode = kvm_vcpu_exiting_guest_mode(vcpu);
+
+ /*
+ * We need to wait for the VCPU to reenable interrupts and get out of
+ * READING_SHADOW_PAGE_TABLES mode.
+ */
+ if (req & KVM_REQUEST_WAIT)
+ return mode != OUTSIDE_GUEST_MODE;
+
+ /*
+ * Need to kick a running VCPU, but otherwise there is nothing to do.
+ */
+ return mode == IN_GUEST_MODE;
}
-static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
+static void ack_kick(void *_completed)
{
- int i, cpu, me;
- cpumask_var_t cpus;
- bool called = true;
- struct kvm_vcpu *vcpu;
+}
+
+static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
+{
+ if (cpumask_empty(cpus))
+ return false;
- zalloc_cpumask_var(&cpus, GFP_ATOMIC);
+ smp_call_function_many(cpus, ack_kick, NULL, wait);
+ return true;
+}
+
+static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
+ struct cpumask *tmp, int current_cpu)
+{
+ int cpu;
+
+ if (likely(!(req & KVM_REQUEST_NO_ACTION)))
+ __kvm_make_request(req, vcpu);
+
+ if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
+ return;
+
+ /*
+ * Note, the vCPU could get migrated to a different pCPU at any point
+ * after kvm_request_needs_ipi(), which could result in sending an IPI
+ * to the previous pCPU. But, that's OK because the purpose of the IPI
+ * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
+ * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
+ * after this point is also OK, as the requirement is only that KVM wait
+ * for vCPUs that were reading SPTEs _before_ any changes were
+ * finalized. See kvm_vcpu_kick() for more details on handling requests.
+ */
+ if (kvm_request_needs_ipi(vcpu, req)) {
+ cpu = READ_ONCE(vcpu->cpu);
+ if (cpu != -1 && cpu != current_cpu)
+ __cpumask_set_cpu(cpu, tmp);
+ }
+}
+
+bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
+ unsigned long *vcpu_bitmap)
+{
+ struct kvm_vcpu *vcpu;
+ struct cpumask *cpus;
+ int i, me;
+ bool called;
me = get_cpu();
- kvm_for_each_vcpu(i, vcpu, kvm) {
- kvm_make_request(req, vcpu);
- cpu = vcpu->cpu;
- /* Set ->requests bit before we read ->mode */
- smp_mb();
+ cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
+ cpumask_clear(cpus);
- if (cpus != NULL && cpu != -1 && cpu != me &&
- kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
- cpumask_set_cpu(cpu, cpus);
+ for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
+ vcpu = kvm_get_vcpu(kvm, i);
+ if (!vcpu)
+ continue;
+ kvm_make_vcpu_request(vcpu, req, cpus, me);
}
- if (unlikely(cpus == NULL))
- smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
- else if (!cpumask_empty(cpus))
- smp_call_function_many(cpus, ack_flush, NULL, 1);
- else
- called = false;
+
+ called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
+ put_cpu();
+
+ return called;
+}
+
+bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
+{
+ struct kvm_vcpu *vcpu;
+ struct cpumask *cpus;
+ unsigned long i;
+ bool called;
+ int me;
+
+ me = get_cpu();
+
+ cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
+ cpumask_clear(cpus);
+
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ kvm_make_vcpu_request(vcpu, req, cpus, me);
+
+ called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
put_cpu();
- free_cpumask_var(cpus);
+
return called;
}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_make_all_cpus_request);
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
- long dirty_count = kvm->tlbs_dirty;
+ ++kvm->stat.generic.remote_tlb_flush_requests;
+
+ /*
+ * We want to publish modifications to the page tables before reading
+ * mode. Pairs with a memory barrier in arch-specific code.
+ * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
+ * and smp_mb in walk_shadow_page_lockless_begin/end.
+ * - powerpc: smp_mb in kvmppc_prepare_to_enter.
+ *
+ * There is already an smp_mb__after_atomic() before
+ * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
+ * barrier here.
+ */
+ if (!kvm_arch_flush_remote_tlbs(kvm)
+ || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
+ ++kvm->stat.generic.remote_tlb_flush;
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_flush_remote_tlbs);
+
+void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
+{
+ if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
+ return;
- smp_mb();
- if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
- ++kvm->stat.remote_tlb_flush;
- cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
+ /*
+ * Fall back to a flushing entire TLBs if the architecture range-based
+ * TLB invalidation is unsupported or can't be performed for whatever
+ * reason.
+ */
+ kvm_flush_remote_tlbs(kvm);
}
-void kvm_reload_remote_mmus(struct kvm *kvm)
+void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
+ const struct kvm_memory_slot *memslot)
{
- make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
+ /*
+ * All current use cases for flushing the TLBs for a specific memslot
+ * are related to dirty logging, and many do the TLB flush out of
+ * mmu_lock. The interaction between the various operations on memslot
+ * must be serialized by slots_lock to ensure the TLB flush from one
+ * operation is observed by any other operation on the same memslot.
+ */
+ lockdep_assert_held(&kvm->slots_lock);
+ kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
}
-void kvm_make_mclock_inprogress_request(struct kvm *kvm)
+static void kvm_flush_shadow_all(struct kvm *kvm)
{
- make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
+ kvm_arch_flush_shadow_all(kvm);
+ kvm_arch_guest_memory_reclaimed(kvm);
}
-void kvm_make_scan_ioapic_request(struct kvm *kvm)
+#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
+static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
+ gfp_t gfp_flags)
{
- make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
+ void *page;
+
+ gfp_flags |= mc->gfp_zero;
+
+ if (mc->kmem_cache)
+ return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
+
+ page = (void *)__get_free_page(gfp_flags);
+ if (page && mc->init_value)
+ memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
+ return page;
}
-int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
+int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
{
- struct page *page;
- int r;
+ gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
+ void *obj;
+
+ if (mc->nobjs >= min)
+ return 0;
+
+ if (unlikely(!mc->objects)) {
+ if (WARN_ON_ONCE(!capacity))
+ return -EIO;
+
+ /*
+ * Custom init values can be used only for page allocations,
+ * and obviously conflict with __GFP_ZERO.
+ */
+ if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
+ return -EIO;
+ mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
+ if (!mc->objects)
+ return -ENOMEM;
+
+ mc->capacity = capacity;
+ }
+
+ /* It is illegal to request a different capacity across topups. */
+ if (WARN_ON_ONCE(mc->capacity != capacity))
+ return -EIO;
+
+ while (mc->nobjs < mc->capacity) {
+ obj = mmu_memory_cache_alloc_obj(mc, gfp);
+ if (!obj)
+ return mc->nobjs >= min ? 0 : -ENOMEM;
+ mc->objects[mc->nobjs++] = obj;
+ }
+ return 0;
+}
+
+int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
+{
+ return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
+}
+
+int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
+{
+ return mc->nobjs;
+}
+
+void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
+{
+ while (mc->nobjs) {
+ if (mc->kmem_cache)
+ kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
+ else
+ free_page((unsigned long)mc->objects[--mc->nobjs]);
+ }
+
+ kvfree(mc->objects);
+
+ mc->objects = NULL;
+ mc->capacity = 0;
+}
+
+void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
+{
+ void *p;
+
+ if (WARN_ON(!mc->nobjs))
+ p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
+ else
+ p = mc->objects[--mc->nobjs];
+ BUG_ON(!p);
+ return p;
+}
+#endif
+
+static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
+{
mutex_init(&vcpu->mutex);
vcpu->cpu = -1;
vcpu->kvm = kvm;
vcpu->vcpu_id = id;
vcpu->pid = NULL;
- init_waitqueue_head(&vcpu->wq);
+ rwlock_init(&vcpu->pid_lock);
+#ifndef __KVM_HAVE_ARCH_WQP
+ rcuwait_init(&vcpu->wait);
+#endif
kvm_async_pf_vcpu_init(vcpu);
- page = alloc_page(GFP_KERNEL | __GFP_ZERO);
- if (!page) {
- r = -ENOMEM;
- goto fail;
- }
- vcpu->run = page_address(page);
-
kvm_vcpu_set_in_spin_loop(vcpu, false);
kvm_vcpu_set_dy_eligible(vcpu, false);
vcpu->preempted = false;
+ vcpu->ready = false;
+ preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
+ vcpu->last_used_slot = NULL;
- r = kvm_arch_vcpu_init(vcpu);
- if (r < 0)
- goto fail_free_run;
- return 0;
-
-fail_free_run:
- free_page((unsigned long)vcpu->run);
-fail:
- return r;
+ /* Fill the stats id string for the vcpu */
+ snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
+ task_pid_nr(current), id);
}
-EXPORT_SYMBOL_GPL(kvm_vcpu_init);
-void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
+static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
{
+ kvm_arch_vcpu_destroy(vcpu);
+ kvm_dirty_ring_free(&vcpu->dirty_ring);
+
+ /*
+ * No need for rcu_read_lock as VCPU_RUN is the only place that changes
+ * the vcpu->pid pointer, and at destruction time all file descriptors
+ * are already gone.
+ */
put_pid(vcpu->pid);
- kvm_arch_vcpu_uninit(vcpu);
+
free_page((unsigned long)vcpu->run);
+ kmem_cache_free(kvm_vcpu_cache, vcpu);
+}
+
+void kvm_destroy_vcpus(struct kvm *kvm)
+{
+ unsigned long i;
+ struct kvm_vcpu *vcpu;
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ kvm_vcpu_destroy(vcpu);
+ xa_erase(&kvm->vcpu_array, i);
+
+ /*
+ * Assert that the vCPU isn't visible in any way, to ensure KVM
+ * doesn't trigger a use-after-free if destroying vCPUs results
+ * in VM-wide request, e.g. to flush remote TLBs when tearing
+ * down MMUs, or to mark the VM dead if a KVM_BUG_ON() fires.
+ */
+ WARN_ON_ONCE(xa_load(&kvm->vcpu_array, i) || kvm_get_vcpu(kvm, i));
+ }
+
+ atomic_set(&kvm->online_vcpus, 0);
}
-EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_destroy_vcpus);
-#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
+#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
{
return container_of(mn, struct kvm, mmu_notifier);
}
-static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
- struct mm_struct *mm,
- unsigned long address)
-{
- struct kvm *kvm = mmu_notifier_to_kvm(mn);
- int need_tlb_flush, idx;
+typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
+
+typedef void (*on_lock_fn_t)(struct kvm *kvm);
+struct kvm_mmu_notifier_range {
/*
- * When ->invalidate_page runs, the linux pte has been zapped
- * already but the page is still allocated until
- * ->invalidate_page returns. So if we increase the sequence
- * here the kvm page fault will notice if the spte can't be
- * established because the page is going to be freed. If
- * instead the kvm page fault establishes the spte before
- * ->invalidate_page runs, kvm_unmap_hva will release it
- * before returning.
- *
- * The sequence increase only need to be seen at spin_unlock
- * time, and not at spin_lock time.
- *
- * Increasing the sequence after the spin_unlock would be
- * unsafe because the kvm page fault could then establish the
- * pte after kvm_unmap_hva returned, without noticing the page
- * is going to be freed.
+ * 64-bit addresses, as KVM notifiers can operate on host virtual
+ * addresses (unsigned long) and guest physical addresses (64-bit).
*/
+ u64 start;
+ u64 end;
+ union kvm_mmu_notifier_arg arg;
+ gfn_handler_t handler;
+ on_lock_fn_t on_lock;
+ bool flush_on_ret;
+ bool may_block;
+ bool lockless;
+};
+
+/*
+ * The inner-most helper returns a tuple containing the return value from the
+ * arch- and action-specific handler, plus a flag indicating whether or not at
+ * least one memslot was found, i.e. if the handler found guest memory.
+ *
+ * Note, most notifiers are averse to booleans, so even though KVM tracks the
+ * return from arch code as a bool, outer helpers will cast it to an int. :-(
+ */
+typedef struct kvm_mmu_notifier_return {
+ bool ret;
+ bool found_memslot;
+} kvm_mn_ret_t;
+
+/*
+ * Use a dedicated stub instead of NULL to indicate that there is no callback
+ * function/handler. The compiler technically can't guarantee that a real
+ * function will have a non-zero address, and so it will generate code to
+ * check for !NULL, whereas comparing against a stub will be elided at compile
+ * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
+ */
+static void kvm_null_fn(void)
+{
+
+}
+#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
+
+/* Iterate over each memslot intersecting [start, last] (inclusive) range */
+#define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
+ for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
+ node; \
+ node = interval_tree_iter_next(node, start, last)) \
+
+static __always_inline kvm_mn_ret_t kvm_handle_hva_range(struct kvm *kvm,
+ const struct kvm_mmu_notifier_range *range)
+{
+ struct kvm_mmu_notifier_return r = {
+ .ret = false,
+ .found_memslot = false,
+ };
+ struct kvm_gfn_range gfn_range;
+ struct kvm_memory_slot *slot;
+ struct kvm_memslots *slots;
+ int i, idx;
+
+ if (WARN_ON_ONCE(range->end <= range->start))
+ return r;
+
+ /* A null handler is allowed if and only if on_lock() is provided. */
+ if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
+ IS_KVM_NULL_FN(range->handler)))
+ return r;
+
+ /* on_lock will never be called for lockless walks */
+ if (WARN_ON_ONCE(range->lockless && !IS_KVM_NULL_FN(range->on_lock)))
+ return r;
+
idx = srcu_read_lock(&kvm->srcu);
- spin_lock(&kvm->mmu_lock);
- kvm->mmu_notifier_seq++;
- need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
- /* we've to flush the tlb before the pages can be freed */
- if (need_tlb_flush)
+ for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
+ struct interval_tree_node *node;
+
+ slots = __kvm_memslots(kvm, i);
+ kvm_for_each_memslot_in_hva_range(node, slots,
+ range->start, range->end - 1) {
+ unsigned long hva_start, hva_end;
+
+ slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
+ hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
+ hva_end = min_t(unsigned long, range->end,
+ slot->userspace_addr + (slot->npages << PAGE_SHIFT));
+
+ /*
+ * To optimize for the likely case where the address
+ * range is covered by zero or one memslots, don't
+ * bother making these conditional (to avoid writes on
+ * the second or later invocation of the handler).
+ */
+ gfn_range.arg = range->arg;
+ gfn_range.may_block = range->may_block;
+ /*
+ * HVA-based notifications aren't relevant to private
+ * mappings as they don't have a userspace mapping.
+ */
+ gfn_range.attr_filter = KVM_FILTER_SHARED;
+
+ /*
+ * {gfn(page) | page intersects with [hva_start, hva_end)} =
+ * {gfn_start, gfn_start+1, ..., gfn_end-1}.
+ */
+ gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
+ gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
+ gfn_range.slot = slot;
+ gfn_range.lockless = range->lockless;
+
+ if (!r.found_memslot) {
+ r.found_memslot = true;
+ if (!range->lockless) {
+ KVM_MMU_LOCK(kvm);
+ if (!IS_KVM_NULL_FN(range->on_lock))
+ range->on_lock(kvm);
+
+ if (IS_KVM_NULL_FN(range->handler))
+ goto mmu_unlock;
+ }
+ }
+ r.ret |= range->handler(kvm, &gfn_range);
+ }
+ }
+
+ if (range->flush_on_ret && r.ret)
kvm_flush_remote_tlbs(kvm);
- spin_unlock(&kvm->mmu_lock);
+mmu_unlock:
+ if (r.found_memslot && !range->lockless)
+ KVM_MMU_UNLOCK(kvm);
+
srcu_read_unlock(&kvm->srcu, idx);
+
+ return r;
}
-static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
- struct mm_struct *mm,
- unsigned long address,
- pte_t pte)
+static __always_inline int kvm_age_hva_range(struct mmu_notifier *mn,
+ unsigned long start,
+ unsigned long end,
+ gfn_handler_t handler,
+ bool flush_on_ret)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
- int idx;
+ const struct kvm_mmu_notifier_range range = {
+ .start = start,
+ .end = end,
+ .handler = handler,
+ .on_lock = (void *)kvm_null_fn,
+ .flush_on_ret = flush_on_ret,
+ .may_block = false,
+ .lockless = IS_ENABLED(CONFIG_KVM_MMU_LOCKLESS_AGING),
+ };
- idx = srcu_read_lock(&kvm->srcu);
- spin_lock(&kvm->mmu_lock);
- kvm->mmu_notifier_seq++;
- kvm_set_spte_hva(kvm, address, pte);
- spin_unlock(&kvm->mmu_lock);
- srcu_read_unlock(&kvm->srcu, idx);
+ return kvm_handle_hva_range(kvm, &range).ret;
}
-static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
- struct mm_struct *mm,
- unsigned long start,
- unsigned long end)
+static __always_inline int kvm_age_hva_range_no_flush(struct mmu_notifier *mn,
+ unsigned long start,
+ unsigned long end,
+ gfn_handler_t handler)
{
- struct kvm *kvm = mmu_notifier_to_kvm(mn);
- int need_tlb_flush = 0, idx;
+ return kvm_age_hva_range(mn, start, end, handler, false);
+}
- idx = srcu_read_lock(&kvm->srcu);
- spin_lock(&kvm->mmu_lock);
+void kvm_mmu_invalidate_begin(struct kvm *kvm)
+{
+ lockdep_assert_held_write(&kvm->mmu_lock);
/*
* The count increase must become visible at unlock time as no
* spte can be established without taking the mmu_lock and
* count is also read inside the mmu_lock critical section.
*/
- kvm->mmu_notifier_count++;
- need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
- need_tlb_flush |= kvm->tlbs_dirty;
- /* we've to flush the tlb before the pages can be freed */
- if (need_tlb_flush)
- kvm_flush_remote_tlbs(kvm);
+ kvm->mmu_invalidate_in_progress++;
- spin_unlock(&kvm->mmu_lock);
- srcu_read_unlock(&kvm->srcu, idx);
+ if (likely(kvm->mmu_invalidate_in_progress == 1)) {
+ kvm->mmu_invalidate_range_start = INVALID_GPA;
+ kvm->mmu_invalidate_range_end = INVALID_GPA;
+ }
}
-static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
- struct mm_struct *mm,
- unsigned long start,
- unsigned long end)
+void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
+{
+ lockdep_assert_held_write(&kvm->mmu_lock);
+
+ WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
+
+ if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
+ kvm->mmu_invalidate_range_start = start;
+ kvm->mmu_invalidate_range_end = end;
+ } else {
+ /*
+ * Fully tracking multiple concurrent ranges has diminishing
+ * returns. Keep things simple and just find the minimal range
+ * which includes the current and new ranges. As there won't be
+ * enough information to subtract a range after its invalidate
+ * completes, any ranges invalidated concurrently will
+ * accumulate and persist until all outstanding invalidates
+ * complete.
+ */
+ kvm->mmu_invalidate_range_start =
+ min(kvm->mmu_invalidate_range_start, start);
+ kvm->mmu_invalidate_range_end =
+ max(kvm->mmu_invalidate_range_end, end);
+ }
+}
+
+bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
+ return kvm_unmap_gfn_range(kvm, range);
+}
+
+static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
+ const struct mmu_notifier_range *range)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
+ const struct kvm_mmu_notifier_range hva_range = {
+ .start = range->start,
+ .end = range->end,
+ .handler = kvm_mmu_unmap_gfn_range,
+ .on_lock = kvm_mmu_invalidate_begin,
+ .flush_on_ret = true,
+ .may_block = mmu_notifier_range_blockable(range),
+ };
+
+ trace_kvm_unmap_hva_range(range->start, range->end);
+
+ /*
+ * Prevent memslot modification between range_start() and range_end()
+ * so that conditionally locking provides the same result in both
+ * functions. Without that guarantee, the mmu_invalidate_in_progress
+ * adjustments will be imbalanced.
+ *
+ * Pairs with the decrement in range_end().
+ */
+ spin_lock(&kvm->mn_invalidate_lock);
+ kvm->mn_active_invalidate_count++;
+ spin_unlock(&kvm->mn_invalidate_lock);
+
+ /*
+ * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
+ * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
+ * each cache's lock. There are relatively few caches in existence at
+ * any given time, and the caches themselves can check for hva overlap,
+ * i.e. don't need to rely on memslot overlap checks for performance.
+ * Because this runs without holding mmu_lock, the pfn caches must use
+ * mn_active_invalidate_count (see above) instead of
+ * mmu_invalidate_in_progress.
+ */
+ gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
+
+ /*
+ * If one or more memslots were found and thus zapped, notify arch code
+ * that guest memory has been reclaimed. This needs to be done *after*
+ * dropping mmu_lock, as x86's reclaim path is slooooow.
+ */
+ if (kvm_handle_hva_range(kvm, &hva_range).found_memslot)
+ kvm_arch_guest_memory_reclaimed(kvm);
+
+ return 0;
+}
+
+void kvm_mmu_invalidate_end(struct kvm *kvm)
+{
+ lockdep_assert_held_write(&kvm->mmu_lock);
- spin_lock(&kvm->mmu_lock);
/*
* This sequence increase will notify the kvm page fault that
* the page that is going to be mapped in the spte could have
* been freed.
*/
- kvm->mmu_notifier_seq++;
+ kvm->mmu_invalidate_seq++;
smp_wmb();
/*
* The above sequence increase must be visible before the
* below count decrease, which is ensured by the smp_wmb above
- * in conjunction with the smp_rmb in mmu_notifier_retry().
+ * in conjunction with the smp_rmb in mmu_invalidate_retry().
*/
- kvm->mmu_notifier_count--;
- spin_unlock(&kvm->mmu_lock);
+ kvm->mmu_invalidate_in_progress--;
+ KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
- BUG_ON(kvm->mmu_notifier_count < 0);
+ /*
+ * Assert that at least one range was added between start() and end().
+ * Not adding a range isn't fatal, but it is a KVM bug.
+ */
+ WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
}
-static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
- struct mm_struct *mm,
- unsigned long address)
+static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
+ const struct mmu_notifier_range *range)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
- int young, idx;
+ const struct kvm_mmu_notifier_range hva_range = {
+ .start = range->start,
+ .end = range->end,
+ .handler = (void *)kvm_null_fn,
+ .on_lock = kvm_mmu_invalidate_end,
+ .flush_on_ret = false,
+ .may_block = mmu_notifier_range_blockable(range),
+ };
+ bool wake;
- idx = srcu_read_lock(&kvm->srcu);
- spin_lock(&kvm->mmu_lock);
+ kvm_handle_hva_range(kvm, &hva_range);
- young = kvm_age_hva(kvm, address);
- if (young)
- kvm_flush_remote_tlbs(kvm);
+ /* Pairs with the increment in range_start(). */
+ spin_lock(&kvm->mn_invalidate_lock);
+ if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
+ --kvm->mn_active_invalidate_count;
+ wake = !kvm->mn_active_invalidate_count;
+ spin_unlock(&kvm->mn_invalidate_lock);
- spin_unlock(&kvm->mmu_lock);
- srcu_read_unlock(&kvm->srcu, idx);
+ /*
+ * There can only be one waiter, since the wait happens under
+ * slots_lock.
+ */
+ if (wake)
+ rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
+}
+
+static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
+ struct mm_struct *mm,
+ unsigned long start,
+ unsigned long end)
+{
+ trace_kvm_age_hva(start, end);
- return young;
+ return kvm_age_hva_range(mn, start, end, kvm_age_gfn,
+ !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG));
+}
+
+static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
+ struct mm_struct *mm,
+ unsigned long start,
+ unsigned long end)
+{
+ trace_kvm_age_hva(start, end);
+
+ /*
+ * Even though we do not flush TLB, this will still adversely
+ * affect performance on pre-Haswell Intel EPT, where there is
+ * no EPT Access Bit to clear so that we have to tear down EPT
+ * tables instead. If we find this unacceptable, we can always
+ * add a parameter to kvm_age_hva so that it effectively doesn't
+ * do anything on clear_young.
+ *
+ * Also note that currently we never issue secondary TLB flushes
+ * from clear_young, leaving this job up to the regular system
+ * cadence. If we find this inaccurate, we might come up with a
+ * more sophisticated heuristic later.
+ */
+ return kvm_age_hva_range_no_flush(mn, start, end, kvm_age_gfn);
}
static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long address)
{
- struct kvm *kvm = mmu_notifier_to_kvm(mn);
- int young, idx;
+ trace_kvm_test_age_hva(address);
- idx = srcu_read_lock(&kvm->srcu);
- spin_lock(&kvm->mmu_lock);
- young = kvm_test_age_hva(kvm, address);
- spin_unlock(&kvm->mmu_lock);
- srcu_read_unlock(&kvm->srcu, idx);
-
- return young;
+ return kvm_age_hva_range_no_flush(mn, address, address + 1,
+ kvm_test_age_gfn);
}
static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
@@ -421,17 +882,16 @@ static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
int idx;
idx = srcu_read_lock(&kvm->srcu);
- kvm_arch_flush_shadow_all(kvm);
+ kvm_flush_shadow_all(kvm);
srcu_read_unlock(&kvm->srcu, idx);
}
static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
- .invalidate_page = kvm_mmu_notifier_invalidate_page,
.invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
.invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
.clear_flush_young = kvm_mmu_notifier_clear_flush_young,
+ .clear_young = kvm_mmu_notifier_clear_young,
.test_young = kvm_mmu_notifier_test_young,
- .change_pte = kvm_mmu_notifier_change_pte,
.release = kvm_mmu_notifier_release,
};
@@ -441,156 +901,371 @@ static int kvm_init_mmu_notifier(struct kvm *kvm)
return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
}
-#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
+#else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
static int kvm_init_mmu_notifier(struct kvm *kvm)
{
return 0;
}
-#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
+#endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
-static void kvm_init_memslots_id(struct kvm *kvm)
+#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
+static int kvm_pm_notifier_call(struct notifier_block *bl,
+ unsigned long state,
+ void *unused)
{
- int i;
- struct kvm_memslots *slots = kvm->memslots;
+ struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
- for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
- slots->id_to_index[i] = slots->memslots[i].id = i;
+ return kvm_arch_pm_notifier(kvm, state);
}
-static struct kvm *kvm_create_vm(unsigned long type)
+static void kvm_init_pm_notifier(struct kvm *kvm)
{
- int r, i;
- struct kvm *kvm = kvm_arch_alloc_vm();
+ kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
+ /* Suspend KVM before we suspend ftrace, RCU, etc. */
+ kvm->pm_notifier.priority = INT_MAX;
+ register_pm_notifier(&kvm->pm_notifier);
+}
- if (!kvm)
- return ERR_PTR(-ENOMEM);
+static void kvm_destroy_pm_notifier(struct kvm *kvm)
+{
+ unregister_pm_notifier(&kvm->pm_notifier);
+}
+#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
+static void kvm_init_pm_notifier(struct kvm *kvm)
+{
+}
- r = kvm_arch_init_vm(kvm, type);
- if (r)
- goto out_err_nodisable;
+static void kvm_destroy_pm_notifier(struct kvm *kvm)
+{
+}
+#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
- r = hardware_enable_all();
- if (r)
- goto out_err_nodisable;
+static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
+{
+ if (!memslot->dirty_bitmap)
+ return;
-#ifdef CONFIG_HAVE_KVM_IRQCHIP
- INIT_HLIST_HEAD(&kvm->mask_notifier_list);
- INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
-#endif
+ vfree(memslot->dirty_bitmap);
+ memslot->dirty_bitmap = NULL;
+}
- BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
+/* This does not remove the slot from struct kvm_memslots data structures */
+static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
+{
+ if (slot->flags & KVM_MEM_GUEST_MEMFD)
+ kvm_gmem_unbind(slot);
- r = -ENOMEM;
- kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
- if (!kvm->memslots)
- goto out_err_nosrcu;
- kvm_init_memslots_id(kvm);
- if (init_srcu_struct(&kvm->srcu))
- goto out_err_nosrcu;
- for (i = 0; i < KVM_NR_BUSES; i++) {
- kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
- GFP_KERNEL);
- if (!kvm->buses[i])
- goto out_err;
- }
+ kvm_destroy_dirty_bitmap(slot);
- spin_lock_init(&kvm->mmu_lock);
- kvm->mm = current->mm;
- atomic_inc(&kvm->mm->mm_count);
- kvm_eventfd_init(kvm);
- mutex_init(&kvm->lock);
- mutex_init(&kvm->irq_lock);
- mutex_init(&kvm->slots_lock);
- atomic_set(&kvm->users_count, 1);
- INIT_LIST_HEAD(&kvm->devices);
+ kvm_arch_free_memslot(kvm, slot);
- r = kvm_init_mmu_notifier(kvm);
- if (r)
- goto out_err;
+ kfree(slot);
+}
- raw_spin_lock(&kvm_lock);
- list_add(&kvm->vm_list, &vm_list);
- raw_spin_unlock(&kvm_lock);
+static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
+{
+ struct hlist_node *idnode;
+ struct kvm_memory_slot *memslot;
+ int bkt;
- return kvm;
+ /*
+ * The same memslot objects live in both active and inactive sets,
+ * arbitrarily free using index '1' so the second invocation of this
+ * function isn't operating over a structure with dangling pointers
+ * (even though this function isn't actually touching them).
+ */
+ if (!slots->node_idx)
+ return;
-out_err:
- cleanup_srcu_struct(&kvm->srcu);
-out_err_nosrcu:
- hardware_disable_all();
-out_err_nodisable:
- for (i = 0; i < KVM_NR_BUSES; i++)
- kfree(kvm->buses[i]);
- kfree(kvm->memslots);
- kvm_arch_free_vm(kvm);
- return ERR_PTR(r);
+ hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
+ kvm_free_memslot(kvm, memslot);
}
-/*
- * Avoid using vmalloc for a small buffer.
- * Should not be used when the size is statically known.
- */
-void *kvm_kvzalloc(unsigned long size)
+static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
{
- if (size > PAGE_SIZE)
- return vzalloc(size);
- else
- return kzalloc(size, GFP_KERNEL);
+ switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
+ case KVM_STATS_TYPE_INSTANT:
+ return 0444;
+ case KVM_STATS_TYPE_CUMULATIVE:
+ case KVM_STATS_TYPE_PEAK:
+ default:
+ return 0644;
+ }
}
-void kvm_kvfree(const void *addr)
+
+static void kvm_destroy_vm_debugfs(struct kvm *kvm)
{
- if (is_vmalloc_addr(addr))
- vfree(addr);
- else
- kfree(addr);
+ int i;
+ int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
+ kvm_vcpu_stats_header.num_desc;
+
+ if (IS_ERR(kvm->debugfs_dentry))
+ return;
+
+ debugfs_remove_recursive(kvm->debugfs_dentry);
+
+ if (kvm->debugfs_stat_data) {
+ for (i = 0; i < kvm_debugfs_num_entries; i++)
+ kfree(kvm->debugfs_stat_data[i]);
+ kfree(kvm->debugfs_stat_data);
+ }
}
-static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
+static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
{
- if (!memslot->dirty_bitmap)
- return;
+ static DEFINE_MUTEX(kvm_debugfs_lock);
+ struct dentry *dent;
+ char dir_name[ITOA_MAX_LEN * 2];
+ struct kvm_stat_data *stat_data;
+ const struct _kvm_stats_desc *pdesc;
+ int i, ret = -ENOMEM;
+ int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
+ kvm_vcpu_stats_header.num_desc;
- kvm_kvfree(memslot->dirty_bitmap);
- memslot->dirty_bitmap = NULL;
+ if (!debugfs_initialized())
+ return 0;
+
+ snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
+ mutex_lock(&kvm_debugfs_lock);
+ dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
+ if (dent) {
+ pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
+ dput(dent);
+ mutex_unlock(&kvm_debugfs_lock);
+ return 0;
+ }
+ dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
+ mutex_unlock(&kvm_debugfs_lock);
+ if (IS_ERR(dent))
+ return 0;
+
+ kvm->debugfs_dentry = dent;
+ kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
+ sizeof(*kvm->debugfs_stat_data),
+ GFP_KERNEL_ACCOUNT);
+ if (!kvm->debugfs_stat_data)
+ goto out_err;
+
+ for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
+ pdesc = &kvm_vm_stats_desc[i];
+ stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
+ if (!stat_data)
+ goto out_err;
+
+ stat_data->kvm = kvm;
+ stat_data->desc = pdesc;
+ stat_data->kind = KVM_STAT_VM;
+ kvm->debugfs_stat_data[i] = stat_data;
+ debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
+ kvm->debugfs_dentry, stat_data,
+ &stat_fops_per_vm);
+ }
+
+ for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
+ pdesc = &kvm_vcpu_stats_desc[i];
+ stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
+ if (!stat_data)
+ goto out_err;
+
+ stat_data->kvm = kvm;
+ stat_data->desc = pdesc;
+ stat_data->kind = KVM_STAT_VCPU;
+ kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
+ debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
+ kvm->debugfs_dentry, stat_data,
+ &stat_fops_per_vm);
+ }
+
+ kvm_arch_create_vm_debugfs(kvm);
+ return 0;
+out_err:
+ kvm_destroy_vm_debugfs(kvm);
+ return ret;
}
/*
- * Free any memory in @free but not in @dont.
+ * Called just after removing the VM from the vm_list, but before doing any
+ * other destruction.
*/
-static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
- struct kvm_memory_slot *dont)
+void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
{
- if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
- kvm_destroy_dirty_bitmap(free);
+}
- kvm_arch_free_memslot(free, dont);
+/*
+ * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
+ * be setup already, so we can create arch-specific debugfs entries under it.
+ * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
+ * a per-arch destroy interface is not needed.
+ */
+void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
+{
+}
- free->npages = 0;
+/* Called only on cleanup and destruction paths when there are no users. */
+static inline struct kvm_io_bus *kvm_get_bus_for_destruction(struct kvm *kvm,
+ enum kvm_bus idx)
+{
+ return rcu_dereference_protected(kvm->buses[idx],
+ !refcount_read(&kvm->users_count));
}
-void kvm_free_physmem(struct kvm *kvm)
+static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
{
- struct kvm_memslots *slots = kvm->memslots;
- struct kvm_memory_slot *memslot;
+ struct kvm *kvm = kvm_arch_alloc_vm();
+ struct kvm_memslots *slots;
+ int r, i, j;
+
+ if (!kvm)
+ return ERR_PTR(-ENOMEM);
+
+ KVM_MMU_LOCK_INIT(kvm);
+ mmgrab(current->mm);
+ kvm->mm = current->mm;
+ kvm_eventfd_init(kvm);
+ mutex_init(&kvm->lock);
+ mutex_init(&kvm->irq_lock);
+ mutex_init(&kvm->slots_lock);
+ mutex_init(&kvm->slots_arch_lock);
+ spin_lock_init(&kvm->mn_invalidate_lock);
+ rcuwait_init(&kvm->mn_memslots_update_rcuwait);
+ xa_init(&kvm->vcpu_array);
+#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
+ xa_init(&kvm->mem_attr_array);
+#endif
+
+ INIT_LIST_HEAD(&kvm->gpc_list);
+ spin_lock_init(&kvm->gpc_lock);
+
+ INIT_LIST_HEAD(&kvm->devices);
+ kvm->max_vcpus = KVM_MAX_VCPUS;
+
+ BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
+
+ /*
+ * Force subsequent debugfs file creations to fail if the VM directory
+ * is not created (by kvm_create_vm_debugfs()).
+ */
+ kvm->debugfs_dentry = ERR_PTR(-ENOENT);
- kvm_for_each_memslot(memslot, slots)
- kvm_free_physmem_slot(memslot, NULL);
+ snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
+ task_pid_nr(current));
- kfree(kvm->memslots);
+ r = -ENOMEM;
+ if (init_srcu_struct(&kvm->srcu))
+ goto out_err_no_srcu;
+ if (init_srcu_struct(&kvm->irq_srcu))
+ goto out_err_no_irq_srcu;
+
+ r = kvm_init_irq_routing(kvm);
+ if (r)
+ goto out_err_no_irq_routing;
+
+ refcount_set(&kvm->users_count, 1);
+
+ for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
+ for (j = 0; j < 2; j++) {
+ slots = &kvm->__memslots[i][j];
+
+ atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
+ slots->hva_tree = RB_ROOT_CACHED;
+ slots->gfn_tree = RB_ROOT;
+ hash_init(slots->id_hash);
+ slots->node_idx = j;
+
+ /* Generations must be different for each address space. */
+ slots->generation = i;
+ }
+
+ rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
+ }
+
+ r = -ENOMEM;
+ for (i = 0; i < KVM_NR_BUSES; i++) {
+ rcu_assign_pointer(kvm->buses[i],
+ kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
+ if (!kvm->buses[i])
+ goto out_err_no_arch_destroy_vm;
+ }
+
+ r = kvm_arch_init_vm(kvm, type);
+ if (r)
+ goto out_err_no_arch_destroy_vm;
+
+ r = kvm_enable_virtualization();
+ if (r)
+ goto out_err_no_disable;
+
+#ifdef CONFIG_HAVE_KVM_IRQCHIP
+ INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
+#endif
+
+ r = kvm_init_mmu_notifier(kvm);
+ if (r)
+ goto out_err_no_mmu_notifier;
+
+ r = kvm_coalesced_mmio_init(kvm);
+ if (r < 0)
+ goto out_no_coalesced_mmio;
+
+ r = kvm_create_vm_debugfs(kvm, fdname);
+ if (r)
+ goto out_err_no_debugfs;
+
+ mutex_lock(&kvm_lock);
+ list_add(&kvm->vm_list, &vm_list);
+ mutex_unlock(&kvm_lock);
+
+ preempt_notifier_inc();
+ kvm_init_pm_notifier(kvm);
+
+ return kvm;
+
+out_err_no_debugfs:
+ kvm_coalesced_mmio_free(kvm);
+out_no_coalesced_mmio:
+#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
+ if (kvm->mmu_notifier.ops)
+ mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
+#endif
+out_err_no_mmu_notifier:
+ kvm_disable_virtualization();
+out_err_no_disable:
+ kvm_arch_destroy_vm(kvm);
+out_err_no_arch_destroy_vm:
+ WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
+ for (i = 0; i < KVM_NR_BUSES; i++)
+ kfree(kvm_get_bus_for_destruction(kvm, i));
+ kvm_free_irq_routing(kvm);
+out_err_no_irq_routing:
+ cleanup_srcu_struct(&kvm->irq_srcu);
+out_err_no_irq_srcu:
+ cleanup_srcu_struct(&kvm->srcu);
+out_err_no_srcu:
+ kvm_arch_free_vm(kvm);
+ mmdrop(current->mm);
+ return ERR_PTR(r);
}
static void kvm_destroy_devices(struct kvm *kvm)
{
- struct list_head *node, *tmp;
+ struct kvm_device *dev, *tmp;
- list_for_each_safe(node, tmp, &kvm->devices) {
- struct kvm_device *dev =
- list_entry(node, struct kvm_device, vm_node);
-
- list_del(node);
+ /*
+ * We do not need to take the kvm->lock here, because nobody else
+ * has a reference to the struct kvm at this point and therefore
+ * cannot access the devices list anyhow.
+ *
+ * The device list is generally managed as an rculist, but list_del()
+ * is used intentionally here. If a bug in KVM introduced a reader that
+ * was not backed by a reference on the kvm struct, the hope is that
+ * it'd consume the poisoned forward pointer instead of suffering a
+ * use-after-free, even though this cannot be guaranteed.
+ */
+ list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
+ list_del(&dev->vm_node);
dev->ops->destroy(dev);
}
}
@@ -600,41 +1275,98 @@ static void kvm_destroy_vm(struct kvm *kvm)
int i;
struct mm_struct *mm = kvm->mm;
- kvm_arch_sync_events(kvm);
- raw_spin_lock(&kvm_lock);
+ kvm_destroy_pm_notifier(kvm);
+ kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
+ kvm_destroy_vm_debugfs(kvm);
+ mutex_lock(&kvm_lock);
list_del(&kvm->vm_list);
- raw_spin_unlock(&kvm_lock);
+ mutex_unlock(&kvm_lock);
+ kvm_arch_pre_destroy_vm(kvm);
+
kvm_free_irq_routing(kvm);
- for (i = 0; i < KVM_NR_BUSES; i++)
- kvm_io_bus_destroy(kvm->buses[i]);
+ for (i = 0; i < KVM_NR_BUSES; i++) {
+ struct kvm_io_bus *bus = kvm_get_bus_for_destruction(kvm, i);
+
+ if (bus)
+ kvm_io_bus_destroy(bus);
+ kvm->buses[i] = NULL;
+ }
kvm_coalesced_mmio_free(kvm);
-#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
+#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
+ /*
+ * At this point, pending calls to invalidate_range_start()
+ * have completed but no more MMU notifiers will run, so
+ * mn_active_invalidate_count may remain unbalanced.
+ * No threads can be waiting in kvm_swap_active_memslots() as the
+ * last reference on KVM has been dropped, but freeing
+ * memslots would deadlock without this manual intervention.
+ *
+ * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
+ * notifier between a start() and end(), then there shouldn't be any
+ * in-progress invalidations.
+ */
+ WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
+ if (kvm->mn_active_invalidate_count)
+ kvm->mn_active_invalidate_count = 0;
+ else
+ WARN_ON(kvm->mmu_invalidate_in_progress);
#else
- kvm_arch_flush_shadow_all(kvm);
+ kvm_flush_shadow_all(kvm);
#endif
kvm_arch_destroy_vm(kvm);
kvm_destroy_devices(kvm);
- kvm_free_physmem(kvm);
+ for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
+ kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
+ kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
+ }
+ cleanup_srcu_struct(&kvm->irq_srcu);
+ srcu_barrier(&kvm->srcu);
cleanup_srcu_struct(&kvm->srcu);
+#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
+ xa_destroy(&kvm->mem_attr_array);
+#endif
kvm_arch_free_vm(kvm);
- hardware_disable_all();
+ preempt_notifier_dec();
+ kvm_disable_virtualization();
mmdrop(mm);
}
void kvm_get_kvm(struct kvm *kvm)
{
- atomic_inc(&kvm->users_count);
+ refcount_inc(&kvm->users_count);
}
EXPORT_SYMBOL_GPL(kvm_get_kvm);
+/*
+ * Make sure the vm is not during destruction, which is a safe version of
+ * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
+ */
+bool kvm_get_kvm_safe(struct kvm *kvm)
+{
+ return refcount_inc_not_zero(&kvm->users_count);
+}
+EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
+
void kvm_put_kvm(struct kvm *kvm)
{
- if (atomic_dec_and_test(&kvm->users_count))
+ if (refcount_dec_and_test(&kvm->users_count))
kvm_destroy_vm(kvm);
}
EXPORT_SYMBOL_GPL(kvm_put_kvm);
+/*
+ * Used to put a reference that was taken on behalf of an object associated
+ * with a user-visible file descriptor, e.g. a vcpu or device, if installation
+ * of the new file descriptor fails and the reference cannot be transferred to
+ * its final owner. In such cases, the caller is still actively using @kvm and
+ * will fail miserably if the refcount unexpectedly hits zero.
+ */
+void kvm_put_kvm_no_destroy(struct kvm *kvm)
+{
+ WARN_ON(refcount_dec_and_test(&kvm->users_count));
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_put_kvm_no_destroy);
static int kvm_vm_release(struct inode *inode, struct file *filp)
{
@@ -646,76 +1378,241 @@ static int kvm_vm_release(struct inode *inode, struct file *filp)
return 0;
}
+int kvm_trylock_all_vcpus(struct kvm *kvm)
+{
+ struct kvm_vcpu *vcpu;
+ unsigned long i, j;
+
+ lockdep_assert_held(&kvm->lock);
+
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ if (!mutex_trylock_nest_lock(&vcpu->mutex, &kvm->lock))
+ goto out_unlock;
+ return 0;
+
+out_unlock:
+ kvm_for_each_vcpu(j, vcpu, kvm) {
+ if (i == j)
+ break;
+ mutex_unlock(&vcpu->mutex);
+ }
+ return -EINTR;
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_trylock_all_vcpus);
+
+int kvm_lock_all_vcpus(struct kvm *kvm)
+{
+ struct kvm_vcpu *vcpu;
+ unsigned long i, j;
+ int r;
+
+ lockdep_assert_held(&kvm->lock);
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ r = mutex_lock_killable_nest_lock(&vcpu->mutex, &kvm->lock);
+ if (r)
+ goto out_unlock;
+ }
+ return 0;
+
+out_unlock:
+ kvm_for_each_vcpu(j, vcpu, kvm) {
+ if (i == j)
+ break;
+ mutex_unlock(&vcpu->mutex);
+ }
+ return r;
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lock_all_vcpus);
+
+void kvm_unlock_all_vcpus(struct kvm *kvm)
+{
+ struct kvm_vcpu *vcpu;
+ unsigned long i;
+
+ lockdep_assert_held(&kvm->lock);
+
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ mutex_unlock(&vcpu->mutex);
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_unlock_all_vcpus);
+
/*
* Allocation size is twice as large as the actual dirty bitmap size.
- * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
+ * See kvm_vm_ioctl_get_dirty_log() why this is needed.
*/
-static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
+static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
{
-#ifndef CONFIG_S390
- unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
+ unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
- memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
+ memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
if (!memslot->dirty_bitmap)
return -ENOMEM;
-#endif /* !CONFIG_S390 */
return 0;
}
-static int cmp_memslot(const void *slot1, const void *slot2)
+static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
{
- struct kvm_memory_slot *s1, *s2;
-
- s1 = (struct kvm_memory_slot *)slot1;
- s2 = (struct kvm_memory_slot *)slot2;
+ struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
+ int node_idx_inactive = active->node_idx ^ 1;
- if (s1->npages < s2->npages)
- return 1;
- if (s1->npages > s2->npages)
- return -1;
-
- return 0;
+ return &kvm->__memslots[as_id][node_idx_inactive];
}
/*
- * Sort the memslots base on its size, so the larger slots
- * will get better fit.
+ * Helper to get the address space ID when one of memslot pointers may be NULL.
+ * This also serves as a sanity that at least one of the pointers is non-NULL,
+ * and that their address space IDs don't diverge.
*/
-static void sort_memslots(struct kvm_memslots *slots)
+static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
+ struct kvm_memory_slot *b)
{
- int i;
+ if (WARN_ON_ONCE(!a && !b))
+ return 0;
- sort(slots->memslots, KVM_MEM_SLOTS_NUM,
- sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
+ if (!a)
+ return b->as_id;
+ if (!b)
+ return a->as_id;
- for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
- slots->id_to_index[slots->memslots[i].id] = i;
+ WARN_ON_ONCE(a->as_id != b->as_id);
+ return a->as_id;
}
-void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
- u64 last_generation)
+static void kvm_insert_gfn_node(struct kvm_memslots *slots,
+ struct kvm_memory_slot *slot)
{
- if (new) {
- int id = new->id;
- struct kvm_memory_slot *old = id_to_memslot(slots, id);
- unsigned long npages = old->npages;
+ struct rb_root *gfn_tree = &slots->gfn_tree;
+ struct rb_node **node, *parent;
+ int idx = slots->node_idx;
+
+ parent = NULL;
+ for (node = &gfn_tree->rb_node; *node; ) {
+ struct kvm_memory_slot *tmp;
- *old = *new;
- if (new->npages != npages)
- sort_memslots(slots);
+ tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
+ parent = *node;
+ if (slot->base_gfn < tmp->base_gfn)
+ node = &(*node)->rb_left;
+ else if (slot->base_gfn > tmp->base_gfn)
+ node = &(*node)->rb_right;
+ else
+ BUG();
}
- slots->generation = last_generation + 1;
+ rb_link_node(&slot->gfn_node[idx], parent, node);
+ rb_insert_color(&slot->gfn_node[idx], gfn_tree);
+}
+
+static void kvm_erase_gfn_node(struct kvm_memslots *slots,
+ struct kvm_memory_slot *slot)
+{
+ rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
+}
+
+static void kvm_replace_gfn_node(struct kvm_memslots *slots,
+ struct kvm_memory_slot *old,
+ struct kvm_memory_slot *new)
+{
+ int idx = slots->node_idx;
+
+ WARN_ON_ONCE(old->base_gfn != new->base_gfn);
+
+ rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
+ &slots->gfn_tree);
+}
+
+/*
+ * Replace @old with @new in the inactive memslots.
+ *
+ * With NULL @old this simply adds @new.
+ * With NULL @new this simply removes @old.
+ *
+ * If @new is non-NULL its hva_node[slots_idx] range has to be set
+ * appropriately.
+ */
+static void kvm_replace_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *old,
+ struct kvm_memory_slot *new)
+{
+ int as_id = kvm_memslots_get_as_id(old, new);
+ struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
+ int idx = slots->node_idx;
+
+ if (old) {
+ hash_del(&old->id_node[idx]);
+ interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
+
+ if ((long)old == atomic_long_read(&slots->last_used_slot))
+ atomic_long_set(&slots->last_used_slot, (long)new);
+
+ if (!new) {
+ kvm_erase_gfn_node(slots, old);
+ return;
+ }
+ }
+
+ /*
+ * Initialize @new's hva range. Do this even when replacing an @old
+ * slot, kvm_copy_memslot() deliberately does not touch node data.
+ */
+ new->hva_node[idx].start = new->userspace_addr;
+ new->hva_node[idx].last = new->userspace_addr +
+ (new->npages << PAGE_SHIFT) - 1;
+
+ /*
+ * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
+ * hva_node needs to be swapped with remove+insert even though hva can't
+ * change when replacing an existing slot.
+ */
+ hash_add(slots->id_hash, &new->id_node[idx], new->id);
+ interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
+
+ /*
+ * If the memslot gfn is unchanged, rb_replace_node() can be used to
+ * switch the node in the gfn tree instead of removing the old and
+ * inserting the new as two separate operations. Replacement is a
+ * single O(1) operation versus two O(log(n)) operations for
+ * remove+insert.
+ */
+ if (old && old->base_gfn == new->base_gfn) {
+ kvm_replace_gfn_node(slots, old, new);
+ } else {
+ if (old)
+ kvm_erase_gfn_node(slots, old);
+ kvm_insert_gfn_node(slots, new);
+ }
}
-static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
+/*
+ * Flags that do not access any of the extra space of struct
+ * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS
+ * only allows these.
+ */
+#define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
+ (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
+
+static int check_memory_region_flags(struct kvm *kvm,
+ const struct kvm_userspace_memory_region2 *mem)
{
u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
-#ifdef KVM_CAP_READONLY_MEM
- valid_flags |= KVM_MEM_READONLY;
-#endif
+ if (IS_ENABLED(CONFIG_KVM_GUEST_MEMFD))
+ valid_flags |= KVM_MEM_GUEST_MEMFD;
+
+ /* Dirty logging private memory is not currently supported. */
+ if (mem->flags & KVM_MEM_GUEST_MEMFD)
+ valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
+
+ /*
+ * GUEST_MEMFD is incompatible with read-only memslots, as writes to
+ * read-only memslots have emulated MMIO, not page fault, semantics,
+ * and KVM doesn't allow emulated MMIO for private memory.
+ */
+ if (kvm_arch_has_readonly_mem(kvm) &&
+ !(mem->flags & KVM_MEM_GUEST_MEMFD))
+ valid_flags |= KVM_MEM_READONLY;
if (mem->flags & ~valid_flags)
return -EINVAL;
@@ -723,306 +1620,1087 @@ static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
return 0;
}
-static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
- struct kvm_memslots *slots, struct kvm_memory_slot *new)
+static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
{
- struct kvm_memslots *old_memslots = kvm->memslots;
+ struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
+
+ /* Grab the generation from the activate memslots. */
+ u64 gen = __kvm_memslots(kvm, as_id)->generation;
+
+ WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
+ slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
+
+ /*
+ * Do not store the new memslots while there are invalidations in
+ * progress, otherwise the locking in invalidate_range_start and
+ * invalidate_range_end will be unbalanced.
+ */
+ spin_lock(&kvm->mn_invalidate_lock);
+ prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
+ while (kvm->mn_active_invalidate_count) {
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ spin_unlock(&kvm->mn_invalidate_lock);
+ schedule();
+ spin_lock(&kvm->mn_invalidate_lock);
+ }
+ finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
+ rcu_assign_pointer(kvm->memslots[as_id], slots);
+ spin_unlock(&kvm->mn_invalidate_lock);
+
+ /*
+ * Acquired in kvm_set_memslot. Must be released before synchronize
+ * SRCU below in order to avoid deadlock with another thread
+ * acquiring the slots_arch_lock in an srcu critical section.
+ */
+ mutex_unlock(&kvm->slots_arch_lock);
- update_memslots(slots, new, kvm->memslots->generation);
- rcu_assign_pointer(kvm->memslots, slots);
synchronize_srcu_expedited(&kvm->srcu);
- return old_memslots;
+
+ /*
+ * Increment the new memslot generation a second time, dropping the
+ * update in-progress flag and incrementing the generation based on
+ * the number of address spaces. This provides a unique and easily
+ * identifiable generation number while the memslots are in flux.
+ */
+ gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
+
+ /*
+ * Generations must be unique even across address spaces. We do not need
+ * a global counter for that, instead the generation space is evenly split
+ * across address spaces. For example, with two address spaces, address
+ * space 0 will use generations 0, 2, 4, ... while address space 1 will
+ * use generations 1, 3, 5, ...
+ */
+ gen += kvm_arch_nr_memslot_as_ids(kvm);
+
+ kvm_arch_memslots_updated(kvm, gen);
+
+ slots->generation = gen;
+}
+
+static int kvm_prepare_memory_region(struct kvm *kvm,
+ const struct kvm_memory_slot *old,
+ struct kvm_memory_slot *new,
+ enum kvm_mr_change change)
+{
+ int r;
+
+ /*
+ * If dirty logging is disabled, nullify the bitmap; the old bitmap
+ * will be freed on "commit". If logging is enabled in both old and
+ * new, reuse the existing bitmap. If logging is enabled only in the
+ * new and KVM isn't using a ring buffer, allocate and initialize a
+ * new bitmap.
+ */
+ if (change != KVM_MR_DELETE) {
+ if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
+ new->dirty_bitmap = NULL;
+ else if (old && old->dirty_bitmap)
+ new->dirty_bitmap = old->dirty_bitmap;
+ else if (kvm_use_dirty_bitmap(kvm)) {
+ r = kvm_alloc_dirty_bitmap(new);
+ if (r)
+ return r;
+
+ if (kvm_dirty_log_manual_protect_and_init_set(kvm))
+ bitmap_set(new->dirty_bitmap, 0, new->npages);
+ }
+ }
+
+ r = kvm_arch_prepare_memory_region(kvm, old, new, change);
+
+ /* Free the bitmap on failure if it was allocated above. */
+ if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
+ kvm_destroy_dirty_bitmap(new);
+
+ return r;
+}
+
+static void kvm_commit_memory_region(struct kvm *kvm,
+ struct kvm_memory_slot *old,
+ const struct kvm_memory_slot *new,
+ enum kvm_mr_change change)
+{
+ int old_flags = old ? old->flags : 0;
+ int new_flags = new ? new->flags : 0;
+ /*
+ * Update the total number of memslot pages before calling the arch
+ * hook so that architectures can consume the result directly.
+ */
+ if (change == KVM_MR_DELETE)
+ kvm->nr_memslot_pages -= old->npages;
+ else if (change == KVM_MR_CREATE)
+ kvm->nr_memslot_pages += new->npages;
+
+ if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
+ int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
+ atomic_set(&kvm->nr_memslots_dirty_logging,
+ atomic_read(&kvm->nr_memslots_dirty_logging) + change);
+ }
+
+ kvm_arch_commit_memory_region(kvm, old, new, change);
+
+ switch (change) {
+ case KVM_MR_CREATE:
+ /* Nothing more to do. */
+ break;
+ case KVM_MR_DELETE:
+ /* Free the old memslot and all its metadata. */
+ kvm_free_memslot(kvm, old);
+ break;
+ case KVM_MR_MOVE:
+ case KVM_MR_FLAGS_ONLY:
+ /*
+ * Free the dirty bitmap as needed; the below check encompasses
+ * both the flags and whether a ring buffer is being used)
+ */
+ if (old->dirty_bitmap && !new->dirty_bitmap)
+ kvm_destroy_dirty_bitmap(old);
+
+ /*
+ * The final quirk. Free the detached, old slot, but only its
+ * memory, not any metadata. Metadata, including arch specific
+ * data, may be reused by @new.
+ */
+ kfree(old);
+ break;
+ default:
+ BUG();
+ }
}
/*
- * Allocate some memory and give it an address in the guest physical address
- * space.
- *
- * Discontiguous memory is allowed, mostly for framebuffers.
+ * Activate @new, which must be installed in the inactive slots by the caller,
+ * by swapping the active slots and then propagating @new to @old once @old is
+ * unreachable and can be safely modified.
*
- * Must be called holding mmap_sem for write.
+ * With NULL @old this simply adds @new to @active (while swapping the sets).
+ * With NULL @new this simply removes @old from @active and frees it
+ * (while also swapping the sets).
*/
-int __kvm_set_memory_region(struct kvm *kvm,
- struct kvm_userspace_memory_region *mem)
+static void kvm_activate_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *old,
+ struct kvm_memory_slot *new)
{
- int r;
- gfn_t base_gfn;
- unsigned long npages;
- struct kvm_memory_slot *slot;
- struct kvm_memory_slot old, new;
- struct kvm_memslots *slots = NULL, *old_memslots;
- enum kvm_mr_change change;
+ int as_id = kvm_memslots_get_as_id(old, new);
- r = check_memory_region_flags(mem);
- if (r)
- goto out;
+ kvm_swap_active_memslots(kvm, as_id);
- r = -EINVAL;
- /* General sanity checks */
- if (mem->memory_size & (PAGE_SIZE - 1))
- goto out;
- if (mem->guest_phys_addr & (PAGE_SIZE - 1))
- goto out;
- /* We can read the guest memory with __xxx_user() later on. */
- if ((mem->slot < KVM_USER_MEM_SLOTS) &&
- ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
- !access_ok(VERIFY_WRITE,
- (void __user *)(unsigned long)mem->userspace_addr,
- mem->memory_size)))
- goto out;
- if (mem->slot >= KVM_MEM_SLOTS_NUM)
- goto out;
- if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
- goto out;
+ /* Propagate the new memslot to the now inactive memslots. */
+ kvm_replace_memslot(kvm, old, new);
+}
- slot = id_to_memslot(kvm->memslots, mem->slot);
- base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
- npages = mem->memory_size >> PAGE_SHIFT;
+static void kvm_copy_memslot(struct kvm_memory_slot *dest,
+ const struct kvm_memory_slot *src)
+{
+ dest->base_gfn = src->base_gfn;
+ dest->npages = src->npages;
+ dest->dirty_bitmap = src->dirty_bitmap;
+ dest->arch = src->arch;
+ dest->userspace_addr = src->userspace_addr;
+ dest->flags = src->flags;
+ dest->id = src->id;
+ dest->as_id = src->as_id;
+}
- r = -EINVAL;
- if (npages > KVM_MEM_MAX_NR_PAGES)
- goto out;
+static void kvm_invalidate_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *old,
+ struct kvm_memory_slot *invalid_slot)
+{
+ /*
+ * Mark the current slot INVALID. As with all memslot modifications,
+ * this must be done on an unreachable slot to avoid modifying the
+ * current slot in the active tree.
+ */
+ kvm_copy_memslot(invalid_slot, old);
+ invalid_slot->flags |= KVM_MEMSLOT_INVALID;
+ kvm_replace_memslot(kvm, old, invalid_slot);
- if (!npages)
- mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
+ /*
+ * Activate the slot that is now marked INVALID, but don't propagate
+ * the slot to the now inactive slots. The slot is either going to be
+ * deleted or recreated as a new slot.
+ */
+ kvm_swap_active_memslots(kvm, old->as_id);
- new = old = *slot;
+ /*
+ * From this point no new shadow pages pointing to a deleted, or moved,
+ * memslot will be created. Validation of sp->gfn happens in:
+ * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
+ * - kvm_is_visible_gfn (mmu_check_root)
+ */
+ kvm_arch_flush_shadow_memslot(kvm, old);
+ kvm_arch_guest_memory_reclaimed(kvm);
- new.id = mem->slot;
- new.base_gfn = base_gfn;
- new.npages = npages;
- new.flags = mem->flags;
+ /* Was released by kvm_swap_active_memslots(), reacquire. */
+ mutex_lock(&kvm->slots_arch_lock);
- r = -EINVAL;
- if (npages) {
- if (!old.npages)
- change = KVM_MR_CREATE;
- else { /* Modify an existing slot. */
- if ((mem->userspace_addr != old.userspace_addr) ||
- (npages != old.npages) ||
- ((new.flags ^ old.flags) & KVM_MEM_READONLY))
- goto out;
+ /*
+ * Copy the arch-specific field of the newly-installed slot back to the
+ * old slot as the arch data could have changed between releasing
+ * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
+ * above. Writers are required to retrieve memslots *after* acquiring
+ * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
+ */
+ old->arch = invalid_slot->arch;
+}
- if (base_gfn != old.base_gfn)
- change = KVM_MR_MOVE;
- else if (new.flags != old.flags)
- change = KVM_MR_FLAGS_ONLY;
- else { /* Nothing to change. */
- r = 0;
- goto out;
- }
+static void kvm_create_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *new)
+{
+ /* Add the new memslot to the inactive set and activate. */
+ kvm_replace_memslot(kvm, NULL, new);
+ kvm_activate_memslot(kvm, NULL, new);
+}
+
+static void kvm_delete_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *old,
+ struct kvm_memory_slot *invalid_slot)
+{
+ /*
+ * Remove the old memslot (in the inactive memslots) by passing NULL as
+ * the "new" slot, and for the invalid version in the active slots.
+ */
+ kvm_replace_memslot(kvm, old, NULL);
+ kvm_activate_memslot(kvm, invalid_slot, NULL);
+}
+
+static void kvm_move_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *old,
+ struct kvm_memory_slot *new,
+ struct kvm_memory_slot *invalid_slot)
+{
+ /*
+ * Replace the old memslot in the inactive slots, and then swap slots
+ * and replace the current INVALID with the new as well.
+ */
+ kvm_replace_memslot(kvm, old, new);
+ kvm_activate_memslot(kvm, invalid_slot, new);
+}
+
+static void kvm_update_flags_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *old,
+ struct kvm_memory_slot *new)
+{
+ /*
+ * Similar to the MOVE case, but the slot doesn't need to be zapped as
+ * an intermediate step. Instead, the old memslot is simply replaced
+ * with a new, updated copy in both memslot sets.
+ */
+ kvm_replace_memslot(kvm, old, new);
+ kvm_activate_memslot(kvm, old, new);
+}
+
+static int kvm_set_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *old,
+ struct kvm_memory_slot *new,
+ enum kvm_mr_change change)
+{
+ struct kvm_memory_slot *invalid_slot;
+ int r;
+
+ /*
+ * Released in kvm_swap_active_memslots().
+ *
+ * Must be held from before the current memslots are copied until after
+ * the new memslots are installed with rcu_assign_pointer, then
+ * released before the synchronize srcu in kvm_swap_active_memslots().
+ *
+ * When modifying memslots outside of the slots_lock, must be held
+ * before reading the pointer to the current memslots until after all
+ * changes to those memslots are complete.
+ *
+ * These rules ensure that installing new memslots does not lose
+ * changes made to the previous memslots.
+ */
+ mutex_lock(&kvm->slots_arch_lock);
+
+ /*
+ * Invalidate the old slot if it's being deleted or moved. This is
+ * done prior to actually deleting/moving the memslot to allow vCPUs to
+ * continue running by ensuring there are no mappings or shadow pages
+ * for the memslot when it is deleted/moved. Without pre-invalidation
+ * (and without a lock), a window would exist between effecting the
+ * delete/move and committing the changes in arch code where KVM or a
+ * guest could access a non-existent memslot.
+ *
+ * Modifications are done on a temporary, unreachable slot. The old
+ * slot needs to be preserved in case a later step fails and the
+ * invalidation needs to be reverted.
+ */
+ if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
+ invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
+ if (!invalid_slot) {
+ mutex_unlock(&kvm->slots_arch_lock);
+ return -ENOMEM;
}
- } else if (old.npages) {
- change = KVM_MR_DELETE;
- } else /* Modify a non-existent slot: disallowed. */
- goto out;
+ kvm_invalidate_memslot(kvm, old, invalid_slot);
+ }
- if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
- /* Check for overlaps */
- r = -EEXIST;
- kvm_for_each_memslot(slot, kvm->memslots) {
- if ((slot->id >= KVM_USER_MEM_SLOTS) ||
- (slot->id == mem->slot))
- continue;
- if (!((base_gfn + npages <= slot->base_gfn) ||
- (base_gfn >= slot->base_gfn + slot->npages)))
- goto out;
+ r = kvm_prepare_memory_region(kvm, old, new, change);
+ if (r) {
+ /*
+ * For DELETE/MOVE, revert the above INVALID change. No
+ * modifications required since the original slot was preserved
+ * in the inactive slots. Changing the active memslots also
+ * release slots_arch_lock.
+ */
+ if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
+ kvm_activate_memslot(kvm, invalid_slot, old);
+ kfree(invalid_slot);
+ } else {
+ mutex_unlock(&kvm->slots_arch_lock);
}
+ return r;
}
- /* Free page dirty bitmap if unneeded */
- if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
- new.dirty_bitmap = NULL;
+ /*
+ * For DELETE and MOVE, the working slot is now active as the INVALID
+ * version of the old slot. MOVE is particularly special as it reuses
+ * the old slot and returns a copy of the old slot (in working_slot).
+ * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
+ * old slot is detached but otherwise preserved.
+ */
+ if (change == KVM_MR_CREATE)
+ kvm_create_memslot(kvm, new);
+ else if (change == KVM_MR_DELETE)
+ kvm_delete_memslot(kvm, old, invalid_slot);
+ else if (change == KVM_MR_MOVE)
+ kvm_move_memslot(kvm, old, new, invalid_slot);
+ else if (change == KVM_MR_FLAGS_ONLY)
+ kvm_update_flags_memslot(kvm, old, new);
+ else
+ BUG();
- r = -ENOMEM;
- if (change == KVM_MR_CREATE) {
- new.userspace_addr = mem->userspace_addr;
+ /* Free the temporary INVALID slot used for DELETE and MOVE. */
+ if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
+ kfree(invalid_slot);
- if (kvm_arch_create_memslot(&new, npages))
- goto out_free;
- }
+ /*
+ * No need to refresh new->arch, changes after dropping slots_arch_lock
+ * will directly hit the final, active memslot. Architectures are
+ * responsible for knowing that new->arch may be stale.
+ */
+ kvm_commit_memory_region(kvm, old, new, change);
- /* Allocate page dirty bitmap if needed */
- if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
- if (kvm_create_dirty_bitmap(&new) < 0)
- goto out_free;
- }
+ return 0;
+}
- if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
- r = -ENOMEM;
- slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
- GFP_KERNEL);
- if (!slots)
- goto out_free;
- slot = id_to_memslot(slots, mem->slot);
- slot->flags |= KVM_MEMSLOT_INVALID;
-
- old_memslots = install_new_memslots(kvm, slots, NULL);
-
- /* slot was deleted or moved, clear iommu mapping */
- kvm_iommu_unmap_pages(kvm, &old);
- /* From this point no new shadow pages pointing to a deleted,
- * or moved, memslot will be created.
- *
- * validation of sp->gfn happens in:
- * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
- * - kvm_is_visible_gfn (mmu_check_roots)
- */
- kvm_arch_flush_shadow_memslot(kvm, slot);
- slots = old_memslots;
+static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
+ gfn_t start, gfn_t end)
+{
+ struct kvm_memslot_iter iter;
+
+ kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
+ if (iter.slot->id != id)
+ return true;
}
- r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
+ return false;
+}
+
+static int kvm_set_memory_region(struct kvm *kvm,
+ const struct kvm_userspace_memory_region2 *mem)
+{
+ struct kvm_memory_slot *old, *new;
+ struct kvm_memslots *slots;
+ enum kvm_mr_change change;
+ unsigned long npages;
+ gfn_t base_gfn;
+ int as_id, id;
+ int r;
+
+ lockdep_assert_held(&kvm->slots_lock);
+
+ r = check_memory_region_flags(kvm, mem);
if (r)
- goto out_slots;
+ return r;
+
+ as_id = mem->slot >> 16;
+ id = (u16)mem->slot;
+
+ /* General sanity checks */
+ if ((mem->memory_size & (PAGE_SIZE - 1)) ||
+ (mem->memory_size != (unsigned long)mem->memory_size))
+ return -EINVAL;
+ if (mem->guest_phys_addr & (PAGE_SIZE - 1))
+ return -EINVAL;
+ /* We can read the guest memory with __xxx_user() later on. */
+ if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
+ (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
+ !access_ok((void __user *)(unsigned long)mem->userspace_addr,
+ mem->memory_size))
+ return -EINVAL;
+ if (mem->flags & KVM_MEM_GUEST_MEMFD &&
+ (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
+ mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
+ return -EINVAL;
+ if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
+ return -EINVAL;
+ if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
+ return -EINVAL;
- r = -ENOMEM;
/*
- * We can re-use the old_memslots from above, the only difference
- * from the currently installed memslots is the invalid flag. This
- * will get overwritten by update_memslots anyway.
+ * The size of userspace-defined memory regions is restricted in order
+ * to play nice with dirty bitmap operations, which are indexed with an
+ * "unsigned int". KVM's internal memory regions don't support dirty
+ * logging, and so are exempt.
*/
- if (!slots) {
- slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
- GFP_KERNEL);
- if (!slots)
- goto out_free;
- }
+ if (id < KVM_USER_MEM_SLOTS &&
+ (mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
+ return -EINVAL;
+
+ slots = __kvm_memslots(kvm, as_id);
/*
- * IOMMU mapping: New slots need to be mapped. Old slots need to be
- * un-mapped and re-mapped if their base changes. Since base change
- * unmapping is handled above with slot deletion, mapping alone is
- * needed here. Anything else the iommu might care about for existing
- * slots (size changes, userspace addr changes and read-only flag
- * changes) is disallowed above, so any other attribute changes getting
- * here can be skipped.
+ * Note, the old memslot (and the pointer itself!) may be invalidated
+ * and/or destroyed by kvm_set_memslot().
*/
- if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
- r = kvm_iommu_map_pages(kvm, &new);
- if (r)
- goto out_slots;
+ old = id_to_memslot(slots, id);
+
+ if (!mem->memory_size) {
+ if (!old || !old->npages)
+ return -EINVAL;
+
+ if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
+ return -EIO;
+
+ return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
}
- /* actual memory is freed via old in kvm_free_physmem_slot below */
- if (change == KVM_MR_DELETE) {
- new.dirty_bitmap = NULL;
- memset(&new.arch, 0, sizeof(new.arch));
+ base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
+ npages = (mem->memory_size >> PAGE_SHIFT);
+
+ if (!old || !old->npages) {
+ change = KVM_MR_CREATE;
+
+ /*
+ * To simplify KVM internals, the total number of pages across
+ * all memslots must fit in an unsigned long.
+ */
+ if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
+ return -EINVAL;
+ } else { /* Modify an existing slot. */
+ /* Private memslots are immutable, they can only be deleted. */
+ if (mem->flags & KVM_MEM_GUEST_MEMFD)
+ return -EINVAL;
+ if ((mem->userspace_addr != old->userspace_addr) ||
+ (npages != old->npages) ||
+ ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
+ return -EINVAL;
+
+ if (base_gfn != old->base_gfn)
+ change = KVM_MR_MOVE;
+ else if (mem->flags != old->flags)
+ change = KVM_MR_FLAGS_ONLY;
+ else /* Nothing to change. */
+ return 0;
}
- old_memslots = install_new_memslots(kvm, slots, &new);
+ if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
+ kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
+ return -EEXIST;
+
+ /* Allocate a slot that will persist in the memslot. */
+ new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
+ if (!new)
+ return -ENOMEM;
- kvm_arch_commit_memory_region(kvm, mem, &old, change);
+ new->as_id = as_id;
+ new->id = id;
+ new->base_gfn = base_gfn;
+ new->npages = npages;
+ new->flags = mem->flags;
+ new->userspace_addr = mem->userspace_addr;
+ if (mem->flags & KVM_MEM_GUEST_MEMFD) {
+ r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
+ if (r)
+ goto out;
+ }
- kvm_free_physmem_slot(&old, &new);
- kfree(old_memslots);
+ r = kvm_set_memslot(kvm, old, new, change);
+ if (r)
+ goto out_unbind;
return 0;
-out_slots:
- kfree(slots);
-out_free:
- kvm_free_physmem_slot(&new, &old);
+out_unbind:
+ if (mem->flags & KVM_MEM_GUEST_MEMFD)
+ kvm_gmem_unbind(new);
out:
+ kfree(new);
return r;
}
-EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
-int kvm_set_memory_region(struct kvm *kvm,
- struct kvm_userspace_memory_region *mem)
+int kvm_set_internal_memslot(struct kvm *kvm,
+ const struct kvm_userspace_memory_region2 *mem)
{
- int r;
+ if (WARN_ON_ONCE(mem->slot < KVM_USER_MEM_SLOTS))
+ return -EINVAL;
- mutex_lock(&kvm->slots_lock);
- r = __kvm_set_memory_region(kvm, mem);
- mutex_unlock(&kvm->slots_lock);
- return r;
+ if (WARN_ON_ONCE(mem->flags))
+ return -EINVAL;
+
+ return kvm_set_memory_region(kvm, mem);
}
-EXPORT_SYMBOL_GPL(kvm_set_memory_region);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_internal_memslot);
-int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
- struct kvm_userspace_memory_region *mem)
+static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
+ struct kvm_userspace_memory_region2 *mem)
{
- if (mem->slot >= KVM_USER_MEM_SLOTS)
+ if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
return -EINVAL;
+
+ guard(mutex)(&kvm->slots_lock);
return kvm_set_memory_region(kvm, mem);
}
-int kvm_get_dirty_log(struct kvm *kvm,
- struct kvm_dirty_log *log, int *is_dirty)
+#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
+/**
+ * kvm_get_dirty_log - get a snapshot of dirty pages
+ * @kvm: pointer to kvm instance
+ * @log: slot id and address to which we copy the log
+ * @is_dirty: set to '1' if any dirty pages were found
+ * @memslot: set to the associated memslot, always valid on success
+ */
+int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
+ int *is_dirty, struct kvm_memory_slot **memslot)
{
- struct kvm_memory_slot *memslot;
- int r, i;
+ struct kvm_memslots *slots;
+ int i, as_id, id;
unsigned long n;
unsigned long any = 0;
- r = -EINVAL;
- if (log->slot >= KVM_USER_MEM_SLOTS)
- goto out;
+ /* Dirty ring tracking may be exclusive to dirty log tracking */
+ if (!kvm_use_dirty_bitmap(kvm))
+ return -ENXIO;
- memslot = id_to_memslot(kvm->memslots, log->slot);
- r = -ENOENT;
- if (!memslot->dirty_bitmap)
- goto out;
+ *memslot = NULL;
+ *is_dirty = 0;
- n = kvm_dirty_bitmap_bytes(memslot);
+ as_id = log->slot >> 16;
+ id = (u16)log->slot;
+ if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
+ return -EINVAL;
+
+ slots = __kvm_memslots(kvm, as_id);
+ *memslot = id_to_memslot(slots, id);
+ if (!(*memslot) || !(*memslot)->dirty_bitmap)
+ return -ENOENT;
+
+ kvm_arch_sync_dirty_log(kvm, *memslot);
+
+ n = kvm_dirty_bitmap_bytes(*memslot);
for (i = 0; !any && i < n/sizeof(long); ++i)
- any = memslot->dirty_bitmap[i];
+ any = (*memslot)->dirty_bitmap[i];
- r = -EFAULT;
- if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
- goto out;
+ if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
+ return -EFAULT;
if (any)
*is_dirty = 1;
+ return 0;
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_dirty_log);
- r = 0;
-out:
+#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
+/**
+ * kvm_get_dirty_log_protect - get a snapshot of dirty pages
+ * and reenable dirty page tracking for the corresponding pages.
+ * @kvm: pointer to kvm instance
+ * @log: slot id and address to which we copy the log
+ *
+ * We need to keep it in mind that VCPU threads can write to the bitmap
+ * concurrently. So, to avoid losing track of dirty pages we keep the
+ * following order:
+ *
+ * 1. Take a snapshot of the bit and clear it if needed.
+ * 2. Write protect the corresponding page.
+ * 3. Copy the snapshot to the userspace.
+ * 4. Upon return caller flushes TLB's if needed.
+ *
+ * Between 2 and 4, the guest may write to the page using the remaining TLB
+ * entry. This is not a problem because the page is reported dirty using
+ * the snapshot taken before and step 4 ensures that writes done after
+ * exiting to userspace will be logged for the next call.
+ *
+ */
+static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+ int i, as_id, id;
+ unsigned long n;
+ unsigned long *dirty_bitmap;
+ unsigned long *dirty_bitmap_buffer;
+ bool flush;
+
+ /* Dirty ring tracking may be exclusive to dirty log tracking */
+ if (!kvm_use_dirty_bitmap(kvm))
+ return -ENXIO;
+
+ as_id = log->slot >> 16;
+ id = (u16)log->slot;
+ if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
+ return -EINVAL;
+
+ slots = __kvm_memslots(kvm, as_id);
+ memslot = id_to_memslot(slots, id);
+ if (!memslot || !memslot->dirty_bitmap)
+ return -ENOENT;
+
+ dirty_bitmap = memslot->dirty_bitmap;
+
+ kvm_arch_sync_dirty_log(kvm, memslot);
+
+ n = kvm_dirty_bitmap_bytes(memslot);
+ flush = false;
+ if (kvm->manual_dirty_log_protect) {
+ /*
+ * Unlike kvm_get_dirty_log, we always return false in *flush,
+ * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
+ * is some code duplication between this function and
+ * kvm_get_dirty_log, but hopefully all architecture
+ * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
+ * can be eliminated.
+ */
+ dirty_bitmap_buffer = dirty_bitmap;
+ } else {
+ dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
+ memset(dirty_bitmap_buffer, 0, n);
+
+ KVM_MMU_LOCK(kvm);
+ for (i = 0; i < n / sizeof(long); i++) {
+ unsigned long mask;
+ gfn_t offset;
+
+ if (!dirty_bitmap[i])
+ continue;
+
+ flush = true;
+ mask = xchg(&dirty_bitmap[i], 0);
+ dirty_bitmap_buffer[i] = mask;
+
+ offset = i * BITS_PER_LONG;
+ kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
+ offset, mask);
+ }
+ KVM_MMU_UNLOCK(kvm);
+ }
+
+ if (flush)
+ kvm_flush_remote_tlbs_memslot(kvm, memslot);
+
+ if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
+ return -EFAULT;
+ return 0;
+}
+
+
+/**
+ * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
+ * @kvm: kvm instance
+ * @log: slot id and address to which we copy the log
+ *
+ * Steps 1-4 below provide general overview of dirty page logging. See
+ * kvm_get_dirty_log_protect() function description for additional details.
+ *
+ * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
+ * always flush the TLB (step 4) even if previous step failed and the dirty
+ * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
+ * does not preclude user space subsequent dirty log read. Flushing TLB ensures
+ * writes will be marked dirty for next log read.
+ *
+ * 1. Take a snapshot of the bit and clear it if needed.
+ * 2. Write protect the corresponding page.
+ * 3. Copy the snapshot to the userspace.
+ * 4. Flush TLB's if needed.
+ */
+static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
+ struct kvm_dirty_log *log)
+{
+ int r;
+
+ mutex_lock(&kvm->slots_lock);
+
+ r = kvm_get_dirty_log_protect(kvm, log);
+
+ mutex_unlock(&kvm->slots_lock);
+ return r;
+}
+
+/**
+ * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
+ * and reenable dirty page tracking for the corresponding pages.
+ * @kvm: pointer to kvm instance
+ * @log: slot id and address from which to fetch the bitmap of dirty pages
+ */
+static int kvm_clear_dirty_log_protect(struct kvm *kvm,
+ struct kvm_clear_dirty_log *log)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+ int as_id, id;
+ gfn_t offset;
+ unsigned long i, n;
+ unsigned long *dirty_bitmap;
+ unsigned long *dirty_bitmap_buffer;
+ bool flush;
+
+ /* Dirty ring tracking may be exclusive to dirty log tracking */
+ if (!kvm_use_dirty_bitmap(kvm))
+ return -ENXIO;
+
+ as_id = log->slot >> 16;
+ id = (u16)log->slot;
+ if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
+ return -EINVAL;
+
+ if (log->first_page & 63)
+ return -EINVAL;
+
+ slots = __kvm_memslots(kvm, as_id);
+ memslot = id_to_memslot(slots, id);
+ if (!memslot || !memslot->dirty_bitmap)
+ return -ENOENT;
+
+ dirty_bitmap = memslot->dirty_bitmap;
+
+ n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
+
+ if (log->first_page > memslot->npages ||
+ log->num_pages > memslot->npages - log->first_page ||
+ (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
+ return -EINVAL;
+
+ kvm_arch_sync_dirty_log(kvm, memslot);
+
+ flush = false;
+ dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
+ if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
+ return -EFAULT;
+
+ KVM_MMU_LOCK(kvm);
+ for (offset = log->first_page, i = offset / BITS_PER_LONG,
+ n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
+ i++, offset += BITS_PER_LONG) {
+ unsigned long mask = *dirty_bitmap_buffer++;
+ atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
+ if (!mask)
+ continue;
+
+ mask &= atomic_long_fetch_andnot(mask, p);
+
+ /*
+ * mask contains the bits that really have been cleared. This
+ * never includes any bits beyond the length of the memslot (if
+ * the length is not aligned to 64 pages), therefore it is not
+ * a problem if userspace sets them in log->dirty_bitmap.
+ */
+ if (mask) {
+ flush = true;
+ kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
+ offset, mask);
+ }
+ }
+ KVM_MMU_UNLOCK(kvm);
+
+ if (flush)
+ kvm_flush_remote_tlbs_memslot(kvm, memslot);
+
+ return 0;
+}
+
+static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
+ struct kvm_clear_dirty_log *log)
+{
+ int r;
+
+ mutex_lock(&kvm->slots_lock);
+
+ r = kvm_clear_dirty_log_protect(kvm, log);
+
+ mutex_unlock(&kvm->slots_lock);
return r;
}
+#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
+
+#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
+static u64 kvm_supported_mem_attributes(struct kvm *kvm)
+{
+ if (!kvm || kvm_arch_has_private_mem(kvm))
+ return KVM_MEMORY_ATTRIBUTE_PRIVATE;
+
+ return 0;
+}
+
+/*
+ * Returns true if _all_ gfns in the range [@start, @end) have attributes
+ * such that the bits in @mask match @attrs.
+ */
+bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
+ unsigned long mask, unsigned long attrs)
+{
+ XA_STATE(xas, &kvm->mem_attr_array, start);
+ unsigned long index;
+ void *entry;
+
+ mask &= kvm_supported_mem_attributes(kvm);
+ if (attrs & ~mask)
+ return false;
+
+ if (end == start + 1)
+ return (kvm_get_memory_attributes(kvm, start) & mask) == attrs;
+
+ guard(rcu)();
+ if (!attrs)
+ return !xas_find(&xas, end - 1);
+
+ for (index = start; index < end; index++) {
+ do {
+ entry = xas_next(&xas);
+ } while (xas_retry(&xas, entry));
+
+ if (xas.xa_index != index ||
+ (xa_to_value(entry) & mask) != attrs)
+ return false;
+ }
+
+ return true;
+}
+
+static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
+ struct kvm_mmu_notifier_range *range)
+{
+ struct kvm_gfn_range gfn_range;
+ struct kvm_memory_slot *slot;
+ struct kvm_memslots *slots;
+ struct kvm_memslot_iter iter;
+ bool found_memslot = false;
+ bool ret = false;
+ int i;
+
+ gfn_range.arg = range->arg;
+ gfn_range.may_block = range->may_block;
+
+ /*
+ * If/when KVM supports more attributes beyond private .vs shared, this
+ * _could_ set KVM_FILTER_{SHARED,PRIVATE} appropriately if the entire target
+ * range already has the desired private vs. shared state (it's unclear
+ * if that is a net win). For now, KVM reaches this point if and only
+ * if the private flag is being toggled, i.e. all mappings are in play.
+ */
+
+ for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
+ slots = __kvm_memslots(kvm, i);
+
+ kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
+ slot = iter.slot;
+ gfn_range.slot = slot;
+
+ gfn_range.start = max(range->start, slot->base_gfn);
+ gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
+ if (gfn_range.start >= gfn_range.end)
+ continue;
+
+ if (!found_memslot) {
+ found_memslot = true;
+ KVM_MMU_LOCK(kvm);
+ if (!IS_KVM_NULL_FN(range->on_lock))
+ range->on_lock(kvm);
+ }
+
+ ret |= range->handler(kvm, &gfn_range);
+ }
+ }
+
+ if (range->flush_on_ret && ret)
+ kvm_flush_remote_tlbs(kvm);
+
+ if (found_memslot)
+ KVM_MMU_UNLOCK(kvm);
+}
-bool kvm_largepages_enabled(void)
+static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
+ struct kvm_gfn_range *range)
{
- return largepages_enabled;
+ /*
+ * Unconditionally add the range to the invalidation set, regardless of
+ * whether or not the arch callback actually needs to zap SPTEs. E.g.
+ * if KVM supports RWX attributes in the future and the attributes are
+ * going from R=>RW, zapping isn't strictly necessary. Unconditionally
+ * adding the range allows KVM to require that MMU invalidations add at
+ * least one range between begin() and end(), e.g. allows KVM to detect
+ * bugs where the add() is missed. Relaxing the rule *might* be safe,
+ * but it's not obvious that allowing new mappings while the attributes
+ * are in flux is desirable or worth the complexity.
+ */
+ kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
+
+ return kvm_arch_pre_set_memory_attributes(kvm, range);
}
-void kvm_disable_largepages(void)
+/* Set @attributes for the gfn range [@start, @end). */
+static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
+ unsigned long attributes)
{
- largepages_enabled = false;
+ struct kvm_mmu_notifier_range pre_set_range = {
+ .start = start,
+ .end = end,
+ .arg.attributes = attributes,
+ .handler = kvm_pre_set_memory_attributes,
+ .on_lock = kvm_mmu_invalidate_begin,
+ .flush_on_ret = true,
+ .may_block = true,
+ };
+ struct kvm_mmu_notifier_range post_set_range = {
+ .start = start,
+ .end = end,
+ .arg.attributes = attributes,
+ .handler = kvm_arch_post_set_memory_attributes,
+ .on_lock = kvm_mmu_invalidate_end,
+ .may_block = true,
+ };
+ unsigned long i;
+ void *entry;
+ int r = 0;
+
+ entry = attributes ? xa_mk_value(attributes) : NULL;
+
+ trace_kvm_vm_set_mem_attributes(start, end, attributes);
+
+ mutex_lock(&kvm->slots_lock);
+
+ /* Nothing to do if the entire range has the desired attributes. */
+ if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes))
+ goto out_unlock;
+
+ /*
+ * Reserve memory ahead of time to avoid having to deal with failures
+ * partway through setting the new attributes.
+ */
+ for (i = start; i < end; i++) {
+ r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
+ if (r)
+ goto out_unlock;
+
+ cond_resched();
+ }
+
+ kvm_handle_gfn_range(kvm, &pre_set_range);
+
+ for (i = start; i < end; i++) {
+ r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
+ GFP_KERNEL_ACCOUNT));
+ KVM_BUG_ON(r, kvm);
+ cond_resched();
+ }
+
+ kvm_handle_gfn_range(kvm, &post_set_range);
+
+out_unlock:
+ mutex_unlock(&kvm->slots_lock);
+
+ return r;
}
-EXPORT_SYMBOL_GPL(kvm_disable_largepages);
+static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
+ struct kvm_memory_attributes *attrs)
+{
+ gfn_t start, end;
+
+ /* flags is currently not used. */
+ if (attrs->flags)
+ return -EINVAL;
+ if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
+ return -EINVAL;
+ if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
+ return -EINVAL;
+ if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
+ return -EINVAL;
+
+ start = attrs->address >> PAGE_SHIFT;
+ end = (attrs->address + attrs->size) >> PAGE_SHIFT;
+
+ /*
+ * xarray tracks data using "unsigned long", and as a result so does
+ * KVM. For simplicity, supports generic attributes only on 64-bit
+ * architectures.
+ */
+ BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
+
+ return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
+}
+#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
{
return __gfn_to_memslot(kvm_memslots(kvm), gfn);
}
-EXPORT_SYMBOL_GPL(gfn_to_memslot);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_memslot);
-int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
+struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+ struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
+ u64 gen = slots->generation;
+ struct kvm_memory_slot *slot;
+
+ /*
+ * This also protects against using a memslot from a different address space,
+ * since different address spaces have different generation numbers.
+ */
+ if (unlikely(gen != vcpu->last_used_slot_gen)) {
+ vcpu->last_used_slot = NULL;
+ vcpu->last_used_slot_gen = gen;
+ }
+
+ slot = try_get_memslot(vcpu->last_used_slot, gfn);
+ if (slot)
+ return slot;
+
+ /*
+ * Fall back to searching all memslots. We purposely use
+ * search_memslots() instead of __gfn_to_memslot() to avoid
+ * thrashing the VM-wide last_used_slot in kvm_memslots.
+ */
+ slot = search_memslots(slots, gfn, false);
+ if (slot) {
+ vcpu->last_used_slot = slot;
+ return slot;
+ }
+
+ return NULL;
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_gfn_to_memslot);
+
+bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
{
struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
- if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
- memslot->flags & KVM_MEMSLOT_INVALID)
- return 0;
+ return kvm_is_visible_memslot(memslot);
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_is_visible_gfn);
+
+bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+ struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
- return 1;
+ return kvm_is_visible_memslot(memslot);
}
-EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_is_visible_gfn);
-unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
+unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
{
struct vm_area_struct *vma;
unsigned long addr, size;
size = PAGE_SIZE;
- addr = gfn_to_hva(kvm, gfn);
+ addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
if (kvm_is_error_hva(addr))
return PAGE_SIZE;
- down_read(&current->mm->mmap_sem);
+ mmap_read_lock(current->mm);
vma = find_vma(current->mm, addr);
if (!vma)
goto out;
@@ -1030,17 +2708,17 @@ unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
size = vma_kernel_pagesize(vma);
out:
- up_read(&current->mm->mmap_sem);
+ mmap_read_unlock(current->mm);
return size;
}
-static bool memslot_is_readonly(struct kvm_memory_slot *slot)
+static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
{
return slot->flags & KVM_MEM_READONLY;
}
-static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
+static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
gfn_t *nr_pages, bool write)
{
if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
@@ -1062,84 +2740,144 @@ static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
}
unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
- gfn_t gfn)
+ gfn_t gfn)
{
return gfn_to_hva_many(slot, gfn, NULL);
}
-EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_hva_memslot);
unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
{
return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
}
-EXPORT_SYMBOL_GPL(gfn_to_hva);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_hva);
+
+unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+ return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_gfn_to_hva);
/*
- * The hva returned by this function is only allowed to be read.
- * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
+ * Return the hva of a @gfn and the R/W attribute if possible.
+ *
+ * @slot: the kvm_memory_slot which contains @gfn
+ * @gfn: the gfn to be translated
+ * @writable: used to return the read/write attribute of the @slot if the hva
+ * is valid and @writable is not NULL
*/
-static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
+unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
+ gfn_t gfn, bool *writable)
+{
+ unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
+
+ if (!kvm_is_error_hva(hva) && writable)
+ *writable = !memslot_is_readonly(slot);
+
+ return hva;
+}
+
+unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
{
- return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
+ struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
+
+ return gfn_to_hva_memslot_prot(slot, gfn, writable);
}
-static int kvm_read_hva(void *data, void __user *hva, int len)
+unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
{
- return __copy_from_user(data, hva, len);
+ struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
+
+ return gfn_to_hva_memslot_prot(slot, gfn, writable);
}
-static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
+static bool kvm_is_ad_tracked_page(struct page *page)
{
- return __copy_from_user_inatomic(data, hva, len);
+ /*
+ * Per page-flags.h, pages tagged PG_reserved "should in general not be
+ * touched (e.g. set dirty) except by its owner".
+ */
+ return !PageReserved(page);
}
-static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
- unsigned long start, int write, struct page **page)
+static void kvm_set_page_dirty(struct page *page)
{
- int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
+ if (kvm_is_ad_tracked_page(page))
+ SetPageDirty(page);
+}
- if (write)
- flags |= FOLL_WRITE;
+static void kvm_set_page_accessed(struct page *page)
+{
+ if (kvm_is_ad_tracked_page(page))
+ mark_page_accessed(page);
+}
+
+void kvm_release_page_clean(struct page *page)
+{
+ if (!page)
+ return;
+
+ kvm_set_page_accessed(page);
+ put_page(page);
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_release_page_clean);
+
+void kvm_release_page_dirty(struct page *page)
+{
+ if (!page)
+ return;
- return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
+ kvm_set_page_dirty(page);
+ kvm_release_page_clean(page);
}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_release_page_dirty);
-static inline int check_user_page_hwpoison(unsigned long addr)
+static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page,
+ struct follow_pfnmap_args *map, bool writable)
{
- int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
+ kvm_pfn_t pfn;
+
+ WARN_ON_ONCE(!!page == !!map);
+
+ if (kfp->map_writable)
+ *kfp->map_writable = writable;
- rc = __get_user_pages(current, current->mm, addr, 1,
- flags, NULL, NULL, NULL);
- return rc == -EHWPOISON;
+ if (map)
+ pfn = map->pfn;
+ else
+ pfn = page_to_pfn(page);
+
+ *kfp->refcounted_page = page;
+
+ return pfn;
}
/*
- * The atomic path to get the writable pfn which will be stored in @pfn,
+ * The fast path to get the writable pfn which will be stored in @pfn,
* true indicates success, otherwise false is returned.
*/
-static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
- bool write_fault, bool *writable, pfn_t *pfn)
+static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
{
- struct page *page[1];
- int npages;
-
- if (!(async || atomic))
- return false;
+ struct page *page;
+ bool r;
/*
- * Fast pin a writable pfn only if it is a write fault request
- * or the caller allows to map a writable pfn for a read fault
- * request.
+ * Try the fast-only path when the caller wants to pin/get the page for
+ * writing. If the caller only wants to read the page, KVM must go
+ * down the full, slow path in order to avoid racing an operation that
+ * breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing
+ * at the old, read-only page while mm/ points at a new, writable page.
*/
- if (!(write_fault || writable))
+ if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable))
return false;
- npages = __get_user_pages_fast(addr, 1, 1, page);
- if (npages == 1) {
- *pfn = page_to_pfn(page[0]);
+ if (kfp->pin)
+ r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1;
+ else
+ r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page);
- if (writable)
- *writable = true;
+ if (r) {
+ *pfn = kvm_resolve_pfn(kfp, page, NULL, true);
return true;
}
@@ -1150,42 +2888,48 @@ static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
* The slow path to get the pfn of the specified host virtual address,
* 1 indicates success, -errno is returned if error is detected.
*/
-static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
- bool *writable, pfn_t *pfn)
+static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
{
- struct page *page[1];
- int npages = 0;
-
- might_sleep();
-
- if (writable)
- *writable = write_fault;
+ /*
+ * When a VCPU accesses a page that is not mapped into the secondary
+ * MMU, we lookup the page using GUP to map it, so the guest VCPU can
+ * make progress. We always want to honor NUMA hinting faults in that
+ * case, because GUP usage corresponds to memory accesses from the VCPU.
+ * Otherwise, we'd not trigger NUMA hinting faults once a page is
+ * mapped into the secondary MMU and gets accessed by a VCPU.
+ *
+ * Note that get_user_page_fast_only() and FOLL_WRITE for now
+ * implicitly honor NUMA hinting faults and don't need this flag.
+ */
+ unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags;
+ struct page *page, *wpage;
+ int npages;
- if (async) {
- down_read(&current->mm->mmap_sem);
- npages = get_user_page_nowait(current, current->mm,
- addr, write_fault, page);
- up_read(&current->mm->mmap_sem);
- } else
- npages = get_user_pages_fast(addr, 1, write_fault,
- page);
+ if (kfp->pin)
+ npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags);
+ else
+ npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags);
if (npages != 1)
return npages;
- /* map read fault as writable if possible */
- if (unlikely(!write_fault) && writable) {
- struct page *wpage[1];
-
- npages = __get_user_pages_fast(addr, 1, 1, wpage);
- if (npages == 1) {
- *writable = true;
- put_page(page[0]);
- page[0] = wpage[0];
- }
+ /*
+ * Pinning is mutually exclusive with opportunistically mapping a read
+ * fault as writable, as KVM should never pin pages when mapping memory
+ * into the guest (pinning is only for direct accesses from KVM).
+ */
+ if (WARN_ON_ONCE(kfp->map_writable && kfp->pin))
+ goto out;
- npages = 1;
+ /* map read fault as writable if possible */
+ if (!(flags & FOLL_WRITE) && kfp->map_writable &&
+ get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) {
+ put_page(page);
+ page = wpage;
+ flags |= FOLL_WRITE;
}
- *pfn = page_to_pfn(page[0]);
+
+out:
+ *pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE);
return npages;
}
@@ -1200,238 +2944,238 @@ static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
return true;
}
-/*
- * Pin guest page in memory and return its pfn.
- * @addr: host virtual address which maps memory to the guest
- * @atomic: whether this function can sleep
- * @async: whether this function need to wait IO complete if the
- * host page is not in the memory
- * @write_fault: whether we should get a writable host page
- * @writable: whether it allows to map a writable host page for !@write_fault
- *
- * The function will map a writable host page for these two cases:
- * 1): @write_fault = true
- * 2): @write_fault = false && @writable, @writable will tell the caller
- * whether the mapping is writable.
- */
-static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
- bool write_fault, bool *writable)
+static int hva_to_pfn_remapped(struct vm_area_struct *vma,
+ struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn)
{
- struct vm_area_struct *vma;
- pfn_t pfn = 0;
- int npages;
+ struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva };
+ bool write_fault = kfp->flags & FOLL_WRITE;
+ int r;
- /* we can do it either atomically or asynchronously, not both */
- BUG_ON(atomic && async);
+ /*
+ * Remapped memory cannot be pinned in any meaningful sense. Bail if
+ * the caller wants to pin the page, i.e. access the page outside of
+ * MMU notifier protection, and unsafe umappings are disallowed.
+ */
+ if (kfp->pin && !allow_unsafe_mappings)
+ return -EINVAL;
- if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
- return pfn;
+ r = follow_pfnmap_start(&args);
+ if (r) {
+ /*
+ * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
+ * not call the fault handler, so do it here.
+ */
+ bool unlocked = false;
+ r = fixup_user_fault(current->mm, kfp->hva,
+ (write_fault ? FAULT_FLAG_WRITE : 0),
+ &unlocked);
+ if (unlocked)
+ return -EAGAIN;
+ if (r)
+ return r;
+
+ r = follow_pfnmap_start(&args);
+ if (r)
+ return r;
+ }
+
+ if (write_fault && !args.writable) {
+ *p_pfn = KVM_PFN_ERR_RO_FAULT;
+ goto out;
+ }
+
+ *p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable);
+out:
+ follow_pfnmap_end(&args);
+ return r;
+}
+
+kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp)
+{
+ struct vm_area_struct *vma;
+ kvm_pfn_t pfn;
+ int npages, r;
+
+ might_sleep();
- if (atomic)
+ if (WARN_ON_ONCE(!kfp->refcounted_page))
return KVM_PFN_ERR_FAULT;
- npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
- if (npages == 1)
+ if (hva_to_pfn_fast(kfp, &pfn))
return pfn;
- down_read(&current->mm->mmap_sem);
- if (npages == -EHWPOISON ||
- (!async && check_user_page_hwpoison(addr))) {
- pfn = KVM_PFN_ERR_HWPOISON;
- goto exit;
- }
+ npages = hva_to_pfn_slow(kfp, &pfn);
+ if (npages == 1)
+ return pfn;
+ if (npages == -EINTR || npages == -EAGAIN)
+ return KVM_PFN_ERR_SIGPENDING;
+ if (npages == -EHWPOISON)
+ return KVM_PFN_ERR_HWPOISON;
- vma = find_vma_intersection(current->mm, addr, addr + 1);
+ mmap_read_lock(current->mm);
+retry:
+ vma = vma_lookup(current->mm, kfp->hva);
if (vma == NULL)
pfn = KVM_PFN_ERR_FAULT;
- else if ((vma->vm_flags & VM_PFNMAP)) {
- pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
- vma->vm_pgoff;
- BUG_ON(!kvm_is_mmio_pfn(pfn));
+ else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
+ r = hva_to_pfn_remapped(vma, kfp, &pfn);
+ if (r == -EAGAIN)
+ goto retry;
+ if (r < 0)
+ pfn = KVM_PFN_ERR_FAULT;
} else {
- if (async && vma_is_valid(vma, write_fault))
- *async = true;
- pfn = KVM_PFN_ERR_FAULT;
+ if ((kfp->flags & FOLL_NOWAIT) &&
+ vma_is_valid(vma, kfp->flags & FOLL_WRITE))
+ pfn = KVM_PFN_ERR_NEEDS_IO;
+ else
+ pfn = KVM_PFN_ERR_FAULT;
}
-exit:
- up_read(&current->mm->mmap_sem);
+ mmap_read_unlock(current->mm);
return pfn;
}
-static pfn_t
-__gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
- bool *async, bool write_fault, bool *writable)
+static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp)
{
- unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
+ kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL,
+ kfp->flags & FOLL_WRITE);
- if (addr == KVM_HVA_ERR_RO_BAD)
+ if (kfp->hva == KVM_HVA_ERR_RO_BAD)
return KVM_PFN_ERR_RO_FAULT;
- if (kvm_is_error_hva(addr))
+ if (kvm_is_error_hva(kfp->hva))
return KVM_PFN_NOSLOT;
- /* Do not map writable pfn in the readonly memslot. */
- if (writable && memslot_is_readonly(slot)) {
- *writable = false;
- writable = NULL;
+ if (memslot_is_readonly(kfp->slot) && kfp->map_writable) {
+ *kfp->map_writable = false;
+ kfp->map_writable = NULL;
}
- return hva_to_pfn(addr, atomic, async, write_fault,
- writable);
-}
-
-static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
- bool write_fault, bool *writable)
-{
- struct kvm_memory_slot *slot;
-
- if (async)
- *async = false;
-
- slot = gfn_to_memslot(kvm, gfn);
-
- return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
- writable);
-}
-
-pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
-{
- return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
+ return hva_to_pfn(kfp);
}
-EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
-pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
- bool write_fault, bool *writable)
+kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
+ unsigned int foll, bool *writable,
+ struct page **refcounted_page)
{
- return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
-}
-EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
-
-pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
-{
- return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
-}
-EXPORT_SYMBOL_GPL(gfn_to_pfn);
+ struct kvm_follow_pfn kfp = {
+ .slot = slot,
+ .gfn = gfn,
+ .flags = foll,
+ .map_writable = writable,
+ .refcounted_page = refcounted_page,
+ };
-pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
- bool *writable)
-{
- return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
-}
-EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
+ if (WARN_ON_ONCE(!writable || !refcounted_page))
+ return KVM_PFN_ERR_FAULT;
-pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
-{
- return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
-}
+ *writable = false;
+ *refcounted_page = NULL;
-pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
-{
- return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
+ return kvm_follow_pfn(&kfp);
}
-EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_faultin_pfn);
-int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
- int nr_pages)
+int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
+ struct page **pages, int nr_pages)
{
unsigned long addr;
- gfn_t entry;
+ gfn_t entry = 0;
- addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
+ addr = gfn_to_hva_many(slot, gfn, &entry);
if (kvm_is_error_hva(addr))
return -1;
if (entry < nr_pages)
return 0;
- return __get_user_pages_fast(addr, nr_pages, 1, pages);
+ return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
}
-EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prefetch_pages);
-static struct page *kvm_pfn_to_page(pfn_t pfn)
-{
- if (is_error_noslot_pfn(pfn))
- return KVM_ERR_PTR_BAD_PAGE;
-
- if (kvm_is_mmio_pfn(pfn)) {
- WARN_ON(1);
- return KVM_ERR_PTR_BAD_PAGE;
- }
+/*
+ * Don't use this API unless you are absolutely, positively certain that KVM
+ * needs to get a struct page, e.g. to pin the page for firmware DMA.
+ *
+ * FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate
+ * its refcount.
+ */
+struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write)
+{
+ struct page *refcounted_page = NULL;
+ struct kvm_follow_pfn kfp = {
+ .slot = gfn_to_memslot(kvm, gfn),
+ .gfn = gfn,
+ .flags = write ? FOLL_WRITE : 0,
+ .refcounted_page = &refcounted_page,
+ };
- return pfn_to_page(pfn);
+ (void)kvm_follow_pfn(&kfp);
+ return refcounted_page;
}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(__gfn_to_page);
-struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
+int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
+ bool writable)
{
- pfn_t pfn;
-
- pfn = gfn_to_pfn(kvm, gfn);
-
- return kvm_pfn_to_page(pfn);
-}
+ struct kvm_follow_pfn kfp = {
+ .slot = gfn_to_memslot(vcpu->kvm, gfn),
+ .gfn = gfn,
+ .flags = writable ? FOLL_WRITE : 0,
+ .refcounted_page = &map->pinned_page,
+ .pin = true,
+ };
-EXPORT_SYMBOL_GPL(gfn_to_page);
+ map->pinned_page = NULL;
+ map->page = NULL;
+ map->hva = NULL;
+ map->gfn = gfn;
+ map->writable = writable;
-void kvm_release_page_clean(struct page *page)
-{
- WARN_ON(is_error_page(page));
+ map->pfn = kvm_follow_pfn(&kfp);
+ if (is_error_noslot_pfn(map->pfn))
+ return -EINVAL;
- kvm_release_pfn_clean(page_to_pfn(page));
-}
-EXPORT_SYMBOL_GPL(kvm_release_page_clean);
+ if (pfn_valid(map->pfn)) {
+ map->page = pfn_to_page(map->pfn);
+ map->hva = kmap(map->page);
+#ifdef CONFIG_HAS_IOMEM
+ } else {
+ map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB);
+#endif
+ }
-void kvm_release_pfn_clean(pfn_t pfn)
-{
- if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
- put_page(pfn_to_page(pfn));
+ return map->hva ? 0 : -EFAULT;
}
-EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_map);
-void kvm_release_page_dirty(struct page *page)
+void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map)
{
- WARN_ON(is_error_page(page));
-
- kvm_release_pfn_dirty(page_to_pfn(page));
-}
-EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
+ if (!map->hva)
+ return;
-void kvm_release_pfn_dirty(pfn_t pfn)
-{
- kvm_set_pfn_dirty(pfn);
- kvm_release_pfn_clean(pfn);
-}
-EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
+ if (map->page)
+ kunmap(map->page);
+#ifdef CONFIG_HAS_IOMEM
+ else
+ memunmap(map->hva);
+#endif
-void kvm_set_page_dirty(struct page *page)
-{
- kvm_set_pfn_dirty(page_to_pfn(page));
-}
-EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
+ if (map->writable)
+ kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
-void kvm_set_pfn_dirty(pfn_t pfn)
-{
- if (!kvm_is_mmio_pfn(pfn)) {
- struct page *page = pfn_to_page(pfn);
- if (!PageReserved(page))
- SetPageDirty(page);
+ if (map->pinned_page) {
+ if (map->writable)
+ kvm_set_page_dirty(map->pinned_page);
+ kvm_set_page_accessed(map->pinned_page);
+ unpin_user_page(map->pinned_page);
}
-}
-EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
-
-void kvm_set_pfn_accessed(pfn_t pfn)
-{
- if (!kvm_is_mmio_pfn(pfn))
- mark_page_accessed(pfn_to_page(pfn));
-}
-EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
-void kvm_get_pfn(pfn_t pfn)
-{
- if (!kvm_is_mmio_pfn(pfn))
- get_page(pfn_to_page(pfn));
+ map->hva = NULL;
+ map->page = NULL;
+ map->pinned_page = NULL;
}
-EXPORT_SYMBOL_GPL(kvm_get_pfn);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_unmap);
static int next_segment(unsigned long len, int offset)
{
@@ -1441,21 +3185,42 @@ static int next_segment(unsigned long len, int offset)
return len;
}
-int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
- int len)
+/* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
+static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
+ void *data, int offset, int len)
{
int r;
unsigned long addr;
- addr = gfn_to_hva_read(kvm, gfn);
+ if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
+ return -EFAULT;
+
+ addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
if (kvm_is_error_hva(addr))
return -EFAULT;
- r = kvm_read_hva(data, (void __user *)addr + offset, len);
+ r = __copy_from_user(data, (void __user *)addr + offset, len);
if (r)
return -EFAULT;
return 0;
}
-EXPORT_SYMBOL_GPL(kvm_read_guest_page);
+
+int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
+ int len)
+{
+ struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
+
+ return __kvm_read_guest_page(slot, gfn, data, offset, len);
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_page);
+
+int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
+ int offset, int len)
+{
+ struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
+
+ return __kvm_read_guest_page(slot, gfn, data, offset, len);
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest_page);
int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
{
@@ -1475,44 +3240,97 @@ int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
}
return 0;
}
-EXPORT_SYMBOL_GPL(kvm_read_guest);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest);
-int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
- unsigned long len)
+int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
{
- int r;
- unsigned long addr;
gfn_t gfn = gpa >> PAGE_SHIFT;
+ int seg;
int offset = offset_in_page(gpa);
+ int ret;
+
+ while ((seg = next_segment(len, offset)) != 0) {
+ ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
+ if (ret < 0)
+ return ret;
+ offset = 0;
+ len -= seg;
+ data += seg;
+ ++gfn;
+ }
+ return 0;
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest);
+
+static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
+ void *data, int offset, unsigned long len)
+{
+ int r;
+ unsigned long addr;
- addr = gfn_to_hva_read(kvm, gfn);
+ if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
+ return -EFAULT;
+
+ addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
if (kvm_is_error_hva(addr))
return -EFAULT;
pagefault_disable();
- r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
+ r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
pagefault_enable();
if (r)
return -EFAULT;
return 0;
}
-EXPORT_SYMBOL(kvm_read_guest_atomic);
-int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
- int offset, int len)
+int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
+ void *data, unsigned long len)
+{
+ gfn_t gfn = gpa >> PAGE_SHIFT;
+ struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
+ int offset = offset_in_page(gpa);
+
+ return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest_atomic);
+
+/* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
+static int __kvm_write_guest_page(struct kvm *kvm,
+ struct kvm_memory_slot *memslot, gfn_t gfn,
+ const void *data, int offset, int len)
{
int r;
unsigned long addr;
- addr = gfn_to_hva(kvm, gfn);
+ if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
+ return -EFAULT;
+
+ addr = gfn_to_hva_memslot(memslot, gfn);
if (kvm_is_error_hva(addr))
return -EFAULT;
r = __copy_to_user((void __user *)addr + offset, data, len);
if (r)
return -EFAULT;
- mark_page_dirty(kvm, gfn);
+ mark_page_dirty_in_slot(kvm, memslot, gfn);
return 0;
}
-EXPORT_SYMBOL_GPL(kvm_write_guest_page);
+
+int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
+ const void *data, int offset, int len)
+{
+ struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
+
+ return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_page);
+
+int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
+ const void *data, int offset, int len)
+{
+ struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
+
+ return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_write_guest_page);
int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
unsigned long len)
@@ -1533,111 +3351,163 @@ int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
}
return 0;
}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest);
-int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
- gpa_t gpa, unsigned long len)
+int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
+ unsigned long len)
+{
+ gfn_t gfn = gpa >> PAGE_SHIFT;
+ int seg;
+ int offset = offset_in_page(gpa);
+ int ret;
+
+ while ((seg = next_segment(len, offset)) != 0) {
+ ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
+ if (ret < 0)
+ return ret;
+ offset = 0;
+ len -= seg;
+ data += seg;
+ ++gfn;
+ }
+ return 0;
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_write_guest);
+
+static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
+ struct gfn_to_hva_cache *ghc,
+ gpa_t gpa, unsigned long len)
{
- struct kvm_memslots *slots = kvm_memslots(kvm);
int offset = offset_in_page(gpa);
gfn_t start_gfn = gpa >> PAGE_SHIFT;
gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
gfn_t nr_pages_avail;
- ghc->gpa = gpa;
+ /* Update ghc->generation before performing any error checks. */
ghc->generation = slots->generation;
- ghc->len = len;
- ghc->memslot = gfn_to_memslot(kvm, start_gfn);
- ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
- if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
+
+ if (start_gfn > end_gfn) {
+ ghc->hva = KVM_HVA_ERR_BAD;
+ return -EINVAL;
+ }
+
+ /*
+ * If the requested region crosses two memslots, we still
+ * verify that the entire region is valid here.
+ */
+ for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
+ ghc->memslot = __gfn_to_memslot(slots, start_gfn);
+ ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
+ &nr_pages_avail);
+ if (kvm_is_error_hva(ghc->hva))
+ return -EFAULT;
+ }
+
+ /* Use the slow path for cross page reads and writes. */
+ if (nr_pages_needed == 1)
ghc->hva += offset;
- } else {
- /*
- * If the requested region crosses two memslots, we still
- * verify that the entire region is valid here.
- */
- while (start_gfn <= end_gfn) {
- ghc->memslot = gfn_to_memslot(kvm, start_gfn);
- ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
- &nr_pages_avail);
- if (kvm_is_error_hva(ghc->hva))
- return -EFAULT;
- start_gfn += nr_pages_avail;
- }
- /* Use the slow path for cross page reads and writes. */
+ else
ghc->memslot = NULL;
- }
+
+ ghc->gpa = gpa;
+ ghc->len = len;
return 0;
}
-EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
-int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
- void *data, unsigned long len)
+int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
+ gpa_t gpa, unsigned long len)
{
struct kvm_memslots *slots = kvm_memslots(kvm);
- int r;
+ return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_gfn_to_hva_cache_init);
- BUG_ON(len > ghc->len);
+int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
+ void *data, unsigned int offset,
+ unsigned long len)
+{
+ struct kvm_memslots *slots = kvm_memslots(kvm);
+ int r;
+ gpa_t gpa = ghc->gpa + offset;
- if (slots->generation != ghc->generation)
- kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
+ if (WARN_ON_ONCE(len + offset > ghc->len))
+ return -EINVAL;
- if (unlikely(!ghc->memslot))
- return kvm_write_guest(kvm, ghc->gpa, data, len);
+ if (slots->generation != ghc->generation) {
+ if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
+ return -EFAULT;
+ }
if (kvm_is_error_hva(ghc->hva))
return -EFAULT;
- r = __copy_to_user((void __user *)ghc->hva, data, len);
+ if (unlikely(!ghc->memslot))
+ return kvm_write_guest(kvm, gpa, data, len);
+
+ r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
if (r)
return -EFAULT;
- mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
+ mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
return 0;
}
-EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_offset_cached);
-int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
+int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
void *data, unsigned long len)
{
+ return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_cached);
+
+int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
+ void *data, unsigned int offset,
+ unsigned long len)
+{
struct kvm_memslots *slots = kvm_memslots(kvm);
int r;
+ gpa_t gpa = ghc->gpa + offset;
- BUG_ON(len > ghc->len);
-
- if (slots->generation != ghc->generation)
- kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
+ if (WARN_ON_ONCE(len + offset > ghc->len))
+ return -EINVAL;
- if (unlikely(!ghc->memslot))
- return kvm_read_guest(kvm, ghc->gpa, data, len);
+ if (slots->generation != ghc->generation) {
+ if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
+ return -EFAULT;
+ }
if (kvm_is_error_hva(ghc->hva))
return -EFAULT;
- r = __copy_from_user(data, (void __user *)ghc->hva, len);
+ if (unlikely(!ghc->memslot))
+ return kvm_read_guest(kvm, gpa, data, len);
+
+ r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
if (r)
return -EFAULT;
return 0;
}
-EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_offset_cached);
-int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
+int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
+ void *data, unsigned long len)
{
- return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
- offset, len);
+ return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
}
-EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_cached);
int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
{
+ const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
gfn_t gfn = gpa >> PAGE_SHIFT;
int seg;
int offset = offset_in_page(gpa);
int ret;
- while ((seg = next_segment(len, offset)) != 0) {
- ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
+ while ((seg = next_segment(len, offset)) != 0) {
+ ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg);
if (ret < 0)
return ret;
offset = 0;
@@ -1646,17 +3516,32 @@ int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
}
return 0;
}
-EXPORT_SYMBOL_GPL(kvm_clear_guest);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_clear_guest);
-void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
- gfn_t gfn)
+void mark_page_dirty_in_slot(struct kvm *kvm,
+ const struct kvm_memory_slot *memslot,
+ gfn_t gfn)
{
- if (memslot && memslot->dirty_bitmap) {
+ struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
+
+#ifdef CONFIG_HAVE_KVM_DIRTY_RING
+ if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
+ return;
+
+ WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
+#endif
+
+ if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
unsigned long rel_gfn = gfn - memslot->base_gfn;
+ u32 slot = (memslot->as_id << 16) | memslot->id;
- set_bit_le(rel_gfn, memslot->dirty_bitmap);
+ if (kvm->dirty_ring_size && vcpu)
+ kvm_dirty_ring_push(vcpu, slot, rel_gfn);
+ else if (memslot->dirty_bitmap)
+ set_bit_le(rel_gfn, memslot->dirty_bitmap);
}
}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(mark_page_dirty_in_slot);
void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
{
@@ -1665,97 +3550,348 @@ void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
memslot = gfn_to_memslot(kvm, gfn);
mark_page_dirty_in_slot(kvm, memslot, gfn);
}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(mark_page_dirty);
+
+void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+ struct kvm_memory_slot *memslot;
+
+ memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
+ mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_mark_page_dirty);
+
+void kvm_sigset_activate(struct kvm_vcpu *vcpu)
+{
+ if (!vcpu->sigset_active)
+ return;
+
+ /*
+ * This does a lockless modification of ->real_blocked, which is fine
+ * because, only current can change ->real_blocked and all readers of
+ * ->real_blocked don't care as long ->real_blocked is always a subset
+ * of ->blocked.
+ */
+ sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
+}
+
+void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
+{
+ if (!vcpu->sigset_active)
+ return;
+
+ sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
+ sigemptyset(&current->real_blocked);
+}
+
+static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
+{
+ unsigned int old, val, grow, grow_start;
+
+ old = val = vcpu->halt_poll_ns;
+ grow_start = READ_ONCE(halt_poll_ns_grow_start);
+ grow = READ_ONCE(halt_poll_ns_grow);
+ if (!grow)
+ goto out;
+
+ val *= grow;
+ if (val < grow_start)
+ val = grow_start;
+
+ vcpu->halt_poll_ns = val;
+out:
+ trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
+}
+
+static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
+{
+ unsigned int old, val, shrink, grow_start;
+
+ old = val = vcpu->halt_poll_ns;
+ shrink = READ_ONCE(halt_poll_ns_shrink);
+ grow_start = READ_ONCE(halt_poll_ns_grow_start);
+ if (shrink == 0)
+ val = 0;
+ else
+ val /= shrink;
+
+ if (val < grow_start)
+ val = 0;
+
+ vcpu->halt_poll_ns = val;
+ trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
+}
+
+static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
+{
+ int ret = -EINTR;
+ int idx = srcu_read_lock(&vcpu->kvm->srcu);
+
+ if (kvm_arch_vcpu_runnable(vcpu))
+ goto out;
+ if (kvm_cpu_has_pending_timer(vcpu))
+ goto out;
+ if (signal_pending(current))
+ goto out;
+ if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
+ goto out;
+
+ ret = 0;
+out:
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+ return ret;
+}
/*
- * The vCPU has executed a HLT instruction with in-kernel mode enabled.
+ * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
+ * pending. This is mostly used when halting a vCPU, but may also be used
+ * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
*/
-void kvm_vcpu_block(struct kvm_vcpu *vcpu)
+bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
{
- DEFINE_WAIT(wait);
+ struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
+ bool waited = false;
+
+ vcpu->stat.generic.blocking = 1;
+
+ preempt_disable();
+ kvm_arch_vcpu_blocking(vcpu);
+ prepare_to_rcuwait(wait);
+ preempt_enable();
for (;;) {
- prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
+ set_current_state(TASK_INTERRUPTIBLE);
- if (kvm_arch_vcpu_runnable(vcpu)) {
- kvm_make_request(KVM_REQ_UNHALT, vcpu);
- break;
- }
- if (kvm_cpu_has_pending_timer(vcpu))
- break;
- if (signal_pending(current))
+ if (kvm_vcpu_check_block(vcpu) < 0)
break;
+ waited = true;
schedule();
}
- finish_wait(&vcpu->wq, &wait);
+ preempt_disable();
+ finish_rcuwait(wait);
+ kvm_arch_vcpu_unblocking(vcpu);
+ preempt_enable();
+
+ vcpu->stat.generic.blocking = 0;
+
+ return waited;
+}
+
+static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
+ ktime_t end, bool success)
+{
+ struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
+ u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
+
+ ++vcpu->stat.generic.halt_attempted_poll;
+
+ if (success) {
+ ++vcpu->stat.generic.halt_successful_poll;
+
+ if (!vcpu_valid_wakeup(vcpu))
+ ++vcpu->stat.generic.halt_poll_invalid;
+
+ stats->halt_poll_success_ns += poll_ns;
+ KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
+ } else {
+ stats->halt_poll_fail_ns += poll_ns;
+ KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
+ }
+}
+
+static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+
+ if (kvm->override_halt_poll_ns) {
+ /*
+ * Ensure kvm->max_halt_poll_ns is not read before
+ * kvm->override_halt_poll_ns.
+ *
+ * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
+ */
+ smp_rmb();
+ return READ_ONCE(kvm->max_halt_poll_ns);
+ }
+
+ return READ_ONCE(halt_poll_ns);
}
-#ifndef CONFIG_S390
/*
- * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
+ * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
+ * polling is enabled, busy wait for a short time before blocking to avoid the
+ * expensive block+unblock sequence if a wake event arrives soon after the vCPU
+ * is halted.
*/
-void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
+void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
{
- int me;
- int cpu = vcpu->cpu;
- wait_queue_head_t *wqp;
+ unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
+ bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
+ ktime_t start, cur, poll_end;
+ bool waited = false;
+ bool do_halt_poll;
+ u64 halt_ns;
+
+ if (vcpu->halt_poll_ns > max_halt_poll_ns)
+ vcpu->halt_poll_ns = max_halt_poll_ns;
+
+ do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
+
+ start = cur = poll_end = ktime_get();
+ if (do_halt_poll) {
+ ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
- wqp = kvm_arch_vcpu_wq(vcpu);
- if (waitqueue_active(wqp)) {
- wake_up_interruptible(wqp);
- ++vcpu->stat.halt_wakeup;
+ do {
+ if (kvm_vcpu_check_block(vcpu) < 0)
+ goto out;
+ cpu_relax();
+ poll_end = cur = ktime_get();
+ } while (kvm_vcpu_can_poll(cur, stop));
}
- me = get_cpu();
- if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
- if (kvm_arch_vcpu_should_kick(vcpu))
- smp_send_reschedule(cpu);
- put_cpu();
+ waited = kvm_vcpu_block(vcpu);
+
+ cur = ktime_get();
+ if (waited) {
+ vcpu->stat.generic.halt_wait_ns +=
+ ktime_to_ns(cur) - ktime_to_ns(poll_end);
+ KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
+ ktime_to_ns(cur) - ktime_to_ns(poll_end));
+ }
+out:
+ /* The total time the vCPU was "halted", including polling time. */
+ halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
+
+ /*
+ * Note, halt-polling is considered successful so long as the vCPU was
+ * never actually scheduled out, i.e. even if the wake event arrived
+ * after of the halt-polling loop itself, but before the full wait.
+ */
+ if (do_halt_poll)
+ update_halt_poll_stats(vcpu, start, poll_end, !waited);
+
+ if (halt_poll_allowed) {
+ /* Recompute the max halt poll time in case it changed. */
+ max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
+
+ if (!vcpu_valid_wakeup(vcpu)) {
+ shrink_halt_poll_ns(vcpu);
+ } else if (max_halt_poll_ns) {
+ if (halt_ns <= vcpu->halt_poll_ns)
+ ;
+ /* we had a long block, shrink polling */
+ else if (vcpu->halt_poll_ns &&
+ halt_ns > max_halt_poll_ns)
+ shrink_halt_poll_ns(vcpu);
+ /* we had a short halt and our poll time is too small */
+ else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
+ halt_ns < max_halt_poll_ns)
+ grow_halt_poll_ns(vcpu);
+ } else {
+ vcpu->halt_poll_ns = 0;
+ }
+ }
+
+ trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
}
-EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
-#endif /* !CONFIG_S390 */
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_halt);
+
+bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
+{
+ if (__kvm_vcpu_wake_up(vcpu)) {
+ WRITE_ONCE(vcpu->ready, true);
+ ++vcpu->stat.generic.halt_wakeup;
+ return true;
+ }
+
+ return false;
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_wake_up);
-void kvm_resched(struct kvm_vcpu *vcpu)
+#ifndef CONFIG_S390
+/*
+ * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
+ */
+void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait)
{
- if (!need_resched())
+ int me, cpu;
+
+ if (kvm_vcpu_wake_up(vcpu))
return;
- cond_resched();
+
+ me = get_cpu();
+ /*
+ * The only state change done outside the vcpu mutex is IN_GUEST_MODE
+ * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
+ * kick" check does not need atomic operations if kvm_vcpu_kick is used
+ * within the vCPU thread itself.
+ */
+ if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
+ if (vcpu->mode == IN_GUEST_MODE)
+ WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
+ goto out;
+ }
+
+ /*
+ * Note, the vCPU could get migrated to a different pCPU at any point
+ * after kvm_arch_vcpu_should_kick(), which could result in sending an
+ * IPI to the previous pCPU. But, that's ok because the purpose of the
+ * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
+ * vCPU also requires it to leave IN_GUEST_MODE.
+ */
+ if (kvm_arch_vcpu_should_kick(vcpu)) {
+ cpu = READ_ONCE(vcpu->cpu);
+ if (cpu != me && (unsigned int)cpu < nr_cpu_ids && cpu_online(cpu)) {
+ /*
+ * Use a reschedule IPI to kick the vCPU if the caller
+ * doesn't need to wait for a response, as KVM allows
+ * kicking vCPUs while IRQs are disabled, but using the
+ * SMP function call framework with IRQs disabled can
+ * deadlock due to taking cross-CPU locks.
+ */
+ if (wait)
+ smp_call_function_single(cpu, ack_kick, NULL, wait);
+ else
+ smp_send_reschedule(cpu);
+ }
+ }
+out:
+ put_cpu();
}
-EXPORT_SYMBOL_GPL(kvm_resched);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_kick);
+#endif /* !CONFIG_S390 */
-bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
+int kvm_vcpu_yield_to(struct kvm_vcpu *target)
{
- struct pid *pid;
struct task_struct *task = NULL;
- bool ret = false;
+ int ret;
+
+ if (!read_trylock(&target->pid_lock))
+ return 0;
- rcu_read_lock();
- pid = rcu_dereference(target->pid);
- if (pid)
+ if (target->pid)
task = get_pid_task(target->pid, PIDTYPE_PID);
- rcu_read_unlock();
+
+ read_unlock(&target->pid_lock);
+
if (!task)
- return ret;
- if (task->flags & PF_VCPU) {
- put_task_struct(task);
- return ret;
- }
+ return 0;
ret = yield_to(task, 1);
put_task_struct(task);
return ret;
}
-EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_yield_to);
-#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
/*
* Helper that checks whether a VCPU is eligible for directed yield.
* Most eligible candidate to yield is decided by following heuristics:
*
* (a) VCPU which has not done pl-exit or cpu relax intercepted recently
* (preempted lock holder), indicated by @in_spin_loop.
- * Set at the beiginning and cleared at the end of interception/PLE handler.
+ * Set at the beginning and cleared at the end of interception/PLE handler.
*
* (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
* chance last time (mostly it has become eligible now since we have probably
@@ -1771,64 +3907,130 @@ EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
* locking does not harm. It may result in trying to yield to same VCPU, fail
* and continue with next VCPU and so on.
*/
-bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
+static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
{
+#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
bool eligible;
eligible = !vcpu->spin_loop.in_spin_loop ||
- (vcpu->spin_loop.in_spin_loop &&
- vcpu->spin_loop.dy_eligible);
+ vcpu->spin_loop.dy_eligible;
if (vcpu->spin_loop.in_spin_loop)
kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
return eligible;
+#else
+ return true;
+#endif
}
+
+/*
+ * Unlike kvm_arch_vcpu_runnable, this function is called outside
+ * a vcpu_load/vcpu_put pair. However, for most architectures
+ * kvm_arch_vcpu_runnable does not require vcpu_load.
+ */
+bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
+{
+ return kvm_arch_vcpu_runnable(vcpu);
+}
+
+static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
+{
+ if (kvm_arch_dy_runnable(vcpu))
+ return true;
+
+#ifdef CONFIG_KVM_ASYNC_PF
+ if (!list_empty_careful(&vcpu->async_pf.done))
+ return true;
#endif
-void kvm_vcpu_on_spin(struct kvm_vcpu *me)
+ return false;
+}
+
+/*
+ * By default, simply query the target vCPU's current mode when checking if a
+ * vCPU was preempted in kernel mode. All architectures except x86 (or more
+ * specifical, except VMX) allow querying whether or not a vCPU is in kernel
+ * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
+ * directly for cross-vCPU checks is functionally correct and accurate.
+ */
+bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
+{
+ return kvm_arch_vcpu_in_kernel(vcpu);
+}
+
+bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
{
+ return false;
+}
+
+void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
+{
+ int nr_vcpus, start, i, idx, yielded;
struct kvm *kvm = me->kvm;
struct kvm_vcpu *vcpu;
- int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
- int yielded = 0;
int try = 3;
- int pass;
- int i;
+
+ nr_vcpus = atomic_read(&kvm->online_vcpus);
+ if (nr_vcpus < 2)
+ return;
+
+ /* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */
+ smp_rmb();
kvm_vcpu_set_in_spin_loop(me, true);
+
/*
- * We boost the priority of a VCPU that is runnable but not
- * currently running, because it got preempted by something
- * else and called schedule in __vcpu_run. Hopefully that
- * VCPU is holding the lock that we need and will release it.
- * We approximate round-robin by starting at the last boosted VCPU.
+ * The current vCPU ("me") is spinning in kernel mode, i.e. is likely
+ * waiting for a resource to become available. Attempt to yield to a
+ * vCPU that is runnable, but not currently running, e.g. because the
+ * vCPU was preempted by a higher priority task. With luck, the vCPU
+ * that was preempted is holding a lock or some other resource that the
+ * current vCPU is waiting to acquire, and yielding to the other vCPU
+ * will allow it to make forward progress and release the lock (or kick
+ * the spinning vCPU, etc).
+ *
+ * Since KVM has no insight into what exactly the guest is doing,
+ * approximate a round-robin selection by iterating over all vCPUs,
+ * starting at the last boosted vCPU. I.e. if N=kvm->last_boosted_vcpu,
+ * iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed.
+ *
+ * Note, this is inherently racy, e.g. if multiple vCPUs are spinning,
+ * they may all try to yield to the same vCPU(s). But as above, this
+ * is all best effort due to KVM's lack of visibility into the guest.
*/
- for (pass = 0; pass < 2 && !yielded && try; pass++) {
- kvm_for_each_vcpu(i, vcpu, kvm) {
- if (!pass && i <= last_boosted_vcpu) {
- i = last_boosted_vcpu;
- continue;
- } else if (pass && i > last_boosted_vcpu)
- break;
- if (!ACCESS_ONCE(vcpu->preempted))
- continue;
- if (vcpu == me)
- continue;
- if (waitqueue_active(&vcpu->wq))
- continue;
- if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
- continue;
+ start = READ_ONCE(kvm->last_boosted_vcpu) + 1;
+ for (i = 0; i < nr_vcpus; i++) {
+ idx = (start + i) % nr_vcpus;
+ if (idx == me->vcpu_idx)
+ continue;
+
+ vcpu = xa_load(&kvm->vcpu_array, idx);
+ if (!READ_ONCE(vcpu->ready))
+ continue;
+ if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
+ continue;
- yielded = kvm_vcpu_yield_to(vcpu);
- if (yielded > 0) {
- kvm->last_boosted_vcpu = i;
- break;
- } else if (yielded < 0) {
- try--;
- if (!try)
- break;
- }
+ /*
+ * Treat the target vCPU as being in-kernel if it has a pending
+ * interrupt, as the vCPU trying to yield may be spinning
+ * waiting on IPI delivery, i.e. the target vCPU is in-kernel
+ * for the purposes of directed yield.
+ */
+ if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
+ !kvm_arch_dy_has_pending_interrupt(vcpu) &&
+ !kvm_arch_vcpu_preempted_in_kernel(vcpu))
+ continue;
+
+ if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
+ continue;
+
+ yielded = kvm_vcpu_yield_to(vcpu);
+ if (yielded > 0) {
+ WRITE_ONCE(kvm->last_boosted_vcpu, idx);
+ break;
+ } else if (yielded < 0 && !--try) {
+ break;
}
}
kvm_vcpu_set_in_spin_loop(me, false);
@@ -1836,11 +4038,22 @@ void kvm_vcpu_on_spin(struct kvm_vcpu *me)
/* Ensure vcpu is not eligible during next spinloop */
kvm_vcpu_set_dy_eligible(me, false);
}
-EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_on_spin);
-static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
+static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
{
- struct kvm_vcpu *vcpu = vma->vm_file->private_data;
+#ifdef CONFIG_HAVE_KVM_DIRTY_RING
+ return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
+ (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
+ kvm->dirty_ring_size / PAGE_SIZE);
+#else
+ return false;
+#endif
+}
+
+static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
+{
+ struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
struct page *page;
if (vmf->pgoff == 0)
@@ -1849,10 +4062,14 @@ static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
page = virt_to_page(vcpu->arch.pio_data);
#endif
-#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
+#ifdef CONFIG_KVM_MMIO
else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
#endif
+ else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
+ page = kvm_dirty_ring_get_page(
+ &vcpu->dirty_ring,
+ vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
else
return kvm_arch_vcpu_fault(vcpu, vmf);
get_page(page);
@@ -1866,6 +4083,14 @@ static const struct vm_operations_struct kvm_vcpu_vm_ops = {
static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
{
+ struct kvm_vcpu *vcpu = file->private_data;
+ unsigned long pages = vma_pages(vma);
+
+ if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
+ kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
+ ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
+ return -EINVAL;
+
vma->vm_ops = &kvm_vcpu_vm_ops;
return 0;
}
@@ -1881,11 +4106,9 @@ static int kvm_vcpu_release(struct inode *inode, struct file *filp)
static struct file_operations kvm_vcpu_fops = {
.release = kvm_vcpu_release,
.unlocked_ioctl = kvm_vcpu_ioctl,
-#ifdef CONFIG_COMPAT
- .compat_ioctl = kvm_vcpu_compat_ioctl,
-#endif
.mmap = kvm_vcpu_mmap,
.llseek = noop_llseek,
+ KVM_COMPAT(kvm_vcpu_compat_ioctl),
};
/*
@@ -1893,65 +4116,163 @@ static struct file_operations kvm_vcpu_fops = {
*/
static int create_vcpu_fd(struct kvm_vcpu *vcpu)
{
- return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
+ char name[8 + 1 + ITOA_MAX_LEN + 1];
+
+ snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
+ return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
+}
+
+#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
+static int vcpu_get_pid(void *data, u64 *val)
+{
+ struct kvm_vcpu *vcpu = data;
+
+ read_lock(&vcpu->pid_lock);
+ *val = pid_nr(vcpu->pid);
+ read_unlock(&vcpu->pid_lock);
+ return 0;
+}
+
+DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
+
+static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
+{
+ struct dentry *debugfs_dentry;
+ char dir_name[ITOA_MAX_LEN * 2];
+
+ if (!debugfs_initialized())
+ return;
+
+ snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
+ debugfs_dentry = debugfs_create_dir(dir_name,
+ vcpu->kvm->debugfs_dentry);
+ debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
+ &vcpu_get_pid_fops);
+
+ kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
}
+#endif
/*
* Creates some virtual cpus. Good luck creating more than one.
*/
-static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
+static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id)
{
int r;
- struct kvm_vcpu *vcpu, *v;
+ struct kvm_vcpu *vcpu;
+ struct page *page;
- vcpu = kvm_arch_vcpu_create(kvm, id);
- if (IS_ERR(vcpu))
- return PTR_ERR(vcpu);
+ /*
+ * KVM tracks vCPU IDs as 'int', be kind to userspace and reject
+ * too-large values instead of silently truncating.
+ *
+ * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first
+ * changing the storage type (at the very least, IDs should be tracked
+ * as unsigned ints).
+ */
+ BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX);
+ if (id >= KVM_MAX_VCPU_IDS)
+ return -EINVAL;
- preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
+ mutex_lock(&kvm->lock);
+ if (kvm->created_vcpus >= kvm->max_vcpus) {
+ mutex_unlock(&kvm->lock);
+ return -EINVAL;
+ }
+
+ r = kvm_arch_vcpu_precreate(kvm, id);
+ if (r) {
+ mutex_unlock(&kvm->lock);
+ return r;
+ }
+
+ kvm->created_vcpus++;
+ mutex_unlock(&kvm->lock);
- r = kvm_arch_vcpu_setup(vcpu);
+ vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
+ if (!vcpu) {
+ r = -ENOMEM;
+ goto vcpu_decrement;
+ }
+
+ BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
+ page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
+ if (!page) {
+ r = -ENOMEM;
+ goto vcpu_free;
+ }
+ vcpu->run = page_address(page);
+
+ kvm_vcpu_init(vcpu, kvm, id);
+
+ r = kvm_arch_vcpu_create(vcpu);
if (r)
- goto vcpu_destroy;
+ goto vcpu_free_run_page;
- mutex_lock(&kvm->lock);
- if (!kvm_vcpu_compatible(vcpu)) {
- r = -EINVAL;
- goto unlock_vcpu_destroy;
+ if (kvm->dirty_ring_size) {
+ r = kvm_dirty_ring_alloc(kvm, &vcpu->dirty_ring,
+ id, kvm->dirty_ring_size);
+ if (r)
+ goto arch_vcpu_destroy;
}
- if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
- r = -EINVAL;
+
+ mutex_lock(&kvm->lock);
+
+ if (kvm_get_vcpu_by_id(kvm, id)) {
+ r = -EEXIST;
goto unlock_vcpu_destroy;
}
- kvm_for_each_vcpu(r, v, kvm)
- if (v->vcpu_id == id) {
- r = -EEXIST;
- goto unlock_vcpu_destroy;
- }
-
- BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
+ vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
+ r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
+ WARN_ON_ONCE(r == -EBUSY);
+ if (r)
+ goto unlock_vcpu_destroy;
- /* Now it's all set up, let userspace reach it */
+ /*
+ * Now it's all set up, let userspace reach it. Grab the vCPU's mutex
+ * so that userspace can't invoke vCPU ioctl()s until the vCPU is fully
+ * visible (per online_vcpus), e.g. so that KVM doesn't get tricked
+ * into a NULL-pointer dereference because KVM thinks the _current_
+ * vCPU doesn't exist. As a bonus, taking vcpu->mutex ensures lockdep
+ * knows it's taken *inside* kvm->lock.
+ */
+ mutex_lock(&vcpu->mutex);
kvm_get_kvm(kvm);
r = create_vcpu_fd(vcpu);
- if (r < 0) {
- kvm_put_kvm(kvm);
- goto unlock_vcpu_destroy;
- }
+ if (r < 0)
+ goto kvm_put_xa_erase;
- kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
+ /*
+ * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
+ * pointer before kvm->online_vcpu's incremented value.
+ */
smp_wmb();
atomic_inc(&kvm->online_vcpus);
+ mutex_unlock(&vcpu->mutex);
mutex_unlock(&kvm->lock);
kvm_arch_vcpu_postcreate(vcpu);
+ kvm_create_vcpu_debugfs(vcpu);
return r;
+kvm_put_xa_erase:
+ mutex_unlock(&vcpu->mutex);
+ kvm_put_kvm_no_destroy(kvm);
+ xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
unlock_vcpu_destroy:
mutex_unlock(&kvm->lock);
-vcpu_destroy:
+ kvm_dirty_ring_free(&vcpu->dirty_ring);
+arch_vcpu_destroy:
kvm_arch_vcpu_destroy(vcpu);
+vcpu_free_run_page:
+ free_page((unsigned long)vcpu->run);
+vcpu_free:
+ kmem_cache_free(kvm_vcpu_cache, vcpu);
+vcpu_decrement:
+ mutex_lock(&kvm->lock);
+ kvm->created_vcpus--;
+ mutex_unlock(&kvm->lock);
return r;
}
@@ -1966,6 +4287,129 @@ static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
return 0;
}
+static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
+ size_t size, loff_t *offset)
+{
+ struct kvm_vcpu *vcpu = file->private_data;
+
+ return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
+ &kvm_vcpu_stats_desc[0], &vcpu->stat,
+ sizeof(vcpu->stat), user_buffer, size, offset);
+}
+
+static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
+{
+ struct kvm_vcpu *vcpu = file->private_data;
+
+ kvm_put_kvm(vcpu->kvm);
+ return 0;
+}
+
+static const struct file_operations kvm_vcpu_stats_fops = {
+ .owner = THIS_MODULE,
+ .read = kvm_vcpu_stats_read,
+ .release = kvm_vcpu_stats_release,
+ .llseek = noop_llseek,
+};
+
+static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
+{
+ int fd;
+ struct file *file;
+ char name[15 + ITOA_MAX_LEN + 1];
+
+ snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
+
+ fd = get_unused_fd_flags(O_CLOEXEC);
+ if (fd < 0)
+ return fd;
+
+ file = anon_inode_getfile_fmode(name, &kvm_vcpu_stats_fops, vcpu,
+ O_RDONLY, FMODE_PREAD);
+ if (IS_ERR(file)) {
+ put_unused_fd(fd);
+ return PTR_ERR(file);
+ }
+
+ kvm_get_kvm(vcpu->kvm);
+ fd_install(fd, file);
+
+ return fd;
+}
+
+#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
+static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
+ struct kvm_pre_fault_memory *range)
+{
+ int idx;
+ long r;
+ u64 full_size;
+
+ if (range->flags)
+ return -EINVAL;
+
+ if (!PAGE_ALIGNED(range->gpa) ||
+ !PAGE_ALIGNED(range->size) ||
+ range->gpa + range->size <= range->gpa)
+ return -EINVAL;
+
+ vcpu_load(vcpu);
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+
+ full_size = range->size;
+ do {
+ if (signal_pending(current)) {
+ r = -EINTR;
+ break;
+ }
+
+ r = kvm_arch_vcpu_pre_fault_memory(vcpu, range);
+ if (WARN_ON_ONCE(r == 0 || r == -EIO))
+ break;
+
+ if (r < 0)
+ break;
+
+ range->size -= r;
+ range->gpa += r;
+ cond_resched();
+ } while (range->size);
+
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+ vcpu_put(vcpu);
+
+ /* Return success if at least one page was mapped successfully. */
+ return full_size == range->size ? r : 0;
+}
+#endif
+
+static int kvm_wait_for_vcpu_online(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+
+ /*
+ * In practice, this happy path will always be taken, as a well-behaved
+ * VMM will never invoke a vCPU ioctl() before KVM_CREATE_VCPU returns.
+ */
+ if (likely(vcpu->vcpu_idx < atomic_read(&kvm->online_vcpus)))
+ return 0;
+
+ /*
+ * Acquire and release the vCPU's mutex to wait for vCPU creation to
+ * complete (kvm_vm_ioctl_create_vcpu() holds the mutex until the vCPU
+ * is fully online).
+ */
+ if (mutex_lock_killable(&vcpu->mutex))
+ return -EINTR;
+
+ mutex_unlock(&vcpu->mutex);
+
+ if (WARN_ON_ONCE(!kvm_get_vcpu(kvm, vcpu->vcpu_idx)))
+ return -EIO;
+
+ return 0;
+}
+
static long kvm_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
@@ -1975,30 +4419,73 @@ static long kvm_vcpu_ioctl(struct file *filp,
struct kvm_fpu *fpu = NULL;
struct kvm_sregs *kvm_sregs = NULL;
- if (vcpu->kvm->mm != current->mm)
+ if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
return -EIO;
-#if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
+ if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
+ return -EINVAL;
+
/*
- * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
- * so vcpu_load() would break it.
+ * Wait for the vCPU to be online before handling the ioctl(), as KVM
+ * assumes the vCPU is reachable via vcpu_array, i.e. may dereference
+ * a NULL pointer if userspace invokes an ioctl() before KVM is ready.
*/
- if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
- return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
-#endif
-
-
- r = vcpu_load(vcpu);
+ r = kvm_wait_for_vcpu_online(vcpu);
if (r)
return r;
+
+ /*
+ * Let arch code handle select vCPU ioctls without holding vcpu->mutex,
+ * e.g. to support ioctls that can run asynchronous to vCPU execution.
+ */
+ r = kvm_arch_vcpu_unlocked_ioctl(filp, ioctl, arg);
+ if (r != -ENOIOCTLCMD)
+ return r;
+
+ if (mutex_lock_killable(&vcpu->mutex))
+ return -EINTR;
switch (ioctl) {
- case KVM_RUN:
+ case KVM_RUN: {
+ struct pid *oldpid;
r = -EINVAL;
if (arg)
goto out;
- r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
+
+ /*
+ * Note, vcpu->pid is primarily protected by vcpu->mutex. The
+ * dedicated r/w lock allows other tasks, e.g. other vCPUs, to
+ * read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield
+ * directly to this vCPU
+ */
+ oldpid = vcpu->pid;
+ if (unlikely(oldpid != task_pid(current))) {
+ /* The thread running this VCPU changed. */
+ struct pid *newpid;
+
+ r = kvm_arch_vcpu_run_pid_change(vcpu);
+ if (r)
+ break;
+
+ newpid = get_task_pid(current, PIDTYPE_PID);
+ write_lock(&vcpu->pid_lock);
+ vcpu->pid = newpid;
+ write_unlock(&vcpu->pid_lock);
+
+ put_pid(oldpid);
+ }
+ vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe);
+ r = kvm_arch_vcpu_ioctl_run(vcpu);
+ vcpu->wants_to_run = false;
+
+ /*
+ * FIXME: Remove this hack once all KVM architectures
+ * support the generic TIF bits, i.e. a dedicated TIF_RSEQ.
+ */
+ rseq_virt_userspace_exit();
+
trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
break;
+ }
case KVM_GET_REGS: {
struct kvm_regs *kvm_regs;
@@ -2020,7 +4507,6 @@ out_free1:
case KVM_SET_REGS: {
struct kvm_regs *kvm_regs;
- r = -ENOMEM;
kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
if (IS_ERR(kvm_regs)) {
r = PTR_ERR(kvm_regs);
@@ -2061,7 +4547,7 @@ out_free1:
if (r)
goto out;
r = -EFAULT;
- if (copy_to_user(argp, &mp_state, sizeof mp_state))
+ if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
goto out;
r = 0;
break;
@@ -2070,7 +4556,7 @@ out_free1:
struct kvm_mp_state mp_state;
r = -EFAULT;
- if (copy_from_user(&mp_state, argp, sizeof mp_state))
+ if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
goto out;
r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
break;
@@ -2079,13 +4565,13 @@ out_free1:
struct kvm_translation tr;
r = -EFAULT;
- if (copy_from_user(&tr, argp, sizeof tr))
+ if (copy_from_user(&tr, argp, sizeof(tr)))
goto out;
r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
if (r)
goto out;
r = -EFAULT;
- if (copy_to_user(argp, &tr, sizeof tr))
+ if (copy_to_user(argp, &tr, sizeof(tr)))
goto out;
r = 0;
break;
@@ -2094,7 +4580,7 @@ out_free1:
struct kvm_guest_debug dbg;
r = -EFAULT;
- if (copy_from_user(&dbg, argp, sizeof dbg))
+ if (copy_from_user(&dbg, argp, sizeof(dbg)))
goto out;
r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
break;
@@ -2108,14 +4594,14 @@ out_free1:
if (argp) {
r = -EFAULT;
if (copy_from_user(&kvm_sigmask, argp,
- sizeof kvm_sigmask))
+ sizeof(kvm_sigmask)))
goto out;
r = -EINVAL;
- if (kvm_sigmask.len != sizeof sigset)
+ if (kvm_sigmask.len != sizeof(sigset))
goto out;
r = -EFAULT;
if (copy_from_user(&sigset, sigmask_arg->sigset,
- sizeof sigset))
+ sizeof(sigset)))
goto out;
p = &sigset;
}
@@ -2146,17 +4632,35 @@ out_free1:
r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
break;
}
+ case KVM_GET_STATS_FD: {
+ r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
+ break;
+ }
+#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
+ case KVM_PRE_FAULT_MEMORY: {
+ struct kvm_pre_fault_memory range;
+
+ r = -EFAULT;
+ if (copy_from_user(&range, argp, sizeof(range)))
+ break;
+ r = kvm_vcpu_pre_fault_memory(vcpu, &range);
+ /* Pass back leftover range. */
+ if (copy_to_user(argp, &range, sizeof(range)))
+ r = -EFAULT;
+ break;
+ }
+#endif
default:
r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
}
out:
- vcpu_put(vcpu);
+ mutex_unlock(&vcpu->mutex);
kfree(fpu);
kfree(kvm_sregs);
return r;
}
-#ifdef CONFIG_COMPAT
+#ifdef CONFIG_KVM_COMPAT
static long kvm_vcpu_compat_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
@@ -2164,29 +4668,27 @@ static long kvm_vcpu_compat_ioctl(struct file *filp,
void __user *argp = compat_ptr(arg);
int r;
- if (vcpu->kvm->mm != current->mm)
+ if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
return -EIO;
switch (ioctl) {
case KVM_SET_SIGNAL_MASK: {
struct kvm_signal_mask __user *sigmask_arg = argp;
struct kvm_signal_mask kvm_sigmask;
- compat_sigset_t csigset;
sigset_t sigset;
if (argp) {
r = -EFAULT;
if (copy_from_user(&kvm_sigmask, argp,
- sizeof kvm_sigmask))
+ sizeof(kvm_sigmask)))
goto out;
r = -EINVAL;
- if (kvm_sigmask.len != sizeof csigset)
+ if (kvm_sigmask.len != sizeof(compat_sigset_t))
goto out;
r = -EFAULT;
- if (copy_from_user(&csigset, sigmask_arg->sigset,
- sizeof csigset))
+ if (get_compat_sigset(&sigset,
+ (compat_sigset_t __user *)sigmask_arg->sigset))
goto out;
- sigset_from_compat(&sigset, &csigset);
r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
} else
r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
@@ -2201,6 +4703,16 @@ out:
}
#endif
+static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
+{
+ struct kvm_device *dev = filp->private_data;
+
+ if (dev->ops->mmap)
+ return dev->ops->mmap(dev, vma);
+
+ return -ENODEV;
+}
+
static int kvm_device_ioctl_attr(struct kvm_device *dev,
int (*accessor)(struct kvm_device *dev,
struct kvm_device_attr *attr),
@@ -2222,6 +4734,9 @@ static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
{
struct kvm_device *dev = filp->private_data;
+ if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
+ return -EIO;
+
switch (ioctl) {
case KVM_SET_DEVICE_ATTR:
return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
@@ -2242,16 +4757,23 @@ static int kvm_device_release(struct inode *inode, struct file *filp)
struct kvm_device *dev = filp->private_data;
struct kvm *kvm = dev->kvm;
+ if (dev->ops->release) {
+ mutex_lock(&kvm->lock);
+ list_del_rcu(&dev->vm_node);
+ synchronize_rcu();
+ dev->ops->release(dev);
+ mutex_unlock(&kvm->lock);
+ }
+
kvm_put_kvm(kvm);
return 0;
}
-static const struct file_operations kvm_device_fops = {
+static struct file_operations kvm_device_fops = {
.unlocked_ioctl = kvm_device_ioctl,
-#ifdef CONFIG_COMPAT
- .compat_ioctl = kvm_device_ioctl,
-#endif
.release = kvm_device_release,
+ KVM_COMPAT(kvm_device_ioctl),
+ .mmap = kvm_device_mmap,
};
struct kvm_device *kvm_device_from_filp(struct file *filp)
@@ -2262,58 +4784,373 @@ struct kvm_device *kvm_device_from_filp(struct file *filp)
return filp->private_data;
}
+static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
+#ifdef CONFIG_KVM_MPIC
+ [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
+ [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
+#endif
+};
+
+int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
+{
+ if (type >= ARRAY_SIZE(kvm_device_ops_table))
+ return -ENOSPC;
+
+ if (kvm_device_ops_table[type] != NULL)
+ return -EEXIST;
+
+ kvm_device_ops_table[type] = ops;
+ return 0;
+}
+
+void kvm_unregister_device_ops(u32 type)
+{
+ if (kvm_device_ops_table[type] != NULL)
+ kvm_device_ops_table[type] = NULL;
+}
+
static int kvm_ioctl_create_device(struct kvm *kvm,
struct kvm_create_device *cd)
{
- struct kvm_device_ops *ops = NULL;
+ const struct kvm_device_ops *ops;
struct kvm_device *dev;
bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
+ int type;
int ret;
- switch (cd->type) {
-#ifdef CONFIG_KVM_MPIC
- case KVM_DEV_TYPE_FSL_MPIC_20:
- case KVM_DEV_TYPE_FSL_MPIC_42:
- ops = &kvm_mpic_ops;
- break;
-#endif
-#ifdef CONFIG_KVM_XICS
- case KVM_DEV_TYPE_XICS:
- ops = &kvm_xics_ops;
- break;
-#endif
- default:
+ if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
+ return -ENODEV;
+
+ type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
+ ops = kvm_device_ops_table[type];
+ if (ops == NULL)
return -ENODEV;
- }
if (test)
return 0;
- dev = kzalloc(sizeof(*dev), GFP_KERNEL);
+ dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
if (!dev)
return -ENOMEM;
dev->ops = ops;
dev->kvm = kvm;
- ret = ops->create(dev, cd->type);
+ mutex_lock(&kvm->lock);
+ ret = ops->create(dev, type);
if (ret < 0) {
+ mutex_unlock(&kvm->lock);
kfree(dev);
return ret;
}
+ list_add_rcu(&dev->vm_node, &kvm->devices);
+ mutex_unlock(&kvm->lock);
- ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR);
+ if (ops->init)
+ ops->init(dev);
+
+ kvm_get_kvm(kvm);
+ ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
if (ret < 0) {
- ops->destroy(dev);
+ kvm_put_kvm_no_destroy(kvm);
+ mutex_lock(&kvm->lock);
+ list_del_rcu(&dev->vm_node);
+ synchronize_rcu();
+ if (ops->release)
+ ops->release(dev);
+ mutex_unlock(&kvm->lock);
+ if (ops->destroy)
+ ops->destroy(dev);
return ret;
}
- list_add(&dev->vm_node, &kvm->devices);
- kvm_get_kvm(kvm);
cd->fd = ret;
return 0;
}
+static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
+{
+ switch (arg) {
+ case KVM_CAP_USER_MEMORY:
+ case KVM_CAP_USER_MEMORY2:
+ case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
+ case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
+ case KVM_CAP_INTERNAL_ERROR_DATA:
+#ifdef CONFIG_HAVE_KVM_MSI
+ case KVM_CAP_SIGNAL_MSI:
+#endif
+#ifdef CONFIG_HAVE_KVM_IRQCHIP
+ case KVM_CAP_IRQFD:
+#endif
+ case KVM_CAP_IOEVENTFD_ANY_LENGTH:
+ case KVM_CAP_CHECK_EXTENSION_VM:
+ case KVM_CAP_ENABLE_CAP_VM:
+ case KVM_CAP_HALT_POLL:
+ return 1;
+#ifdef CONFIG_KVM_MMIO
+ case KVM_CAP_COALESCED_MMIO:
+ return KVM_COALESCED_MMIO_PAGE_OFFSET;
+ case KVM_CAP_COALESCED_PIO:
+ return 1;
+#endif
+#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
+ case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
+ return KVM_DIRTY_LOG_MANUAL_CAPS;
+#endif
+#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
+ case KVM_CAP_IRQ_ROUTING:
+ return KVM_MAX_IRQ_ROUTES;
+#endif
+#if KVM_MAX_NR_ADDRESS_SPACES > 1
+ case KVM_CAP_MULTI_ADDRESS_SPACE:
+ if (kvm)
+ return kvm_arch_nr_memslot_as_ids(kvm);
+ return KVM_MAX_NR_ADDRESS_SPACES;
+#endif
+ case KVM_CAP_NR_MEMSLOTS:
+ return KVM_USER_MEM_SLOTS;
+ case KVM_CAP_DIRTY_LOG_RING:
+#ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
+ return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
+#else
+ return 0;
+#endif
+ case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
+#ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
+ return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
+#else
+ return 0;
+#endif
+#ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
+ case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
+#endif
+ case KVM_CAP_BINARY_STATS_FD:
+ case KVM_CAP_SYSTEM_EVENT_DATA:
+ case KVM_CAP_DEVICE_CTRL:
+ return 1;
+#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
+ case KVM_CAP_MEMORY_ATTRIBUTES:
+ return kvm_supported_mem_attributes(kvm);
+#endif
+#ifdef CONFIG_KVM_GUEST_MEMFD
+ case KVM_CAP_GUEST_MEMFD:
+ return 1;
+ case KVM_CAP_GUEST_MEMFD_FLAGS:
+ return kvm_gmem_get_supported_flags(kvm);
+#endif
+ default:
+ break;
+ }
+ return kvm_vm_ioctl_check_extension(kvm, arg);
+}
+
+static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
+{
+ int r;
+
+ if (!KVM_DIRTY_LOG_PAGE_OFFSET)
+ return -EINVAL;
+
+ /* the size should be power of 2 */
+ if (!size || (size & (size - 1)))
+ return -EINVAL;
+
+ /* Should be bigger to keep the reserved entries, or a page */
+ if (size < kvm_dirty_ring_get_rsvd_entries(kvm) *
+ sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
+ return -EINVAL;
+
+ if (size > KVM_DIRTY_RING_MAX_ENTRIES *
+ sizeof(struct kvm_dirty_gfn))
+ return -E2BIG;
+
+ /* We only allow it to set once */
+ if (kvm->dirty_ring_size)
+ return -EINVAL;
+
+ mutex_lock(&kvm->lock);
+
+ if (kvm->created_vcpus) {
+ /* We don't allow to change this value after vcpu created */
+ r = -EINVAL;
+ } else {
+ kvm->dirty_ring_size = size;
+ r = 0;
+ }
+
+ mutex_unlock(&kvm->lock);
+ return r;
+}
+
+static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
+{
+ unsigned long i;
+ struct kvm_vcpu *vcpu;
+ int cleared = 0, r;
+
+ if (!kvm->dirty_ring_size)
+ return -EINVAL;
+
+ mutex_lock(&kvm->slots_lock);
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ r = kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring, &cleared);
+ if (r)
+ break;
+ }
+
+ mutex_unlock(&kvm->slots_lock);
+
+ if (cleared)
+ kvm_flush_remote_tlbs(kvm);
+
+ return cleared;
+}
+
+int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
+ struct kvm_enable_cap *cap)
+{
+ return -EINVAL;
+}
+
+bool kvm_are_all_memslots_empty(struct kvm *kvm)
+{
+ int i;
+
+ lockdep_assert_held(&kvm->slots_lock);
+
+ for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
+ if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
+ return false;
+ }
+
+ return true;
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_are_all_memslots_empty);
+
+static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
+ struct kvm_enable_cap *cap)
+{
+ switch (cap->cap) {
+#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
+ case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
+ u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
+
+ if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
+ allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
+
+ if (cap->flags || (cap->args[0] & ~allowed_options))
+ return -EINVAL;
+ kvm->manual_dirty_log_protect = cap->args[0];
+ return 0;
+ }
+#endif
+ case KVM_CAP_HALT_POLL: {
+ if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
+ return -EINVAL;
+
+ kvm->max_halt_poll_ns = cap->args[0];
+
+ /*
+ * Ensure kvm->override_halt_poll_ns does not become visible
+ * before kvm->max_halt_poll_ns.
+ *
+ * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
+ */
+ smp_wmb();
+ kvm->override_halt_poll_ns = true;
+
+ return 0;
+ }
+ case KVM_CAP_DIRTY_LOG_RING:
+ case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
+ if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
+ return -EINVAL;
+
+ return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
+ case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
+ int r = -EINVAL;
+
+ if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
+ !kvm->dirty_ring_size || cap->flags)
+ return r;
+
+ mutex_lock(&kvm->slots_lock);
+
+ /*
+ * For simplicity, allow enabling ring+bitmap if and only if
+ * there are no memslots, e.g. to ensure all memslots allocate
+ * a bitmap after the capability is enabled.
+ */
+ if (kvm_are_all_memslots_empty(kvm)) {
+ kvm->dirty_ring_with_bitmap = true;
+ r = 0;
+ }
+
+ mutex_unlock(&kvm->slots_lock);
+
+ return r;
+ }
+ default:
+ return kvm_vm_ioctl_enable_cap(kvm, cap);
+ }
+}
+
+static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
+ size_t size, loff_t *offset)
+{
+ struct kvm *kvm = file->private_data;
+
+ return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
+ &kvm_vm_stats_desc[0], &kvm->stat,
+ sizeof(kvm->stat), user_buffer, size, offset);
+}
+
+static int kvm_vm_stats_release(struct inode *inode, struct file *file)
+{
+ struct kvm *kvm = file->private_data;
+
+ kvm_put_kvm(kvm);
+ return 0;
+}
+
+static const struct file_operations kvm_vm_stats_fops = {
+ .owner = THIS_MODULE,
+ .read = kvm_vm_stats_read,
+ .release = kvm_vm_stats_release,
+ .llseek = noop_llseek,
+};
+
+static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
+{
+ int fd;
+ struct file *file;
+
+ fd = get_unused_fd_flags(O_CLOEXEC);
+ if (fd < 0)
+ return fd;
+
+ file = anon_inode_getfile_fmode("kvm-vm-stats",
+ &kvm_vm_stats_fops, kvm, O_RDONLY, FMODE_PREAD);
+ if (IS_ERR(file)) {
+ put_unused_fd(fd);
+ return PTR_ERR(file);
+ }
+
+ kvm_get_kvm(kvm);
+ fd_install(fd, file);
+
+ return fd;
+}
+
+#define SANITY_CHECK_MEM_REGION_FIELD(field) \
+do { \
+ BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \
+ offsetof(struct kvm_userspace_memory_region2, field)); \
+ BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \
+ sizeof_field(struct kvm_userspace_memory_region2, field)); \
+} while (0)
+
static long kvm_vm_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
@@ -2321,45 +5158,91 @@ static long kvm_vm_ioctl(struct file *filp,
void __user *argp = (void __user *)arg;
int r;
- if (kvm->mm != current->mm)
+ if (kvm->mm != current->mm || kvm->vm_dead)
return -EIO;
switch (ioctl) {
case KVM_CREATE_VCPU:
r = kvm_vm_ioctl_create_vcpu(kvm, arg);
break;
+ case KVM_ENABLE_CAP: {
+ struct kvm_enable_cap cap;
+
+ r = -EFAULT;
+ if (copy_from_user(&cap, argp, sizeof(cap)))
+ goto out;
+ r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
+ break;
+ }
+ case KVM_SET_USER_MEMORY_REGION2:
case KVM_SET_USER_MEMORY_REGION: {
- struct kvm_userspace_memory_region kvm_userspace_mem;
+ struct kvm_userspace_memory_region2 mem;
+ unsigned long size;
+
+ if (ioctl == KVM_SET_USER_MEMORY_REGION) {
+ /*
+ * Fields beyond struct kvm_userspace_memory_region shouldn't be
+ * accessed, but avoid leaking kernel memory in case of a bug.
+ */
+ memset(&mem, 0, sizeof(mem));
+ size = sizeof(struct kvm_userspace_memory_region);
+ } else {
+ size = sizeof(struct kvm_userspace_memory_region2);
+ }
+
+ /* Ensure the common parts of the two structs are identical. */
+ SANITY_CHECK_MEM_REGION_FIELD(slot);
+ SANITY_CHECK_MEM_REGION_FIELD(flags);
+ SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
+ SANITY_CHECK_MEM_REGION_FIELD(memory_size);
+ SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
r = -EFAULT;
- if (copy_from_user(&kvm_userspace_mem, argp,
- sizeof kvm_userspace_mem))
+ if (copy_from_user(&mem, argp, size))
goto out;
- r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
+ r = -EINVAL;
+ if (ioctl == KVM_SET_USER_MEMORY_REGION &&
+ (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
+ goto out;
+
+ r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
break;
}
case KVM_GET_DIRTY_LOG: {
struct kvm_dirty_log log;
r = -EFAULT;
- if (copy_from_user(&log, argp, sizeof log))
+ if (copy_from_user(&log, argp, sizeof(log)))
goto out;
r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
break;
}
-#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
+#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
+ case KVM_CLEAR_DIRTY_LOG: {
+ struct kvm_clear_dirty_log log;
+
+ r = -EFAULT;
+ if (copy_from_user(&log, argp, sizeof(log)))
+ goto out;
+ r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
+ break;
+ }
+#endif
+#ifdef CONFIG_KVM_MMIO
case KVM_REGISTER_COALESCED_MMIO: {
struct kvm_coalesced_mmio_zone zone;
+
r = -EFAULT;
- if (copy_from_user(&zone, argp, sizeof zone))
+ if (copy_from_user(&zone, argp, sizeof(zone)))
goto out;
r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
break;
}
case KVM_UNREGISTER_COALESCED_MMIO: {
struct kvm_coalesced_mmio_zone zone;
+
r = -EFAULT;
- if (copy_from_user(&zone, argp, sizeof zone))
+ if (copy_from_user(&zone, argp, sizeof(zone)))
goto out;
r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
break;
@@ -2369,7 +5252,7 @@ static long kvm_vm_ioctl(struct file *filp,
struct kvm_irqfd data;
r = -EFAULT;
- if (copy_from_user(&data, argp, sizeof data))
+ if (copy_from_user(&data, argp, sizeof(data)))
goto out;
r = kvm_irqfd(kvm, &data);
break;
@@ -2378,28 +5261,17 @@ static long kvm_vm_ioctl(struct file *filp,
struct kvm_ioeventfd data;
r = -EFAULT;
- if (copy_from_user(&data, argp, sizeof data))
+ if (copy_from_user(&data, argp, sizeof(data)))
goto out;
r = kvm_ioeventfd(kvm, &data);
break;
}
-#ifdef CONFIG_KVM_APIC_ARCHITECTURE
- case KVM_SET_BOOT_CPU_ID:
- r = 0;
- mutex_lock(&kvm->lock);
- if (atomic_read(&kvm->online_vcpus) != 0)
- r = -EBUSY;
- else
- kvm->bsp_vcpu_id = arg;
- mutex_unlock(&kvm->lock);
- break;
-#endif
#ifdef CONFIG_HAVE_KVM_MSI
case KVM_SIGNAL_MSI: {
struct kvm_msi msi;
r = -EFAULT;
- if (copy_from_user(&msi, argp, sizeof msi))
+ if (copy_from_user(&msi, argp, sizeof(msi)))
goto out;
r = kvm_send_userspace_msi(kvm, &msi);
break;
@@ -2411,7 +5283,7 @@ static long kvm_vm_ioctl(struct file *filp,
struct kvm_irq_level irq_event;
r = -EFAULT;
- if (copy_from_user(&irq_event, argp, sizeof irq_event))
+ if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
goto out;
r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
@@ -2421,7 +5293,7 @@ static long kvm_vm_ioctl(struct file *filp,
r = -EFAULT;
if (ioctl == KVM_IRQ_LINE_STATUS) {
- if (copy_to_user(argp, &irq_event, sizeof irq_event))
+ if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
goto out;
}
@@ -2433,32 +5305,45 @@ static long kvm_vm_ioctl(struct file *filp,
case KVM_SET_GSI_ROUTING: {
struct kvm_irq_routing routing;
struct kvm_irq_routing __user *urouting;
- struct kvm_irq_routing_entry *entries;
+ struct kvm_irq_routing_entry *entries = NULL;
r = -EFAULT;
if (copy_from_user(&routing, argp, sizeof(routing)))
goto out;
r = -EINVAL;
- if (routing.nr >= KVM_MAX_IRQ_ROUTES)
+ if (!kvm_arch_can_set_irq_routing(kvm))
goto out;
- if (routing.flags)
+ if (routing.nr > KVM_MAX_IRQ_ROUTES)
goto out;
- r = -ENOMEM;
- entries = vmalloc(routing.nr * sizeof(*entries));
- if (!entries)
+ if (routing.flags)
goto out;
- r = -EFAULT;
- urouting = argp;
- if (copy_from_user(entries, urouting->entries,
- routing.nr * sizeof(*entries)))
- goto out_free_irq_routing;
+ if (routing.nr) {
+ urouting = argp;
+ entries = vmemdup_array_user(urouting->entries,
+ routing.nr, sizeof(*entries));
+ if (IS_ERR(entries)) {
+ r = PTR_ERR(entries);
+ goto out;
+ }
+ }
r = kvm_set_irq_routing(kvm, entries, routing.nr,
routing.flags);
- out_free_irq_routing:
- vfree(entries);
+ kvfree(entries);
break;
}
#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
+#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
+ case KVM_SET_MEMORY_ATTRIBUTES: {
+ struct kvm_memory_attributes attrs;
+
+ r = -EFAULT;
+ if (copy_from_user(&attrs, argp, sizeof(attrs)))
+ goto out;
+
+ r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
+ break;
+ }
+#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
case KVM_CREATE_DEVICE: {
struct kvm_create_device cd;
@@ -2477,16 +5362,35 @@ static long kvm_vm_ioctl(struct file *filp,
r = 0;
break;
}
+ case KVM_CHECK_EXTENSION:
+ r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
+ break;
+ case KVM_RESET_DIRTY_RINGS:
+ r = kvm_vm_ioctl_reset_dirty_pages(kvm);
+ break;
+ case KVM_GET_STATS_FD:
+ r = kvm_vm_ioctl_get_stats_fd(kvm);
+ break;
+#ifdef CONFIG_KVM_GUEST_MEMFD
+ case KVM_CREATE_GUEST_MEMFD: {
+ struct kvm_create_guest_memfd guest_memfd;
+
+ r = -EFAULT;
+ if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
+ goto out;
+
+ r = kvm_gmem_create(kvm, &guest_memfd);
+ break;
+ }
+#endif
default:
r = kvm_arch_vm_ioctl(filp, ioctl, arg);
- if (r == -ENOTTY)
- r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
}
out:
return r;
}
-#ifdef CONFIG_COMPAT
+#ifdef CONFIG_KVM_COMPAT
struct compat_kvm_dirty_log {
__u32 slot;
__u32 padding1;
@@ -2496,23 +5400,61 @@ struct compat_kvm_dirty_log {
};
};
+struct compat_kvm_clear_dirty_log {
+ __u32 slot;
+ __u32 num_pages;
+ __u64 first_page;
+ union {
+ compat_uptr_t dirty_bitmap; /* one bit per page */
+ __u64 padding2;
+ };
+};
+
+long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
+ unsigned long arg)
+{
+ return -ENOTTY;
+}
+
static long kvm_vm_compat_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm *kvm = filp->private_data;
int r;
- if (kvm->mm != current->mm)
+ if (kvm->mm != current->mm || kvm->vm_dead)
return -EIO;
+
+ r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
+ if (r != -ENOTTY)
+ return r;
+
switch (ioctl) {
+#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
+ case KVM_CLEAR_DIRTY_LOG: {
+ struct compat_kvm_clear_dirty_log compat_log;
+ struct kvm_clear_dirty_log log;
+
+ if (copy_from_user(&compat_log, (void __user *)arg,
+ sizeof(compat_log)))
+ return -EFAULT;
+ log.slot = compat_log.slot;
+ log.num_pages = compat_log.num_pages;
+ log.first_page = compat_log.first_page;
+ log.padding2 = compat_log.padding2;
+ log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
+
+ r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
+ break;
+ }
+#endif
case KVM_GET_DIRTY_LOG: {
struct compat_kvm_dirty_log compat_log;
struct kvm_dirty_log log;
- r = -EFAULT;
if (copy_from_user(&compat_log, (void __user *)arg,
sizeof(compat_log)))
- goto out;
+ return -EFAULT;
log.slot = compat_log.slot;
log.padding1 = compat_log.padding1;
log.padding2 = compat_log.padding2;
@@ -2524,110 +5466,73 @@ static long kvm_vm_compat_ioctl(struct file *filp,
default:
r = kvm_vm_ioctl(filp, ioctl, arg);
}
-
-out:
return r;
}
#endif
-static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
-{
- struct page *page[1];
- unsigned long addr;
- int npages;
- gfn_t gfn = vmf->pgoff;
- struct kvm *kvm = vma->vm_file->private_data;
-
- addr = gfn_to_hva(kvm, gfn);
- if (kvm_is_error_hva(addr))
- return VM_FAULT_SIGBUS;
-
- npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
- NULL);
- if (unlikely(npages != 1))
- return VM_FAULT_SIGBUS;
-
- vmf->page = page[0];
- return 0;
-}
-
-static const struct vm_operations_struct kvm_vm_vm_ops = {
- .fault = kvm_vm_fault,
-};
-
-static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
-{
- vma->vm_ops = &kvm_vm_vm_ops;
- return 0;
-}
-
static struct file_operations kvm_vm_fops = {
.release = kvm_vm_release,
.unlocked_ioctl = kvm_vm_ioctl,
-#ifdef CONFIG_COMPAT
- .compat_ioctl = kvm_vm_compat_ioctl,
-#endif
- .mmap = kvm_vm_mmap,
.llseek = noop_llseek,
+ KVM_COMPAT(kvm_vm_compat_ioctl),
};
+bool file_is_kvm(struct file *file)
+{
+ return file && file->f_op == &kvm_vm_fops;
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(file_is_kvm);
+
static int kvm_dev_ioctl_create_vm(unsigned long type)
{
- int r;
+ char fdname[ITOA_MAX_LEN + 1];
+ int r, fd;
struct kvm *kvm;
+ struct file *file;
- kvm = kvm_create_vm(type);
- if (IS_ERR(kvm))
- return PTR_ERR(kvm);
-#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
- r = kvm_coalesced_mmio_init(kvm);
- if (r < 0) {
- kvm_put_kvm(kvm);
- return r;
- }
-#endif
- r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
- if (r < 0)
- kvm_put_kvm(kvm);
+ fd = get_unused_fd_flags(O_CLOEXEC);
+ if (fd < 0)
+ return fd;
- return r;
-}
+ snprintf(fdname, sizeof(fdname), "%d", fd);
-static long kvm_dev_ioctl_check_extension_generic(long arg)
-{
- switch (arg) {
- case KVM_CAP_USER_MEMORY:
- case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
- case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
-#ifdef CONFIG_KVM_APIC_ARCHITECTURE
- case KVM_CAP_SET_BOOT_CPU_ID:
-#endif
- case KVM_CAP_INTERNAL_ERROR_DATA:
-#ifdef CONFIG_HAVE_KVM_MSI
- case KVM_CAP_SIGNAL_MSI:
-#endif
-#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
- case KVM_CAP_IRQFD_RESAMPLE:
-#endif
- return 1;
-#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
- case KVM_CAP_IRQ_ROUTING:
- return KVM_MAX_IRQ_ROUTES;
-#endif
- default:
- break;
+ kvm = kvm_create_vm(type, fdname);
+ if (IS_ERR(kvm)) {
+ r = PTR_ERR(kvm);
+ goto put_fd;
+ }
+
+ file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
+ if (IS_ERR(file)) {
+ r = PTR_ERR(file);
+ goto put_kvm;
}
- return kvm_dev_ioctl_check_extension(arg);
+
+ /*
+ * Don't call kvm_put_kvm anymore at this point; file->f_op is
+ * already set, with ->release() being kvm_vm_release(). In error
+ * cases it will be called by the final fput(file) and will take
+ * care of doing kvm_put_kvm(kvm).
+ */
+ kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
+
+ fd_install(fd, file);
+ return fd;
+
+put_kvm:
+ kvm_put_kvm(kvm);
+put_fd:
+ put_unused_fd(fd);
+ return r;
}
static long kvm_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
- long r = -EINVAL;
+ int r = -EINVAL;
switch (ioctl) {
case KVM_GET_API_VERSION:
- r = -EINVAL;
if (arg)
goto out;
r = KVM_API_VERSION;
@@ -2636,25 +5541,19 @@ static long kvm_dev_ioctl(struct file *filp,
r = kvm_dev_ioctl_create_vm(arg);
break;
case KVM_CHECK_EXTENSION:
- r = kvm_dev_ioctl_check_extension_generic(arg);
+ r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
break;
case KVM_GET_VCPU_MMAP_SIZE:
- r = -EINVAL;
if (arg)
goto out;
r = PAGE_SIZE; /* struct kvm_run */
#ifdef CONFIG_X86
r += PAGE_SIZE; /* pio data page */
#endif
-#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
+#ifdef CONFIG_KVM_MMIO
r += PAGE_SIZE; /* coalesced mmio ring page */
#endif
break;
- case KVM_TRACE_ENABLE:
- case KVM_TRACE_PAUSE:
- case KVM_TRACE_DISABLE:
- r = -EOPNOTSUPP;
- break;
default:
return kvm_arch_dev_ioctl(filp, ioctl, arg);
}
@@ -2664,8 +5563,8 @@ out:
static struct file_operations kvm_chardev_ops = {
.unlocked_ioctl = kvm_dev_ioctl,
- .compat_ioctl = kvm_dev_ioctl,
.llseek = noop_llseek,
+ KVM_COMPAT(kvm_dev_ioctl),
};
static struct miscdevice kvm_dev = {
@@ -2674,131 +5573,212 @@ static struct miscdevice kvm_dev = {
&kvm_chardev_ops,
};
-static void hardware_enable_nolock(void *junk)
+#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
+bool enable_virt_at_load = true;
+module_param(enable_virt_at_load, bool, 0444);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_virt_at_load);
+
+__visible bool kvm_rebooting;
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_rebooting);
+
+static DEFINE_PER_CPU(bool, virtualization_enabled);
+static DEFINE_MUTEX(kvm_usage_lock);
+static int kvm_usage_count;
+
+__weak void kvm_arch_enable_virtualization(void)
{
- int cpu = raw_smp_processor_id();
- int r;
- if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
- return;
+}
- cpumask_set_cpu(cpu, cpus_hardware_enabled);
+__weak void kvm_arch_disable_virtualization(void)
+{
- r = kvm_arch_hardware_enable(NULL);
+}
- if (r) {
- cpumask_clear_cpu(cpu, cpus_hardware_enabled);
- atomic_inc(&hardware_enable_failed);
- printk(KERN_INFO "kvm: enabling virtualization on "
- "CPU%d failed\n", cpu);
+static int kvm_enable_virtualization_cpu(void)
+{
+ if (__this_cpu_read(virtualization_enabled))
+ return 0;
+
+ if (kvm_arch_enable_virtualization_cpu()) {
+ pr_info("kvm: enabling virtualization on CPU%d failed\n",
+ raw_smp_processor_id());
+ return -EIO;
}
+
+ __this_cpu_write(virtualization_enabled, true);
+ return 0;
}
-static void hardware_enable(void *junk)
+static int kvm_online_cpu(unsigned int cpu)
{
- raw_spin_lock(&kvm_lock);
- hardware_enable_nolock(junk);
- raw_spin_unlock(&kvm_lock);
+ /*
+ * Abort the CPU online process if hardware virtualization cannot
+ * be enabled. Otherwise running VMs would encounter unrecoverable
+ * errors when scheduled to this CPU.
+ */
+ return kvm_enable_virtualization_cpu();
}
-static void hardware_disable_nolock(void *junk)
+static void kvm_disable_virtualization_cpu(void *ign)
{
- int cpu = raw_smp_processor_id();
-
- if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
+ if (!__this_cpu_read(virtualization_enabled))
return;
- cpumask_clear_cpu(cpu, cpus_hardware_enabled);
- kvm_arch_hardware_disable(NULL);
+
+ kvm_arch_disable_virtualization_cpu();
+
+ __this_cpu_write(virtualization_enabled, false);
}
-static void hardware_disable(void *junk)
+static int kvm_offline_cpu(unsigned int cpu)
{
- raw_spin_lock(&kvm_lock);
- hardware_disable_nolock(junk);
- raw_spin_unlock(&kvm_lock);
+ kvm_disable_virtualization_cpu(NULL);
+ return 0;
}
-static void hardware_disable_all_nolock(void)
+static void kvm_shutdown(void *data)
{
- BUG_ON(!kvm_usage_count);
+ /*
+ * Disable hardware virtualization and set kvm_rebooting to indicate
+ * that KVM has asynchronously disabled hardware virtualization, i.e.
+ * that relevant errors and exceptions aren't entirely unexpected.
+ * Some flavors of hardware virtualization need to be disabled before
+ * transferring control to firmware (to perform shutdown/reboot), e.g.
+ * on x86, virtualization can block INIT interrupts, which are used by
+ * firmware to pull APs back under firmware control. Note, this path
+ * is used for both shutdown and reboot scenarios, i.e. neither name is
+ * 100% comprehensive.
+ */
+ pr_info("kvm: exiting hardware virtualization\n");
+ kvm_rebooting = true;
+ on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1);
+}
- kvm_usage_count--;
- if (!kvm_usage_count)
- on_each_cpu(hardware_disable_nolock, NULL, 1);
+static int kvm_suspend(void *data)
+{
+ /*
+ * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
+ * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage
+ * count is stable. Assert that kvm_usage_lock is not held to ensure
+ * the system isn't suspended while KVM is enabling hardware. Hardware
+ * enabling can be preempted, but the task cannot be frozen until it has
+ * dropped all locks (userspace tasks are frozen via a fake signal).
+ */
+ lockdep_assert_not_held(&kvm_usage_lock);
+ lockdep_assert_irqs_disabled();
+
+ kvm_disable_virtualization_cpu(NULL);
+ return 0;
}
-static void hardware_disable_all(void)
+static void kvm_resume(void *data)
{
- raw_spin_lock(&kvm_lock);
- hardware_disable_all_nolock();
- raw_spin_unlock(&kvm_lock);
+ lockdep_assert_not_held(&kvm_usage_lock);
+ lockdep_assert_irqs_disabled();
+
+ WARN_ON_ONCE(kvm_enable_virtualization_cpu());
}
-static int hardware_enable_all(void)
+static const struct syscore_ops kvm_syscore_ops = {
+ .suspend = kvm_suspend,
+ .resume = kvm_resume,
+ .shutdown = kvm_shutdown,
+};
+
+static struct syscore kvm_syscore = {
+ .ops = &kvm_syscore_ops,
+};
+
+int kvm_enable_virtualization(void)
{
- int r = 0;
+ int r;
- raw_spin_lock(&kvm_lock);
+ guard(mutex)(&kvm_usage_lock);
- kvm_usage_count++;
- if (kvm_usage_count == 1) {
- atomic_set(&hardware_enable_failed, 0);
- on_each_cpu(hardware_enable_nolock, NULL, 1);
+ if (kvm_usage_count++)
+ return 0;
- if (atomic_read(&hardware_enable_failed)) {
- hardware_disable_all_nolock();
- r = -EBUSY;
- }
+ kvm_arch_enable_virtualization();
+
+ r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
+ kvm_online_cpu, kvm_offline_cpu);
+ if (r)
+ goto err_cpuhp;
+
+ register_syscore(&kvm_syscore);
+
+ /*
+ * Undo virtualization enabling and bail if the system is going down.
+ * If userspace initiated a forced reboot, e.g. reboot -f, then it's
+ * possible for an in-flight operation to enable virtualization after
+ * syscore_shutdown() is called, i.e. without kvm_shutdown() being
+ * invoked. Note, this relies on system_state being set _before_
+ * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked
+ * or this CPU observes the impending shutdown. Which is why KVM uses
+ * a syscore ops hook instead of registering a dedicated reboot
+ * notifier (the latter runs before system_state is updated).
+ */
+ if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
+ system_state == SYSTEM_RESTART) {
+ r = -EBUSY;
+ goto err_rebooting;
}
- raw_spin_unlock(&kvm_lock);
+ return 0;
+err_rebooting:
+ unregister_syscore(&kvm_syscore);
+ cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
+err_cpuhp:
+ kvm_arch_disable_virtualization();
+ --kvm_usage_count;
return r;
}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_enable_virtualization);
-static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
- void *v)
+void kvm_disable_virtualization(void)
{
- int cpu = (long)v;
+ guard(mutex)(&kvm_usage_lock);
- if (!kvm_usage_count)
- return NOTIFY_OK;
+ if (--kvm_usage_count)
+ return;
- val &= ~CPU_TASKS_FROZEN;
- switch (val) {
- case CPU_DYING:
- printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
- cpu);
- hardware_disable(NULL);
- break;
- case CPU_STARTING:
- printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
- cpu);
- hardware_enable(NULL);
- break;
- }
- return NOTIFY_OK;
+ unregister_syscore(&kvm_syscore);
+ cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
+ kvm_arch_disable_virtualization();
}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_disable_virtualization);
-static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
- void *v)
+static int kvm_init_virtualization(void)
{
- /*
- * Some (well, at least mine) BIOSes hang on reboot if
- * in vmx root mode.
- *
- * And Intel TXT required VMX off for all cpu when system shutdown.
- */
- printk(KERN_INFO "kvm: exiting hardware virtualization\n");
- kvm_rebooting = true;
- on_each_cpu(hardware_disable_nolock, NULL, 1);
- return NOTIFY_OK;
+ if (enable_virt_at_load)
+ return kvm_enable_virtualization();
+
+ return 0;
}
-static struct notifier_block kvm_reboot_notifier = {
- .notifier_call = kvm_reboot,
- .priority = 0,
-};
+static void kvm_uninit_virtualization(void)
+{
+ if (enable_virt_at_load)
+ kvm_disable_virtualization();
+}
+#else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
+static int kvm_init_virtualization(void)
+{
+ return 0;
+}
+
+static void kvm_uninit_virtualization(void)
+{
+
+}
+#endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
+
+static void kvm_iodevice_destructor(struct kvm_io_device *dev)
+{
+ if (dev->ops->destructor)
+ dev->ops->destructor(dev);
+}
static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
{
@@ -2812,31 +5792,34 @@ static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
kfree(bus);
}
-static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
+static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
+ const struct kvm_io_range *r2)
{
- const struct kvm_io_range *r1 = p1;
- const struct kvm_io_range *r2 = p2;
+ gpa_t addr1 = r1->addr;
+ gpa_t addr2 = r2->addr;
- if (r1->addr < r2->addr)
+ if (addr1 < addr2)
return -1;
- if (r1->addr + r1->len > r2->addr + r2->len)
+
+ /* If r2->len == 0, match the exact address. If r2->len != 0,
+ * accept any overlapping write. Any order is acceptable for
+ * overlapping ranges, because kvm_io_bus_get_first_dev ensures
+ * we process all of them.
+ */
+ if (r2->len) {
+ addr1 += r1->len;
+ addr2 += r2->len;
+ }
+
+ if (addr1 > addr2)
return 1;
+
return 0;
}
-static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
- gpa_t addr, int len)
+static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
{
- bus->range[bus->dev_count++] = (struct kvm_io_range) {
- .addr = addr,
- .len = len,
- .dev = dev,
- };
-
- sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
- kvm_io_bus_sort_cmp, NULL);
-
- return 0;
+ return kvm_io_bus_cmp(p1, p2);
}
static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
@@ -2857,17 +5840,67 @@ static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
off = range - bus->range;
- while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
+ while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
off--;
return off;
}
-/* kvm_io_bus_write - called under kvm->slots_lock */
-int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
- int len, const void *val)
+static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
+ struct kvm_io_range *range, const void *val)
{
int idx;
+
+ idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
+ if (idx < 0)
+ return -EOPNOTSUPP;
+
+ while (idx < bus->dev_count &&
+ kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
+ if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
+ range->len, val))
+ return idx;
+ idx++;
+ }
+
+ return -EOPNOTSUPP;
+}
+
+static struct kvm_io_bus *kvm_get_bus_srcu(struct kvm *kvm, enum kvm_bus idx)
+{
+ /*
+ * Ensure that any updates to kvm_buses[] observed by the previous vCPU
+ * machine instruction are also visible to the vCPU machine instruction
+ * that triggered this call.
+ */
+ smp_mb__after_srcu_read_lock();
+
+ return srcu_dereference(kvm->buses[idx], &kvm->srcu);
+}
+
+int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
+ int len, const void *val)
+{
+ struct kvm_io_bus *bus;
+ struct kvm_io_range range;
+ int r;
+
+ range = (struct kvm_io_range) {
+ .addr = addr,
+ .len = len,
+ };
+
+ bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx);
+ if (!bus)
+ return -ENOMEM;
+ r = __kvm_io_bus_write(vcpu, bus, &range, val);
+ return r < 0 ? r : 0;
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_write);
+
+int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
+ gpa_t addr, int len, const void *val, long cookie)
+{
struct kvm_io_bus *bus;
struct kvm_io_range range;
@@ -2876,204 +5909,469 @@ int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
.len = len,
};
- bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
- idx = kvm_io_bus_get_first_dev(bus, addr, len);
+ bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx);
+ if (!bus)
+ return -ENOMEM;
+
+ /* First try the device referenced by cookie. */
+ if ((cookie >= 0) && (cookie < bus->dev_count) &&
+ (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
+ if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
+ val))
+ return cookie;
+
+ /*
+ * cookie contained garbage; fall back to search and return the
+ * correct cookie value.
+ */
+ return __kvm_io_bus_write(vcpu, bus, &range, val);
+}
+
+static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
+ struct kvm_io_range *range, void *val)
+{
+ int idx;
+
+ idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
if (idx < 0)
return -EOPNOTSUPP;
while (idx < bus->dev_count &&
- kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
- if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
- return 0;
+ kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
+ if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
+ range->len, val))
+ return idx;
idx++;
}
return -EOPNOTSUPP;
}
-/* kvm_io_bus_read - called under kvm->slots_lock */
-int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
+int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
int len, void *val)
{
- int idx;
struct kvm_io_bus *bus;
struct kvm_io_range range;
+ int r;
range = (struct kvm_io_range) {
.addr = addr,
.len = len,
};
- bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
- idx = kvm_io_bus_get_first_dev(bus, addr, len);
- if (idx < 0)
- return -EOPNOTSUPP;
+ bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx);
+ if (!bus)
+ return -ENOMEM;
+ r = __kvm_io_bus_read(vcpu, bus, &range, val);
+ return r < 0 ? r : 0;
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_read);
- while (idx < bus->dev_count &&
- kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
- if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
- return 0;
- idx++;
- }
+static void __free_bus(struct rcu_head *rcu)
+{
+ struct kvm_io_bus *bus = container_of(rcu, struct kvm_io_bus, rcu);
- return -EOPNOTSUPP;
+ kfree(bus);
}
-/* Caller must hold slots_lock. */
int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
int len, struct kvm_io_device *dev)
{
+ int i;
struct kvm_io_bus *new_bus, *bus;
+ struct kvm_io_range range;
+
+ lockdep_assert_held(&kvm->slots_lock);
+
+ bus = kvm_get_bus(kvm, bus_idx);
+ if (!bus)
+ return -ENOMEM;
- bus = kvm->buses[bus_idx];
/* exclude ioeventfd which is limited by maximum fd */
if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
return -ENOSPC;
- new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
- sizeof(struct kvm_io_range)), GFP_KERNEL);
+ new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
+ GFP_KERNEL_ACCOUNT);
if (!new_bus)
return -ENOMEM;
- memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
- sizeof(struct kvm_io_range)));
- kvm_io_bus_insert_dev(new_bus, dev, addr, len);
+
+ range = (struct kvm_io_range) {
+ .addr = addr,
+ .len = len,
+ .dev = dev,
+ };
+
+ for (i = 0; i < bus->dev_count; i++)
+ if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
+ break;
+
+ memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
+ new_bus->dev_count++;
+ new_bus->range[i] = range;
+ memcpy(new_bus->range + i + 1, bus->range + i,
+ (bus->dev_count - i) * sizeof(struct kvm_io_range));
rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
- synchronize_srcu_expedited(&kvm->srcu);
- kfree(bus);
+ call_srcu(&kvm->srcu, &bus->rcu, __free_bus);
return 0;
}
-/* Caller must hold slots_lock. */
int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
struct kvm_io_device *dev)
{
- int i, r;
+ int i;
struct kvm_io_bus *new_bus, *bus;
- bus = kvm->buses[bus_idx];
- r = -ENOENT;
- for (i = 0; i < bus->dev_count; i++)
+ lockdep_assert_held(&kvm->slots_lock);
+
+ bus = kvm_get_bus(kvm, bus_idx);
+ if (!bus)
+ return 0;
+
+ for (i = 0; i < bus->dev_count; i++) {
if (bus->range[i].dev == dev) {
- r = 0;
break;
}
+ }
- if (r)
- return r;
-
- new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
- sizeof(struct kvm_io_range)), GFP_KERNEL);
- if (!new_bus)
- return -ENOMEM;
+ if (i == bus->dev_count)
+ return 0;
- memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
- new_bus->dev_count--;
- memcpy(new_bus->range + i, bus->range + i + 1,
- (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
+ new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
+ GFP_KERNEL_ACCOUNT);
+ if (new_bus) {
+ memcpy(new_bus, bus, struct_size(bus, range, i));
+ new_bus->dev_count--;
+ memcpy(new_bus->range + i, bus->range + i + 1,
+ flex_array_size(new_bus, range, new_bus->dev_count - i));
+ }
rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
synchronize_srcu_expedited(&kvm->srcu);
+
+ /*
+ * If NULL bus is installed, destroy the old bus, including all the
+ * attached devices. Otherwise, destroy the caller's device only.
+ */
+ if (!new_bus) {
+ pr_err("kvm: failed to shrink bus, removing it completely\n");
+ kvm_io_bus_destroy(bus);
+ return -ENOMEM;
+ }
+
+ kvm_iodevice_destructor(dev);
kfree(bus);
- return r;
+ return 0;
}
-static struct notifier_block kvm_cpu_notifier = {
- .notifier_call = kvm_cpu_hotplug,
-};
+struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
+ gpa_t addr)
+{
+ struct kvm_io_bus *bus;
+ int dev_idx, srcu_idx;
+ struct kvm_io_device *iodev = NULL;
-static int vm_stat_get(void *_offset, u64 *val)
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+
+ bus = kvm_get_bus_srcu(kvm, bus_idx);
+ if (!bus)
+ goto out_unlock;
+
+ dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
+ if (dev_idx < 0)
+ goto out_unlock;
+
+ iodev = bus->range[dev_idx].dev;
+
+out_unlock:
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+
+ return iodev;
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_get_dev);
+
+static int kvm_debugfs_open(struct inode *inode, struct file *file,
+ int (*get)(void *, u64 *), int (*set)(void *, u64),
+ const char *fmt)
{
- unsigned offset = (long)_offset;
- struct kvm *kvm;
+ int ret;
+ struct kvm_stat_data *stat_data = inode->i_private;
+
+ /*
+ * The debugfs files are a reference to the kvm struct which
+ * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
+ * avoids the race between open and the removal of the debugfs directory.
+ */
+ if (!kvm_get_kvm_safe(stat_data->kvm))
+ return -ENOENT;
+
+ ret = simple_attr_open(inode, file, get,
+ kvm_stats_debugfs_mode(stat_data->desc) & 0222
+ ? set : NULL, fmt);
+ if (ret)
+ kvm_put_kvm(stat_data->kvm);
+
+ return ret;
+}
+
+static int kvm_debugfs_release(struct inode *inode, struct file *file)
+{
+ struct kvm_stat_data *stat_data = inode->i_private;
+
+ simple_attr_release(inode, file);
+ kvm_put_kvm(stat_data->kvm);
- *val = 0;
- raw_spin_lock(&kvm_lock);
- list_for_each_entry(kvm, &vm_list, vm_list)
- *val += *(u32 *)((void *)kvm + offset);
- raw_spin_unlock(&kvm_lock);
return 0;
}
-DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
+static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
+{
+ *val = *(u64 *)((void *)(&kvm->stat) + offset);
-static int vcpu_stat_get(void *_offset, u64 *val)
+ return 0;
+}
+
+static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
{
- unsigned offset = (long)_offset;
- struct kvm *kvm;
+ *(u64 *)((void *)(&kvm->stat) + offset) = 0;
+
+ return 0;
+}
+
+static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
+{
+ unsigned long i;
struct kvm_vcpu *vcpu;
- int i;
*val = 0;
- raw_spin_lock(&kvm_lock);
- list_for_each_entry(kvm, &vm_list, vm_list)
- kvm_for_each_vcpu(i, vcpu, kvm)
- *val += *(u32 *)((void *)vcpu + offset);
- raw_spin_unlock(&kvm_lock);
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ *val += *(u64 *)((void *)(&vcpu->stat) + offset);
+
return 0;
}
-DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
+static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
+{
+ unsigned long i;
+ struct kvm_vcpu *vcpu;
+
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
-static const struct file_operations *stat_fops[] = {
- [KVM_STAT_VCPU] = &vcpu_stat_fops,
- [KVM_STAT_VM] = &vm_stat_fops,
-};
+ return 0;
+}
-static int kvm_init_debug(void)
+static int kvm_stat_data_get(void *data, u64 *val)
{
int r = -EFAULT;
- struct kvm_stats_debugfs_item *p;
+ struct kvm_stat_data *stat_data = data;
- kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
- if (kvm_debugfs_dir == NULL)
- goto out;
+ switch (stat_data->kind) {
+ case KVM_STAT_VM:
+ r = kvm_get_stat_per_vm(stat_data->kvm,
+ stat_data->desc->desc.offset, val);
+ break;
+ case KVM_STAT_VCPU:
+ r = kvm_get_stat_per_vcpu(stat_data->kvm,
+ stat_data->desc->desc.offset, val);
+ break;
+ }
- for (p = debugfs_entries; p->name; ++p) {
- p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
- (void *)(long)p->offset,
- stat_fops[p->kind]);
- if (p->dentry == NULL)
- goto out_dir;
+ return r;
+}
+
+static int kvm_stat_data_clear(void *data, u64 val)
+{
+ int r = -EFAULT;
+ struct kvm_stat_data *stat_data = data;
+
+ if (val)
+ return -EINVAL;
+
+ switch (stat_data->kind) {
+ case KVM_STAT_VM:
+ r = kvm_clear_stat_per_vm(stat_data->kvm,
+ stat_data->desc->desc.offset);
+ break;
+ case KVM_STAT_VCPU:
+ r = kvm_clear_stat_per_vcpu(stat_data->kvm,
+ stat_data->desc->desc.offset);
+ break;
}
+ return r;
+}
+
+static int kvm_stat_data_open(struct inode *inode, struct file *file)
+{
+ __simple_attr_check_format("%llu\n", 0ull);
+ return kvm_debugfs_open(inode, file, kvm_stat_data_get,
+ kvm_stat_data_clear, "%llu\n");
+}
+
+static const struct file_operations stat_fops_per_vm = {
+ .owner = THIS_MODULE,
+ .open = kvm_stat_data_open,
+ .release = kvm_debugfs_release,
+ .read = simple_attr_read,
+ .write = simple_attr_write,
+};
+
+static int vm_stat_get(void *_offset, u64 *val)
+{
+ unsigned offset = (long)_offset;
+ struct kvm *kvm;
+ u64 tmp_val;
+
+ *val = 0;
+ mutex_lock(&kvm_lock);
+ list_for_each_entry(kvm, &vm_list, vm_list) {
+ kvm_get_stat_per_vm(kvm, offset, &tmp_val);
+ *val += tmp_val;
+ }
+ mutex_unlock(&kvm_lock);
return 0;
+}
-out_dir:
- debugfs_remove_recursive(kvm_debugfs_dir);
-out:
- return r;
+static int vm_stat_clear(void *_offset, u64 val)
+{
+ unsigned offset = (long)_offset;
+ struct kvm *kvm;
+
+ if (val)
+ return -EINVAL;
+
+ mutex_lock(&kvm_lock);
+ list_for_each_entry(kvm, &vm_list, vm_list) {
+ kvm_clear_stat_per_vm(kvm, offset);
+ }
+ mutex_unlock(&kvm_lock);
+
+ return 0;
}
-static void kvm_exit_debug(void)
+DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
+DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
+
+static int vcpu_stat_get(void *_offset, u64 *val)
{
- struct kvm_stats_debugfs_item *p;
+ unsigned offset = (long)_offset;
+ struct kvm *kvm;
+ u64 tmp_val;
- for (p = debugfs_entries; p->name; ++p)
- debugfs_remove(p->dentry);
- debugfs_remove(kvm_debugfs_dir);
+ *val = 0;
+ mutex_lock(&kvm_lock);
+ list_for_each_entry(kvm, &vm_list, vm_list) {
+ kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
+ *val += tmp_val;
+ }
+ mutex_unlock(&kvm_lock);
+ return 0;
}
-static int kvm_suspend(void)
+static int vcpu_stat_clear(void *_offset, u64 val)
{
- if (kvm_usage_count)
- hardware_disable_nolock(NULL);
+ unsigned offset = (long)_offset;
+ struct kvm *kvm;
+
+ if (val)
+ return -EINVAL;
+
+ mutex_lock(&kvm_lock);
+ list_for_each_entry(kvm, &vm_list, vm_list) {
+ kvm_clear_stat_per_vcpu(kvm, offset);
+ }
+ mutex_unlock(&kvm_lock);
+
return 0;
}
-static void kvm_resume(void)
+DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
+ "%llu\n");
+DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
+
+static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
{
- if (kvm_usage_count) {
- WARN_ON(raw_spin_is_locked(&kvm_lock));
- hardware_enable_nolock(NULL);
+ struct kobj_uevent_env *env;
+ unsigned long long created, active;
+
+ if (!kvm_dev.this_device || !kvm)
+ return;
+
+ mutex_lock(&kvm_lock);
+ if (type == KVM_EVENT_CREATE_VM) {
+ kvm_createvm_count++;
+ kvm_active_vms++;
+ } else if (type == KVM_EVENT_DESTROY_VM) {
+ kvm_active_vms--;
+ }
+ created = kvm_createvm_count;
+ active = kvm_active_vms;
+ mutex_unlock(&kvm_lock);
+
+ env = kzalloc(sizeof(*env), GFP_KERNEL);
+ if (!env)
+ return;
+
+ add_uevent_var(env, "CREATED=%llu", created);
+ add_uevent_var(env, "COUNT=%llu", active);
+
+ if (type == KVM_EVENT_CREATE_VM) {
+ add_uevent_var(env, "EVENT=create");
+ kvm->userspace_pid = task_pid_nr(current);
+ } else if (type == KVM_EVENT_DESTROY_VM) {
+ add_uevent_var(env, "EVENT=destroy");
+ }
+ add_uevent_var(env, "PID=%d", kvm->userspace_pid);
+
+ if (!IS_ERR(kvm->debugfs_dentry)) {
+ char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
+
+ if (p) {
+ tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
+ if (!IS_ERR(tmp))
+ add_uevent_var(env, "STATS_PATH=%s", tmp);
+ kfree(p);
+ }
}
+ /* no need for checks, since we are adding at most only 5 keys */
+ env->envp[env->envp_idx++] = NULL;
+ kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
+ kfree(env);
}
-static struct syscore_ops kvm_syscore_ops = {
- .suspend = kvm_suspend,
- .resume = kvm_resume,
-};
+static void kvm_init_debug(void)
+{
+ const struct file_operations *fops;
+ const struct _kvm_stats_desc *pdesc;
+ int i;
+
+ kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
+
+ for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
+ pdesc = &kvm_vm_stats_desc[i];
+ if (kvm_stats_debugfs_mode(pdesc) & 0222)
+ fops = &vm_stat_fops;
+ else
+ fops = &vm_stat_readonly_fops;
+ debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
+ kvm_debugfs_dir,
+ (void *)(long)pdesc->desc.offset, fops);
+ }
+
+ for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
+ pdesc = &kvm_vcpu_stats_desc[i];
+ if (kvm_stats_debugfs_mode(pdesc) & 0222)
+ fops = &vcpu_stat_fops;
+ else
+ fops = &vcpu_stat_readonly_fops;
+ debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
+ kvm_debugfs_dir,
+ (void *)(long)pdesc->desc.offset, fops);
+ }
+}
static inline
struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
@@ -3084,10 +6382,14 @@ struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
{
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
- if (vcpu->preempted)
- vcpu->preempted = false;
+ WRITE_ONCE(vcpu->preempted, false);
+ WRITE_ONCE(vcpu->ready, false);
+
+ __this_cpu_write(kvm_running_vcpu, vcpu);
kvm_arch_vcpu_load(vcpu, cpu);
+
+ WRITE_ONCE(vcpu->scheduled_out, false);
}
static void kvm_sched_out(struct preempt_notifier *pn,
@@ -3095,128 +6397,196 @@ static void kvm_sched_out(struct preempt_notifier *pn,
{
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
- if (current->state == TASK_RUNNING)
- vcpu->preempted = true;
+ WRITE_ONCE(vcpu->scheduled_out, true);
+
+ if (task_is_runnable(current) && vcpu->wants_to_run) {
+ WRITE_ONCE(vcpu->preempted, true);
+ WRITE_ONCE(vcpu->ready, true);
+ }
kvm_arch_vcpu_put(vcpu);
+ __this_cpu_write(kvm_running_vcpu, NULL);
}
-int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
- struct module *module)
+/**
+ * kvm_get_running_vcpu - get the vcpu running on the current CPU.
+ *
+ * We can disable preemption locally around accessing the per-CPU variable,
+ * and use the resolved vcpu pointer after enabling preemption again,
+ * because even if the current thread is migrated to another CPU, reading
+ * the per-CPU value later will give us the same value as we update the
+ * per-CPU variable in the preempt notifier handlers.
+ */
+struct kvm_vcpu *kvm_get_running_vcpu(void)
{
- int r;
- int cpu;
+ struct kvm_vcpu *vcpu;
- r = kvm_arch_init(opaque);
- if (r)
- goto out_fail;
+ preempt_disable();
+ vcpu = __this_cpu_read(kvm_running_vcpu);
+ preempt_enable();
- /*
- * kvm_arch_init makes sure there's at most one caller
- * for architectures that support multiple implementations,
- * like intel and amd on x86.
- * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
- * conflicts in case kvm is already setup for another implementation.
- */
- r = kvm_irqfd_init();
- if (r)
- goto out_irqfd;
+ return vcpu;
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_running_vcpu);
- if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
- r = -ENOMEM;
- goto out_free_0;
- }
+/**
+ * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
+ */
+struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
+{
+ return &kvm_running_vcpu;
+}
- r = kvm_arch_hardware_setup();
- if (r < 0)
- goto out_free_0a;
+#ifdef CONFIG_GUEST_PERF_EVENTS
+static unsigned int kvm_guest_state(void)
+{
+ struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
+ unsigned int state;
- for_each_online_cpu(cpu) {
- smp_call_function_single(cpu,
- kvm_arch_check_processor_compat,
- &r, 1);
- if (r < 0)
- goto out_free_1;
- }
+ if (!kvm_arch_pmi_in_guest(vcpu))
+ return 0;
- r = register_cpu_notifier(&kvm_cpu_notifier);
- if (r)
- goto out_free_2;
- register_reboot_notifier(&kvm_reboot_notifier);
+ state = PERF_GUEST_ACTIVE;
+ if (!kvm_arch_vcpu_in_kernel(vcpu))
+ state |= PERF_GUEST_USER;
+
+ return state;
+}
+
+static unsigned long kvm_guest_get_ip(void)
+{
+ struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
+
+ /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
+ if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
+ return 0;
+
+ return kvm_arch_vcpu_get_ip(vcpu);
+}
+
+static struct perf_guest_info_callbacks kvm_guest_cbs = {
+ .state = kvm_guest_state,
+ .get_ip = kvm_guest_get_ip,
+ .handle_intel_pt_intr = NULL,
+};
+
+void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
+{
+ kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
+ perf_register_guest_info_callbacks(&kvm_guest_cbs);
+}
+void kvm_unregister_perf_callbacks(void)
+{
+ perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
+}
+#endif
+
+int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
+{
+ int r;
+ int cpu;
/* A kmem cache lets us meet the alignment requirements of fx_save. */
if (!vcpu_align)
vcpu_align = __alignof__(struct kvm_vcpu);
- kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
- 0, NULL);
- if (!kvm_vcpu_cache) {
- r = -ENOMEM;
- goto out_free_3;
+ kvm_vcpu_cache =
+ kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
+ SLAB_ACCOUNT,
+ offsetof(struct kvm_vcpu, arch),
+ offsetofend(struct kvm_vcpu, stats_id)
+ - offsetof(struct kvm_vcpu, arch),
+ NULL);
+ if (!kvm_vcpu_cache)
+ return -ENOMEM;
+
+ for_each_possible_cpu(cpu) {
+ if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
+ GFP_KERNEL, cpu_to_node(cpu))) {
+ r = -ENOMEM;
+ goto err_cpu_kick_mask;
+ }
}
+ r = kvm_irqfd_init();
+ if (r)
+ goto err_irqfd;
+
r = kvm_async_pf_init();
if (r)
- goto out_free;
+ goto err_async_pf;
kvm_chardev_ops.owner = module;
kvm_vm_fops.owner = module;
kvm_vcpu_fops.owner = module;
-
- r = misc_register(&kvm_dev);
- if (r) {
- printk(KERN_ERR "kvm: misc device register failed\n");
- goto out_unreg;
- }
-
- register_syscore_ops(&kvm_syscore_ops);
+ kvm_device_fops.owner = module;
kvm_preempt_ops.sched_in = kvm_sched_in;
kvm_preempt_ops.sched_out = kvm_sched_out;
- r = kvm_init_debug();
+ kvm_init_debug();
+
+ r = kvm_vfio_ops_init();
+ if (WARN_ON_ONCE(r))
+ goto err_vfio;
+
+ r = kvm_gmem_init(module);
+ if (r)
+ goto err_gmem;
+
+ r = kvm_init_virtualization();
+ if (r)
+ goto err_virt;
+
+ /*
+ * Registration _must_ be the very last thing done, as this exposes
+ * /dev/kvm to userspace, i.e. all infrastructure must be setup!
+ */
+ r = misc_register(&kvm_dev);
if (r) {
- printk(KERN_ERR "kvm: create debugfs files failed\n");
- goto out_undebugfs;
+ pr_err("kvm: misc device register failed\n");
+ goto err_register;
}
return 0;
-out_undebugfs:
- unregister_syscore_ops(&kvm_syscore_ops);
- misc_deregister(&kvm_dev);
-out_unreg:
+err_register:
+ kvm_uninit_virtualization();
+err_virt:
+ kvm_gmem_exit();
+err_gmem:
+ kvm_vfio_ops_exit();
+err_vfio:
kvm_async_pf_deinit();
-out_free:
- kmem_cache_destroy(kvm_vcpu_cache);
-out_free_3:
- unregister_reboot_notifier(&kvm_reboot_notifier);
- unregister_cpu_notifier(&kvm_cpu_notifier);
-out_free_2:
-out_free_1:
- kvm_arch_hardware_unsetup();
-out_free_0a:
- free_cpumask_var(cpus_hardware_enabled);
-out_free_0:
+err_async_pf:
kvm_irqfd_exit();
-out_irqfd:
- kvm_arch_exit();
-out_fail:
+err_irqfd:
+err_cpu_kick_mask:
+ for_each_possible_cpu(cpu)
+ free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
+ kmem_cache_destroy(kvm_vcpu_cache);
return r;
}
-EXPORT_SYMBOL_GPL(kvm_init);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_init);
void kvm_exit(void)
{
- kvm_exit_debug();
+ int cpu;
+
+ /*
+ * Note, unregistering /dev/kvm doesn't strictly need to come first,
+ * fops_get(), a.k.a. try_module_get(), prevents acquiring references
+ * to KVM while the module is being stopped.
+ */
misc_deregister(&kvm_dev);
+
+ kvm_uninit_virtualization();
+
+ debugfs_remove_recursive(kvm_debugfs_dir);
+ for_each_possible_cpu(cpu)
+ free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
kmem_cache_destroy(kvm_vcpu_cache);
+ kvm_gmem_exit();
+ kvm_vfio_ops_exit();
kvm_async_pf_deinit();
- unregister_syscore_ops(&kvm_syscore_ops);
- unregister_reboot_notifier(&kvm_reboot_notifier);
- unregister_cpu_notifier(&kvm_cpu_notifier);
- on_each_cpu(hardware_disable_nolock, NULL, 1);
- kvm_arch_hardware_unsetup();
- kvm_arch_exit();
kvm_irqfd_exit();
- free_cpumask_var(cpus_hardware_enabled);
}
-EXPORT_SYMBOL_GPL(kvm_exit);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_exit);