diff options
Diffstat (limited to 'virt/kvm/kvm_main.c')
| -rw-r--r-- | virt/kvm/kvm_main.c | 6326 |
1 files changed, 4848 insertions, 1478 deletions
diff --git a/virt/kvm/kvm_main.c b/virt/kvm/kvm_main.c index 1580dd4ace4e..5fcd401a5897 100644 --- a/virt/kvm/kvm_main.c +++ b/virt/kvm/kvm_main.c @@ -1,8 +1,6 @@ +// SPDX-License-Identifier: GPL-2.0-only /* - * Kernel-based Virtual Machine driver for Linux - * - * This module enables machines with Intel VT-x extensions to run virtual - * machines without emulation or binary translation. + * Kernel-based Virtual Machine (KVM) Hypervisor * * Copyright (C) 2006 Qumranet, Inc. * Copyright 2010 Red Hat, Inc. and/or its affiliates. @@ -10,13 +8,9 @@ * Authors: * Avi Kivity <avi@qumranet.com> * Yaniv Kamay <yaniv@qumranet.com> - * - * This work is licensed under the terms of the GNU GPL, version 2. See - * the COPYING file in the top-level directory. - * */ -#include "iodev.h" +#include <kvm/iodev.h> #include <linux/kvm_host.h> #include <linux/kvm.h> @@ -32,7 +26,9 @@ #include <linux/file.h> #include <linux/syscore_ops.h> #include <linux/cpu.h> -#include <linux/sched.h> +#include <linux/sched/signal.h> +#include <linux/sched/mm.h> +#include <linux/sched/stat.h> #include <linux/cpumask.h> #include <linux/smp.h> #include <linux/anon_inodes.h> @@ -49,369 +45,834 @@ #include <linux/slab.h> #include <linux/sort.h> #include <linux/bsearch.h> +#include <linux/io.h> +#include <linux/lockdep.h> +#include <linux/kthread.h> +#include <linux/suspend.h> +#include <linux/rseq.h> #include <asm/processor.h> -#include <asm/io.h> -#include <asm/uaccess.h> -#include <asm/pgtable.h> +#include <asm/ioctl.h> +#include <linux/uaccess.h> #include "coalesced_mmio.h" #include "async_pf.h" +#include "kvm_mm.h" +#include "vfio.h" + +#include <trace/events/ipi.h> #define CREATE_TRACE_POINTS #include <trace/events/kvm.h> +#include <linux/kvm_dirty_ring.h> + + +/* Worst case buffer size needed for holding an integer. */ +#define ITOA_MAX_LEN 12 + MODULE_AUTHOR("Qumranet"); +MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor"); MODULE_LICENSE("GPL"); +/* Architectures should define their poll value according to the halt latency */ +unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; +module_param(halt_poll_ns, uint, 0644); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns); + +/* Default doubles per-vcpu halt_poll_ns. */ +unsigned int halt_poll_ns_grow = 2; +module_param(halt_poll_ns_grow, uint, 0644); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_grow); + +/* The start value to grow halt_poll_ns from */ +unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ +module_param(halt_poll_ns_grow_start, uint, 0644); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_grow_start); + +/* Default halves per-vcpu halt_poll_ns. */ +unsigned int halt_poll_ns_shrink = 2; +module_param(halt_poll_ns_shrink, uint, 0644); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_shrink); + +/* + * Allow direct access (from KVM or the CPU) without MMU notifier protection + * to unpinned pages. + */ +static bool allow_unsafe_mappings; +module_param(allow_unsafe_mappings, bool, 0444); + /* * Ordering of locks: * - * kvm->lock --> kvm->slots_lock --> kvm->irq_lock + * kvm->lock --> kvm->slots_lock --> kvm->irq_lock */ -DEFINE_RAW_SPINLOCK(kvm_lock); +DEFINE_MUTEX(kvm_lock); LIST_HEAD(vm_list); -static cpumask_var_t cpus_hardware_enabled; -static int kvm_usage_count = 0; -static atomic_t hardware_enable_failed; - -struct kmem_cache *kvm_vcpu_cache; -EXPORT_SYMBOL_GPL(kvm_vcpu_cache); +static struct kmem_cache *kvm_vcpu_cache; static __read_mostly struct preempt_ops kvm_preempt_ops; +static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); + +static struct dentry *kvm_debugfs_dir; -struct dentry *kvm_debugfs_dir; +static const struct file_operations stat_fops_per_vm; static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, unsigned long arg); -#ifdef CONFIG_COMPAT +#ifdef CONFIG_KVM_COMPAT static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, unsigned long arg); +#define KVM_COMPAT(c) .compat_ioctl = (c) +#else +/* + * For architectures that don't implement a compat infrastructure, + * adopt a double line of defense: + * - Prevent a compat task from opening /dev/kvm + * - If the open has been done by a 64bit task, and the KVM fd + * passed to a compat task, let the ioctls fail. + */ +static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, + unsigned long arg) { return -EINVAL; } + +static int kvm_no_compat_open(struct inode *inode, struct file *file) +{ + return is_compat_task() ? -ENODEV : 0; +} +#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ + .open = kvm_no_compat_open #endif -static int hardware_enable_all(void); -static void hardware_disable_all(void); static void kvm_io_bus_destroy(struct kvm_io_bus *bus); -bool kvm_rebooting; -EXPORT_SYMBOL_GPL(kvm_rebooting); +#define KVM_EVENT_CREATE_VM 0 +#define KVM_EVENT_DESTROY_VM 1 +static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); +static unsigned long long kvm_createvm_count; +static unsigned long long kvm_active_vms; -static bool largepages_enabled = true; +static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); -bool kvm_is_mmio_pfn(pfn_t pfn) +__weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) { - if (pfn_valid(pfn)) { - int reserved; - struct page *tail = pfn_to_page(pfn); - struct page *head = compound_trans_head(tail); - reserved = PageReserved(head); - if (head != tail) { - /* - * "head" is not a dangling pointer - * (compound_trans_head takes care of that) - * but the hugepage may have been splitted - * from under us (and we may not hold a - * reference count on the head page so it can - * be reused before we run PageReferenced), so - * we've to check PageTail before returning - * what we just read. - */ - smp_rmb(); - if (PageTail(tail)) - return reserved; - } - return PageReserved(tail); - } - - return true; } /* * Switches to specified vcpu, until a matching vcpu_put() */ -int vcpu_load(struct kvm_vcpu *vcpu) +void vcpu_load(struct kvm_vcpu *vcpu) { - int cpu; + int cpu = get_cpu(); - if (mutex_lock_killable(&vcpu->mutex)) - return -EINTR; - if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { - /* The thread running this VCPU changed. */ - struct pid *oldpid = vcpu->pid; - struct pid *newpid = get_task_pid(current, PIDTYPE_PID); - rcu_assign_pointer(vcpu->pid, newpid); - synchronize_rcu(); - put_pid(oldpid); - } - cpu = get_cpu(); + __this_cpu_write(kvm_running_vcpu, vcpu); preempt_notifier_register(&vcpu->preempt_notifier); kvm_arch_vcpu_load(vcpu, cpu); put_cpu(); - return 0; } +EXPORT_SYMBOL_FOR_KVM_INTERNAL(vcpu_load); void vcpu_put(struct kvm_vcpu *vcpu) { preempt_disable(); kvm_arch_vcpu_put(vcpu); preempt_notifier_unregister(&vcpu->preempt_notifier); + __this_cpu_write(kvm_running_vcpu, NULL); preempt_enable(); - mutex_unlock(&vcpu->mutex); } +EXPORT_SYMBOL_FOR_KVM_INTERNAL(vcpu_put); -static void ack_flush(void *_completed) +/* TODO: merge with kvm_arch_vcpu_should_kick */ +static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) { + int mode = kvm_vcpu_exiting_guest_mode(vcpu); + + /* + * We need to wait for the VCPU to reenable interrupts and get out of + * READING_SHADOW_PAGE_TABLES mode. + */ + if (req & KVM_REQUEST_WAIT) + return mode != OUTSIDE_GUEST_MODE; + + /* + * Need to kick a running VCPU, but otherwise there is nothing to do. + */ + return mode == IN_GUEST_MODE; } -static bool make_all_cpus_request(struct kvm *kvm, unsigned int req) +static void ack_kick(void *_completed) { - int i, cpu, me; - cpumask_var_t cpus; - bool called = true; - struct kvm_vcpu *vcpu; +} + +static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) +{ + if (cpumask_empty(cpus)) + return false; - zalloc_cpumask_var(&cpus, GFP_ATOMIC); + smp_call_function_many(cpus, ack_kick, NULL, wait); + return true; +} + +static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, + struct cpumask *tmp, int current_cpu) +{ + int cpu; + + if (likely(!(req & KVM_REQUEST_NO_ACTION))) + __kvm_make_request(req, vcpu); + + if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) + return; + + /* + * Note, the vCPU could get migrated to a different pCPU at any point + * after kvm_request_needs_ipi(), which could result in sending an IPI + * to the previous pCPU. But, that's OK because the purpose of the IPI + * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is + * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES + * after this point is also OK, as the requirement is only that KVM wait + * for vCPUs that were reading SPTEs _before_ any changes were + * finalized. See kvm_vcpu_kick() for more details on handling requests. + */ + if (kvm_request_needs_ipi(vcpu, req)) { + cpu = READ_ONCE(vcpu->cpu); + if (cpu != -1 && cpu != current_cpu) + __cpumask_set_cpu(cpu, tmp); + } +} + +bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, + unsigned long *vcpu_bitmap) +{ + struct kvm_vcpu *vcpu; + struct cpumask *cpus; + int i, me; + bool called; me = get_cpu(); - kvm_for_each_vcpu(i, vcpu, kvm) { - kvm_make_request(req, vcpu); - cpu = vcpu->cpu; - /* Set ->requests bit before we read ->mode */ - smp_mb(); + cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); + cpumask_clear(cpus); - if (cpus != NULL && cpu != -1 && cpu != me && - kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) - cpumask_set_cpu(cpu, cpus); + for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { + vcpu = kvm_get_vcpu(kvm, i); + if (!vcpu) + continue; + kvm_make_vcpu_request(vcpu, req, cpus, me); } - if (unlikely(cpus == NULL)) - smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); - else if (!cpumask_empty(cpus)) - smp_call_function_many(cpus, ack_flush, NULL, 1); - else - called = false; + + called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); + put_cpu(); + + return called; +} + +bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) +{ + struct kvm_vcpu *vcpu; + struct cpumask *cpus; + unsigned long i; + bool called; + int me; + + me = get_cpu(); + + cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); + cpumask_clear(cpus); + + kvm_for_each_vcpu(i, vcpu, kvm) + kvm_make_vcpu_request(vcpu, req, cpus, me); + + called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); put_cpu(); - free_cpumask_var(cpus); + return called; } +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_make_all_cpus_request); void kvm_flush_remote_tlbs(struct kvm *kvm) { - long dirty_count = kvm->tlbs_dirty; + ++kvm->stat.generic.remote_tlb_flush_requests; + + /* + * We want to publish modifications to the page tables before reading + * mode. Pairs with a memory barrier in arch-specific code. + * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest + * and smp_mb in walk_shadow_page_lockless_begin/end. + * - powerpc: smp_mb in kvmppc_prepare_to_enter. + * + * There is already an smp_mb__after_atomic() before + * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that + * barrier here. + */ + if (!kvm_arch_flush_remote_tlbs(kvm) + || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) + ++kvm->stat.generic.remote_tlb_flush; +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_flush_remote_tlbs); + +void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) +{ + if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) + return; - smp_mb(); - if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) - ++kvm->stat.remote_tlb_flush; - cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); + /* + * Fall back to a flushing entire TLBs if the architecture range-based + * TLB invalidation is unsupported or can't be performed for whatever + * reason. + */ + kvm_flush_remote_tlbs(kvm); } -void kvm_reload_remote_mmus(struct kvm *kvm) +void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, + const struct kvm_memory_slot *memslot) { - make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); + /* + * All current use cases for flushing the TLBs for a specific memslot + * are related to dirty logging, and many do the TLB flush out of + * mmu_lock. The interaction between the various operations on memslot + * must be serialized by slots_lock to ensure the TLB flush from one + * operation is observed by any other operation on the same memslot. + */ + lockdep_assert_held(&kvm->slots_lock); + kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); } -void kvm_make_mclock_inprogress_request(struct kvm *kvm) +static void kvm_flush_shadow_all(struct kvm *kvm) { - make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); + kvm_arch_flush_shadow_all(kvm); + kvm_arch_guest_memory_reclaimed(kvm); } -void kvm_make_scan_ioapic_request(struct kvm *kvm) +#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE +static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, + gfp_t gfp_flags) { - make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); + void *page; + + gfp_flags |= mc->gfp_zero; + + if (mc->kmem_cache) + return kmem_cache_alloc(mc->kmem_cache, gfp_flags); + + page = (void *)__get_free_page(gfp_flags); + if (page && mc->init_value) + memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64)); + return page; } -int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) +int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) { - struct page *page; - int r; + gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; + void *obj; + + if (mc->nobjs >= min) + return 0; + + if (unlikely(!mc->objects)) { + if (WARN_ON_ONCE(!capacity)) + return -EIO; + + /* + * Custom init values can be used only for page allocations, + * and obviously conflict with __GFP_ZERO. + */ + if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero))) + return -EIO; + mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp); + if (!mc->objects) + return -ENOMEM; + + mc->capacity = capacity; + } + + /* It is illegal to request a different capacity across topups. */ + if (WARN_ON_ONCE(mc->capacity != capacity)) + return -EIO; + + while (mc->nobjs < mc->capacity) { + obj = mmu_memory_cache_alloc_obj(mc, gfp); + if (!obj) + return mc->nobjs >= min ? 0 : -ENOMEM; + mc->objects[mc->nobjs++] = obj; + } + return 0; +} + +int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) +{ + return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); +} + +int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) +{ + return mc->nobjs; +} + +void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) +{ + while (mc->nobjs) { + if (mc->kmem_cache) + kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); + else + free_page((unsigned long)mc->objects[--mc->nobjs]); + } + + kvfree(mc->objects); + + mc->objects = NULL; + mc->capacity = 0; +} + +void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) +{ + void *p; + + if (WARN_ON(!mc->nobjs)) + p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); + else + p = mc->objects[--mc->nobjs]; + BUG_ON(!p); + return p; +} +#endif + +static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) +{ mutex_init(&vcpu->mutex); vcpu->cpu = -1; vcpu->kvm = kvm; vcpu->vcpu_id = id; vcpu->pid = NULL; - init_waitqueue_head(&vcpu->wq); + rwlock_init(&vcpu->pid_lock); +#ifndef __KVM_HAVE_ARCH_WQP + rcuwait_init(&vcpu->wait); +#endif kvm_async_pf_vcpu_init(vcpu); - page = alloc_page(GFP_KERNEL | __GFP_ZERO); - if (!page) { - r = -ENOMEM; - goto fail; - } - vcpu->run = page_address(page); - kvm_vcpu_set_in_spin_loop(vcpu, false); kvm_vcpu_set_dy_eligible(vcpu, false); vcpu->preempted = false; + vcpu->ready = false; + preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); + vcpu->last_used_slot = NULL; - r = kvm_arch_vcpu_init(vcpu); - if (r < 0) - goto fail_free_run; - return 0; - -fail_free_run: - free_page((unsigned long)vcpu->run); -fail: - return r; + /* Fill the stats id string for the vcpu */ + snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", + task_pid_nr(current), id); } -EXPORT_SYMBOL_GPL(kvm_vcpu_init); -void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) +static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) { + kvm_arch_vcpu_destroy(vcpu); + kvm_dirty_ring_free(&vcpu->dirty_ring); + + /* + * No need for rcu_read_lock as VCPU_RUN is the only place that changes + * the vcpu->pid pointer, and at destruction time all file descriptors + * are already gone. + */ put_pid(vcpu->pid); - kvm_arch_vcpu_uninit(vcpu); + free_page((unsigned long)vcpu->run); + kmem_cache_free(kvm_vcpu_cache, vcpu); +} + +void kvm_destroy_vcpus(struct kvm *kvm) +{ + unsigned long i; + struct kvm_vcpu *vcpu; + + kvm_for_each_vcpu(i, vcpu, kvm) { + kvm_vcpu_destroy(vcpu); + xa_erase(&kvm->vcpu_array, i); + + /* + * Assert that the vCPU isn't visible in any way, to ensure KVM + * doesn't trigger a use-after-free if destroying vCPUs results + * in VM-wide request, e.g. to flush remote TLBs when tearing + * down MMUs, or to mark the VM dead if a KVM_BUG_ON() fires. + */ + WARN_ON_ONCE(xa_load(&kvm->vcpu_array, i) || kvm_get_vcpu(kvm, i)); + } + + atomic_set(&kvm->online_vcpus, 0); } -EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_destroy_vcpus); -#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) +#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) { return container_of(mn, struct kvm, mmu_notifier); } -static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, - struct mm_struct *mm, - unsigned long address) -{ - struct kvm *kvm = mmu_notifier_to_kvm(mn); - int need_tlb_flush, idx; +typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); + +typedef void (*on_lock_fn_t)(struct kvm *kvm); +struct kvm_mmu_notifier_range { /* - * When ->invalidate_page runs, the linux pte has been zapped - * already but the page is still allocated until - * ->invalidate_page returns. So if we increase the sequence - * here the kvm page fault will notice if the spte can't be - * established because the page is going to be freed. If - * instead the kvm page fault establishes the spte before - * ->invalidate_page runs, kvm_unmap_hva will release it - * before returning. - * - * The sequence increase only need to be seen at spin_unlock - * time, and not at spin_lock time. - * - * Increasing the sequence after the spin_unlock would be - * unsafe because the kvm page fault could then establish the - * pte after kvm_unmap_hva returned, without noticing the page - * is going to be freed. + * 64-bit addresses, as KVM notifiers can operate on host virtual + * addresses (unsigned long) and guest physical addresses (64-bit). */ + u64 start; + u64 end; + union kvm_mmu_notifier_arg arg; + gfn_handler_t handler; + on_lock_fn_t on_lock; + bool flush_on_ret; + bool may_block; + bool lockless; +}; + +/* + * The inner-most helper returns a tuple containing the return value from the + * arch- and action-specific handler, plus a flag indicating whether or not at + * least one memslot was found, i.e. if the handler found guest memory. + * + * Note, most notifiers are averse to booleans, so even though KVM tracks the + * return from arch code as a bool, outer helpers will cast it to an int. :-( + */ +typedef struct kvm_mmu_notifier_return { + bool ret; + bool found_memslot; +} kvm_mn_ret_t; + +/* + * Use a dedicated stub instead of NULL to indicate that there is no callback + * function/handler. The compiler technically can't guarantee that a real + * function will have a non-zero address, and so it will generate code to + * check for !NULL, whereas comparing against a stub will be elided at compile + * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). + */ +static void kvm_null_fn(void) +{ + +} +#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) + +/* Iterate over each memslot intersecting [start, last] (inclusive) range */ +#define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ + for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ + node; \ + node = interval_tree_iter_next(node, start, last)) \ + +static __always_inline kvm_mn_ret_t kvm_handle_hva_range(struct kvm *kvm, + const struct kvm_mmu_notifier_range *range) +{ + struct kvm_mmu_notifier_return r = { + .ret = false, + .found_memslot = false, + }; + struct kvm_gfn_range gfn_range; + struct kvm_memory_slot *slot; + struct kvm_memslots *slots; + int i, idx; + + if (WARN_ON_ONCE(range->end <= range->start)) + return r; + + /* A null handler is allowed if and only if on_lock() is provided. */ + if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && + IS_KVM_NULL_FN(range->handler))) + return r; + + /* on_lock will never be called for lockless walks */ + if (WARN_ON_ONCE(range->lockless && !IS_KVM_NULL_FN(range->on_lock))) + return r; + idx = srcu_read_lock(&kvm->srcu); - spin_lock(&kvm->mmu_lock); - kvm->mmu_notifier_seq++; - need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; - /* we've to flush the tlb before the pages can be freed */ - if (need_tlb_flush) + for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { + struct interval_tree_node *node; + + slots = __kvm_memslots(kvm, i); + kvm_for_each_memslot_in_hva_range(node, slots, + range->start, range->end - 1) { + unsigned long hva_start, hva_end; + + slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); + hva_start = max_t(unsigned long, range->start, slot->userspace_addr); + hva_end = min_t(unsigned long, range->end, + slot->userspace_addr + (slot->npages << PAGE_SHIFT)); + + /* + * To optimize for the likely case where the address + * range is covered by zero or one memslots, don't + * bother making these conditional (to avoid writes on + * the second or later invocation of the handler). + */ + gfn_range.arg = range->arg; + gfn_range.may_block = range->may_block; + /* + * HVA-based notifications aren't relevant to private + * mappings as they don't have a userspace mapping. + */ + gfn_range.attr_filter = KVM_FILTER_SHARED; + + /* + * {gfn(page) | page intersects with [hva_start, hva_end)} = + * {gfn_start, gfn_start+1, ..., gfn_end-1}. + */ + gfn_range.start = hva_to_gfn_memslot(hva_start, slot); + gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); + gfn_range.slot = slot; + gfn_range.lockless = range->lockless; + + if (!r.found_memslot) { + r.found_memslot = true; + if (!range->lockless) { + KVM_MMU_LOCK(kvm); + if (!IS_KVM_NULL_FN(range->on_lock)) + range->on_lock(kvm); + + if (IS_KVM_NULL_FN(range->handler)) + goto mmu_unlock; + } + } + r.ret |= range->handler(kvm, &gfn_range); + } + } + + if (range->flush_on_ret && r.ret) kvm_flush_remote_tlbs(kvm); - spin_unlock(&kvm->mmu_lock); +mmu_unlock: + if (r.found_memslot && !range->lockless) + KVM_MMU_UNLOCK(kvm); + srcu_read_unlock(&kvm->srcu, idx); + + return r; } -static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, - struct mm_struct *mm, - unsigned long address, - pte_t pte) +static __always_inline int kvm_age_hva_range(struct mmu_notifier *mn, + unsigned long start, + unsigned long end, + gfn_handler_t handler, + bool flush_on_ret) { struct kvm *kvm = mmu_notifier_to_kvm(mn); - int idx; + const struct kvm_mmu_notifier_range range = { + .start = start, + .end = end, + .handler = handler, + .on_lock = (void *)kvm_null_fn, + .flush_on_ret = flush_on_ret, + .may_block = false, + .lockless = IS_ENABLED(CONFIG_KVM_MMU_LOCKLESS_AGING), + }; - idx = srcu_read_lock(&kvm->srcu); - spin_lock(&kvm->mmu_lock); - kvm->mmu_notifier_seq++; - kvm_set_spte_hva(kvm, address, pte); - spin_unlock(&kvm->mmu_lock); - srcu_read_unlock(&kvm->srcu, idx); + return kvm_handle_hva_range(kvm, &range).ret; } -static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, - struct mm_struct *mm, - unsigned long start, - unsigned long end) +static __always_inline int kvm_age_hva_range_no_flush(struct mmu_notifier *mn, + unsigned long start, + unsigned long end, + gfn_handler_t handler) { - struct kvm *kvm = mmu_notifier_to_kvm(mn); - int need_tlb_flush = 0, idx; + return kvm_age_hva_range(mn, start, end, handler, false); +} - idx = srcu_read_lock(&kvm->srcu); - spin_lock(&kvm->mmu_lock); +void kvm_mmu_invalidate_begin(struct kvm *kvm) +{ + lockdep_assert_held_write(&kvm->mmu_lock); /* * The count increase must become visible at unlock time as no * spte can be established without taking the mmu_lock and * count is also read inside the mmu_lock critical section. */ - kvm->mmu_notifier_count++; - need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); - need_tlb_flush |= kvm->tlbs_dirty; - /* we've to flush the tlb before the pages can be freed */ - if (need_tlb_flush) - kvm_flush_remote_tlbs(kvm); + kvm->mmu_invalidate_in_progress++; - spin_unlock(&kvm->mmu_lock); - srcu_read_unlock(&kvm->srcu, idx); + if (likely(kvm->mmu_invalidate_in_progress == 1)) { + kvm->mmu_invalidate_range_start = INVALID_GPA; + kvm->mmu_invalidate_range_end = INVALID_GPA; + } } -static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, - struct mm_struct *mm, - unsigned long start, - unsigned long end) +void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end) +{ + lockdep_assert_held_write(&kvm->mmu_lock); + + WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress); + + if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) { + kvm->mmu_invalidate_range_start = start; + kvm->mmu_invalidate_range_end = end; + } else { + /* + * Fully tracking multiple concurrent ranges has diminishing + * returns. Keep things simple and just find the minimal range + * which includes the current and new ranges. As there won't be + * enough information to subtract a range after its invalidate + * completes, any ranges invalidated concurrently will + * accumulate and persist until all outstanding invalidates + * complete. + */ + kvm->mmu_invalidate_range_start = + min(kvm->mmu_invalidate_range_start, start); + kvm->mmu_invalidate_range_end = + max(kvm->mmu_invalidate_range_end, end); + } +} + +bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) +{ + kvm_mmu_invalidate_range_add(kvm, range->start, range->end); + return kvm_unmap_gfn_range(kvm, range); +} + +static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, + const struct mmu_notifier_range *range) { struct kvm *kvm = mmu_notifier_to_kvm(mn); + const struct kvm_mmu_notifier_range hva_range = { + .start = range->start, + .end = range->end, + .handler = kvm_mmu_unmap_gfn_range, + .on_lock = kvm_mmu_invalidate_begin, + .flush_on_ret = true, + .may_block = mmu_notifier_range_blockable(range), + }; + + trace_kvm_unmap_hva_range(range->start, range->end); + + /* + * Prevent memslot modification between range_start() and range_end() + * so that conditionally locking provides the same result in both + * functions. Without that guarantee, the mmu_invalidate_in_progress + * adjustments will be imbalanced. + * + * Pairs with the decrement in range_end(). + */ + spin_lock(&kvm->mn_invalidate_lock); + kvm->mn_active_invalidate_count++; + spin_unlock(&kvm->mn_invalidate_lock); + + /* + * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. + * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring + * each cache's lock. There are relatively few caches in existence at + * any given time, and the caches themselves can check for hva overlap, + * i.e. don't need to rely on memslot overlap checks for performance. + * Because this runs without holding mmu_lock, the pfn caches must use + * mn_active_invalidate_count (see above) instead of + * mmu_invalidate_in_progress. + */ + gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end); + + /* + * If one or more memslots were found and thus zapped, notify arch code + * that guest memory has been reclaimed. This needs to be done *after* + * dropping mmu_lock, as x86's reclaim path is slooooow. + */ + if (kvm_handle_hva_range(kvm, &hva_range).found_memslot) + kvm_arch_guest_memory_reclaimed(kvm); + + return 0; +} + +void kvm_mmu_invalidate_end(struct kvm *kvm) +{ + lockdep_assert_held_write(&kvm->mmu_lock); - spin_lock(&kvm->mmu_lock); /* * This sequence increase will notify the kvm page fault that * the page that is going to be mapped in the spte could have * been freed. */ - kvm->mmu_notifier_seq++; + kvm->mmu_invalidate_seq++; smp_wmb(); /* * The above sequence increase must be visible before the * below count decrease, which is ensured by the smp_wmb above - * in conjunction with the smp_rmb in mmu_notifier_retry(). + * in conjunction with the smp_rmb in mmu_invalidate_retry(). */ - kvm->mmu_notifier_count--; - spin_unlock(&kvm->mmu_lock); + kvm->mmu_invalidate_in_progress--; + KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm); - BUG_ON(kvm->mmu_notifier_count < 0); + /* + * Assert that at least one range was added between start() and end(). + * Not adding a range isn't fatal, but it is a KVM bug. + */ + WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA); } -static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, - struct mm_struct *mm, - unsigned long address) +static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, + const struct mmu_notifier_range *range) { struct kvm *kvm = mmu_notifier_to_kvm(mn); - int young, idx; + const struct kvm_mmu_notifier_range hva_range = { + .start = range->start, + .end = range->end, + .handler = (void *)kvm_null_fn, + .on_lock = kvm_mmu_invalidate_end, + .flush_on_ret = false, + .may_block = mmu_notifier_range_blockable(range), + }; + bool wake; - idx = srcu_read_lock(&kvm->srcu); - spin_lock(&kvm->mmu_lock); + kvm_handle_hva_range(kvm, &hva_range); - young = kvm_age_hva(kvm, address); - if (young) - kvm_flush_remote_tlbs(kvm); + /* Pairs with the increment in range_start(). */ + spin_lock(&kvm->mn_invalidate_lock); + if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count)) + --kvm->mn_active_invalidate_count; + wake = !kvm->mn_active_invalidate_count; + spin_unlock(&kvm->mn_invalidate_lock); - spin_unlock(&kvm->mmu_lock); - srcu_read_unlock(&kvm->srcu, idx); + /* + * There can only be one waiter, since the wait happens under + * slots_lock. + */ + if (wake) + rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); +} + +static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, + struct mm_struct *mm, + unsigned long start, + unsigned long end) +{ + trace_kvm_age_hva(start, end); - return young; + return kvm_age_hva_range(mn, start, end, kvm_age_gfn, + !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG)); +} + +static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, + struct mm_struct *mm, + unsigned long start, + unsigned long end) +{ + trace_kvm_age_hva(start, end); + + /* + * Even though we do not flush TLB, this will still adversely + * affect performance on pre-Haswell Intel EPT, where there is + * no EPT Access Bit to clear so that we have to tear down EPT + * tables instead. If we find this unacceptable, we can always + * add a parameter to kvm_age_hva so that it effectively doesn't + * do anything on clear_young. + * + * Also note that currently we never issue secondary TLB flushes + * from clear_young, leaving this job up to the regular system + * cadence. If we find this inaccurate, we might come up with a + * more sophisticated heuristic later. + */ + return kvm_age_hva_range_no_flush(mn, start, end, kvm_age_gfn); } static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, struct mm_struct *mm, unsigned long address) { - struct kvm *kvm = mmu_notifier_to_kvm(mn); - int young, idx; + trace_kvm_test_age_hva(address); - idx = srcu_read_lock(&kvm->srcu); - spin_lock(&kvm->mmu_lock); - young = kvm_test_age_hva(kvm, address); - spin_unlock(&kvm->mmu_lock); - srcu_read_unlock(&kvm->srcu, idx); - - return young; + return kvm_age_hva_range_no_flush(mn, address, address + 1, + kvm_test_age_gfn); } static void kvm_mmu_notifier_release(struct mmu_notifier *mn, @@ -421,17 +882,16 @@ static void kvm_mmu_notifier_release(struct mmu_notifier *mn, int idx; idx = srcu_read_lock(&kvm->srcu); - kvm_arch_flush_shadow_all(kvm); + kvm_flush_shadow_all(kvm); srcu_read_unlock(&kvm->srcu, idx); } static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { - .invalidate_page = kvm_mmu_notifier_invalidate_page, .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, .clear_flush_young = kvm_mmu_notifier_clear_flush_young, + .clear_young = kvm_mmu_notifier_clear_young, .test_young = kvm_mmu_notifier_test_young, - .change_pte = kvm_mmu_notifier_change_pte, .release = kvm_mmu_notifier_release, }; @@ -441,156 +901,371 @@ static int kvm_init_mmu_notifier(struct kvm *kvm) return mmu_notifier_register(&kvm->mmu_notifier, current->mm); } -#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ +#else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */ static int kvm_init_mmu_notifier(struct kvm *kvm) { return 0; } -#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ +#endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */ -static void kvm_init_memslots_id(struct kvm *kvm) +#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER +static int kvm_pm_notifier_call(struct notifier_block *bl, + unsigned long state, + void *unused) { - int i; - struct kvm_memslots *slots = kvm->memslots; + struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); - for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) - slots->id_to_index[i] = slots->memslots[i].id = i; + return kvm_arch_pm_notifier(kvm, state); } -static struct kvm *kvm_create_vm(unsigned long type) +static void kvm_init_pm_notifier(struct kvm *kvm) { - int r, i; - struct kvm *kvm = kvm_arch_alloc_vm(); + kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; + /* Suspend KVM before we suspend ftrace, RCU, etc. */ + kvm->pm_notifier.priority = INT_MAX; + register_pm_notifier(&kvm->pm_notifier); +} - if (!kvm) - return ERR_PTR(-ENOMEM); +static void kvm_destroy_pm_notifier(struct kvm *kvm) +{ + unregister_pm_notifier(&kvm->pm_notifier); +} +#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ +static void kvm_init_pm_notifier(struct kvm *kvm) +{ +} - r = kvm_arch_init_vm(kvm, type); - if (r) - goto out_err_nodisable; +static void kvm_destroy_pm_notifier(struct kvm *kvm) +{ +} +#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ - r = hardware_enable_all(); - if (r) - goto out_err_nodisable; +static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) +{ + if (!memslot->dirty_bitmap) + return; -#ifdef CONFIG_HAVE_KVM_IRQCHIP - INIT_HLIST_HEAD(&kvm->mask_notifier_list); - INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); -#endif + vfree(memslot->dirty_bitmap); + memslot->dirty_bitmap = NULL; +} - BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); +/* This does not remove the slot from struct kvm_memslots data structures */ +static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) +{ + if (slot->flags & KVM_MEM_GUEST_MEMFD) + kvm_gmem_unbind(slot); - r = -ENOMEM; - kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); - if (!kvm->memslots) - goto out_err_nosrcu; - kvm_init_memslots_id(kvm); - if (init_srcu_struct(&kvm->srcu)) - goto out_err_nosrcu; - for (i = 0; i < KVM_NR_BUSES; i++) { - kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), - GFP_KERNEL); - if (!kvm->buses[i]) - goto out_err; - } + kvm_destroy_dirty_bitmap(slot); - spin_lock_init(&kvm->mmu_lock); - kvm->mm = current->mm; - atomic_inc(&kvm->mm->mm_count); - kvm_eventfd_init(kvm); - mutex_init(&kvm->lock); - mutex_init(&kvm->irq_lock); - mutex_init(&kvm->slots_lock); - atomic_set(&kvm->users_count, 1); - INIT_LIST_HEAD(&kvm->devices); + kvm_arch_free_memslot(kvm, slot); - r = kvm_init_mmu_notifier(kvm); - if (r) - goto out_err; + kfree(slot); +} - raw_spin_lock(&kvm_lock); - list_add(&kvm->vm_list, &vm_list); - raw_spin_unlock(&kvm_lock); +static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) +{ + struct hlist_node *idnode; + struct kvm_memory_slot *memslot; + int bkt; - return kvm; + /* + * The same memslot objects live in both active and inactive sets, + * arbitrarily free using index '1' so the second invocation of this + * function isn't operating over a structure with dangling pointers + * (even though this function isn't actually touching them). + */ + if (!slots->node_idx) + return; -out_err: - cleanup_srcu_struct(&kvm->srcu); -out_err_nosrcu: - hardware_disable_all(); -out_err_nodisable: - for (i = 0; i < KVM_NR_BUSES; i++) - kfree(kvm->buses[i]); - kfree(kvm->memslots); - kvm_arch_free_vm(kvm); - return ERR_PTR(r); + hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) + kvm_free_memslot(kvm, memslot); } -/* - * Avoid using vmalloc for a small buffer. - * Should not be used when the size is statically known. - */ -void *kvm_kvzalloc(unsigned long size) +static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) { - if (size > PAGE_SIZE) - return vzalloc(size); - else - return kzalloc(size, GFP_KERNEL); + switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { + case KVM_STATS_TYPE_INSTANT: + return 0444; + case KVM_STATS_TYPE_CUMULATIVE: + case KVM_STATS_TYPE_PEAK: + default: + return 0644; + } } -void kvm_kvfree(const void *addr) + +static void kvm_destroy_vm_debugfs(struct kvm *kvm) { - if (is_vmalloc_addr(addr)) - vfree(addr); - else - kfree(addr); + int i; + int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + + kvm_vcpu_stats_header.num_desc; + + if (IS_ERR(kvm->debugfs_dentry)) + return; + + debugfs_remove_recursive(kvm->debugfs_dentry); + + if (kvm->debugfs_stat_data) { + for (i = 0; i < kvm_debugfs_num_entries; i++) + kfree(kvm->debugfs_stat_data[i]); + kfree(kvm->debugfs_stat_data); + } } -static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) +static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) { - if (!memslot->dirty_bitmap) - return; + static DEFINE_MUTEX(kvm_debugfs_lock); + struct dentry *dent; + char dir_name[ITOA_MAX_LEN * 2]; + struct kvm_stat_data *stat_data; + const struct _kvm_stats_desc *pdesc; + int i, ret = -ENOMEM; + int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + + kvm_vcpu_stats_header.num_desc; - kvm_kvfree(memslot->dirty_bitmap); - memslot->dirty_bitmap = NULL; + if (!debugfs_initialized()) + return 0; + + snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); + mutex_lock(&kvm_debugfs_lock); + dent = debugfs_lookup(dir_name, kvm_debugfs_dir); + if (dent) { + pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); + dput(dent); + mutex_unlock(&kvm_debugfs_lock); + return 0; + } + dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); + mutex_unlock(&kvm_debugfs_lock); + if (IS_ERR(dent)) + return 0; + + kvm->debugfs_dentry = dent; + kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, + sizeof(*kvm->debugfs_stat_data), + GFP_KERNEL_ACCOUNT); + if (!kvm->debugfs_stat_data) + goto out_err; + + for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { + pdesc = &kvm_vm_stats_desc[i]; + stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); + if (!stat_data) + goto out_err; + + stat_data->kvm = kvm; + stat_data->desc = pdesc; + stat_data->kind = KVM_STAT_VM; + kvm->debugfs_stat_data[i] = stat_data; + debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), + kvm->debugfs_dentry, stat_data, + &stat_fops_per_vm); + } + + for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { + pdesc = &kvm_vcpu_stats_desc[i]; + stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); + if (!stat_data) + goto out_err; + + stat_data->kvm = kvm; + stat_data->desc = pdesc; + stat_data->kind = KVM_STAT_VCPU; + kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; + debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), + kvm->debugfs_dentry, stat_data, + &stat_fops_per_vm); + } + + kvm_arch_create_vm_debugfs(kvm); + return 0; +out_err: + kvm_destroy_vm_debugfs(kvm); + return ret; } /* - * Free any memory in @free but not in @dont. + * Called just after removing the VM from the vm_list, but before doing any + * other destruction. */ -static void kvm_free_physmem_slot(struct kvm_memory_slot *free, - struct kvm_memory_slot *dont) +void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) { - if (!dont || free->dirty_bitmap != dont->dirty_bitmap) - kvm_destroy_dirty_bitmap(free); +} - kvm_arch_free_memslot(free, dont); +/* + * Called after per-vm debugfs created. When called kvm->debugfs_dentry should + * be setup already, so we can create arch-specific debugfs entries under it. + * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so + * a per-arch destroy interface is not needed. + */ +void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) +{ +} - free->npages = 0; +/* Called only on cleanup and destruction paths when there are no users. */ +static inline struct kvm_io_bus *kvm_get_bus_for_destruction(struct kvm *kvm, + enum kvm_bus idx) +{ + return rcu_dereference_protected(kvm->buses[idx], + !refcount_read(&kvm->users_count)); } -void kvm_free_physmem(struct kvm *kvm) +static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) { - struct kvm_memslots *slots = kvm->memslots; - struct kvm_memory_slot *memslot; + struct kvm *kvm = kvm_arch_alloc_vm(); + struct kvm_memslots *slots; + int r, i, j; + + if (!kvm) + return ERR_PTR(-ENOMEM); + + KVM_MMU_LOCK_INIT(kvm); + mmgrab(current->mm); + kvm->mm = current->mm; + kvm_eventfd_init(kvm); + mutex_init(&kvm->lock); + mutex_init(&kvm->irq_lock); + mutex_init(&kvm->slots_lock); + mutex_init(&kvm->slots_arch_lock); + spin_lock_init(&kvm->mn_invalidate_lock); + rcuwait_init(&kvm->mn_memslots_update_rcuwait); + xa_init(&kvm->vcpu_array); +#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES + xa_init(&kvm->mem_attr_array); +#endif + + INIT_LIST_HEAD(&kvm->gpc_list); + spin_lock_init(&kvm->gpc_lock); + + INIT_LIST_HEAD(&kvm->devices); + kvm->max_vcpus = KVM_MAX_VCPUS; + + BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); + + /* + * Force subsequent debugfs file creations to fail if the VM directory + * is not created (by kvm_create_vm_debugfs()). + */ + kvm->debugfs_dentry = ERR_PTR(-ENOENT); - kvm_for_each_memslot(memslot, slots) - kvm_free_physmem_slot(memslot, NULL); + snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", + task_pid_nr(current)); - kfree(kvm->memslots); + r = -ENOMEM; + if (init_srcu_struct(&kvm->srcu)) + goto out_err_no_srcu; + if (init_srcu_struct(&kvm->irq_srcu)) + goto out_err_no_irq_srcu; + + r = kvm_init_irq_routing(kvm); + if (r) + goto out_err_no_irq_routing; + + refcount_set(&kvm->users_count, 1); + + for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { + for (j = 0; j < 2; j++) { + slots = &kvm->__memslots[i][j]; + + atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); + slots->hva_tree = RB_ROOT_CACHED; + slots->gfn_tree = RB_ROOT; + hash_init(slots->id_hash); + slots->node_idx = j; + + /* Generations must be different for each address space. */ + slots->generation = i; + } + + rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); + } + + r = -ENOMEM; + for (i = 0; i < KVM_NR_BUSES; i++) { + rcu_assign_pointer(kvm->buses[i], + kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); + if (!kvm->buses[i]) + goto out_err_no_arch_destroy_vm; + } + + r = kvm_arch_init_vm(kvm, type); + if (r) + goto out_err_no_arch_destroy_vm; + + r = kvm_enable_virtualization(); + if (r) + goto out_err_no_disable; + +#ifdef CONFIG_HAVE_KVM_IRQCHIP + INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); +#endif + + r = kvm_init_mmu_notifier(kvm); + if (r) + goto out_err_no_mmu_notifier; + + r = kvm_coalesced_mmio_init(kvm); + if (r < 0) + goto out_no_coalesced_mmio; + + r = kvm_create_vm_debugfs(kvm, fdname); + if (r) + goto out_err_no_debugfs; + + mutex_lock(&kvm_lock); + list_add(&kvm->vm_list, &vm_list); + mutex_unlock(&kvm_lock); + + preempt_notifier_inc(); + kvm_init_pm_notifier(kvm); + + return kvm; + +out_err_no_debugfs: + kvm_coalesced_mmio_free(kvm); +out_no_coalesced_mmio: +#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER + if (kvm->mmu_notifier.ops) + mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); +#endif +out_err_no_mmu_notifier: + kvm_disable_virtualization(); +out_err_no_disable: + kvm_arch_destroy_vm(kvm); +out_err_no_arch_destroy_vm: + WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); + for (i = 0; i < KVM_NR_BUSES; i++) + kfree(kvm_get_bus_for_destruction(kvm, i)); + kvm_free_irq_routing(kvm); +out_err_no_irq_routing: + cleanup_srcu_struct(&kvm->irq_srcu); +out_err_no_irq_srcu: + cleanup_srcu_struct(&kvm->srcu); +out_err_no_srcu: + kvm_arch_free_vm(kvm); + mmdrop(current->mm); + return ERR_PTR(r); } static void kvm_destroy_devices(struct kvm *kvm) { - struct list_head *node, *tmp; + struct kvm_device *dev, *tmp; - list_for_each_safe(node, tmp, &kvm->devices) { - struct kvm_device *dev = - list_entry(node, struct kvm_device, vm_node); - - list_del(node); + /* + * We do not need to take the kvm->lock here, because nobody else + * has a reference to the struct kvm at this point and therefore + * cannot access the devices list anyhow. + * + * The device list is generally managed as an rculist, but list_del() + * is used intentionally here. If a bug in KVM introduced a reader that + * was not backed by a reference on the kvm struct, the hope is that + * it'd consume the poisoned forward pointer instead of suffering a + * use-after-free, even though this cannot be guaranteed. + */ + list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { + list_del(&dev->vm_node); dev->ops->destroy(dev); } } @@ -600,41 +1275,98 @@ static void kvm_destroy_vm(struct kvm *kvm) int i; struct mm_struct *mm = kvm->mm; - kvm_arch_sync_events(kvm); - raw_spin_lock(&kvm_lock); + kvm_destroy_pm_notifier(kvm); + kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); + kvm_destroy_vm_debugfs(kvm); + mutex_lock(&kvm_lock); list_del(&kvm->vm_list); - raw_spin_unlock(&kvm_lock); + mutex_unlock(&kvm_lock); + kvm_arch_pre_destroy_vm(kvm); + kvm_free_irq_routing(kvm); - for (i = 0; i < KVM_NR_BUSES; i++) - kvm_io_bus_destroy(kvm->buses[i]); + for (i = 0; i < KVM_NR_BUSES; i++) { + struct kvm_io_bus *bus = kvm_get_bus_for_destruction(kvm, i); + + if (bus) + kvm_io_bus_destroy(bus); + kvm->buses[i] = NULL; + } kvm_coalesced_mmio_free(kvm); -#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) +#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); + /* + * At this point, pending calls to invalidate_range_start() + * have completed but no more MMU notifiers will run, so + * mn_active_invalidate_count may remain unbalanced. + * No threads can be waiting in kvm_swap_active_memslots() as the + * last reference on KVM has been dropped, but freeing + * memslots would deadlock without this manual intervention. + * + * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU + * notifier between a start() and end(), then there shouldn't be any + * in-progress invalidations. + */ + WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); + if (kvm->mn_active_invalidate_count) + kvm->mn_active_invalidate_count = 0; + else + WARN_ON(kvm->mmu_invalidate_in_progress); #else - kvm_arch_flush_shadow_all(kvm); + kvm_flush_shadow_all(kvm); #endif kvm_arch_destroy_vm(kvm); kvm_destroy_devices(kvm); - kvm_free_physmem(kvm); + for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { + kvm_free_memslots(kvm, &kvm->__memslots[i][0]); + kvm_free_memslots(kvm, &kvm->__memslots[i][1]); + } + cleanup_srcu_struct(&kvm->irq_srcu); + srcu_barrier(&kvm->srcu); cleanup_srcu_struct(&kvm->srcu); +#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES + xa_destroy(&kvm->mem_attr_array); +#endif kvm_arch_free_vm(kvm); - hardware_disable_all(); + preempt_notifier_dec(); + kvm_disable_virtualization(); mmdrop(mm); } void kvm_get_kvm(struct kvm *kvm) { - atomic_inc(&kvm->users_count); + refcount_inc(&kvm->users_count); } EXPORT_SYMBOL_GPL(kvm_get_kvm); +/* + * Make sure the vm is not during destruction, which is a safe version of + * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. + */ +bool kvm_get_kvm_safe(struct kvm *kvm) +{ + return refcount_inc_not_zero(&kvm->users_count); +} +EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); + void kvm_put_kvm(struct kvm *kvm) { - if (atomic_dec_and_test(&kvm->users_count)) + if (refcount_dec_and_test(&kvm->users_count)) kvm_destroy_vm(kvm); } EXPORT_SYMBOL_GPL(kvm_put_kvm); +/* + * Used to put a reference that was taken on behalf of an object associated + * with a user-visible file descriptor, e.g. a vcpu or device, if installation + * of the new file descriptor fails and the reference cannot be transferred to + * its final owner. In such cases, the caller is still actively using @kvm and + * will fail miserably if the refcount unexpectedly hits zero. + */ +void kvm_put_kvm_no_destroy(struct kvm *kvm) +{ + WARN_ON(refcount_dec_and_test(&kvm->users_count)); +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_put_kvm_no_destroy); static int kvm_vm_release(struct inode *inode, struct file *filp) { @@ -646,76 +1378,241 @@ static int kvm_vm_release(struct inode *inode, struct file *filp) return 0; } +int kvm_trylock_all_vcpus(struct kvm *kvm) +{ + struct kvm_vcpu *vcpu; + unsigned long i, j; + + lockdep_assert_held(&kvm->lock); + + kvm_for_each_vcpu(i, vcpu, kvm) + if (!mutex_trylock_nest_lock(&vcpu->mutex, &kvm->lock)) + goto out_unlock; + return 0; + +out_unlock: + kvm_for_each_vcpu(j, vcpu, kvm) { + if (i == j) + break; + mutex_unlock(&vcpu->mutex); + } + return -EINTR; +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_trylock_all_vcpus); + +int kvm_lock_all_vcpus(struct kvm *kvm) +{ + struct kvm_vcpu *vcpu; + unsigned long i, j; + int r; + + lockdep_assert_held(&kvm->lock); + + kvm_for_each_vcpu(i, vcpu, kvm) { + r = mutex_lock_killable_nest_lock(&vcpu->mutex, &kvm->lock); + if (r) + goto out_unlock; + } + return 0; + +out_unlock: + kvm_for_each_vcpu(j, vcpu, kvm) { + if (i == j) + break; + mutex_unlock(&vcpu->mutex); + } + return r; +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lock_all_vcpus); + +void kvm_unlock_all_vcpus(struct kvm *kvm) +{ + struct kvm_vcpu *vcpu; + unsigned long i; + + lockdep_assert_held(&kvm->lock); + + kvm_for_each_vcpu(i, vcpu, kvm) + mutex_unlock(&vcpu->mutex); +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_unlock_all_vcpus); + /* * Allocation size is twice as large as the actual dirty bitmap size. - * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. + * See kvm_vm_ioctl_get_dirty_log() why this is needed. */ -static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) +static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) { -#ifndef CONFIG_S390 - unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); + unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); - memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); + memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); if (!memslot->dirty_bitmap) return -ENOMEM; -#endif /* !CONFIG_S390 */ return 0; } -static int cmp_memslot(const void *slot1, const void *slot2) +static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) { - struct kvm_memory_slot *s1, *s2; - - s1 = (struct kvm_memory_slot *)slot1; - s2 = (struct kvm_memory_slot *)slot2; + struct kvm_memslots *active = __kvm_memslots(kvm, as_id); + int node_idx_inactive = active->node_idx ^ 1; - if (s1->npages < s2->npages) - return 1; - if (s1->npages > s2->npages) - return -1; - - return 0; + return &kvm->__memslots[as_id][node_idx_inactive]; } /* - * Sort the memslots base on its size, so the larger slots - * will get better fit. + * Helper to get the address space ID when one of memslot pointers may be NULL. + * This also serves as a sanity that at least one of the pointers is non-NULL, + * and that their address space IDs don't diverge. */ -static void sort_memslots(struct kvm_memslots *slots) +static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, + struct kvm_memory_slot *b) { - int i; + if (WARN_ON_ONCE(!a && !b)) + return 0; - sort(slots->memslots, KVM_MEM_SLOTS_NUM, - sizeof(struct kvm_memory_slot), cmp_memslot, NULL); + if (!a) + return b->as_id; + if (!b) + return a->as_id; - for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) - slots->id_to_index[slots->memslots[i].id] = i; + WARN_ON_ONCE(a->as_id != b->as_id); + return a->as_id; } -void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new, - u64 last_generation) +static void kvm_insert_gfn_node(struct kvm_memslots *slots, + struct kvm_memory_slot *slot) { - if (new) { - int id = new->id; - struct kvm_memory_slot *old = id_to_memslot(slots, id); - unsigned long npages = old->npages; + struct rb_root *gfn_tree = &slots->gfn_tree; + struct rb_node **node, *parent; + int idx = slots->node_idx; + + parent = NULL; + for (node = &gfn_tree->rb_node; *node; ) { + struct kvm_memory_slot *tmp; - *old = *new; - if (new->npages != npages) - sort_memslots(slots); + tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); + parent = *node; + if (slot->base_gfn < tmp->base_gfn) + node = &(*node)->rb_left; + else if (slot->base_gfn > tmp->base_gfn) + node = &(*node)->rb_right; + else + BUG(); } - slots->generation = last_generation + 1; + rb_link_node(&slot->gfn_node[idx], parent, node); + rb_insert_color(&slot->gfn_node[idx], gfn_tree); +} + +static void kvm_erase_gfn_node(struct kvm_memslots *slots, + struct kvm_memory_slot *slot) +{ + rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); +} + +static void kvm_replace_gfn_node(struct kvm_memslots *slots, + struct kvm_memory_slot *old, + struct kvm_memory_slot *new) +{ + int idx = slots->node_idx; + + WARN_ON_ONCE(old->base_gfn != new->base_gfn); + + rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], + &slots->gfn_tree); +} + +/* + * Replace @old with @new in the inactive memslots. + * + * With NULL @old this simply adds @new. + * With NULL @new this simply removes @old. + * + * If @new is non-NULL its hva_node[slots_idx] range has to be set + * appropriately. + */ +static void kvm_replace_memslot(struct kvm *kvm, + struct kvm_memory_slot *old, + struct kvm_memory_slot *new) +{ + int as_id = kvm_memslots_get_as_id(old, new); + struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); + int idx = slots->node_idx; + + if (old) { + hash_del(&old->id_node[idx]); + interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); + + if ((long)old == atomic_long_read(&slots->last_used_slot)) + atomic_long_set(&slots->last_used_slot, (long)new); + + if (!new) { + kvm_erase_gfn_node(slots, old); + return; + } + } + + /* + * Initialize @new's hva range. Do this even when replacing an @old + * slot, kvm_copy_memslot() deliberately does not touch node data. + */ + new->hva_node[idx].start = new->userspace_addr; + new->hva_node[idx].last = new->userspace_addr + + (new->npages << PAGE_SHIFT) - 1; + + /* + * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), + * hva_node needs to be swapped with remove+insert even though hva can't + * change when replacing an existing slot. + */ + hash_add(slots->id_hash, &new->id_node[idx], new->id); + interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); + + /* + * If the memslot gfn is unchanged, rb_replace_node() can be used to + * switch the node in the gfn tree instead of removing the old and + * inserting the new as two separate operations. Replacement is a + * single O(1) operation versus two O(log(n)) operations for + * remove+insert. + */ + if (old && old->base_gfn == new->base_gfn) { + kvm_replace_gfn_node(slots, old, new); + } else { + if (old) + kvm_erase_gfn_node(slots, old); + kvm_insert_gfn_node(slots, new); + } } -static int check_memory_region_flags(struct kvm_userspace_memory_region *mem) +/* + * Flags that do not access any of the extra space of struct + * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS + * only allows these. + */ +#define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \ + (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY) + +static int check_memory_region_flags(struct kvm *kvm, + const struct kvm_userspace_memory_region2 *mem) { u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; -#ifdef KVM_CAP_READONLY_MEM - valid_flags |= KVM_MEM_READONLY; -#endif + if (IS_ENABLED(CONFIG_KVM_GUEST_MEMFD)) + valid_flags |= KVM_MEM_GUEST_MEMFD; + + /* Dirty logging private memory is not currently supported. */ + if (mem->flags & KVM_MEM_GUEST_MEMFD) + valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES; + + /* + * GUEST_MEMFD is incompatible with read-only memslots, as writes to + * read-only memslots have emulated MMIO, not page fault, semantics, + * and KVM doesn't allow emulated MMIO for private memory. + */ + if (kvm_arch_has_readonly_mem(kvm) && + !(mem->flags & KVM_MEM_GUEST_MEMFD)) + valid_flags |= KVM_MEM_READONLY; if (mem->flags & ~valid_flags) return -EINVAL; @@ -723,306 +1620,1087 @@ static int check_memory_region_flags(struct kvm_userspace_memory_region *mem) return 0; } -static struct kvm_memslots *install_new_memslots(struct kvm *kvm, - struct kvm_memslots *slots, struct kvm_memory_slot *new) +static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) { - struct kvm_memslots *old_memslots = kvm->memslots; + struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); + + /* Grab the generation from the activate memslots. */ + u64 gen = __kvm_memslots(kvm, as_id)->generation; + + WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); + slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; + + /* + * Do not store the new memslots while there are invalidations in + * progress, otherwise the locking in invalidate_range_start and + * invalidate_range_end will be unbalanced. + */ + spin_lock(&kvm->mn_invalidate_lock); + prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); + while (kvm->mn_active_invalidate_count) { + set_current_state(TASK_UNINTERRUPTIBLE); + spin_unlock(&kvm->mn_invalidate_lock); + schedule(); + spin_lock(&kvm->mn_invalidate_lock); + } + finish_rcuwait(&kvm->mn_memslots_update_rcuwait); + rcu_assign_pointer(kvm->memslots[as_id], slots); + spin_unlock(&kvm->mn_invalidate_lock); + + /* + * Acquired in kvm_set_memslot. Must be released before synchronize + * SRCU below in order to avoid deadlock with another thread + * acquiring the slots_arch_lock in an srcu critical section. + */ + mutex_unlock(&kvm->slots_arch_lock); - update_memslots(slots, new, kvm->memslots->generation); - rcu_assign_pointer(kvm->memslots, slots); synchronize_srcu_expedited(&kvm->srcu); - return old_memslots; + + /* + * Increment the new memslot generation a second time, dropping the + * update in-progress flag and incrementing the generation based on + * the number of address spaces. This provides a unique and easily + * identifiable generation number while the memslots are in flux. + */ + gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; + + /* + * Generations must be unique even across address spaces. We do not need + * a global counter for that, instead the generation space is evenly split + * across address spaces. For example, with two address spaces, address + * space 0 will use generations 0, 2, 4, ... while address space 1 will + * use generations 1, 3, 5, ... + */ + gen += kvm_arch_nr_memslot_as_ids(kvm); + + kvm_arch_memslots_updated(kvm, gen); + + slots->generation = gen; +} + +static int kvm_prepare_memory_region(struct kvm *kvm, + const struct kvm_memory_slot *old, + struct kvm_memory_slot *new, + enum kvm_mr_change change) +{ + int r; + + /* + * If dirty logging is disabled, nullify the bitmap; the old bitmap + * will be freed on "commit". If logging is enabled in both old and + * new, reuse the existing bitmap. If logging is enabled only in the + * new and KVM isn't using a ring buffer, allocate and initialize a + * new bitmap. + */ + if (change != KVM_MR_DELETE) { + if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) + new->dirty_bitmap = NULL; + else if (old && old->dirty_bitmap) + new->dirty_bitmap = old->dirty_bitmap; + else if (kvm_use_dirty_bitmap(kvm)) { + r = kvm_alloc_dirty_bitmap(new); + if (r) + return r; + + if (kvm_dirty_log_manual_protect_and_init_set(kvm)) + bitmap_set(new->dirty_bitmap, 0, new->npages); + } + } + + r = kvm_arch_prepare_memory_region(kvm, old, new, change); + + /* Free the bitmap on failure if it was allocated above. */ + if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) + kvm_destroy_dirty_bitmap(new); + + return r; +} + +static void kvm_commit_memory_region(struct kvm *kvm, + struct kvm_memory_slot *old, + const struct kvm_memory_slot *new, + enum kvm_mr_change change) +{ + int old_flags = old ? old->flags : 0; + int new_flags = new ? new->flags : 0; + /* + * Update the total number of memslot pages before calling the arch + * hook so that architectures can consume the result directly. + */ + if (change == KVM_MR_DELETE) + kvm->nr_memslot_pages -= old->npages; + else if (change == KVM_MR_CREATE) + kvm->nr_memslot_pages += new->npages; + + if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { + int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; + atomic_set(&kvm->nr_memslots_dirty_logging, + atomic_read(&kvm->nr_memslots_dirty_logging) + change); + } + + kvm_arch_commit_memory_region(kvm, old, new, change); + + switch (change) { + case KVM_MR_CREATE: + /* Nothing more to do. */ + break; + case KVM_MR_DELETE: + /* Free the old memslot and all its metadata. */ + kvm_free_memslot(kvm, old); + break; + case KVM_MR_MOVE: + case KVM_MR_FLAGS_ONLY: + /* + * Free the dirty bitmap as needed; the below check encompasses + * both the flags and whether a ring buffer is being used) + */ + if (old->dirty_bitmap && !new->dirty_bitmap) + kvm_destroy_dirty_bitmap(old); + + /* + * The final quirk. Free the detached, old slot, but only its + * memory, not any metadata. Metadata, including arch specific + * data, may be reused by @new. + */ + kfree(old); + break; + default: + BUG(); + } } /* - * Allocate some memory and give it an address in the guest physical address - * space. - * - * Discontiguous memory is allowed, mostly for framebuffers. + * Activate @new, which must be installed in the inactive slots by the caller, + * by swapping the active slots and then propagating @new to @old once @old is + * unreachable and can be safely modified. * - * Must be called holding mmap_sem for write. + * With NULL @old this simply adds @new to @active (while swapping the sets). + * With NULL @new this simply removes @old from @active and frees it + * (while also swapping the sets). */ -int __kvm_set_memory_region(struct kvm *kvm, - struct kvm_userspace_memory_region *mem) +static void kvm_activate_memslot(struct kvm *kvm, + struct kvm_memory_slot *old, + struct kvm_memory_slot *new) { - int r; - gfn_t base_gfn; - unsigned long npages; - struct kvm_memory_slot *slot; - struct kvm_memory_slot old, new; - struct kvm_memslots *slots = NULL, *old_memslots; - enum kvm_mr_change change; + int as_id = kvm_memslots_get_as_id(old, new); - r = check_memory_region_flags(mem); - if (r) - goto out; + kvm_swap_active_memslots(kvm, as_id); - r = -EINVAL; - /* General sanity checks */ - if (mem->memory_size & (PAGE_SIZE - 1)) - goto out; - if (mem->guest_phys_addr & (PAGE_SIZE - 1)) - goto out; - /* We can read the guest memory with __xxx_user() later on. */ - if ((mem->slot < KVM_USER_MEM_SLOTS) && - ((mem->userspace_addr & (PAGE_SIZE - 1)) || - !access_ok(VERIFY_WRITE, - (void __user *)(unsigned long)mem->userspace_addr, - mem->memory_size))) - goto out; - if (mem->slot >= KVM_MEM_SLOTS_NUM) - goto out; - if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) - goto out; + /* Propagate the new memslot to the now inactive memslots. */ + kvm_replace_memslot(kvm, old, new); +} - slot = id_to_memslot(kvm->memslots, mem->slot); - base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; - npages = mem->memory_size >> PAGE_SHIFT; +static void kvm_copy_memslot(struct kvm_memory_slot *dest, + const struct kvm_memory_slot *src) +{ + dest->base_gfn = src->base_gfn; + dest->npages = src->npages; + dest->dirty_bitmap = src->dirty_bitmap; + dest->arch = src->arch; + dest->userspace_addr = src->userspace_addr; + dest->flags = src->flags; + dest->id = src->id; + dest->as_id = src->as_id; +} - r = -EINVAL; - if (npages > KVM_MEM_MAX_NR_PAGES) - goto out; +static void kvm_invalidate_memslot(struct kvm *kvm, + struct kvm_memory_slot *old, + struct kvm_memory_slot *invalid_slot) +{ + /* + * Mark the current slot INVALID. As with all memslot modifications, + * this must be done on an unreachable slot to avoid modifying the + * current slot in the active tree. + */ + kvm_copy_memslot(invalid_slot, old); + invalid_slot->flags |= KVM_MEMSLOT_INVALID; + kvm_replace_memslot(kvm, old, invalid_slot); - if (!npages) - mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; + /* + * Activate the slot that is now marked INVALID, but don't propagate + * the slot to the now inactive slots. The slot is either going to be + * deleted or recreated as a new slot. + */ + kvm_swap_active_memslots(kvm, old->as_id); - new = old = *slot; + /* + * From this point no new shadow pages pointing to a deleted, or moved, + * memslot will be created. Validation of sp->gfn happens in: + * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) + * - kvm_is_visible_gfn (mmu_check_root) + */ + kvm_arch_flush_shadow_memslot(kvm, old); + kvm_arch_guest_memory_reclaimed(kvm); - new.id = mem->slot; - new.base_gfn = base_gfn; - new.npages = npages; - new.flags = mem->flags; + /* Was released by kvm_swap_active_memslots(), reacquire. */ + mutex_lock(&kvm->slots_arch_lock); - r = -EINVAL; - if (npages) { - if (!old.npages) - change = KVM_MR_CREATE; - else { /* Modify an existing slot. */ - if ((mem->userspace_addr != old.userspace_addr) || - (npages != old.npages) || - ((new.flags ^ old.flags) & KVM_MEM_READONLY)) - goto out; + /* + * Copy the arch-specific field of the newly-installed slot back to the + * old slot as the arch data could have changed between releasing + * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock + * above. Writers are required to retrieve memslots *after* acquiring + * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. + */ + old->arch = invalid_slot->arch; +} - if (base_gfn != old.base_gfn) - change = KVM_MR_MOVE; - else if (new.flags != old.flags) - change = KVM_MR_FLAGS_ONLY; - else { /* Nothing to change. */ - r = 0; - goto out; - } +static void kvm_create_memslot(struct kvm *kvm, + struct kvm_memory_slot *new) +{ + /* Add the new memslot to the inactive set and activate. */ + kvm_replace_memslot(kvm, NULL, new); + kvm_activate_memslot(kvm, NULL, new); +} + +static void kvm_delete_memslot(struct kvm *kvm, + struct kvm_memory_slot *old, + struct kvm_memory_slot *invalid_slot) +{ + /* + * Remove the old memslot (in the inactive memslots) by passing NULL as + * the "new" slot, and for the invalid version in the active slots. + */ + kvm_replace_memslot(kvm, old, NULL); + kvm_activate_memslot(kvm, invalid_slot, NULL); +} + +static void kvm_move_memslot(struct kvm *kvm, + struct kvm_memory_slot *old, + struct kvm_memory_slot *new, + struct kvm_memory_slot *invalid_slot) +{ + /* + * Replace the old memslot in the inactive slots, and then swap slots + * and replace the current INVALID with the new as well. + */ + kvm_replace_memslot(kvm, old, new); + kvm_activate_memslot(kvm, invalid_slot, new); +} + +static void kvm_update_flags_memslot(struct kvm *kvm, + struct kvm_memory_slot *old, + struct kvm_memory_slot *new) +{ + /* + * Similar to the MOVE case, but the slot doesn't need to be zapped as + * an intermediate step. Instead, the old memslot is simply replaced + * with a new, updated copy in both memslot sets. + */ + kvm_replace_memslot(kvm, old, new); + kvm_activate_memslot(kvm, old, new); +} + +static int kvm_set_memslot(struct kvm *kvm, + struct kvm_memory_slot *old, + struct kvm_memory_slot *new, + enum kvm_mr_change change) +{ + struct kvm_memory_slot *invalid_slot; + int r; + + /* + * Released in kvm_swap_active_memslots(). + * + * Must be held from before the current memslots are copied until after + * the new memslots are installed with rcu_assign_pointer, then + * released before the synchronize srcu in kvm_swap_active_memslots(). + * + * When modifying memslots outside of the slots_lock, must be held + * before reading the pointer to the current memslots until after all + * changes to those memslots are complete. + * + * These rules ensure that installing new memslots does not lose + * changes made to the previous memslots. + */ + mutex_lock(&kvm->slots_arch_lock); + + /* + * Invalidate the old slot if it's being deleted or moved. This is + * done prior to actually deleting/moving the memslot to allow vCPUs to + * continue running by ensuring there are no mappings or shadow pages + * for the memslot when it is deleted/moved. Without pre-invalidation + * (and without a lock), a window would exist between effecting the + * delete/move and committing the changes in arch code where KVM or a + * guest could access a non-existent memslot. + * + * Modifications are done on a temporary, unreachable slot. The old + * slot needs to be preserved in case a later step fails and the + * invalidation needs to be reverted. + */ + if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { + invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); + if (!invalid_slot) { + mutex_unlock(&kvm->slots_arch_lock); + return -ENOMEM; } - } else if (old.npages) { - change = KVM_MR_DELETE; - } else /* Modify a non-existent slot: disallowed. */ - goto out; + kvm_invalidate_memslot(kvm, old, invalid_slot); + } - if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { - /* Check for overlaps */ - r = -EEXIST; - kvm_for_each_memslot(slot, kvm->memslots) { - if ((slot->id >= KVM_USER_MEM_SLOTS) || - (slot->id == mem->slot)) - continue; - if (!((base_gfn + npages <= slot->base_gfn) || - (base_gfn >= slot->base_gfn + slot->npages))) - goto out; + r = kvm_prepare_memory_region(kvm, old, new, change); + if (r) { + /* + * For DELETE/MOVE, revert the above INVALID change. No + * modifications required since the original slot was preserved + * in the inactive slots. Changing the active memslots also + * release slots_arch_lock. + */ + if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { + kvm_activate_memslot(kvm, invalid_slot, old); + kfree(invalid_slot); + } else { + mutex_unlock(&kvm->slots_arch_lock); } + return r; } - /* Free page dirty bitmap if unneeded */ - if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) - new.dirty_bitmap = NULL; + /* + * For DELETE and MOVE, the working slot is now active as the INVALID + * version of the old slot. MOVE is particularly special as it reuses + * the old slot and returns a copy of the old slot (in working_slot). + * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the + * old slot is detached but otherwise preserved. + */ + if (change == KVM_MR_CREATE) + kvm_create_memslot(kvm, new); + else if (change == KVM_MR_DELETE) + kvm_delete_memslot(kvm, old, invalid_slot); + else if (change == KVM_MR_MOVE) + kvm_move_memslot(kvm, old, new, invalid_slot); + else if (change == KVM_MR_FLAGS_ONLY) + kvm_update_flags_memslot(kvm, old, new); + else + BUG(); - r = -ENOMEM; - if (change == KVM_MR_CREATE) { - new.userspace_addr = mem->userspace_addr; + /* Free the temporary INVALID slot used for DELETE and MOVE. */ + if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) + kfree(invalid_slot); - if (kvm_arch_create_memslot(&new, npages)) - goto out_free; - } + /* + * No need to refresh new->arch, changes after dropping slots_arch_lock + * will directly hit the final, active memslot. Architectures are + * responsible for knowing that new->arch may be stale. + */ + kvm_commit_memory_region(kvm, old, new, change); - /* Allocate page dirty bitmap if needed */ - if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { - if (kvm_create_dirty_bitmap(&new) < 0) - goto out_free; - } + return 0; +} - if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { - r = -ENOMEM; - slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), - GFP_KERNEL); - if (!slots) - goto out_free; - slot = id_to_memslot(slots, mem->slot); - slot->flags |= KVM_MEMSLOT_INVALID; - - old_memslots = install_new_memslots(kvm, slots, NULL); - - /* slot was deleted or moved, clear iommu mapping */ - kvm_iommu_unmap_pages(kvm, &old); - /* From this point no new shadow pages pointing to a deleted, - * or moved, memslot will be created. - * - * validation of sp->gfn happens in: - * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) - * - kvm_is_visible_gfn (mmu_check_roots) - */ - kvm_arch_flush_shadow_memslot(kvm, slot); - slots = old_memslots; +static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, + gfn_t start, gfn_t end) +{ + struct kvm_memslot_iter iter; + + kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { + if (iter.slot->id != id) + return true; } - r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); + return false; +} + +static int kvm_set_memory_region(struct kvm *kvm, + const struct kvm_userspace_memory_region2 *mem) +{ + struct kvm_memory_slot *old, *new; + struct kvm_memslots *slots; + enum kvm_mr_change change; + unsigned long npages; + gfn_t base_gfn; + int as_id, id; + int r; + + lockdep_assert_held(&kvm->slots_lock); + + r = check_memory_region_flags(kvm, mem); if (r) - goto out_slots; + return r; + + as_id = mem->slot >> 16; + id = (u16)mem->slot; + + /* General sanity checks */ + if ((mem->memory_size & (PAGE_SIZE - 1)) || + (mem->memory_size != (unsigned long)mem->memory_size)) + return -EINVAL; + if (mem->guest_phys_addr & (PAGE_SIZE - 1)) + return -EINVAL; + /* We can read the guest memory with __xxx_user() later on. */ + if ((mem->userspace_addr & (PAGE_SIZE - 1)) || + (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || + !access_ok((void __user *)(unsigned long)mem->userspace_addr, + mem->memory_size)) + return -EINVAL; + if (mem->flags & KVM_MEM_GUEST_MEMFD && + (mem->guest_memfd_offset & (PAGE_SIZE - 1) || + mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset)) + return -EINVAL; + if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM) + return -EINVAL; + if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) + return -EINVAL; - r = -ENOMEM; /* - * We can re-use the old_memslots from above, the only difference - * from the currently installed memslots is the invalid flag. This - * will get overwritten by update_memslots anyway. + * The size of userspace-defined memory regions is restricted in order + * to play nice with dirty bitmap operations, which are indexed with an + * "unsigned int". KVM's internal memory regions don't support dirty + * logging, and so are exempt. */ - if (!slots) { - slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), - GFP_KERNEL); - if (!slots) - goto out_free; - } + if (id < KVM_USER_MEM_SLOTS && + (mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) + return -EINVAL; + + slots = __kvm_memslots(kvm, as_id); /* - * IOMMU mapping: New slots need to be mapped. Old slots need to be - * un-mapped and re-mapped if their base changes. Since base change - * unmapping is handled above with slot deletion, mapping alone is - * needed here. Anything else the iommu might care about for existing - * slots (size changes, userspace addr changes and read-only flag - * changes) is disallowed above, so any other attribute changes getting - * here can be skipped. + * Note, the old memslot (and the pointer itself!) may be invalidated + * and/or destroyed by kvm_set_memslot(). */ - if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { - r = kvm_iommu_map_pages(kvm, &new); - if (r) - goto out_slots; + old = id_to_memslot(slots, id); + + if (!mem->memory_size) { + if (!old || !old->npages) + return -EINVAL; + + if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) + return -EIO; + + return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); } - /* actual memory is freed via old in kvm_free_physmem_slot below */ - if (change == KVM_MR_DELETE) { - new.dirty_bitmap = NULL; - memset(&new.arch, 0, sizeof(new.arch)); + base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); + npages = (mem->memory_size >> PAGE_SHIFT); + + if (!old || !old->npages) { + change = KVM_MR_CREATE; + + /* + * To simplify KVM internals, the total number of pages across + * all memslots must fit in an unsigned long. + */ + if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) + return -EINVAL; + } else { /* Modify an existing slot. */ + /* Private memslots are immutable, they can only be deleted. */ + if (mem->flags & KVM_MEM_GUEST_MEMFD) + return -EINVAL; + if ((mem->userspace_addr != old->userspace_addr) || + (npages != old->npages) || + ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) + return -EINVAL; + + if (base_gfn != old->base_gfn) + change = KVM_MR_MOVE; + else if (mem->flags != old->flags) + change = KVM_MR_FLAGS_ONLY; + else /* Nothing to change. */ + return 0; } - old_memslots = install_new_memslots(kvm, slots, &new); + if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && + kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) + return -EEXIST; + + /* Allocate a slot that will persist in the memslot. */ + new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); + if (!new) + return -ENOMEM; - kvm_arch_commit_memory_region(kvm, mem, &old, change); + new->as_id = as_id; + new->id = id; + new->base_gfn = base_gfn; + new->npages = npages; + new->flags = mem->flags; + new->userspace_addr = mem->userspace_addr; + if (mem->flags & KVM_MEM_GUEST_MEMFD) { + r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset); + if (r) + goto out; + } - kvm_free_physmem_slot(&old, &new); - kfree(old_memslots); + r = kvm_set_memslot(kvm, old, new, change); + if (r) + goto out_unbind; return 0; -out_slots: - kfree(slots); -out_free: - kvm_free_physmem_slot(&new, &old); +out_unbind: + if (mem->flags & KVM_MEM_GUEST_MEMFD) + kvm_gmem_unbind(new); out: + kfree(new); return r; } -EXPORT_SYMBOL_GPL(__kvm_set_memory_region); -int kvm_set_memory_region(struct kvm *kvm, - struct kvm_userspace_memory_region *mem) +int kvm_set_internal_memslot(struct kvm *kvm, + const struct kvm_userspace_memory_region2 *mem) { - int r; + if (WARN_ON_ONCE(mem->slot < KVM_USER_MEM_SLOTS)) + return -EINVAL; - mutex_lock(&kvm->slots_lock); - r = __kvm_set_memory_region(kvm, mem); - mutex_unlock(&kvm->slots_lock); - return r; + if (WARN_ON_ONCE(mem->flags)) + return -EINVAL; + + return kvm_set_memory_region(kvm, mem); } -EXPORT_SYMBOL_GPL(kvm_set_memory_region); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_internal_memslot); -int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, - struct kvm_userspace_memory_region *mem) +static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, + struct kvm_userspace_memory_region2 *mem) { - if (mem->slot >= KVM_USER_MEM_SLOTS) + if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) return -EINVAL; + + guard(mutex)(&kvm->slots_lock); return kvm_set_memory_region(kvm, mem); } -int kvm_get_dirty_log(struct kvm *kvm, - struct kvm_dirty_log *log, int *is_dirty) +#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT +/** + * kvm_get_dirty_log - get a snapshot of dirty pages + * @kvm: pointer to kvm instance + * @log: slot id and address to which we copy the log + * @is_dirty: set to '1' if any dirty pages were found + * @memslot: set to the associated memslot, always valid on success + */ +int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, + int *is_dirty, struct kvm_memory_slot **memslot) { - struct kvm_memory_slot *memslot; - int r, i; + struct kvm_memslots *slots; + int i, as_id, id; unsigned long n; unsigned long any = 0; - r = -EINVAL; - if (log->slot >= KVM_USER_MEM_SLOTS) - goto out; + /* Dirty ring tracking may be exclusive to dirty log tracking */ + if (!kvm_use_dirty_bitmap(kvm)) + return -ENXIO; - memslot = id_to_memslot(kvm->memslots, log->slot); - r = -ENOENT; - if (!memslot->dirty_bitmap) - goto out; + *memslot = NULL; + *is_dirty = 0; - n = kvm_dirty_bitmap_bytes(memslot); + as_id = log->slot >> 16; + id = (u16)log->slot; + if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) + return -EINVAL; + + slots = __kvm_memslots(kvm, as_id); + *memslot = id_to_memslot(slots, id); + if (!(*memslot) || !(*memslot)->dirty_bitmap) + return -ENOENT; + + kvm_arch_sync_dirty_log(kvm, *memslot); + + n = kvm_dirty_bitmap_bytes(*memslot); for (i = 0; !any && i < n/sizeof(long); ++i) - any = memslot->dirty_bitmap[i]; + any = (*memslot)->dirty_bitmap[i]; - r = -EFAULT; - if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) - goto out; + if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) + return -EFAULT; if (any) *is_dirty = 1; + return 0; +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_dirty_log); - r = 0; -out: +#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ +/** + * kvm_get_dirty_log_protect - get a snapshot of dirty pages + * and reenable dirty page tracking for the corresponding pages. + * @kvm: pointer to kvm instance + * @log: slot id and address to which we copy the log + * + * We need to keep it in mind that VCPU threads can write to the bitmap + * concurrently. So, to avoid losing track of dirty pages we keep the + * following order: + * + * 1. Take a snapshot of the bit and clear it if needed. + * 2. Write protect the corresponding page. + * 3. Copy the snapshot to the userspace. + * 4. Upon return caller flushes TLB's if needed. + * + * Between 2 and 4, the guest may write to the page using the remaining TLB + * entry. This is not a problem because the page is reported dirty using + * the snapshot taken before and step 4 ensures that writes done after + * exiting to userspace will be logged for the next call. + * + */ +static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) +{ + struct kvm_memslots *slots; + struct kvm_memory_slot *memslot; + int i, as_id, id; + unsigned long n; + unsigned long *dirty_bitmap; + unsigned long *dirty_bitmap_buffer; + bool flush; + + /* Dirty ring tracking may be exclusive to dirty log tracking */ + if (!kvm_use_dirty_bitmap(kvm)) + return -ENXIO; + + as_id = log->slot >> 16; + id = (u16)log->slot; + if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) + return -EINVAL; + + slots = __kvm_memslots(kvm, as_id); + memslot = id_to_memslot(slots, id); + if (!memslot || !memslot->dirty_bitmap) + return -ENOENT; + + dirty_bitmap = memslot->dirty_bitmap; + + kvm_arch_sync_dirty_log(kvm, memslot); + + n = kvm_dirty_bitmap_bytes(memslot); + flush = false; + if (kvm->manual_dirty_log_protect) { + /* + * Unlike kvm_get_dirty_log, we always return false in *flush, + * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There + * is some code duplication between this function and + * kvm_get_dirty_log, but hopefully all architecture + * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log + * can be eliminated. + */ + dirty_bitmap_buffer = dirty_bitmap; + } else { + dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); + memset(dirty_bitmap_buffer, 0, n); + + KVM_MMU_LOCK(kvm); + for (i = 0; i < n / sizeof(long); i++) { + unsigned long mask; + gfn_t offset; + + if (!dirty_bitmap[i]) + continue; + + flush = true; + mask = xchg(&dirty_bitmap[i], 0); + dirty_bitmap_buffer[i] = mask; + + offset = i * BITS_PER_LONG; + kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, + offset, mask); + } + KVM_MMU_UNLOCK(kvm); + } + + if (flush) + kvm_flush_remote_tlbs_memslot(kvm, memslot); + + if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) + return -EFAULT; + return 0; +} + + +/** + * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot + * @kvm: kvm instance + * @log: slot id and address to which we copy the log + * + * Steps 1-4 below provide general overview of dirty page logging. See + * kvm_get_dirty_log_protect() function description for additional details. + * + * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we + * always flush the TLB (step 4) even if previous step failed and the dirty + * bitmap may be corrupt. Regardless of previous outcome the KVM logging API + * does not preclude user space subsequent dirty log read. Flushing TLB ensures + * writes will be marked dirty for next log read. + * + * 1. Take a snapshot of the bit and clear it if needed. + * 2. Write protect the corresponding page. + * 3. Copy the snapshot to the userspace. + * 4. Flush TLB's if needed. + */ +static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, + struct kvm_dirty_log *log) +{ + int r; + + mutex_lock(&kvm->slots_lock); + + r = kvm_get_dirty_log_protect(kvm, log); + + mutex_unlock(&kvm->slots_lock); + return r; +} + +/** + * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap + * and reenable dirty page tracking for the corresponding pages. + * @kvm: pointer to kvm instance + * @log: slot id and address from which to fetch the bitmap of dirty pages + */ +static int kvm_clear_dirty_log_protect(struct kvm *kvm, + struct kvm_clear_dirty_log *log) +{ + struct kvm_memslots *slots; + struct kvm_memory_slot *memslot; + int as_id, id; + gfn_t offset; + unsigned long i, n; + unsigned long *dirty_bitmap; + unsigned long *dirty_bitmap_buffer; + bool flush; + + /* Dirty ring tracking may be exclusive to dirty log tracking */ + if (!kvm_use_dirty_bitmap(kvm)) + return -ENXIO; + + as_id = log->slot >> 16; + id = (u16)log->slot; + if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) + return -EINVAL; + + if (log->first_page & 63) + return -EINVAL; + + slots = __kvm_memslots(kvm, as_id); + memslot = id_to_memslot(slots, id); + if (!memslot || !memslot->dirty_bitmap) + return -ENOENT; + + dirty_bitmap = memslot->dirty_bitmap; + + n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; + + if (log->first_page > memslot->npages || + log->num_pages > memslot->npages - log->first_page || + (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) + return -EINVAL; + + kvm_arch_sync_dirty_log(kvm, memslot); + + flush = false; + dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); + if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) + return -EFAULT; + + KVM_MMU_LOCK(kvm); + for (offset = log->first_page, i = offset / BITS_PER_LONG, + n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; + i++, offset += BITS_PER_LONG) { + unsigned long mask = *dirty_bitmap_buffer++; + atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; + if (!mask) + continue; + + mask &= atomic_long_fetch_andnot(mask, p); + + /* + * mask contains the bits that really have been cleared. This + * never includes any bits beyond the length of the memslot (if + * the length is not aligned to 64 pages), therefore it is not + * a problem if userspace sets them in log->dirty_bitmap. + */ + if (mask) { + flush = true; + kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, + offset, mask); + } + } + KVM_MMU_UNLOCK(kvm); + + if (flush) + kvm_flush_remote_tlbs_memslot(kvm, memslot); + + return 0; +} + +static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, + struct kvm_clear_dirty_log *log) +{ + int r; + + mutex_lock(&kvm->slots_lock); + + r = kvm_clear_dirty_log_protect(kvm, log); + + mutex_unlock(&kvm->slots_lock); return r; } +#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ + +#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES +static u64 kvm_supported_mem_attributes(struct kvm *kvm) +{ + if (!kvm || kvm_arch_has_private_mem(kvm)) + return KVM_MEMORY_ATTRIBUTE_PRIVATE; + + return 0; +} + +/* + * Returns true if _all_ gfns in the range [@start, @end) have attributes + * such that the bits in @mask match @attrs. + */ +bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, + unsigned long mask, unsigned long attrs) +{ + XA_STATE(xas, &kvm->mem_attr_array, start); + unsigned long index; + void *entry; + + mask &= kvm_supported_mem_attributes(kvm); + if (attrs & ~mask) + return false; + + if (end == start + 1) + return (kvm_get_memory_attributes(kvm, start) & mask) == attrs; + + guard(rcu)(); + if (!attrs) + return !xas_find(&xas, end - 1); + + for (index = start; index < end; index++) { + do { + entry = xas_next(&xas); + } while (xas_retry(&xas, entry)); + + if (xas.xa_index != index || + (xa_to_value(entry) & mask) != attrs) + return false; + } + + return true; +} + +static __always_inline void kvm_handle_gfn_range(struct kvm *kvm, + struct kvm_mmu_notifier_range *range) +{ + struct kvm_gfn_range gfn_range; + struct kvm_memory_slot *slot; + struct kvm_memslots *slots; + struct kvm_memslot_iter iter; + bool found_memslot = false; + bool ret = false; + int i; + + gfn_range.arg = range->arg; + gfn_range.may_block = range->may_block; + + /* + * If/when KVM supports more attributes beyond private .vs shared, this + * _could_ set KVM_FILTER_{SHARED,PRIVATE} appropriately if the entire target + * range already has the desired private vs. shared state (it's unclear + * if that is a net win). For now, KVM reaches this point if and only + * if the private flag is being toggled, i.e. all mappings are in play. + */ + + for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { + slots = __kvm_memslots(kvm, i); + + kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) { + slot = iter.slot; + gfn_range.slot = slot; + + gfn_range.start = max(range->start, slot->base_gfn); + gfn_range.end = min(range->end, slot->base_gfn + slot->npages); + if (gfn_range.start >= gfn_range.end) + continue; + + if (!found_memslot) { + found_memslot = true; + KVM_MMU_LOCK(kvm); + if (!IS_KVM_NULL_FN(range->on_lock)) + range->on_lock(kvm); + } + + ret |= range->handler(kvm, &gfn_range); + } + } + + if (range->flush_on_ret && ret) + kvm_flush_remote_tlbs(kvm); + + if (found_memslot) + KVM_MMU_UNLOCK(kvm); +} -bool kvm_largepages_enabled(void) +static bool kvm_pre_set_memory_attributes(struct kvm *kvm, + struct kvm_gfn_range *range) { - return largepages_enabled; + /* + * Unconditionally add the range to the invalidation set, regardless of + * whether or not the arch callback actually needs to zap SPTEs. E.g. + * if KVM supports RWX attributes in the future and the attributes are + * going from R=>RW, zapping isn't strictly necessary. Unconditionally + * adding the range allows KVM to require that MMU invalidations add at + * least one range between begin() and end(), e.g. allows KVM to detect + * bugs where the add() is missed. Relaxing the rule *might* be safe, + * but it's not obvious that allowing new mappings while the attributes + * are in flux is desirable or worth the complexity. + */ + kvm_mmu_invalidate_range_add(kvm, range->start, range->end); + + return kvm_arch_pre_set_memory_attributes(kvm, range); } -void kvm_disable_largepages(void) +/* Set @attributes for the gfn range [@start, @end). */ +static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end, + unsigned long attributes) { - largepages_enabled = false; + struct kvm_mmu_notifier_range pre_set_range = { + .start = start, + .end = end, + .arg.attributes = attributes, + .handler = kvm_pre_set_memory_attributes, + .on_lock = kvm_mmu_invalidate_begin, + .flush_on_ret = true, + .may_block = true, + }; + struct kvm_mmu_notifier_range post_set_range = { + .start = start, + .end = end, + .arg.attributes = attributes, + .handler = kvm_arch_post_set_memory_attributes, + .on_lock = kvm_mmu_invalidate_end, + .may_block = true, + }; + unsigned long i; + void *entry; + int r = 0; + + entry = attributes ? xa_mk_value(attributes) : NULL; + + trace_kvm_vm_set_mem_attributes(start, end, attributes); + + mutex_lock(&kvm->slots_lock); + + /* Nothing to do if the entire range has the desired attributes. */ + if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes)) + goto out_unlock; + + /* + * Reserve memory ahead of time to avoid having to deal with failures + * partway through setting the new attributes. + */ + for (i = start; i < end; i++) { + r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT); + if (r) + goto out_unlock; + + cond_resched(); + } + + kvm_handle_gfn_range(kvm, &pre_set_range); + + for (i = start; i < end; i++) { + r = xa_err(xa_store(&kvm->mem_attr_array, i, entry, + GFP_KERNEL_ACCOUNT)); + KVM_BUG_ON(r, kvm); + cond_resched(); + } + + kvm_handle_gfn_range(kvm, &post_set_range); + +out_unlock: + mutex_unlock(&kvm->slots_lock); + + return r; } -EXPORT_SYMBOL_GPL(kvm_disable_largepages); +static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm, + struct kvm_memory_attributes *attrs) +{ + gfn_t start, end; + + /* flags is currently not used. */ + if (attrs->flags) + return -EINVAL; + if (attrs->attributes & ~kvm_supported_mem_attributes(kvm)) + return -EINVAL; + if (attrs->size == 0 || attrs->address + attrs->size < attrs->address) + return -EINVAL; + if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size)) + return -EINVAL; + + start = attrs->address >> PAGE_SHIFT; + end = (attrs->address + attrs->size) >> PAGE_SHIFT; + + /* + * xarray tracks data using "unsigned long", and as a result so does + * KVM. For simplicity, supports generic attributes only on 64-bit + * architectures. + */ + BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long)); + + return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes); +} +#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) { return __gfn_to_memslot(kvm_memslots(kvm), gfn); } -EXPORT_SYMBOL_GPL(gfn_to_memslot); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_memslot); -int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) +struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) +{ + struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); + u64 gen = slots->generation; + struct kvm_memory_slot *slot; + + /* + * This also protects against using a memslot from a different address space, + * since different address spaces have different generation numbers. + */ + if (unlikely(gen != vcpu->last_used_slot_gen)) { + vcpu->last_used_slot = NULL; + vcpu->last_used_slot_gen = gen; + } + + slot = try_get_memslot(vcpu->last_used_slot, gfn); + if (slot) + return slot; + + /* + * Fall back to searching all memslots. We purposely use + * search_memslots() instead of __gfn_to_memslot() to avoid + * thrashing the VM-wide last_used_slot in kvm_memslots. + */ + slot = search_memslots(slots, gfn, false); + if (slot) { + vcpu->last_used_slot = slot; + return slot; + } + + return NULL; +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_gfn_to_memslot); + +bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) { struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); - if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || - memslot->flags & KVM_MEMSLOT_INVALID) - return 0; + return kvm_is_visible_memslot(memslot); +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_is_visible_gfn); + +bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) +{ + struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); - return 1; + return kvm_is_visible_memslot(memslot); } -EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_is_visible_gfn); -unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) +unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) { struct vm_area_struct *vma; unsigned long addr, size; size = PAGE_SIZE; - addr = gfn_to_hva(kvm, gfn); + addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); if (kvm_is_error_hva(addr)) return PAGE_SIZE; - down_read(¤t->mm->mmap_sem); + mmap_read_lock(current->mm); vma = find_vma(current->mm, addr); if (!vma) goto out; @@ -1030,17 +2708,17 @@ unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) size = vma_kernel_pagesize(vma); out: - up_read(¤t->mm->mmap_sem); + mmap_read_unlock(current->mm); return size; } -static bool memslot_is_readonly(struct kvm_memory_slot *slot) +static bool memslot_is_readonly(const struct kvm_memory_slot *slot) { return slot->flags & KVM_MEM_READONLY; } -static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, +static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, gfn_t *nr_pages, bool write) { if (!slot || slot->flags & KVM_MEMSLOT_INVALID) @@ -1062,84 +2740,144 @@ static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, } unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, - gfn_t gfn) + gfn_t gfn) { return gfn_to_hva_many(slot, gfn, NULL); } -EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_hva_memslot); unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) { return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); } -EXPORT_SYMBOL_GPL(gfn_to_hva); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_hva); + +unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) +{ + return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_gfn_to_hva); /* - * The hva returned by this function is only allowed to be read. - * It should pair with kvm_read_hva() or kvm_read_hva_atomic(). + * Return the hva of a @gfn and the R/W attribute if possible. + * + * @slot: the kvm_memory_slot which contains @gfn + * @gfn: the gfn to be translated + * @writable: used to return the read/write attribute of the @slot if the hva + * is valid and @writable is not NULL */ -static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn) +unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, + gfn_t gfn, bool *writable) +{ + unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); + + if (!kvm_is_error_hva(hva) && writable) + *writable = !memslot_is_readonly(slot); + + return hva; +} + +unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) { - return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false); + struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); + + return gfn_to_hva_memslot_prot(slot, gfn, writable); } -static int kvm_read_hva(void *data, void __user *hva, int len) +unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) { - return __copy_from_user(data, hva, len); + struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); + + return gfn_to_hva_memslot_prot(slot, gfn, writable); } -static int kvm_read_hva_atomic(void *data, void __user *hva, int len) +static bool kvm_is_ad_tracked_page(struct page *page) { - return __copy_from_user_inatomic(data, hva, len); + /* + * Per page-flags.h, pages tagged PG_reserved "should in general not be + * touched (e.g. set dirty) except by its owner". + */ + return !PageReserved(page); } -static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, - unsigned long start, int write, struct page **page) +static void kvm_set_page_dirty(struct page *page) { - int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; + if (kvm_is_ad_tracked_page(page)) + SetPageDirty(page); +} - if (write) - flags |= FOLL_WRITE; +static void kvm_set_page_accessed(struct page *page) +{ + if (kvm_is_ad_tracked_page(page)) + mark_page_accessed(page); +} + +void kvm_release_page_clean(struct page *page) +{ + if (!page) + return; + + kvm_set_page_accessed(page); + put_page(page); +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_release_page_clean); + +void kvm_release_page_dirty(struct page *page) +{ + if (!page) + return; - return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); + kvm_set_page_dirty(page); + kvm_release_page_clean(page); } +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_release_page_dirty); -static inline int check_user_page_hwpoison(unsigned long addr) +static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page, + struct follow_pfnmap_args *map, bool writable) { - int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; + kvm_pfn_t pfn; + + WARN_ON_ONCE(!!page == !!map); + + if (kfp->map_writable) + *kfp->map_writable = writable; - rc = __get_user_pages(current, current->mm, addr, 1, - flags, NULL, NULL, NULL); - return rc == -EHWPOISON; + if (map) + pfn = map->pfn; + else + pfn = page_to_pfn(page); + + *kfp->refcounted_page = page; + + return pfn; } /* - * The atomic path to get the writable pfn which will be stored in @pfn, + * The fast path to get the writable pfn which will be stored in @pfn, * true indicates success, otherwise false is returned. */ -static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, - bool write_fault, bool *writable, pfn_t *pfn) +static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn) { - struct page *page[1]; - int npages; - - if (!(async || atomic)) - return false; + struct page *page; + bool r; /* - * Fast pin a writable pfn only if it is a write fault request - * or the caller allows to map a writable pfn for a read fault - * request. + * Try the fast-only path when the caller wants to pin/get the page for + * writing. If the caller only wants to read the page, KVM must go + * down the full, slow path in order to avoid racing an operation that + * breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing + * at the old, read-only page while mm/ points at a new, writable page. */ - if (!(write_fault || writable)) + if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable)) return false; - npages = __get_user_pages_fast(addr, 1, 1, page); - if (npages == 1) { - *pfn = page_to_pfn(page[0]); + if (kfp->pin) + r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1; + else + r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page); - if (writable) - *writable = true; + if (r) { + *pfn = kvm_resolve_pfn(kfp, page, NULL, true); return true; } @@ -1150,42 +2888,48 @@ static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, * The slow path to get the pfn of the specified host virtual address, * 1 indicates success, -errno is returned if error is detected. */ -static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, - bool *writable, pfn_t *pfn) +static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn) { - struct page *page[1]; - int npages = 0; - - might_sleep(); - - if (writable) - *writable = write_fault; + /* + * When a VCPU accesses a page that is not mapped into the secondary + * MMU, we lookup the page using GUP to map it, so the guest VCPU can + * make progress. We always want to honor NUMA hinting faults in that + * case, because GUP usage corresponds to memory accesses from the VCPU. + * Otherwise, we'd not trigger NUMA hinting faults once a page is + * mapped into the secondary MMU and gets accessed by a VCPU. + * + * Note that get_user_page_fast_only() and FOLL_WRITE for now + * implicitly honor NUMA hinting faults and don't need this flag. + */ + unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags; + struct page *page, *wpage; + int npages; - if (async) { - down_read(¤t->mm->mmap_sem); - npages = get_user_page_nowait(current, current->mm, - addr, write_fault, page); - up_read(¤t->mm->mmap_sem); - } else - npages = get_user_pages_fast(addr, 1, write_fault, - page); + if (kfp->pin) + npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags); + else + npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags); if (npages != 1) return npages; - /* map read fault as writable if possible */ - if (unlikely(!write_fault) && writable) { - struct page *wpage[1]; - - npages = __get_user_pages_fast(addr, 1, 1, wpage); - if (npages == 1) { - *writable = true; - put_page(page[0]); - page[0] = wpage[0]; - } + /* + * Pinning is mutually exclusive with opportunistically mapping a read + * fault as writable, as KVM should never pin pages when mapping memory + * into the guest (pinning is only for direct accesses from KVM). + */ + if (WARN_ON_ONCE(kfp->map_writable && kfp->pin)) + goto out; - npages = 1; + /* map read fault as writable if possible */ + if (!(flags & FOLL_WRITE) && kfp->map_writable && + get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) { + put_page(page); + page = wpage; + flags |= FOLL_WRITE; } - *pfn = page_to_pfn(page[0]); + +out: + *pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE); return npages; } @@ -1200,238 +2944,238 @@ static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) return true; } -/* - * Pin guest page in memory and return its pfn. - * @addr: host virtual address which maps memory to the guest - * @atomic: whether this function can sleep - * @async: whether this function need to wait IO complete if the - * host page is not in the memory - * @write_fault: whether we should get a writable host page - * @writable: whether it allows to map a writable host page for !@write_fault - * - * The function will map a writable host page for these two cases: - * 1): @write_fault = true - * 2): @write_fault = false && @writable, @writable will tell the caller - * whether the mapping is writable. - */ -static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, - bool write_fault, bool *writable) +static int hva_to_pfn_remapped(struct vm_area_struct *vma, + struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn) { - struct vm_area_struct *vma; - pfn_t pfn = 0; - int npages; + struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva }; + bool write_fault = kfp->flags & FOLL_WRITE; + int r; - /* we can do it either atomically or asynchronously, not both */ - BUG_ON(atomic && async); + /* + * Remapped memory cannot be pinned in any meaningful sense. Bail if + * the caller wants to pin the page, i.e. access the page outside of + * MMU notifier protection, and unsafe umappings are disallowed. + */ + if (kfp->pin && !allow_unsafe_mappings) + return -EINVAL; - if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) - return pfn; + r = follow_pfnmap_start(&args); + if (r) { + /* + * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does + * not call the fault handler, so do it here. + */ + bool unlocked = false; + r = fixup_user_fault(current->mm, kfp->hva, + (write_fault ? FAULT_FLAG_WRITE : 0), + &unlocked); + if (unlocked) + return -EAGAIN; + if (r) + return r; + + r = follow_pfnmap_start(&args); + if (r) + return r; + } + + if (write_fault && !args.writable) { + *p_pfn = KVM_PFN_ERR_RO_FAULT; + goto out; + } + + *p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable); +out: + follow_pfnmap_end(&args); + return r; +} + +kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp) +{ + struct vm_area_struct *vma; + kvm_pfn_t pfn; + int npages, r; + + might_sleep(); - if (atomic) + if (WARN_ON_ONCE(!kfp->refcounted_page)) return KVM_PFN_ERR_FAULT; - npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); - if (npages == 1) + if (hva_to_pfn_fast(kfp, &pfn)) return pfn; - down_read(¤t->mm->mmap_sem); - if (npages == -EHWPOISON || - (!async && check_user_page_hwpoison(addr))) { - pfn = KVM_PFN_ERR_HWPOISON; - goto exit; - } + npages = hva_to_pfn_slow(kfp, &pfn); + if (npages == 1) + return pfn; + if (npages == -EINTR || npages == -EAGAIN) + return KVM_PFN_ERR_SIGPENDING; + if (npages == -EHWPOISON) + return KVM_PFN_ERR_HWPOISON; - vma = find_vma_intersection(current->mm, addr, addr + 1); + mmap_read_lock(current->mm); +retry: + vma = vma_lookup(current->mm, kfp->hva); if (vma == NULL) pfn = KVM_PFN_ERR_FAULT; - else if ((vma->vm_flags & VM_PFNMAP)) { - pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + - vma->vm_pgoff; - BUG_ON(!kvm_is_mmio_pfn(pfn)); + else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { + r = hva_to_pfn_remapped(vma, kfp, &pfn); + if (r == -EAGAIN) + goto retry; + if (r < 0) + pfn = KVM_PFN_ERR_FAULT; } else { - if (async && vma_is_valid(vma, write_fault)) - *async = true; - pfn = KVM_PFN_ERR_FAULT; + if ((kfp->flags & FOLL_NOWAIT) && + vma_is_valid(vma, kfp->flags & FOLL_WRITE)) + pfn = KVM_PFN_ERR_NEEDS_IO; + else + pfn = KVM_PFN_ERR_FAULT; } -exit: - up_read(¤t->mm->mmap_sem); + mmap_read_unlock(current->mm); return pfn; } -static pfn_t -__gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, - bool *async, bool write_fault, bool *writable) +static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp) { - unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); + kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL, + kfp->flags & FOLL_WRITE); - if (addr == KVM_HVA_ERR_RO_BAD) + if (kfp->hva == KVM_HVA_ERR_RO_BAD) return KVM_PFN_ERR_RO_FAULT; - if (kvm_is_error_hva(addr)) + if (kvm_is_error_hva(kfp->hva)) return KVM_PFN_NOSLOT; - /* Do not map writable pfn in the readonly memslot. */ - if (writable && memslot_is_readonly(slot)) { - *writable = false; - writable = NULL; + if (memslot_is_readonly(kfp->slot) && kfp->map_writable) { + *kfp->map_writable = false; + kfp->map_writable = NULL; } - return hva_to_pfn(addr, atomic, async, write_fault, - writable); -} - -static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async, - bool write_fault, bool *writable) -{ - struct kvm_memory_slot *slot; - - if (async) - *async = false; - - slot = gfn_to_memslot(kvm, gfn); - - return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault, - writable); -} - -pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) -{ - return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL); + return hva_to_pfn(kfp); } -EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); -pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, - bool write_fault, bool *writable) +kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn, + unsigned int foll, bool *writable, + struct page **refcounted_page) { - return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable); -} -EXPORT_SYMBOL_GPL(gfn_to_pfn_async); - -pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) -{ - return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL); -} -EXPORT_SYMBOL_GPL(gfn_to_pfn); + struct kvm_follow_pfn kfp = { + .slot = slot, + .gfn = gfn, + .flags = foll, + .map_writable = writable, + .refcounted_page = refcounted_page, + }; -pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, - bool *writable) -{ - return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable); -} -EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); + if (WARN_ON_ONCE(!writable || !refcounted_page)) + return KVM_PFN_ERR_FAULT; -pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) -{ - return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); -} + *writable = false; + *refcounted_page = NULL; -pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) -{ - return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); + return kvm_follow_pfn(&kfp); } -EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_faultin_pfn); -int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, - int nr_pages) +int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn, + struct page **pages, int nr_pages) { unsigned long addr; - gfn_t entry; + gfn_t entry = 0; - addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry); + addr = gfn_to_hva_many(slot, gfn, &entry); if (kvm_is_error_hva(addr)) return -1; if (entry < nr_pages) return 0; - return __get_user_pages_fast(addr, nr_pages, 1, pages); + return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); } -EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prefetch_pages); -static struct page *kvm_pfn_to_page(pfn_t pfn) -{ - if (is_error_noslot_pfn(pfn)) - return KVM_ERR_PTR_BAD_PAGE; - - if (kvm_is_mmio_pfn(pfn)) { - WARN_ON(1); - return KVM_ERR_PTR_BAD_PAGE; - } +/* + * Don't use this API unless you are absolutely, positively certain that KVM + * needs to get a struct page, e.g. to pin the page for firmware DMA. + * + * FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate + * its refcount. + */ +struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write) +{ + struct page *refcounted_page = NULL; + struct kvm_follow_pfn kfp = { + .slot = gfn_to_memslot(kvm, gfn), + .gfn = gfn, + .flags = write ? FOLL_WRITE : 0, + .refcounted_page = &refcounted_page, + }; - return pfn_to_page(pfn); + (void)kvm_follow_pfn(&kfp); + return refcounted_page; } +EXPORT_SYMBOL_FOR_KVM_INTERNAL(__gfn_to_page); -struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) +int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, + bool writable) { - pfn_t pfn; - - pfn = gfn_to_pfn(kvm, gfn); - - return kvm_pfn_to_page(pfn); -} + struct kvm_follow_pfn kfp = { + .slot = gfn_to_memslot(vcpu->kvm, gfn), + .gfn = gfn, + .flags = writable ? FOLL_WRITE : 0, + .refcounted_page = &map->pinned_page, + .pin = true, + }; -EXPORT_SYMBOL_GPL(gfn_to_page); + map->pinned_page = NULL; + map->page = NULL; + map->hva = NULL; + map->gfn = gfn; + map->writable = writable; -void kvm_release_page_clean(struct page *page) -{ - WARN_ON(is_error_page(page)); + map->pfn = kvm_follow_pfn(&kfp); + if (is_error_noslot_pfn(map->pfn)) + return -EINVAL; - kvm_release_pfn_clean(page_to_pfn(page)); -} -EXPORT_SYMBOL_GPL(kvm_release_page_clean); + if (pfn_valid(map->pfn)) { + map->page = pfn_to_page(map->pfn); + map->hva = kmap(map->page); +#ifdef CONFIG_HAS_IOMEM + } else { + map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB); +#endif + } -void kvm_release_pfn_clean(pfn_t pfn) -{ - if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn)) - put_page(pfn_to_page(pfn)); + return map->hva ? 0 : -EFAULT; } -EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_map); -void kvm_release_page_dirty(struct page *page) +void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map) { - WARN_ON(is_error_page(page)); - - kvm_release_pfn_dirty(page_to_pfn(page)); -} -EXPORT_SYMBOL_GPL(kvm_release_page_dirty); + if (!map->hva) + return; -void kvm_release_pfn_dirty(pfn_t pfn) -{ - kvm_set_pfn_dirty(pfn); - kvm_release_pfn_clean(pfn); -} -EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); + if (map->page) + kunmap(map->page); +#ifdef CONFIG_HAS_IOMEM + else + memunmap(map->hva); +#endif -void kvm_set_page_dirty(struct page *page) -{ - kvm_set_pfn_dirty(page_to_pfn(page)); -} -EXPORT_SYMBOL_GPL(kvm_set_page_dirty); + if (map->writable) + kvm_vcpu_mark_page_dirty(vcpu, map->gfn); -void kvm_set_pfn_dirty(pfn_t pfn) -{ - if (!kvm_is_mmio_pfn(pfn)) { - struct page *page = pfn_to_page(pfn); - if (!PageReserved(page)) - SetPageDirty(page); + if (map->pinned_page) { + if (map->writable) + kvm_set_page_dirty(map->pinned_page); + kvm_set_page_accessed(map->pinned_page); + unpin_user_page(map->pinned_page); } -} -EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); - -void kvm_set_pfn_accessed(pfn_t pfn) -{ - if (!kvm_is_mmio_pfn(pfn)) - mark_page_accessed(pfn_to_page(pfn)); -} -EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); -void kvm_get_pfn(pfn_t pfn) -{ - if (!kvm_is_mmio_pfn(pfn)) - get_page(pfn_to_page(pfn)); + map->hva = NULL; + map->page = NULL; + map->pinned_page = NULL; } -EXPORT_SYMBOL_GPL(kvm_get_pfn); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_unmap); static int next_segment(unsigned long len, int offset) { @@ -1441,21 +3185,42 @@ static int next_segment(unsigned long len, int offset) return len; } -int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, - int len) +/* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */ +static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, + void *data, int offset, int len) { int r; unsigned long addr; - addr = gfn_to_hva_read(kvm, gfn); + if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) + return -EFAULT; + + addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); if (kvm_is_error_hva(addr)) return -EFAULT; - r = kvm_read_hva(data, (void __user *)addr + offset, len); + r = __copy_from_user(data, (void __user *)addr + offset, len); if (r) return -EFAULT; return 0; } -EXPORT_SYMBOL_GPL(kvm_read_guest_page); + +int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, + int len) +{ + struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); + + return __kvm_read_guest_page(slot, gfn, data, offset, len); +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_page); + +int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, + int offset, int len) +{ + struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); + + return __kvm_read_guest_page(slot, gfn, data, offset, len); +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest_page); int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) { @@ -1475,44 +3240,97 @@ int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) } return 0; } -EXPORT_SYMBOL_GPL(kvm_read_guest); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest); -int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, - unsigned long len) +int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) { - int r; - unsigned long addr; gfn_t gfn = gpa >> PAGE_SHIFT; + int seg; int offset = offset_in_page(gpa); + int ret; + + while ((seg = next_segment(len, offset)) != 0) { + ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); + if (ret < 0) + return ret; + offset = 0; + len -= seg; + data += seg; + ++gfn; + } + return 0; +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest); + +static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, + void *data, int offset, unsigned long len) +{ + int r; + unsigned long addr; - addr = gfn_to_hva_read(kvm, gfn); + if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) + return -EFAULT; + + addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); if (kvm_is_error_hva(addr)) return -EFAULT; pagefault_disable(); - r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len); + r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); pagefault_enable(); if (r) return -EFAULT; return 0; } -EXPORT_SYMBOL(kvm_read_guest_atomic); -int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, - int offset, int len) +int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, + void *data, unsigned long len) +{ + gfn_t gfn = gpa >> PAGE_SHIFT; + struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); + int offset = offset_in_page(gpa); + + return __kvm_read_guest_atomic(slot, gfn, data, offset, len); +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest_atomic); + +/* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */ +static int __kvm_write_guest_page(struct kvm *kvm, + struct kvm_memory_slot *memslot, gfn_t gfn, + const void *data, int offset, int len) { int r; unsigned long addr; - addr = gfn_to_hva(kvm, gfn); + if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) + return -EFAULT; + + addr = gfn_to_hva_memslot(memslot, gfn); if (kvm_is_error_hva(addr)) return -EFAULT; r = __copy_to_user((void __user *)addr + offset, data, len); if (r) return -EFAULT; - mark_page_dirty(kvm, gfn); + mark_page_dirty_in_slot(kvm, memslot, gfn); return 0; } -EXPORT_SYMBOL_GPL(kvm_write_guest_page); + +int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, + const void *data, int offset, int len) +{ + struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); + + return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_page); + +int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, + const void *data, int offset, int len) +{ + struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); + + return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_write_guest_page); int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, unsigned long len) @@ -1533,111 +3351,163 @@ int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, } return 0; } +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest); -int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, - gpa_t gpa, unsigned long len) +int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, + unsigned long len) +{ + gfn_t gfn = gpa >> PAGE_SHIFT; + int seg; + int offset = offset_in_page(gpa); + int ret; + + while ((seg = next_segment(len, offset)) != 0) { + ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); + if (ret < 0) + return ret; + offset = 0; + len -= seg; + data += seg; + ++gfn; + } + return 0; +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_write_guest); + +static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, + struct gfn_to_hva_cache *ghc, + gpa_t gpa, unsigned long len) { - struct kvm_memslots *slots = kvm_memslots(kvm); int offset = offset_in_page(gpa); gfn_t start_gfn = gpa >> PAGE_SHIFT; gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; gfn_t nr_pages_needed = end_gfn - start_gfn + 1; gfn_t nr_pages_avail; - ghc->gpa = gpa; + /* Update ghc->generation before performing any error checks. */ ghc->generation = slots->generation; - ghc->len = len; - ghc->memslot = gfn_to_memslot(kvm, start_gfn); - ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail); - if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) { + + if (start_gfn > end_gfn) { + ghc->hva = KVM_HVA_ERR_BAD; + return -EINVAL; + } + + /* + * If the requested region crosses two memslots, we still + * verify that the entire region is valid here. + */ + for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { + ghc->memslot = __gfn_to_memslot(slots, start_gfn); + ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, + &nr_pages_avail); + if (kvm_is_error_hva(ghc->hva)) + return -EFAULT; + } + + /* Use the slow path for cross page reads and writes. */ + if (nr_pages_needed == 1) ghc->hva += offset; - } else { - /* - * If the requested region crosses two memslots, we still - * verify that the entire region is valid here. - */ - while (start_gfn <= end_gfn) { - ghc->memslot = gfn_to_memslot(kvm, start_gfn); - ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, - &nr_pages_avail); - if (kvm_is_error_hva(ghc->hva)) - return -EFAULT; - start_gfn += nr_pages_avail; - } - /* Use the slow path for cross page reads and writes. */ + else ghc->memslot = NULL; - } + + ghc->gpa = gpa; + ghc->len = len; return 0; } -EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); -int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, - void *data, unsigned long len) +int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, + gpa_t gpa, unsigned long len) { struct kvm_memslots *slots = kvm_memslots(kvm); - int r; + return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_gfn_to_hva_cache_init); - BUG_ON(len > ghc->len); +int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, + void *data, unsigned int offset, + unsigned long len) +{ + struct kvm_memslots *slots = kvm_memslots(kvm); + int r; + gpa_t gpa = ghc->gpa + offset; - if (slots->generation != ghc->generation) - kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); + if (WARN_ON_ONCE(len + offset > ghc->len)) + return -EINVAL; - if (unlikely(!ghc->memslot)) - return kvm_write_guest(kvm, ghc->gpa, data, len); + if (slots->generation != ghc->generation) { + if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) + return -EFAULT; + } if (kvm_is_error_hva(ghc->hva)) return -EFAULT; - r = __copy_to_user((void __user *)ghc->hva, data, len); + if (unlikely(!ghc->memslot)) + return kvm_write_guest(kvm, gpa, data, len); + + r = __copy_to_user((void __user *)ghc->hva + offset, data, len); if (r) return -EFAULT; - mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); + mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); return 0; } -EXPORT_SYMBOL_GPL(kvm_write_guest_cached); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_offset_cached); -int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, +int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, void *data, unsigned long len) { + return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_cached); + +int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, + void *data, unsigned int offset, + unsigned long len) +{ struct kvm_memslots *slots = kvm_memslots(kvm); int r; + gpa_t gpa = ghc->gpa + offset; - BUG_ON(len > ghc->len); - - if (slots->generation != ghc->generation) - kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); + if (WARN_ON_ONCE(len + offset > ghc->len)) + return -EINVAL; - if (unlikely(!ghc->memslot)) - return kvm_read_guest(kvm, ghc->gpa, data, len); + if (slots->generation != ghc->generation) { + if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) + return -EFAULT; + } if (kvm_is_error_hva(ghc->hva)) return -EFAULT; - r = __copy_from_user(data, (void __user *)ghc->hva, len); + if (unlikely(!ghc->memslot)) + return kvm_read_guest(kvm, gpa, data, len); + + r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); if (r) return -EFAULT; return 0; } -EXPORT_SYMBOL_GPL(kvm_read_guest_cached); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_offset_cached); -int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) +int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, + void *data, unsigned long len) { - return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page, - offset, len); + return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); } -EXPORT_SYMBOL_GPL(kvm_clear_guest_page); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_cached); int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) { + const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); gfn_t gfn = gpa >> PAGE_SHIFT; int seg; int offset = offset_in_page(gpa); int ret; - while ((seg = next_segment(len, offset)) != 0) { - ret = kvm_clear_guest_page(kvm, gfn, offset, seg); + while ((seg = next_segment(len, offset)) != 0) { + ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg); if (ret < 0) return ret; offset = 0; @@ -1646,17 +3516,32 @@ int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) } return 0; } -EXPORT_SYMBOL_GPL(kvm_clear_guest); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_clear_guest); -void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, - gfn_t gfn) +void mark_page_dirty_in_slot(struct kvm *kvm, + const struct kvm_memory_slot *memslot, + gfn_t gfn) { - if (memslot && memslot->dirty_bitmap) { + struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); + +#ifdef CONFIG_HAVE_KVM_DIRTY_RING + if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) + return; + + WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); +#endif + + if (memslot && kvm_slot_dirty_track_enabled(memslot)) { unsigned long rel_gfn = gfn - memslot->base_gfn; + u32 slot = (memslot->as_id << 16) | memslot->id; - set_bit_le(rel_gfn, memslot->dirty_bitmap); + if (kvm->dirty_ring_size && vcpu) + kvm_dirty_ring_push(vcpu, slot, rel_gfn); + else if (memslot->dirty_bitmap) + set_bit_le(rel_gfn, memslot->dirty_bitmap); } } +EXPORT_SYMBOL_FOR_KVM_INTERNAL(mark_page_dirty_in_slot); void mark_page_dirty(struct kvm *kvm, gfn_t gfn) { @@ -1665,97 +3550,348 @@ void mark_page_dirty(struct kvm *kvm, gfn_t gfn) memslot = gfn_to_memslot(kvm, gfn); mark_page_dirty_in_slot(kvm, memslot, gfn); } +EXPORT_SYMBOL_FOR_KVM_INTERNAL(mark_page_dirty); + +void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) +{ + struct kvm_memory_slot *memslot; + + memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); + mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_mark_page_dirty); + +void kvm_sigset_activate(struct kvm_vcpu *vcpu) +{ + if (!vcpu->sigset_active) + return; + + /* + * This does a lockless modification of ->real_blocked, which is fine + * because, only current can change ->real_blocked and all readers of + * ->real_blocked don't care as long ->real_blocked is always a subset + * of ->blocked. + */ + sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); +} + +void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) +{ + if (!vcpu->sigset_active) + return; + + sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); + sigemptyset(¤t->real_blocked); +} + +static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) +{ + unsigned int old, val, grow, grow_start; + + old = val = vcpu->halt_poll_ns; + grow_start = READ_ONCE(halt_poll_ns_grow_start); + grow = READ_ONCE(halt_poll_ns_grow); + if (!grow) + goto out; + + val *= grow; + if (val < grow_start) + val = grow_start; + + vcpu->halt_poll_ns = val; +out: + trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); +} + +static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) +{ + unsigned int old, val, shrink, grow_start; + + old = val = vcpu->halt_poll_ns; + shrink = READ_ONCE(halt_poll_ns_shrink); + grow_start = READ_ONCE(halt_poll_ns_grow_start); + if (shrink == 0) + val = 0; + else + val /= shrink; + + if (val < grow_start) + val = 0; + + vcpu->halt_poll_ns = val; + trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); +} + +static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) +{ + int ret = -EINTR; + int idx = srcu_read_lock(&vcpu->kvm->srcu); + + if (kvm_arch_vcpu_runnable(vcpu)) + goto out; + if (kvm_cpu_has_pending_timer(vcpu)) + goto out; + if (signal_pending(current)) + goto out; + if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) + goto out; + + ret = 0; +out: + srcu_read_unlock(&vcpu->kvm->srcu, idx); + return ret; +} /* - * The vCPU has executed a HLT instruction with in-kernel mode enabled. + * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is + * pending. This is mostly used when halting a vCPU, but may also be used + * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. */ -void kvm_vcpu_block(struct kvm_vcpu *vcpu) +bool kvm_vcpu_block(struct kvm_vcpu *vcpu) { - DEFINE_WAIT(wait); + struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); + bool waited = false; + + vcpu->stat.generic.blocking = 1; + + preempt_disable(); + kvm_arch_vcpu_blocking(vcpu); + prepare_to_rcuwait(wait); + preempt_enable(); for (;;) { - prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); + set_current_state(TASK_INTERRUPTIBLE); - if (kvm_arch_vcpu_runnable(vcpu)) { - kvm_make_request(KVM_REQ_UNHALT, vcpu); - break; - } - if (kvm_cpu_has_pending_timer(vcpu)) - break; - if (signal_pending(current)) + if (kvm_vcpu_check_block(vcpu) < 0) break; + waited = true; schedule(); } - finish_wait(&vcpu->wq, &wait); + preempt_disable(); + finish_rcuwait(wait); + kvm_arch_vcpu_unblocking(vcpu); + preempt_enable(); + + vcpu->stat.generic.blocking = 0; + + return waited; +} + +static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, + ktime_t end, bool success) +{ + struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; + u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); + + ++vcpu->stat.generic.halt_attempted_poll; + + if (success) { + ++vcpu->stat.generic.halt_successful_poll; + + if (!vcpu_valid_wakeup(vcpu)) + ++vcpu->stat.generic.halt_poll_invalid; + + stats->halt_poll_success_ns += poll_ns; + KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); + } else { + stats->halt_poll_fail_ns += poll_ns; + KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); + } +} + +static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) +{ + struct kvm *kvm = vcpu->kvm; + + if (kvm->override_halt_poll_ns) { + /* + * Ensure kvm->max_halt_poll_ns is not read before + * kvm->override_halt_poll_ns. + * + * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. + */ + smp_rmb(); + return READ_ONCE(kvm->max_halt_poll_ns); + } + + return READ_ONCE(halt_poll_ns); } -#ifndef CONFIG_S390 /* - * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. + * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt + * polling is enabled, busy wait for a short time before blocking to avoid the + * expensive block+unblock sequence if a wake event arrives soon after the vCPU + * is halted. */ -void kvm_vcpu_kick(struct kvm_vcpu *vcpu) +void kvm_vcpu_halt(struct kvm_vcpu *vcpu) { - int me; - int cpu = vcpu->cpu; - wait_queue_head_t *wqp; + unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); + bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); + ktime_t start, cur, poll_end; + bool waited = false; + bool do_halt_poll; + u64 halt_ns; + + if (vcpu->halt_poll_ns > max_halt_poll_ns) + vcpu->halt_poll_ns = max_halt_poll_ns; + + do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; + + start = cur = poll_end = ktime_get(); + if (do_halt_poll) { + ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); - wqp = kvm_arch_vcpu_wq(vcpu); - if (waitqueue_active(wqp)) { - wake_up_interruptible(wqp); - ++vcpu->stat.halt_wakeup; + do { + if (kvm_vcpu_check_block(vcpu) < 0) + goto out; + cpu_relax(); + poll_end = cur = ktime_get(); + } while (kvm_vcpu_can_poll(cur, stop)); } - me = get_cpu(); - if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) - if (kvm_arch_vcpu_should_kick(vcpu)) - smp_send_reschedule(cpu); - put_cpu(); + waited = kvm_vcpu_block(vcpu); + + cur = ktime_get(); + if (waited) { + vcpu->stat.generic.halt_wait_ns += + ktime_to_ns(cur) - ktime_to_ns(poll_end); + KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, + ktime_to_ns(cur) - ktime_to_ns(poll_end)); + } +out: + /* The total time the vCPU was "halted", including polling time. */ + halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); + + /* + * Note, halt-polling is considered successful so long as the vCPU was + * never actually scheduled out, i.e. even if the wake event arrived + * after of the halt-polling loop itself, but before the full wait. + */ + if (do_halt_poll) + update_halt_poll_stats(vcpu, start, poll_end, !waited); + + if (halt_poll_allowed) { + /* Recompute the max halt poll time in case it changed. */ + max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); + + if (!vcpu_valid_wakeup(vcpu)) { + shrink_halt_poll_ns(vcpu); + } else if (max_halt_poll_ns) { + if (halt_ns <= vcpu->halt_poll_ns) + ; + /* we had a long block, shrink polling */ + else if (vcpu->halt_poll_ns && + halt_ns > max_halt_poll_ns) + shrink_halt_poll_ns(vcpu); + /* we had a short halt and our poll time is too small */ + else if (vcpu->halt_poll_ns < max_halt_poll_ns && + halt_ns < max_halt_poll_ns) + grow_halt_poll_ns(vcpu); + } else { + vcpu->halt_poll_ns = 0; + } + } + + trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); } -EXPORT_SYMBOL_GPL(kvm_vcpu_kick); -#endif /* !CONFIG_S390 */ +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_halt); + +bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) +{ + if (__kvm_vcpu_wake_up(vcpu)) { + WRITE_ONCE(vcpu->ready, true); + ++vcpu->stat.generic.halt_wakeup; + return true; + } + + return false; +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_wake_up); -void kvm_resched(struct kvm_vcpu *vcpu) +#ifndef CONFIG_S390 +/* + * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. + */ +void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait) { - if (!need_resched()) + int me, cpu; + + if (kvm_vcpu_wake_up(vcpu)) return; - cond_resched(); + + me = get_cpu(); + /* + * The only state change done outside the vcpu mutex is IN_GUEST_MODE + * to EXITING_GUEST_MODE. Therefore the moderately expensive "should + * kick" check does not need atomic operations if kvm_vcpu_kick is used + * within the vCPU thread itself. + */ + if (vcpu == __this_cpu_read(kvm_running_vcpu)) { + if (vcpu->mode == IN_GUEST_MODE) + WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); + goto out; + } + + /* + * Note, the vCPU could get migrated to a different pCPU at any point + * after kvm_arch_vcpu_should_kick(), which could result in sending an + * IPI to the previous pCPU. But, that's ok because the purpose of the + * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the + * vCPU also requires it to leave IN_GUEST_MODE. + */ + if (kvm_arch_vcpu_should_kick(vcpu)) { + cpu = READ_ONCE(vcpu->cpu); + if (cpu != me && (unsigned int)cpu < nr_cpu_ids && cpu_online(cpu)) { + /* + * Use a reschedule IPI to kick the vCPU if the caller + * doesn't need to wait for a response, as KVM allows + * kicking vCPUs while IRQs are disabled, but using the + * SMP function call framework with IRQs disabled can + * deadlock due to taking cross-CPU locks. + */ + if (wait) + smp_call_function_single(cpu, ack_kick, NULL, wait); + else + smp_send_reschedule(cpu); + } + } +out: + put_cpu(); } -EXPORT_SYMBOL_GPL(kvm_resched); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_kick); +#endif /* !CONFIG_S390 */ -bool kvm_vcpu_yield_to(struct kvm_vcpu *target) +int kvm_vcpu_yield_to(struct kvm_vcpu *target) { - struct pid *pid; struct task_struct *task = NULL; - bool ret = false; + int ret; + + if (!read_trylock(&target->pid_lock)) + return 0; - rcu_read_lock(); - pid = rcu_dereference(target->pid); - if (pid) + if (target->pid) task = get_pid_task(target->pid, PIDTYPE_PID); - rcu_read_unlock(); + + read_unlock(&target->pid_lock); + if (!task) - return ret; - if (task->flags & PF_VCPU) { - put_task_struct(task); - return ret; - } + return 0; ret = yield_to(task, 1); put_task_struct(task); return ret; } -EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_yield_to); -#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT /* * Helper that checks whether a VCPU is eligible for directed yield. * Most eligible candidate to yield is decided by following heuristics: * * (a) VCPU which has not done pl-exit or cpu relax intercepted recently * (preempted lock holder), indicated by @in_spin_loop. - * Set at the beiginning and cleared at the end of interception/PLE handler. + * Set at the beginning and cleared at the end of interception/PLE handler. * * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get * chance last time (mostly it has become eligible now since we have probably @@ -1771,64 +3907,130 @@ EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); * locking does not harm. It may result in trying to yield to same VCPU, fail * and continue with next VCPU and so on. */ -bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) +static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) { +#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT bool eligible; eligible = !vcpu->spin_loop.in_spin_loop || - (vcpu->spin_loop.in_spin_loop && - vcpu->spin_loop.dy_eligible); + vcpu->spin_loop.dy_eligible; if (vcpu->spin_loop.in_spin_loop) kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); return eligible; +#else + return true; +#endif } + +/* + * Unlike kvm_arch_vcpu_runnable, this function is called outside + * a vcpu_load/vcpu_put pair. However, for most architectures + * kvm_arch_vcpu_runnable does not require vcpu_load. + */ +bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) +{ + return kvm_arch_vcpu_runnable(vcpu); +} + +static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) +{ + if (kvm_arch_dy_runnable(vcpu)) + return true; + +#ifdef CONFIG_KVM_ASYNC_PF + if (!list_empty_careful(&vcpu->async_pf.done)) + return true; #endif -void kvm_vcpu_on_spin(struct kvm_vcpu *me) + return false; +} + +/* + * By default, simply query the target vCPU's current mode when checking if a + * vCPU was preempted in kernel mode. All architectures except x86 (or more + * specifical, except VMX) allow querying whether or not a vCPU is in kernel + * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel() + * directly for cross-vCPU checks is functionally correct and accurate. + */ +bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) +{ + return kvm_arch_vcpu_in_kernel(vcpu); +} + +bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) { + return false; +} + +void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) +{ + int nr_vcpus, start, i, idx, yielded; struct kvm *kvm = me->kvm; struct kvm_vcpu *vcpu; - int last_boosted_vcpu = me->kvm->last_boosted_vcpu; - int yielded = 0; int try = 3; - int pass; - int i; + + nr_vcpus = atomic_read(&kvm->online_vcpus); + if (nr_vcpus < 2) + return; + + /* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */ + smp_rmb(); kvm_vcpu_set_in_spin_loop(me, true); + /* - * We boost the priority of a VCPU that is runnable but not - * currently running, because it got preempted by something - * else and called schedule in __vcpu_run. Hopefully that - * VCPU is holding the lock that we need and will release it. - * We approximate round-robin by starting at the last boosted VCPU. + * The current vCPU ("me") is spinning in kernel mode, i.e. is likely + * waiting for a resource to become available. Attempt to yield to a + * vCPU that is runnable, but not currently running, e.g. because the + * vCPU was preempted by a higher priority task. With luck, the vCPU + * that was preempted is holding a lock or some other resource that the + * current vCPU is waiting to acquire, and yielding to the other vCPU + * will allow it to make forward progress and release the lock (or kick + * the spinning vCPU, etc). + * + * Since KVM has no insight into what exactly the guest is doing, + * approximate a round-robin selection by iterating over all vCPUs, + * starting at the last boosted vCPU. I.e. if N=kvm->last_boosted_vcpu, + * iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed. + * + * Note, this is inherently racy, e.g. if multiple vCPUs are spinning, + * they may all try to yield to the same vCPU(s). But as above, this + * is all best effort due to KVM's lack of visibility into the guest. */ - for (pass = 0; pass < 2 && !yielded && try; pass++) { - kvm_for_each_vcpu(i, vcpu, kvm) { - if (!pass && i <= last_boosted_vcpu) { - i = last_boosted_vcpu; - continue; - } else if (pass && i > last_boosted_vcpu) - break; - if (!ACCESS_ONCE(vcpu->preempted)) - continue; - if (vcpu == me) - continue; - if (waitqueue_active(&vcpu->wq)) - continue; - if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) - continue; + start = READ_ONCE(kvm->last_boosted_vcpu) + 1; + for (i = 0; i < nr_vcpus; i++) { + idx = (start + i) % nr_vcpus; + if (idx == me->vcpu_idx) + continue; + + vcpu = xa_load(&kvm->vcpu_array, idx); + if (!READ_ONCE(vcpu->ready)) + continue; + if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) + continue; - yielded = kvm_vcpu_yield_to(vcpu); - if (yielded > 0) { - kvm->last_boosted_vcpu = i; - break; - } else if (yielded < 0) { - try--; - if (!try) - break; - } + /* + * Treat the target vCPU as being in-kernel if it has a pending + * interrupt, as the vCPU trying to yield may be spinning + * waiting on IPI delivery, i.e. the target vCPU is in-kernel + * for the purposes of directed yield. + */ + if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && + !kvm_arch_dy_has_pending_interrupt(vcpu) && + !kvm_arch_vcpu_preempted_in_kernel(vcpu)) + continue; + + if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) + continue; + + yielded = kvm_vcpu_yield_to(vcpu); + if (yielded > 0) { + WRITE_ONCE(kvm->last_boosted_vcpu, idx); + break; + } else if (yielded < 0 && !--try) { + break; } } kvm_vcpu_set_in_spin_loop(me, false); @@ -1836,11 +4038,22 @@ void kvm_vcpu_on_spin(struct kvm_vcpu *me) /* Ensure vcpu is not eligible during next spinloop */ kvm_vcpu_set_dy_eligible(me, false); } -EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_on_spin); -static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) +static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) { - struct kvm_vcpu *vcpu = vma->vm_file->private_data; +#ifdef CONFIG_HAVE_KVM_DIRTY_RING + return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && + (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + + kvm->dirty_ring_size / PAGE_SIZE); +#else + return false; +#endif +} + +static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) +{ + struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; struct page *page; if (vmf->pgoff == 0) @@ -1849,10 +4062,14 @@ static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) page = virt_to_page(vcpu->arch.pio_data); #endif -#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET +#ifdef CONFIG_KVM_MMIO else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); #endif + else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) + page = kvm_dirty_ring_get_page( + &vcpu->dirty_ring, + vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); else return kvm_arch_vcpu_fault(vcpu, vmf); get_page(page); @@ -1866,6 +4083,14 @@ static const struct vm_operations_struct kvm_vcpu_vm_ops = { static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) { + struct kvm_vcpu *vcpu = file->private_data; + unsigned long pages = vma_pages(vma); + + if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || + kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && + ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) + return -EINVAL; + vma->vm_ops = &kvm_vcpu_vm_ops; return 0; } @@ -1881,11 +4106,9 @@ static int kvm_vcpu_release(struct inode *inode, struct file *filp) static struct file_operations kvm_vcpu_fops = { .release = kvm_vcpu_release, .unlocked_ioctl = kvm_vcpu_ioctl, -#ifdef CONFIG_COMPAT - .compat_ioctl = kvm_vcpu_compat_ioctl, -#endif .mmap = kvm_vcpu_mmap, .llseek = noop_llseek, + KVM_COMPAT(kvm_vcpu_compat_ioctl), }; /* @@ -1893,65 +4116,163 @@ static struct file_operations kvm_vcpu_fops = { */ static int create_vcpu_fd(struct kvm_vcpu *vcpu) { - return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR); + char name[8 + 1 + ITOA_MAX_LEN + 1]; + + snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); + return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); +} + +#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS +static int vcpu_get_pid(void *data, u64 *val) +{ + struct kvm_vcpu *vcpu = data; + + read_lock(&vcpu->pid_lock); + *val = pid_nr(vcpu->pid); + read_unlock(&vcpu->pid_lock); + return 0; +} + +DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); + +static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) +{ + struct dentry *debugfs_dentry; + char dir_name[ITOA_MAX_LEN * 2]; + + if (!debugfs_initialized()) + return; + + snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); + debugfs_dentry = debugfs_create_dir(dir_name, + vcpu->kvm->debugfs_dentry); + debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, + &vcpu_get_pid_fops); + + kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); } +#endif /* * Creates some virtual cpus. Good luck creating more than one. */ -static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) +static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id) { int r; - struct kvm_vcpu *vcpu, *v; + struct kvm_vcpu *vcpu; + struct page *page; - vcpu = kvm_arch_vcpu_create(kvm, id); - if (IS_ERR(vcpu)) - return PTR_ERR(vcpu); + /* + * KVM tracks vCPU IDs as 'int', be kind to userspace and reject + * too-large values instead of silently truncating. + * + * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first + * changing the storage type (at the very least, IDs should be tracked + * as unsigned ints). + */ + BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX); + if (id >= KVM_MAX_VCPU_IDS) + return -EINVAL; - preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); + mutex_lock(&kvm->lock); + if (kvm->created_vcpus >= kvm->max_vcpus) { + mutex_unlock(&kvm->lock); + return -EINVAL; + } + + r = kvm_arch_vcpu_precreate(kvm, id); + if (r) { + mutex_unlock(&kvm->lock); + return r; + } + + kvm->created_vcpus++; + mutex_unlock(&kvm->lock); - r = kvm_arch_vcpu_setup(vcpu); + vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); + if (!vcpu) { + r = -ENOMEM; + goto vcpu_decrement; + } + + BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); + page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); + if (!page) { + r = -ENOMEM; + goto vcpu_free; + } + vcpu->run = page_address(page); + + kvm_vcpu_init(vcpu, kvm, id); + + r = kvm_arch_vcpu_create(vcpu); if (r) - goto vcpu_destroy; + goto vcpu_free_run_page; - mutex_lock(&kvm->lock); - if (!kvm_vcpu_compatible(vcpu)) { - r = -EINVAL; - goto unlock_vcpu_destroy; + if (kvm->dirty_ring_size) { + r = kvm_dirty_ring_alloc(kvm, &vcpu->dirty_ring, + id, kvm->dirty_ring_size); + if (r) + goto arch_vcpu_destroy; } - if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { - r = -EINVAL; + + mutex_lock(&kvm->lock); + + if (kvm_get_vcpu_by_id(kvm, id)) { + r = -EEXIST; goto unlock_vcpu_destroy; } - kvm_for_each_vcpu(r, v, kvm) - if (v->vcpu_id == id) { - r = -EEXIST; - goto unlock_vcpu_destroy; - } - - BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); + vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); + r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT); + WARN_ON_ONCE(r == -EBUSY); + if (r) + goto unlock_vcpu_destroy; - /* Now it's all set up, let userspace reach it */ + /* + * Now it's all set up, let userspace reach it. Grab the vCPU's mutex + * so that userspace can't invoke vCPU ioctl()s until the vCPU is fully + * visible (per online_vcpus), e.g. so that KVM doesn't get tricked + * into a NULL-pointer dereference because KVM thinks the _current_ + * vCPU doesn't exist. As a bonus, taking vcpu->mutex ensures lockdep + * knows it's taken *inside* kvm->lock. + */ + mutex_lock(&vcpu->mutex); kvm_get_kvm(kvm); r = create_vcpu_fd(vcpu); - if (r < 0) { - kvm_put_kvm(kvm); - goto unlock_vcpu_destroy; - } + if (r < 0) + goto kvm_put_xa_erase; - kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; + /* + * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu + * pointer before kvm->online_vcpu's incremented value. + */ smp_wmb(); atomic_inc(&kvm->online_vcpus); + mutex_unlock(&vcpu->mutex); mutex_unlock(&kvm->lock); kvm_arch_vcpu_postcreate(vcpu); + kvm_create_vcpu_debugfs(vcpu); return r; +kvm_put_xa_erase: + mutex_unlock(&vcpu->mutex); + kvm_put_kvm_no_destroy(kvm); + xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx); unlock_vcpu_destroy: mutex_unlock(&kvm->lock); -vcpu_destroy: + kvm_dirty_ring_free(&vcpu->dirty_ring); +arch_vcpu_destroy: kvm_arch_vcpu_destroy(vcpu); +vcpu_free_run_page: + free_page((unsigned long)vcpu->run); +vcpu_free: + kmem_cache_free(kvm_vcpu_cache, vcpu); +vcpu_decrement: + mutex_lock(&kvm->lock); + kvm->created_vcpus--; + mutex_unlock(&kvm->lock); return r; } @@ -1966,6 +4287,129 @@ static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) return 0; } +static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, + size_t size, loff_t *offset) +{ + struct kvm_vcpu *vcpu = file->private_data; + + return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, + &kvm_vcpu_stats_desc[0], &vcpu->stat, + sizeof(vcpu->stat), user_buffer, size, offset); +} + +static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) +{ + struct kvm_vcpu *vcpu = file->private_data; + + kvm_put_kvm(vcpu->kvm); + return 0; +} + +static const struct file_operations kvm_vcpu_stats_fops = { + .owner = THIS_MODULE, + .read = kvm_vcpu_stats_read, + .release = kvm_vcpu_stats_release, + .llseek = noop_llseek, +}; + +static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) +{ + int fd; + struct file *file; + char name[15 + ITOA_MAX_LEN + 1]; + + snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); + + fd = get_unused_fd_flags(O_CLOEXEC); + if (fd < 0) + return fd; + + file = anon_inode_getfile_fmode(name, &kvm_vcpu_stats_fops, vcpu, + O_RDONLY, FMODE_PREAD); + if (IS_ERR(file)) { + put_unused_fd(fd); + return PTR_ERR(file); + } + + kvm_get_kvm(vcpu->kvm); + fd_install(fd, file); + + return fd; +} + +#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY +static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, + struct kvm_pre_fault_memory *range) +{ + int idx; + long r; + u64 full_size; + + if (range->flags) + return -EINVAL; + + if (!PAGE_ALIGNED(range->gpa) || + !PAGE_ALIGNED(range->size) || + range->gpa + range->size <= range->gpa) + return -EINVAL; + + vcpu_load(vcpu); + idx = srcu_read_lock(&vcpu->kvm->srcu); + + full_size = range->size; + do { + if (signal_pending(current)) { + r = -EINTR; + break; + } + + r = kvm_arch_vcpu_pre_fault_memory(vcpu, range); + if (WARN_ON_ONCE(r == 0 || r == -EIO)) + break; + + if (r < 0) + break; + + range->size -= r; + range->gpa += r; + cond_resched(); + } while (range->size); + + srcu_read_unlock(&vcpu->kvm->srcu, idx); + vcpu_put(vcpu); + + /* Return success if at least one page was mapped successfully. */ + return full_size == range->size ? r : 0; +} +#endif + +static int kvm_wait_for_vcpu_online(struct kvm_vcpu *vcpu) +{ + struct kvm *kvm = vcpu->kvm; + + /* + * In practice, this happy path will always be taken, as a well-behaved + * VMM will never invoke a vCPU ioctl() before KVM_CREATE_VCPU returns. + */ + if (likely(vcpu->vcpu_idx < atomic_read(&kvm->online_vcpus))) + return 0; + + /* + * Acquire and release the vCPU's mutex to wait for vCPU creation to + * complete (kvm_vm_ioctl_create_vcpu() holds the mutex until the vCPU + * is fully online). + */ + if (mutex_lock_killable(&vcpu->mutex)) + return -EINTR; + + mutex_unlock(&vcpu->mutex); + + if (WARN_ON_ONCE(!kvm_get_vcpu(kvm, vcpu->vcpu_idx))) + return -EIO; + + return 0; +} + static long kvm_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { @@ -1975,30 +4419,73 @@ static long kvm_vcpu_ioctl(struct file *filp, struct kvm_fpu *fpu = NULL; struct kvm_sregs *kvm_sregs = NULL; - if (vcpu->kvm->mm != current->mm) + if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) return -EIO; -#if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) + if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) + return -EINVAL; + /* - * Special cases: vcpu ioctls that are asynchronous to vcpu execution, - * so vcpu_load() would break it. + * Wait for the vCPU to be online before handling the ioctl(), as KVM + * assumes the vCPU is reachable via vcpu_array, i.e. may dereference + * a NULL pointer if userspace invokes an ioctl() before KVM is ready. */ - if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT) - return kvm_arch_vcpu_ioctl(filp, ioctl, arg); -#endif - - - r = vcpu_load(vcpu); + r = kvm_wait_for_vcpu_online(vcpu); if (r) return r; + + /* + * Let arch code handle select vCPU ioctls without holding vcpu->mutex, + * e.g. to support ioctls that can run asynchronous to vCPU execution. + */ + r = kvm_arch_vcpu_unlocked_ioctl(filp, ioctl, arg); + if (r != -ENOIOCTLCMD) + return r; + + if (mutex_lock_killable(&vcpu->mutex)) + return -EINTR; switch (ioctl) { - case KVM_RUN: + case KVM_RUN: { + struct pid *oldpid; r = -EINVAL; if (arg) goto out; - r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); + + /* + * Note, vcpu->pid is primarily protected by vcpu->mutex. The + * dedicated r/w lock allows other tasks, e.g. other vCPUs, to + * read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield + * directly to this vCPU + */ + oldpid = vcpu->pid; + if (unlikely(oldpid != task_pid(current))) { + /* The thread running this VCPU changed. */ + struct pid *newpid; + + r = kvm_arch_vcpu_run_pid_change(vcpu); + if (r) + break; + + newpid = get_task_pid(current, PIDTYPE_PID); + write_lock(&vcpu->pid_lock); + vcpu->pid = newpid; + write_unlock(&vcpu->pid_lock); + + put_pid(oldpid); + } + vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe); + r = kvm_arch_vcpu_ioctl_run(vcpu); + vcpu->wants_to_run = false; + + /* + * FIXME: Remove this hack once all KVM architectures + * support the generic TIF bits, i.e. a dedicated TIF_RSEQ. + */ + rseq_virt_userspace_exit(); + trace_kvm_userspace_exit(vcpu->run->exit_reason, r); break; + } case KVM_GET_REGS: { struct kvm_regs *kvm_regs; @@ -2020,7 +4507,6 @@ out_free1: case KVM_SET_REGS: { struct kvm_regs *kvm_regs; - r = -ENOMEM; kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); if (IS_ERR(kvm_regs)) { r = PTR_ERR(kvm_regs); @@ -2061,7 +4547,7 @@ out_free1: if (r) goto out; r = -EFAULT; - if (copy_to_user(argp, &mp_state, sizeof mp_state)) + if (copy_to_user(argp, &mp_state, sizeof(mp_state))) goto out; r = 0; break; @@ -2070,7 +4556,7 @@ out_free1: struct kvm_mp_state mp_state; r = -EFAULT; - if (copy_from_user(&mp_state, argp, sizeof mp_state)) + if (copy_from_user(&mp_state, argp, sizeof(mp_state))) goto out; r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); break; @@ -2079,13 +4565,13 @@ out_free1: struct kvm_translation tr; r = -EFAULT; - if (copy_from_user(&tr, argp, sizeof tr)) + if (copy_from_user(&tr, argp, sizeof(tr))) goto out; r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); if (r) goto out; r = -EFAULT; - if (copy_to_user(argp, &tr, sizeof tr)) + if (copy_to_user(argp, &tr, sizeof(tr))) goto out; r = 0; break; @@ -2094,7 +4580,7 @@ out_free1: struct kvm_guest_debug dbg; r = -EFAULT; - if (copy_from_user(&dbg, argp, sizeof dbg)) + if (copy_from_user(&dbg, argp, sizeof(dbg))) goto out; r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); break; @@ -2108,14 +4594,14 @@ out_free1: if (argp) { r = -EFAULT; if (copy_from_user(&kvm_sigmask, argp, - sizeof kvm_sigmask)) + sizeof(kvm_sigmask))) goto out; r = -EINVAL; - if (kvm_sigmask.len != sizeof sigset) + if (kvm_sigmask.len != sizeof(sigset)) goto out; r = -EFAULT; if (copy_from_user(&sigset, sigmask_arg->sigset, - sizeof sigset)) + sizeof(sigset))) goto out; p = &sigset; } @@ -2146,17 +4632,35 @@ out_free1: r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); break; } + case KVM_GET_STATS_FD: { + r = kvm_vcpu_ioctl_get_stats_fd(vcpu); + break; + } +#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY + case KVM_PRE_FAULT_MEMORY: { + struct kvm_pre_fault_memory range; + + r = -EFAULT; + if (copy_from_user(&range, argp, sizeof(range))) + break; + r = kvm_vcpu_pre_fault_memory(vcpu, &range); + /* Pass back leftover range. */ + if (copy_to_user(argp, &range, sizeof(range))) + r = -EFAULT; + break; + } +#endif default: r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); } out: - vcpu_put(vcpu); + mutex_unlock(&vcpu->mutex); kfree(fpu); kfree(kvm_sregs); return r; } -#ifdef CONFIG_COMPAT +#ifdef CONFIG_KVM_COMPAT static long kvm_vcpu_compat_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { @@ -2164,29 +4668,27 @@ static long kvm_vcpu_compat_ioctl(struct file *filp, void __user *argp = compat_ptr(arg); int r; - if (vcpu->kvm->mm != current->mm) + if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) return -EIO; switch (ioctl) { case KVM_SET_SIGNAL_MASK: { struct kvm_signal_mask __user *sigmask_arg = argp; struct kvm_signal_mask kvm_sigmask; - compat_sigset_t csigset; sigset_t sigset; if (argp) { r = -EFAULT; if (copy_from_user(&kvm_sigmask, argp, - sizeof kvm_sigmask)) + sizeof(kvm_sigmask))) goto out; r = -EINVAL; - if (kvm_sigmask.len != sizeof csigset) + if (kvm_sigmask.len != sizeof(compat_sigset_t)) goto out; r = -EFAULT; - if (copy_from_user(&csigset, sigmask_arg->sigset, - sizeof csigset)) + if (get_compat_sigset(&sigset, + (compat_sigset_t __user *)sigmask_arg->sigset)) goto out; - sigset_from_compat(&sigset, &csigset); r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); } else r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); @@ -2201,6 +4703,16 @@ out: } #endif +static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) +{ + struct kvm_device *dev = filp->private_data; + + if (dev->ops->mmap) + return dev->ops->mmap(dev, vma); + + return -ENODEV; +} + static int kvm_device_ioctl_attr(struct kvm_device *dev, int (*accessor)(struct kvm_device *dev, struct kvm_device_attr *attr), @@ -2222,6 +4734,9 @@ static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, { struct kvm_device *dev = filp->private_data; + if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) + return -EIO; + switch (ioctl) { case KVM_SET_DEVICE_ATTR: return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); @@ -2242,16 +4757,23 @@ static int kvm_device_release(struct inode *inode, struct file *filp) struct kvm_device *dev = filp->private_data; struct kvm *kvm = dev->kvm; + if (dev->ops->release) { + mutex_lock(&kvm->lock); + list_del_rcu(&dev->vm_node); + synchronize_rcu(); + dev->ops->release(dev); + mutex_unlock(&kvm->lock); + } + kvm_put_kvm(kvm); return 0; } -static const struct file_operations kvm_device_fops = { +static struct file_operations kvm_device_fops = { .unlocked_ioctl = kvm_device_ioctl, -#ifdef CONFIG_COMPAT - .compat_ioctl = kvm_device_ioctl, -#endif .release = kvm_device_release, + KVM_COMPAT(kvm_device_ioctl), + .mmap = kvm_device_mmap, }; struct kvm_device *kvm_device_from_filp(struct file *filp) @@ -2262,58 +4784,373 @@ struct kvm_device *kvm_device_from_filp(struct file *filp) return filp->private_data; } +static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { +#ifdef CONFIG_KVM_MPIC + [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, + [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, +#endif +}; + +int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) +{ + if (type >= ARRAY_SIZE(kvm_device_ops_table)) + return -ENOSPC; + + if (kvm_device_ops_table[type] != NULL) + return -EEXIST; + + kvm_device_ops_table[type] = ops; + return 0; +} + +void kvm_unregister_device_ops(u32 type) +{ + if (kvm_device_ops_table[type] != NULL) + kvm_device_ops_table[type] = NULL; +} + static int kvm_ioctl_create_device(struct kvm *kvm, struct kvm_create_device *cd) { - struct kvm_device_ops *ops = NULL; + const struct kvm_device_ops *ops; struct kvm_device *dev; bool test = cd->flags & KVM_CREATE_DEVICE_TEST; + int type; int ret; - switch (cd->type) { -#ifdef CONFIG_KVM_MPIC - case KVM_DEV_TYPE_FSL_MPIC_20: - case KVM_DEV_TYPE_FSL_MPIC_42: - ops = &kvm_mpic_ops; - break; -#endif -#ifdef CONFIG_KVM_XICS - case KVM_DEV_TYPE_XICS: - ops = &kvm_xics_ops; - break; -#endif - default: + if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) + return -ENODEV; + + type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); + ops = kvm_device_ops_table[type]; + if (ops == NULL) return -ENODEV; - } if (test) return 0; - dev = kzalloc(sizeof(*dev), GFP_KERNEL); + dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); if (!dev) return -ENOMEM; dev->ops = ops; dev->kvm = kvm; - ret = ops->create(dev, cd->type); + mutex_lock(&kvm->lock); + ret = ops->create(dev, type); if (ret < 0) { + mutex_unlock(&kvm->lock); kfree(dev); return ret; } + list_add_rcu(&dev->vm_node, &kvm->devices); + mutex_unlock(&kvm->lock); - ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR); + if (ops->init) + ops->init(dev); + + kvm_get_kvm(kvm); + ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); if (ret < 0) { - ops->destroy(dev); + kvm_put_kvm_no_destroy(kvm); + mutex_lock(&kvm->lock); + list_del_rcu(&dev->vm_node); + synchronize_rcu(); + if (ops->release) + ops->release(dev); + mutex_unlock(&kvm->lock); + if (ops->destroy) + ops->destroy(dev); return ret; } - list_add(&dev->vm_node, &kvm->devices); - kvm_get_kvm(kvm); cd->fd = ret; return 0; } +static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) +{ + switch (arg) { + case KVM_CAP_USER_MEMORY: + case KVM_CAP_USER_MEMORY2: + case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: + case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: + case KVM_CAP_INTERNAL_ERROR_DATA: +#ifdef CONFIG_HAVE_KVM_MSI + case KVM_CAP_SIGNAL_MSI: +#endif +#ifdef CONFIG_HAVE_KVM_IRQCHIP + case KVM_CAP_IRQFD: +#endif + case KVM_CAP_IOEVENTFD_ANY_LENGTH: + case KVM_CAP_CHECK_EXTENSION_VM: + case KVM_CAP_ENABLE_CAP_VM: + case KVM_CAP_HALT_POLL: + return 1; +#ifdef CONFIG_KVM_MMIO + case KVM_CAP_COALESCED_MMIO: + return KVM_COALESCED_MMIO_PAGE_OFFSET; + case KVM_CAP_COALESCED_PIO: + return 1; +#endif +#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT + case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: + return KVM_DIRTY_LOG_MANUAL_CAPS; +#endif +#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING + case KVM_CAP_IRQ_ROUTING: + return KVM_MAX_IRQ_ROUTES; +#endif +#if KVM_MAX_NR_ADDRESS_SPACES > 1 + case KVM_CAP_MULTI_ADDRESS_SPACE: + if (kvm) + return kvm_arch_nr_memslot_as_ids(kvm); + return KVM_MAX_NR_ADDRESS_SPACES; +#endif + case KVM_CAP_NR_MEMSLOTS: + return KVM_USER_MEM_SLOTS; + case KVM_CAP_DIRTY_LOG_RING: +#ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO + return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); +#else + return 0; +#endif + case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: +#ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL + return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); +#else + return 0; +#endif +#ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP + case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: +#endif + case KVM_CAP_BINARY_STATS_FD: + case KVM_CAP_SYSTEM_EVENT_DATA: + case KVM_CAP_DEVICE_CTRL: + return 1; +#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES + case KVM_CAP_MEMORY_ATTRIBUTES: + return kvm_supported_mem_attributes(kvm); +#endif +#ifdef CONFIG_KVM_GUEST_MEMFD + case KVM_CAP_GUEST_MEMFD: + return 1; + case KVM_CAP_GUEST_MEMFD_FLAGS: + return kvm_gmem_get_supported_flags(kvm); +#endif + default: + break; + } + return kvm_vm_ioctl_check_extension(kvm, arg); +} + +static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) +{ + int r; + + if (!KVM_DIRTY_LOG_PAGE_OFFSET) + return -EINVAL; + + /* the size should be power of 2 */ + if (!size || (size & (size - 1))) + return -EINVAL; + + /* Should be bigger to keep the reserved entries, or a page */ + if (size < kvm_dirty_ring_get_rsvd_entries(kvm) * + sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) + return -EINVAL; + + if (size > KVM_DIRTY_RING_MAX_ENTRIES * + sizeof(struct kvm_dirty_gfn)) + return -E2BIG; + + /* We only allow it to set once */ + if (kvm->dirty_ring_size) + return -EINVAL; + + mutex_lock(&kvm->lock); + + if (kvm->created_vcpus) { + /* We don't allow to change this value after vcpu created */ + r = -EINVAL; + } else { + kvm->dirty_ring_size = size; + r = 0; + } + + mutex_unlock(&kvm->lock); + return r; +} + +static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) +{ + unsigned long i; + struct kvm_vcpu *vcpu; + int cleared = 0, r; + + if (!kvm->dirty_ring_size) + return -EINVAL; + + mutex_lock(&kvm->slots_lock); + + kvm_for_each_vcpu(i, vcpu, kvm) { + r = kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring, &cleared); + if (r) + break; + } + + mutex_unlock(&kvm->slots_lock); + + if (cleared) + kvm_flush_remote_tlbs(kvm); + + return cleared; +} + +int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, + struct kvm_enable_cap *cap) +{ + return -EINVAL; +} + +bool kvm_are_all_memslots_empty(struct kvm *kvm) +{ + int i; + + lockdep_assert_held(&kvm->slots_lock); + + for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { + if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) + return false; + } + + return true; +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_are_all_memslots_empty); + +static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, + struct kvm_enable_cap *cap) +{ + switch (cap->cap) { +#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT + case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { + u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; + + if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) + allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; + + if (cap->flags || (cap->args[0] & ~allowed_options)) + return -EINVAL; + kvm->manual_dirty_log_protect = cap->args[0]; + return 0; + } +#endif + case KVM_CAP_HALT_POLL: { + if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) + return -EINVAL; + + kvm->max_halt_poll_ns = cap->args[0]; + + /* + * Ensure kvm->override_halt_poll_ns does not become visible + * before kvm->max_halt_poll_ns. + * + * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). + */ + smp_wmb(); + kvm->override_halt_poll_ns = true; + + return 0; + } + case KVM_CAP_DIRTY_LOG_RING: + case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: + if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) + return -EINVAL; + + return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); + case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { + int r = -EINVAL; + + if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || + !kvm->dirty_ring_size || cap->flags) + return r; + + mutex_lock(&kvm->slots_lock); + + /* + * For simplicity, allow enabling ring+bitmap if and only if + * there are no memslots, e.g. to ensure all memslots allocate + * a bitmap after the capability is enabled. + */ + if (kvm_are_all_memslots_empty(kvm)) { + kvm->dirty_ring_with_bitmap = true; + r = 0; + } + + mutex_unlock(&kvm->slots_lock); + + return r; + } + default: + return kvm_vm_ioctl_enable_cap(kvm, cap); + } +} + +static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, + size_t size, loff_t *offset) +{ + struct kvm *kvm = file->private_data; + + return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, + &kvm_vm_stats_desc[0], &kvm->stat, + sizeof(kvm->stat), user_buffer, size, offset); +} + +static int kvm_vm_stats_release(struct inode *inode, struct file *file) +{ + struct kvm *kvm = file->private_data; + + kvm_put_kvm(kvm); + return 0; +} + +static const struct file_operations kvm_vm_stats_fops = { + .owner = THIS_MODULE, + .read = kvm_vm_stats_read, + .release = kvm_vm_stats_release, + .llseek = noop_llseek, +}; + +static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) +{ + int fd; + struct file *file; + + fd = get_unused_fd_flags(O_CLOEXEC); + if (fd < 0) + return fd; + + file = anon_inode_getfile_fmode("kvm-vm-stats", + &kvm_vm_stats_fops, kvm, O_RDONLY, FMODE_PREAD); + if (IS_ERR(file)) { + put_unused_fd(fd); + return PTR_ERR(file); + } + + kvm_get_kvm(kvm); + fd_install(fd, file); + + return fd; +} + +#define SANITY_CHECK_MEM_REGION_FIELD(field) \ +do { \ + BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \ + offsetof(struct kvm_userspace_memory_region2, field)); \ + BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \ + sizeof_field(struct kvm_userspace_memory_region2, field)); \ +} while (0) + static long kvm_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { @@ -2321,45 +5158,91 @@ static long kvm_vm_ioctl(struct file *filp, void __user *argp = (void __user *)arg; int r; - if (kvm->mm != current->mm) + if (kvm->mm != current->mm || kvm->vm_dead) return -EIO; switch (ioctl) { case KVM_CREATE_VCPU: r = kvm_vm_ioctl_create_vcpu(kvm, arg); break; + case KVM_ENABLE_CAP: { + struct kvm_enable_cap cap; + + r = -EFAULT; + if (copy_from_user(&cap, argp, sizeof(cap))) + goto out; + r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); + break; + } + case KVM_SET_USER_MEMORY_REGION2: case KVM_SET_USER_MEMORY_REGION: { - struct kvm_userspace_memory_region kvm_userspace_mem; + struct kvm_userspace_memory_region2 mem; + unsigned long size; + + if (ioctl == KVM_SET_USER_MEMORY_REGION) { + /* + * Fields beyond struct kvm_userspace_memory_region shouldn't be + * accessed, but avoid leaking kernel memory in case of a bug. + */ + memset(&mem, 0, sizeof(mem)); + size = sizeof(struct kvm_userspace_memory_region); + } else { + size = sizeof(struct kvm_userspace_memory_region2); + } + + /* Ensure the common parts of the two structs are identical. */ + SANITY_CHECK_MEM_REGION_FIELD(slot); + SANITY_CHECK_MEM_REGION_FIELD(flags); + SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr); + SANITY_CHECK_MEM_REGION_FIELD(memory_size); + SANITY_CHECK_MEM_REGION_FIELD(userspace_addr); r = -EFAULT; - if (copy_from_user(&kvm_userspace_mem, argp, - sizeof kvm_userspace_mem)) + if (copy_from_user(&mem, argp, size)) goto out; - r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); + r = -EINVAL; + if (ioctl == KVM_SET_USER_MEMORY_REGION && + (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS)) + goto out; + + r = kvm_vm_ioctl_set_memory_region(kvm, &mem); break; } case KVM_GET_DIRTY_LOG: { struct kvm_dirty_log log; r = -EFAULT; - if (copy_from_user(&log, argp, sizeof log)) + if (copy_from_user(&log, argp, sizeof(log))) goto out; r = kvm_vm_ioctl_get_dirty_log(kvm, &log); break; } -#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET +#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT + case KVM_CLEAR_DIRTY_LOG: { + struct kvm_clear_dirty_log log; + + r = -EFAULT; + if (copy_from_user(&log, argp, sizeof(log))) + goto out; + r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); + break; + } +#endif +#ifdef CONFIG_KVM_MMIO case KVM_REGISTER_COALESCED_MMIO: { struct kvm_coalesced_mmio_zone zone; + r = -EFAULT; - if (copy_from_user(&zone, argp, sizeof zone)) + if (copy_from_user(&zone, argp, sizeof(zone))) goto out; r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); break; } case KVM_UNREGISTER_COALESCED_MMIO: { struct kvm_coalesced_mmio_zone zone; + r = -EFAULT; - if (copy_from_user(&zone, argp, sizeof zone)) + if (copy_from_user(&zone, argp, sizeof(zone))) goto out; r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); break; @@ -2369,7 +5252,7 @@ static long kvm_vm_ioctl(struct file *filp, struct kvm_irqfd data; r = -EFAULT; - if (copy_from_user(&data, argp, sizeof data)) + if (copy_from_user(&data, argp, sizeof(data))) goto out; r = kvm_irqfd(kvm, &data); break; @@ -2378,28 +5261,17 @@ static long kvm_vm_ioctl(struct file *filp, struct kvm_ioeventfd data; r = -EFAULT; - if (copy_from_user(&data, argp, sizeof data)) + if (copy_from_user(&data, argp, sizeof(data))) goto out; r = kvm_ioeventfd(kvm, &data); break; } -#ifdef CONFIG_KVM_APIC_ARCHITECTURE - case KVM_SET_BOOT_CPU_ID: - r = 0; - mutex_lock(&kvm->lock); - if (atomic_read(&kvm->online_vcpus) != 0) - r = -EBUSY; - else - kvm->bsp_vcpu_id = arg; - mutex_unlock(&kvm->lock); - break; -#endif #ifdef CONFIG_HAVE_KVM_MSI case KVM_SIGNAL_MSI: { struct kvm_msi msi; r = -EFAULT; - if (copy_from_user(&msi, argp, sizeof msi)) + if (copy_from_user(&msi, argp, sizeof(msi))) goto out; r = kvm_send_userspace_msi(kvm, &msi); break; @@ -2411,7 +5283,7 @@ static long kvm_vm_ioctl(struct file *filp, struct kvm_irq_level irq_event; r = -EFAULT; - if (copy_from_user(&irq_event, argp, sizeof irq_event)) + if (copy_from_user(&irq_event, argp, sizeof(irq_event))) goto out; r = kvm_vm_ioctl_irq_line(kvm, &irq_event, @@ -2421,7 +5293,7 @@ static long kvm_vm_ioctl(struct file *filp, r = -EFAULT; if (ioctl == KVM_IRQ_LINE_STATUS) { - if (copy_to_user(argp, &irq_event, sizeof irq_event)) + if (copy_to_user(argp, &irq_event, sizeof(irq_event))) goto out; } @@ -2433,32 +5305,45 @@ static long kvm_vm_ioctl(struct file *filp, case KVM_SET_GSI_ROUTING: { struct kvm_irq_routing routing; struct kvm_irq_routing __user *urouting; - struct kvm_irq_routing_entry *entries; + struct kvm_irq_routing_entry *entries = NULL; r = -EFAULT; if (copy_from_user(&routing, argp, sizeof(routing))) goto out; r = -EINVAL; - if (routing.nr >= KVM_MAX_IRQ_ROUTES) + if (!kvm_arch_can_set_irq_routing(kvm)) goto out; - if (routing.flags) + if (routing.nr > KVM_MAX_IRQ_ROUTES) goto out; - r = -ENOMEM; - entries = vmalloc(routing.nr * sizeof(*entries)); - if (!entries) + if (routing.flags) goto out; - r = -EFAULT; - urouting = argp; - if (copy_from_user(entries, urouting->entries, - routing.nr * sizeof(*entries))) - goto out_free_irq_routing; + if (routing.nr) { + urouting = argp; + entries = vmemdup_array_user(urouting->entries, + routing.nr, sizeof(*entries)); + if (IS_ERR(entries)) { + r = PTR_ERR(entries); + goto out; + } + } r = kvm_set_irq_routing(kvm, entries, routing.nr, routing.flags); - out_free_irq_routing: - vfree(entries); + kvfree(entries); break; } #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ +#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES + case KVM_SET_MEMORY_ATTRIBUTES: { + struct kvm_memory_attributes attrs; + + r = -EFAULT; + if (copy_from_user(&attrs, argp, sizeof(attrs))) + goto out; + + r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs); + break; + } +#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ case KVM_CREATE_DEVICE: { struct kvm_create_device cd; @@ -2477,16 +5362,35 @@ static long kvm_vm_ioctl(struct file *filp, r = 0; break; } + case KVM_CHECK_EXTENSION: + r = kvm_vm_ioctl_check_extension_generic(kvm, arg); + break; + case KVM_RESET_DIRTY_RINGS: + r = kvm_vm_ioctl_reset_dirty_pages(kvm); + break; + case KVM_GET_STATS_FD: + r = kvm_vm_ioctl_get_stats_fd(kvm); + break; +#ifdef CONFIG_KVM_GUEST_MEMFD + case KVM_CREATE_GUEST_MEMFD: { + struct kvm_create_guest_memfd guest_memfd; + + r = -EFAULT; + if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd))) + goto out; + + r = kvm_gmem_create(kvm, &guest_memfd); + break; + } +#endif default: r = kvm_arch_vm_ioctl(filp, ioctl, arg); - if (r == -ENOTTY) - r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); } out: return r; } -#ifdef CONFIG_COMPAT +#ifdef CONFIG_KVM_COMPAT struct compat_kvm_dirty_log { __u32 slot; __u32 padding1; @@ -2496,23 +5400,61 @@ struct compat_kvm_dirty_log { }; }; +struct compat_kvm_clear_dirty_log { + __u32 slot; + __u32 num_pages; + __u64 first_page; + union { + compat_uptr_t dirty_bitmap; /* one bit per page */ + __u64 padding2; + }; +}; + +long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, + unsigned long arg) +{ + return -ENOTTY; +} + static long kvm_vm_compat_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm *kvm = filp->private_data; int r; - if (kvm->mm != current->mm) + if (kvm->mm != current->mm || kvm->vm_dead) return -EIO; + + r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); + if (r != -ENOTTY) + return r; + switch (ioctl) { +#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT + case KVM_CLEAR_DIRTY_LOG: { + struct compat_kvm_clear_dirty_log compat_log; + struct kvm_clear_dirty_log log; + + if (copy_from_user(&compat_log, (void __user *)arg, + sizeof(compat_log))) + return -EFAULT; + log.slot = compat_log.slot; + log.num_pages = compat_log.num_pages; + log.first_page = compat_log.first_page; + log.padding2 = compat_log.padding2; + log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); + + r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); + break; + } +#endif case KVM_GET_DIRTY_LOG: { struct compat_kvm_dirty_log compat_log; struct kvm_dirty_log log; - r = -EFAULT; if (copy_from_user(&compat_log, (void __user *)arg, sizeof(compat_log))) - goto out; + return -EFAULT; log.slot = compat_log.slot; log.padding1 = compat_log.padding1; log.padding2 = compat_log.padding2; @@ -2524,110 +5466,73 @@ static long kvm_vm_compat_ioctl(struct file *filp, default: r = kvm_vm_ioctl(filp, ioctl, arg); } - -out: return r; } #endif -static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf) -{ - struct page *page[1]; - unsigned long addr; - int npages; - gfn_t gfn = vmf->pgoff; - struct kvm *kvm = vma->vm_file->private_data; - - addr = gfn_to_hva(kvm, gfn); - if (kvm_is_error_hva(addr)) - return VM_FAULT_SIGBUS; - - npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page, - NULL); - if (unlikely(npages != 1)) - return VM_FAULT_SIGBUS; - - vmf->page = page[0]; - return 0; -} - -static const struct vm_operations_struct kvm_vm_vm_ops = { - .fault = kvm_vm_fault, -}; - -static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma) -{ - vma->vm_ops = &kvm_vm_vm_ops; - return 0; -} - static struct file_operations kvm_vm_fops = { .release = kvm_vm_release, .unlocked_ioctl = kvm_vm_ioctl, -#ifdef CONFIG_COMPAT - .compat_ioctl = kvm_vm_compat_ioctl, -#endif - .mmap = kvm_vm_mmap, .llseek = noop_llseek, + KVM_COMPAT(kvm_vm_compat_ioctl), }; +bool file_is_kvm(struct file *file) +{ + return file && file->f_op == &kvm_vm_fops; +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(file_is_kvm); + static int kvm_dev_ioctl_create_vm(unsigned long type) { - int r; + char fdname[ITOA_MAX_LEN + 1]; + int r, fd; struct kvm *kvm; + struct file *file; - kvm = kvm_create_vm(type); - if (IS_ERR(kvm)) - return PTR_ERR(kvm); -#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET - r = kvm_coalesced_mmio_init(kvm); - if (r < 0) { - kvm_put_kvm(kvm); - return r; - } -#endif - r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); - if (r < 0) - kvm_put_kvm(kvm); + fd = get_unused_fd_flags(O_CLOEXEC); + if (fd < 0) + return fd; - return r; -} + snprintf(fdname, sizeof(fdname), "%d", fd); -static long kvm_dev_ioctl_check_extension_generic(long arg) -{ - switch (arg) { - case KVM_CAP_USER_MEMORY: - case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: - case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: -#ifdef CONFIG_KVM_APIC_ARCHITECTURE - case KVM_CAP_SET_BOOT_CPU_ID: -#endif - case KVM_CAP_INTERNAL_ERROR_DATA: -#ifdef CONFIG_HAVE_KVM_MSI - case KVM_CAP_SIGNAL_MSI: -#endif -#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING - case KVM_CAP_IRQFD_RESAMPLE: -#endif - return 1; -#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING - case KVM_CAP_IRQ_ROUTING: - return KVM_MAX_IRQ_ROUTES; -#endif - default: - break; + kvm = kvm_create_vm(type, fdname); + if (IS_ERR(kvm)) { + r = PTR_ERR(kvm); + goto put_fd; + } + + file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); + if (IS_ERR(file)) { + r = PTR_ERR(file); + goto put_kvm; } - return kvm_dev_ioctl_check_extension(arg); + + /* + * Don't call kvm_put_kvm anymore at this point; file->f_op is + * already set, with ->release() being kvm_vm_release(). In error + * cases it will be called by the final fput(file) and will take + * care of doing kvm_put_kvm(kvm). + */ + kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); + + fd_install(fd, file); + return fd; + +put_kvm: + kvm_put_kvm(kvm); +put_fd: + put_unused_fd(fd); + return r; } static long kvm_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { - long r = -EINVAL; + int r = -EINVAL; switch (ioctl) { case KVM_GET_API_VERSION: - r = -EINVAL; if (arg) goto out; r = KVM_API_VERSION; @@ -2636,25 +5541,19 @@ static long kvm_dev_ioctl(struct file *filp, r = kvm_dev_ioctl_create_vm(arg); break; case KVM_CHECK_EXTENSION: - r = kvm_dev_ioctl_check_extension_generic(arg); + r = kvm_vm_ioctl_check_extension_generic(NULL, arg); break; case KVM_GET_VCPU_MMAP_SIZE: - r = -EINVAL; if (arg) goto out; r = PAGE_SIZE; /* struct kvm_run */ #ifdef CONFIG_X86 r += PAGE_SIZE; /* pio data page */ #endif -#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET +#ifdef CONFIG_KVM_MMIO r += PAGE_SIZE; /* coalesced mmio ring page */ #endif break; - case KVM_TRACE_ENABLE: - case KVM_TRACE_PAUSE: - case KVM_TRACE_DISABLE: - r = -EOPNOTSUPP; - break; default: return kvm_arch_dev_ioctl(filp, ioctl, arg); } @@ -2664,8 +5563,8 @@ out: static struct file_operations kvm_chardev_ops = { .unlocked_ioctl = kvm_dev_ioctl, - .compat_ioctl = kvm_dev_ioctl, .llseek = noop_llseek, + KVM_COMPAT(kvm_dev_ioctl), }; static struct miscdevice kvm_dev = { @@ -2674,131 +5573,212 @@ static struct miscdevice kvm_dev = { &kvm_chardev_ops, }; -static void hardware_enable_nolock(void *junk) +#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING +bool enable_virt_at_load = true; +module_param(enable_virt_at_load, bool, 0444); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_virt_at_load); + +__visible bool kvm_rebooting; +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_rebooting); + +static DEFINE_PER_CPU(bool, virtualization_enabled); +static DEFINE_MUTEX(kvm_usage_lock); +static int kvm_usage_count; + +__weak void kvm_arch_enable_virtualization(void) { - int cpu = raw_smp_processor_id(); - int r; - if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) - return; +} - cpumask_set_cpu(cpu, cpus_hardware_enabled); +__weak void kvm_arch_disable_virtualization(void) +{ - r = kvm_arch_hardware_enable(NULL); +} - if (r) { - cpumask_clear_cpu(cpu, cpus_hardware_enabled); - atomic_inc(&hardware_enable_failed); - printk(KERN_INFO "kvm: enabling virtualization on " - "CPU%d failed\n", cpu); +static int kvm_enable_virtualization_cpu(void) +{ + if (__this_cpu_read(virtualization_enabled)) + return 0; + + if (kvm_arch_enable_virtualization_cpu()) { + pr_info("kvm: enabling virtualization on CPU%d failed\n", + raw_smp_processor_id()); + return -EIO; } + + __this_cpu_write(virtualization_enabled, true); + return 0; } -static void hardware_enable(void *junk) +static int kvm_online_cpu(unsigned int cpu) { - raw_spin_lock(&kvm_lock); - hardware_enable_nolock(junk); - raw_spin_unlock(&kvm_lock); + /* + * Abort the CPU online process if hardware virtualization cannot + * be enabled. Otherwise running VMs would encounter unrecoverable + * errors when scheduled to this CPU. + */ + return kvm_enable_virtualization_cpu(); } -static void hardware_disable_nolock(void *junk) +static void kvm_disable_virtualization_cpu(void *ign) { - int cpu = raw_smp_processor_id(); - - if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) + if (!__this_cpu_read(virtualization_enabled)) return; - cpumask_clear_cpu(cpu, cpus_hardware_enabled); - kvm_arch_hardware_disable(NULL); + + kvm_arch_disable_virtualization_cpu(); + + __this_cpu_write(virtualization_enabled, false); } -static void hardware_disable(void *junk) +static int kvm_offline_cpu(unsigned int cpu) { - raw_spin_lock(&kvm_lock); - hardware_disable_nolock(junk); - raw_spin_unlock(&kvm_lock); + kvm_disable_virtualization_cpu(NULL); + return 0; } -static void hardware_disable_all_nolock(void) +static void kvm_shutdown(void *data) { - BUG_ON(!kvm_usage_count); + /* + * Disable hardware virtualization and set kvm_rebooting to indicate + * that KVM has asynchronously disabled hardware virtualization, i.e. + * that relevant errors and exceptions aren't entirely unexpected. + * Some flavors of hardware virtualization need to be disabled before + * transferring control to firmware (to perform shutdown/reboot), e.g. + * on x86, virtualization can block INIT interrupts, which are used by + * firmware to pull APs back under firmware control. Note, this path + * is used for both shutdown and reboot scenarios, i.e. neither name is + * 100% comprehensive. + */ + pr_info("kvm: exiting hardware virtualization\n"); + kvm_rebooting = true; + on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1); +} - kvm_usage_count--; - if (!kvm_usage_count) - on_each_cpu(hardware_disable_nolock, NULL, 1); +static int kvm_suspend(void *data) +{ + /* + * Secondary CPUs and CPU hotplug are disabled across the suspend/resume + * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage + * count is stable. Assert that kvm_usage_lock is not held to ensure + * the system isn't suspended while KVM is enabling hardware. Hardware + * enabling can be preempted, but the task cannot be frozen until it has + * dropped all locks (userspace tasks are frozen via a fake signal). + */ + lockdep_assert_not_held(&kvm_usage_lock); + lockdep_assert_irqs_disabled(); + + kvm_disable_virtualization_cpu(NULL); + return 0; } -static void hardware_disable_all(void) +static void kvm_resume(void *data) { - raw_spin_lock(&kvm_lock); - hardware_disable_all_nolock(); - raw_spin_unlock(&kvm_lock); + lockdep_assert_not_held(&kvm_usage_lock); + lockdep_assert_irqs_disabled(); + + WARN_ON_ONCE(kvm_enable_virtualization_cpu()); } -static int hardware_enable_all(void) +static const struct syscore_ops kvm_syscore_ops = { + .suspend = kvm_suspend, + .resume = kvm_resume, + .shutdown = kvm_shutdown, +}; + +static struct syscore kvm_syscore = { + .ops = &kvm_syscore_ops, +}; + +int kvm_enable_virtualization(void) { - int r = 0; + int r; - raw_spin_lock(&kvm_lock); + guard(mutex)(&kvm_usage_lock); - kvm_usage_count++; - if (kvm_usage_count == 1) { - atomic_set(&hardware_enable_failed, 0); - on_each_cpu(hardware_enable_nolock, NULL, 1); + if (kvm_usage_count++) + return 0; - if (atomic_read(&hardware_enable_failed)) { - hardware_disable_all_nolock(); - r = -EBUSY; - } + kvm_arch_enable_virtualization(); + + r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", + kvm_online_cpu, kvm_offline_cpu); + if (r) + goto err_cpuhp; + + register_syscore(&kvm_syscore); + + /* + * Undo virtualization enabling and bail if the system is going down. + * If userspace initiated a forced reboot, e.g. reboot -f, then it's + * possible for an in-flight operation to enable virtualization after + * syscore_shutdown() is called, i.e. without kvm_shutdown() being + * invoked. Note, this relies on system_state being set _before_ + * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked + * or this CPU observes the impending shutdown. Which is why KVM uses + * a syscore ops hook instead of registering a dedicated reboot + * notifier (the latter runs before system_state is updated). + */ + if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || + system_state == SYSTEM_RESTART) { + r = -EBUSY; + goto err_rebooting; } - raw_spin_unlock(&kvm_lock); + return 0; +err_rebooting: + unregister_syscore(&kvm_syscore); + cpuhp_remove_state(CPUHP_AP_KVM_ONLINE); +err_cpuhp: + kvm_arch_disable_virtualization(); + --kvm_usage_count; return r; } +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_enable_virtualization); -static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, - void *v) +void kvm_disable_virtualization(void) { - int cpu = (long)v; + guard(mutex)(&kvm_usage_lock); - if (!kvm_usage_count) - return NOTIFY_OK; + if (--kvm_usage_count) + return; - val &= ~CPU_TASKS_FROZEN; - switch (val) { - case CPU_DYING: - printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", - cpu); - hardware_disable(NULL); - break; - case CPU_STARTING: - printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", - cpu); - hardware_enable(NULL); - break; - } - return NOTIFY_OK; + unregister_syscore(&kvm_syscore); + cpuhp_remove_state(CPUHP_AP_KVM_ONLINE); + kvm_arch_disable_virtualization(); } +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_disable_virtualization); -static int kvm_reboot(struct notifier_block *notifier, unsigned long val, - void *v) +static int kvm_init_virtualization(void) { - /* - * Some (well, at least mine) BIOSes hang on reboot if - * in vmx root mode. - * - * And Intel TXT required VMX off for all cpu when system shutdown. - */ - printk(KERN_INFO "kvm: exiting hardware virtualization\n"); - kvm_rebooting = true; - on_each_cpu(hardware_disable_nolock, NULL, 1); - return NOTIFY_OK; + if (enable_virt_at_load) + return kvm_enable_virtualization(); + + return 0; } -static struct notifier_block kvm_reboot_notifier = { - .notifier_call = kvm_reboot, - .priority = 0, -}; +static void kvm_uninit_virtualization(void) +{ + if (enable_virt_at_load) + kvm_disable_virtualization(); +} +#else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ +static int kvm_init_virtualization(void) +{ + return 0; +} + +static void kvm_uninit_virtualization(void) +{ + +} +#endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ + +static void kvm_iodevice_destructor(struct kvm_io_device *dev) +{ + if (dev->ops->destructor) + dev->ops->destructor(dev); +} static void kvm_io_bus_destroy(struct kvm_io_bus *bus) { @@ -2812,31 +5792,34 @@ static void kvm_io_bus_destroy(struct kvm_io_bus *bus) kfree(bus); } -static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) +static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, + const struct kvm_io_range *r2) { - const struct kvm_io_range *r1 = p1; - const struct kvm_io_range *r2 = p2; + gpa_t addr1 = r1->addr; + gpa_t addr2 = r2->addr; - if (r1->addr < r2->addr) + if (addr1 < addr2) return -1; - if (r1->addr + r1->len > r2->addr + r2->len) + + /* If r2->len == 0, match the exact address. If r2->len != 0, + * accept any overlapping write. Any order is acceptable for + * overlapping ranges, because kvm_io_bus_get_first_dev ensures + * we process all of them. + */ + if (r2->len) { + addr1 += r1->len; + addr2 += r2->len; + } + + if (addr1 > addr2) return 1; + return 0; } -static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, - gpa_t addr, int len) +static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) { - bus->range[bus->dev_count++] = (struct kvm_io_range) { - .addr = addr, - .len = len, - .dev = dev, - }; - - sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), - kvm_io_bus_sort_cmp, NULL); - - return 0; + return kvm_io_bus_cmp(p1, p2); } static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, @@ -2857,17 +5840,67 @@ static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, off = range - bus->range; - while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0) + while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) off--; return off; } -/* kvm_io_bus_write - called under kvm->slots_lock */ -int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, - int len, const void *val) +static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, + struct kvm_io_range *range, const void *val) { int idx; + + idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); + if (idx < 0) + return -EOPNOTSUPP; + + while (idx < bus->dev_count && + kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { + if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, + range->len, val)) + return idx; + idx++; + } + + return -EOPNOTSUPP; +} + +static struct kvm_io_bus *kvm_get_bus_srcu(struct kvm *kvm, enum kvm_bus idx) +{ + /* + * Ensure that any updates to kvm_buses[] observed by the previous vCPU + * machine instruction are also visible to the vCPU machine instruction + * that triggered this call. + */ + smp_mb__after_srcu_read_lock(); + + return srcu_dereference(kvm->buses[idx], &kvm->srcu); +} + +int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, + int len, const void *val) +{ + struct kvm_io_bus *bus; + struct kvm_io_range range; + int r; + + range = (struct kvm_io_range) { + .addr = addr, + .len = len, + }; + + bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx); + if (!bus) + return -ENOMEM; + r = __kvm_io_bus_write(vcpu, bus, &range, val); + return r < 0 ? r : 0; +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_write); + +int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, + gpa_t addr, int len, const void *val, long cookie) +{ struct kvm_io_bus *bus; struct kvm_io_range range; @@ -2876,204 +5909,469 @@ int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, .len = len, }; - bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); - idx = kvm_io_bus_get_first_dev(bus, addr, len); + bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx); + if (!bus) + return -ENOMEM; + + /* First try the device referenced by cookie. */ + if ((cookie >= 0) && (cookie < bus->dev_count) && + (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) + if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, + val)) + return cookie; + + /* + * cookie contained garbage; fall back to search and return the + * correct cookie value. + */ + return __kvm_io_bus_write(vcpu, bus, &range, val); +} + +static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, + struct kvm_io_range *range, void *val) +{ + int idx; + + idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); if (idx < 0) return -EOPNOTSUPP; while (idx < bus->dev_count && - kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) { - if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val)) - return 0; + kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { + if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, + range->len, val)) + return idx; idx++; } return -EOPNOTSUPP; } -/* kvm_io_bus_read - called under kvm->slots_lock */ -int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, +int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, int len, void *val) { - int idx; struct kvm_io_bus *bus; struct kvm_io_range range; + int r; range = (struct kvm_io_range) { .addr = addr, .len = len, }; - bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); - idx = kvm_io_bus_get_first_dev(bus, addr, len); - if (idx < 0) - return -EOPNOTSUPP; + bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx); + if (!bus) + return -ENOMEM; + r = __kvm_io_bus_read(vcpu, bus, &range, val); + return r < 0 ? r : 0; +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_read); - while (idx < bus->dev_count && - kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) { - if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val)) - return 0; - idx++; - } +static void __free_bus(struct rcu_head *rcu) +{ + struct kvm_io_bus *bus = container_of(rcu, struct kvm_io_bus, rcu); - return -EOPNOTSUPP; + kfree(bus); } -/* Caller must hold slots_lock. */ int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, int len, struct kvm_io_device *dev) { + int i; struct kvm_io_bus *new_bus, *bus; + struct kvm_io_range range; + + lockdep_assert_held(&kvm->slots_lock); + + bus = kvm_get_bus(kvm, bus_idx); + if (!bus) + return -ENOMEM; - bus = kvm->buses[bus_idx]; /* exclude ioeventfd which is limited by maximum fd */ if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) return -ENOSPC; - new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) * - sizeof(struct kvm_io_range)), GFP_KERNEL); + new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), + GFP_KERNEL_ACCOUNT); if (!new_bus) return -ENOMEM; - memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * - sizeof(struct kvm_io_range))); - kvm_io_bus_insert_dev(new_bus, dev, addr, len); + + range = (struct kvm_io_range) { + .addr = addr, + .len = len, + .dev = dev, + }; + + for (i = 0; i < bus->dev_count; i++) + if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) + break; + + memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); + new_bus->dev_count++; + new_bus->range[i] = range; + memcpy(new_bus->range + i + 1, bus->range + i, + (bus->dev_count - i) * sizeof(struct kvm_io_range)); rcu_assign_pointer(kvm->buses[bus_idx], new_bus); - synchronize_srcu_expedited(&kvm->srcu); - kfree(bus); + call_srcu(&kvm->srcu, &bus->rcu, __free_bus); return 0; } -/* Caller must hold slots_lock. */ int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, struct kvm_io_device *dev) { - int i, r; + int i; struct kvm_io_bus *new_bus, *bus; - bus = kvm->buses[bus_idx]; - r = -ENOENT; - for (i = 0; i < bus->dev_count; i++) + lockdep_assert_held(&kvm->slots_lock); + + bus = kvm_get_bus(kvm, bus_idx); + if (!bus) + return 0; + + for (i = 0; i < bus->dev_count; i++) { if (bus->range[i].dev == dev) { - r = 0; break; } + } - if (r) - return r; - - new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) * - sizeof(struct kvm_io_range)), GFP_KERNEL); - if (!new_bus) - return -ENOMEM; + if (i == bus->dev_count) + return 0; - memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); - new_bus->dev_count--; - memcpy(new_bus->range + i, bus->range + i + 1, - (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); + new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), + GFP_KERNEL_ACCOUNT); + if (new_bus) { + memcpy(new_bus, bus, struct_size(bus, range, i)); + new_bus->dev_count--; + memcpy(new_bus->range + i, bus->range + i + 1, + flex_array_size(new_bus, range, new_bus->dev_count - i)); + } rcu_assign_pointer(kvm->buses[bus_idx], new_bus); synchronize_srcu_expedited(&kvm->srcu); + + /* + * If NULL bus is installed, destroy the old bus, including all the + * attached devices. Otherwise, destroy the caller's device only. + */ + if (!new_bus) { + pr_err("kvm: failed to shrink bus, removing it completely\n"); + kvm_io_bus_destroy(bus); + return -ENOMEM; + } + + kvm_iodevice_destructor(dev); kfree(bus); - return r; + return 0; } -static struct notifier_block kvm_cpu_notifier = { - .notifier_call = kvm_cpu_hotplug, -}; +struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, + gpa_t addr) +{ + struct kvm_io_bus *bus; + int dev_idx, srcu_idx; + struct kvm_io_device *iodev = NULL; -static int vm_stat_get(void *_offset, u64 *val) + srcu_idx = srcu_read_lock(&kvm->srcu); + + bus = kvm_get_bus_srcu(kvm, bus_idx); + if (!bus) + goto out_unlock; + + dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); + if (dev_idx < 0) + goto out_unlock; + + iodev = bus->range[dev_idx].dev; + +out_unlock: + srcu_read_unlock(&kvm->srcu, srcu_idx); + + return iodev; +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_get_dev); + +static int kvm_debugfs_open(struct inode *inode, struct file *file, + int (*get)(void *, u64 *), int (*set)(void *, u64), + const char *fmt) { - unsigned offset = (long)_offset; - struct kvm *kvm; + int ret; + struct kvm_stat_data *stat_data = inode->i_private; + + /* + * The debugfs files are a reference to the kvm struct which + * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe + * avoids the race between open and the removal of the debugfs directory. + */ + if (!kvm_get_kvm_safe(stat_data->kvm)) + return -ENOENT; + + ret = simple_attr_open(inode, file, get, + kvm_stats_debugfs_mode(stat_data->desc) & 0222 + ? set : NULL, fmt); + if (ret) + kvm_put_kvm(stat_data->kvm); + + return ret; +} + +static int kvm_debugfs_release(struct inode *inode, struct file *file) +{ + struct kvm_stat_data *stat_data = inode->i_private; + + simple_attr_release(inode, file); + kvm_put_kvm(stat_data->kvm); - *val = 0; - raw_spin_lock(&kvm_lock); - list_for_each_entry(kvm, &vm_list, vm_list) - *val += *(u32 *)((void *)kvm + offset); - raw_spin_unlock(&kvm_lock); return 0; } -DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); +static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) +{ + *val = *(u64 *)((void *)(&kvm->stat) + offset); -static int vcpu_stat_get(void *_offset, u64 *val) + return 0; +} + +static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) { - unsigned offset = (long)_offset; - struct kvm *kvm; + *(u64 *)((void *)(&kvm->stat) + offset) = 0; + + return 0; +} + +static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) +{ + unsigned long i; struct kvm_vcpu *vcpu; - int i; *val = 0; - raw_spin_lock(&kvm_lock); - list_for_each_entry(kvm, &vm_list, vm_list) - kvm_for_each_vcpu(i, vcpu, kvm) - *val += *(u32 *)((void *)vcpu + offset); - raw_spin_unlock(&kvm_lock); + kvm_for_each_vcpu(i, vcpu, kvm) + *val += *(u64 *)((void *)(&vcpu->stat) + offset); + return 0; } -DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); +static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) +{ + unsigned long i; + struct kvm_vcpu *vcpu; + + kvm_for_each_vcpu(i, vcpu, kvm) + *(u64 *)((void *)(&vcpu->stat) + offset) = 0; -static const struct file_operations *stat_fops[] = { - [KVM_STAT_VCPU] = &vcpu_stat_fops, - [KVM_STAT_VM] = &vm_stat_fops, -}; + return 0; +} -static int kvm_init_debug(void) +static int kvm_stat_data_get(void *data, u64 *val) { int r = -EFAULT; - struct kvm_stats_debugfs_item *p; + struct kvm_stat_data *stat_data = data; - kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); - if (kvm_debugfs_dir == NULL) - goto out; + switch (stat_data->kind) { + case KVM_STAT_VM: + r = kvm_get_stat_per_vm(stat_data->kvm, + stat_data->desc->desc.offset, val); + break; + case KVM_STAT_VCPU: + r = kvm_get_stat_per_vcpu(stat_data->kvm, + stat_data->desc->desc.offset, val); + break; + } - for (p = debugfs_entries; p->name; ++p) { - p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, - (void *)(long)p->offset, - stat_fops[p->kind]); - if (p->dentry == NULL) - goto out_dir; + return r; +} + +static int kvm_stat_data_clear(void *data, u64 val) +{ + int r = -EFAULT; + struct kvm_stat_data *stat_data = data; + + if (val) + return -EINVAL; + + switch (stat_data->kind) { + case KVM_STAT_VM: + r = kvm_clear_stat_per_vm(stat_data->kvm, + stat_data->desc->desc.offset); + break; + case KVM_STAT_VCPU: + r = kvm_clear_stat_per_vcpu(stat_data->kvm, + stat_data->desc->desc.offset); + break; } + return r; +} + +static int kvm_stat_data_open(struct inode *inode, struct file *file) +{ + __simple_attr_check_format("%llu\n", 0ull); + return kvm_debugfs_open(inode, file, kvm_stat_data_get, + kvm_stat_data_clear, "%llu\n"); +} + +static const struct file_operations stat_fops_per_vm = { + .owner = THIS_MODULE, + .open = kvm_stat_data_open, + .release = kvm_debugfs_release, + .read = simple_attr_read, + .write = simple_attr_write, +}; + +static int vm_stat_get(void *_offset, u64 *val) +{ + unsigned offset = (long)_offset; + struct kvm *kvm; + u64 tmp_val; + + *val = 0; + mutex_lock(&kvm_lock); + list_for_each_entry(kvm, &vm_list, vm_list) { + kvm_get_stat_per_vm(kvm, offset, &tmp_val); + *val += tmp_val; + } + mutex_unlock(&kvm_lock); return 0; +} -out_dir: - debugfs_remove_recursive(kvm_debugfs_dir); -out: - return r; +static int vm_stat_clear(void *_offset, u64 val) +{ + unsigned offset = (long)_offset; + struct kvm *kvm; + + if (val) + return -EINVAL; + + mutex_lock(&kvm_lock); + list_for_each_entry(kvm, &vm_list, vm_list) { + kvm_clear_stat_per_vm(kvm, offset); + } + mutex_unlock(&kvm_lock); + + return 0; } -static void kvm_exit_debug(void) +DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); +DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); + +static int vcpu_stat_get(void *_offset, u64 *val) { - struct kvm_stats_debugfs_item *p; + unsigned offset = (long)_offset; + struct kvm *kvm; + u64 tmp_val; - for (p = debugfs_entries; p->name; ++p) - debugfs_remove(p->dentry); - debugfs_remove(kvm_debugfs_dir); + *val = 0; + mutex_lock(&kvm_lock); + list_for_each_entry(kvm, &vm_list, vm_list) { + kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); + *val += tmp_val; + } + mutex_unlock(&kvm_lock); + return 0; } -static int kvm_suspend(void) +static int vcpu_stat_clear(void *_offset, u64 val) { - if (kvm_usage_count) - hardware_disable_nolock(NULL); + unsigned offset = (long)_offset; + struct kvm *kvm; + + if (val) + return -EINVAL; + + mutex_lock(&kvm_lock); + list_for_each_entry(kvm, &vm_list, vm_list) { + kvm_clear_stat_per_vcpu(kvm, offset); + } + mutex_unlock(&kvm_lock); + return 0; } -static void kvm_resume(void) +DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, + "%llu\n"); +DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); + +static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) { - if (kvm_usage_count) { - WARN_ON(raw_spin_is_locked(&kvm_lock)); - hardware_enable_nolock(NULL); + struct kobj_uevent_env *env; + unsigned long long created, active; + + if (!kvm_dev.this_device || !kvm) + return; + + mutex_lock(&kvm_lock); + if (type == KVM_EVENT_CREATE_VM) { + kvm_createvm_count++; + kvm_active_vms++; + } else if (type == KVM_EVENT_DESTROY_VM) { + kvm_active_vms--; + } + created = kvm_createvm_count; + active = kvm_active_vms; + mutex_unlock(&kvm_lock); + + env = kzalloc(sizeof(*env), GFP_KERNEL); + if (!env) + return; + + add_uevent_var(env, "CREATED=%llu", created); + add_uevent_var(env, "COUNT=%llu", active); + + if (type == KVM_EVENT_CREATE_VM) { + add_uevent_var(env, "EVENT=create"); + kvm->userspace_pid = task_pid_nr(current); + } else if (type == KVM_EVENT_DESTROY_VM) { + add_uevent_var(env, "EVENT=destroy"); + } + add_uevent_var(env, "PID=%d", kvm->userspace_pid); + + if (!IS_ERR(kvm->debugfs_dentry)) { + char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); + + if (p) { + tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); + if (!IS_ERR(tmp)) + add_uevent_var(env, "STATS_PATH=%s", tmp); + kfree(p); + } } + /* no need for checks, since we are adding at most only 5 keys */ + env->envp[env->envp_idx++] = NULL; + kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); + kfree(env); } -static struct syscore_ops kvm_syscore_ops = { - .suspend = kvm_suspend, - .resume = kvm_resume, -}; +static void kvm_init_debug(void) +{ + const struct file_operations *fops; + const struct _kvm_stats_desc *pdesc; + int i; + + kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); + + for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { + pdesc = &kvm_vm_stats_desc[i]; + if (kvm_stats_debugfs_mode(pdesc) & 0222) + fops = &vm_stat_fops; + else + fops = &vm_stat_readonly_fops; + debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), + kvm_debugfs_dir, + (void *)(long)pdesc->desc.offset, fops); + } + + for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { + pdesc = &kvm_vcpu_stats_desc[i]; + if (kvm_stats_debugfs_mode(pdesc) & 0222) + fops = &vcpu_stat_fops; + else + fops = &vcpu_stat_readonly_fops; + debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), + kvm_debugfs_dir, + (void *)(long)pdesc->desc.offset, fops); + } +} static inline struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) @@ -3084,10 +6382,14 @@ struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) static void kvm_sched_in(struct preempt_notifier *pn, int cpu) { struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); - if (vcpu->preempted) - vcpu->preempted = false; + WRITE_ONCE(vcpu->preempted, false); + WRITE_ONCE(vcpu->ready, false); + + __this_cpu_write(kvm_running_vcpu, vcpu); kvm_arch_vcpu_load(vcpu, cpu); + + WRITE_ONCE(vcpu->scheduled_out, false); } static void kvm_sched_out(struct preempt_notifier *pn, @@ -3095,128 +6397,196 @@ static void kvm_sched_out(struct preempt_notifier *pn, { struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); - if (current->state == TASK_RUNNING) - vcpu->preempted = true; + WRITE_ONCE(vcpu->scheduled_out, true); + + if (task_is_runnable(current) && vcpu->wants_to_run) { + WRITE_ONCE(vcpu->preempted, true); + WRITE_ONCE(vcpu->ready, true); + } kvm_arch_vcpu_put(vcpu); + __this_cpu_write(kvm_running_vcpu, NULL); } -int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, - struct module *module) +/** + * kvm_get_running_vcpu - get the vcpu running on the current CPU. + * + * We can disable preemption locally around accessing the per-CPU variable, + * and use the resolved vcpu pointer after enabling preemption again, + * because even if the current thread is migrated to another CPU, reading + * the per-CPU value later will give us the same value as we update the + * per-CPU variable in the preempt notifier handlers. + */ +struct kvm_vcpu *kvm_get_running_vcpu(void) { - int r; - int cpu; + struct kvm_vcpu *vcpu; - r = kvm_arch_init(opaque); - if (r) - goto out_fail; + preempt_disable(); + vcpu = __this_cpu_read(kvm_running_vcpu); + preempt_enable(); - /* - * kvm_arch_init makes sure there's at most one caller - * for architectures that support multiple implementations, - * like intel and amd on x86. - * kvm_arch_init must be called before kvm_irqfd_init to avoid creating - * conflicts in case kvm is already setup for another implementation. - */ - r = kvm_irqfd_init(); - if (r) - goto out_irqfd; + return vcpu; +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_running_vcpu); - if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { - r = -ENOMEM; - goto out_free_0; - } +/** + * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. + */ +struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) +{ + return &kvm_running_vcpu; +} - r = kvm_arch_hardware_setup(); - if (r < 0) - goto out_free_0a; +#ifdef CONFIG_GUEST_PERF_EVENTS +static unsigned int kvm_guest_state(void) +{ + struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); + unsigned int state; - for_each_online_cpu(cpu) { - smp_call_function_single(cpu, - kvm_arch_check_processor_compat, - &r, 1); - if (r < 0) - goto out_free_1; - } + if (!kvm_arch_pmi_in_guest(vcpu)) + return 0; - r = register_cpu_notifier(&kvm_cpu_notifier); - if (r) - goto out_free_2; - register_reboot_notifier(&kvm_reboot_notifier); + state = PERF_GUEST_ACTIVE; + if (!kvm_arch_vcpu_in_kernel(vcpu)) + state |= PERF_GUEST_USER; + + return state; +} + +static unsigned long kvm_guest_get_ip(void) +{ + struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); + + /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ + if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) + return 0; + + return kvm_arch_vcpu_get_ip(vcpu); +} + +static struct perf_guest_info_callbacks kvm_guest_cbs = { + .state = kvm_guest_state, + .get_ip = kvm_guest_get_ip, + .handle_intel_pt_intr = NULL, +}; + +void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) +{ + kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; + perf_register_guest_info_callbacks(&kvm_guest_cbs); +} +void kvm_unregister_perf_callbacks(void) +{ + perf_unregister_guest_info_callbacks(&kvm_guest_cbs); +} +#endif + +int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) +{ + int r; + int cpu; /* A kmem cache lets us meet the alignment requirements of fx_save. */ if (!vcpu_align) vcpu_align = __alignof__(struct kvm_vcpu); - kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, - 0, NULL); - if (!kvm_vcpu_cache) { - r = -ENOMEM; - goto out_free_3; + kvm_vcpu_cache = + kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, + SLAB_ACCOUNT, + offsetof(struct kvm_vcpu, arch), + offsetofend(struct kvm_vcpu, stats_id) + - offsetof(struct kvm_vcpu, arch), + NULL); + if (!kvm_vcpu_cache) + return -ENOMEM; + + for_each_possible_cpu(cpu) { + if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), + GFP_KERNEL, cpu_to_node(cpu))) { + r = -ENOMEM; + goto err_cpu_kick_mask; + } } + r = kvm_irqfd_init(); + if (r) + goto err_irqfd; + r = kvm_async_pf_init(); if (r) - goto out_free; + goto err_async_pf; kvm_chardev_ops.owner = module; kvm_vm_fops.owner = module; kvm_vcpu_fops.owner = module; - - r = misc_register(&kvm_dev); - if (r) { - printk(KERN_ERR "kvm: misc device register failed\n"); - goto out_unreg; - } - - register_syscore_ops(&kvm_syscore_ops); + kvm_device_fops.owner = module; kvm_preempt_ops.sched_in = kvm_sched_in; kvm_preempt_ops.sched_out = kvm_sched_out; - r = kvm_init_debug(); + kvm_init_debug(); + + r = kvm_vfio_ops_init(); + if (WARN_ON_ONCE(r)) + goto err_vfio; + + r = kvm_gmem_init(module); + if (r) + goto err_gmem; + + r = kvm_init_virtualization(); + if (r) + goto err_virt; + + /* + * Registration _must_ be the very last thing done, as this exposes + * /dev/kvm to userspace, i.e. all infrastructure must be setup! + */ + r = misc_register(&kvm_dev); if (r) { - printk(KERN_ERR "kvm: create debugfs files failed\n"); - goto out_undebugfs; + pr_err("kvm: misc device register failed\n"); + goto err_register; } return 0; -out_undebugfs: - unregister_syscore_ops(&kvm_syscore_ops); - misc_deregister(&kvm_dev); -out_unreg: +err_register: + kvm_uninit_virtualization(); +err_virt: + kvm_gmem_exit(); +err_gmem: + kvm_vfio_ops_exit(); +err_vfio: kvm_async_pf_deinit(); -out_free: - kmem_cache_destroy(kvm_vcpu_cache); -out_free_3: - unregister_reboot_notifier(&kvm_reboot_notifier); - unregister_cpu_notifier(&kvm_cpu_notifier); -out_free_2: -out_free_1: - kvm_arch_hardware_unsetup(); -out_free_0a: - free_cpumask_var(cpus_hardware_enabled); -out_free_0: +err_async_pf: kvm_irqfd_exit(); -out_irqfd: - kvm_arch_exit(); -out_fail: +err_irqfd: +err_cpu_kick_mask: + for_each_possible_cpu(cpu) + free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); + kmem_cache_destroy(kvm_vcpu_cache); return r; } -EXPORT_SYMBOL_GPL(kvm_init); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_init); void kvm_exit(void) { - kvm_exit_debug(); + int cpu; + + /* + * Note, unregistering /dev/kvm doesn't strictly need to come first, + * fops_get(), a.k.a. try_module_get(), prevents acquiring references + * to KVM while the module is being stopped. + */ misc_deregister(&kvm_dev); + + kvm_uninit_virtualization(); + + debugfs_remove_recursive(kvm_debugfs_dir); + for_each_possible_cpu(cpu) + free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); kmem_cache_destroy(kvm_vcpu_cache); + kvm_gmem_exit(); + kvm_vfio_ops_exit(); kvm_async_pf_deinit(); - unregister_syscore_ops(&kvm_syscore_ops); - unregister_reboot_notifier(&kvm_reboot_notifier); - unregister_cpu_notifier(&kvm_cpu_notifier); - on_each_cpu(hardware_disable_nolock, NULL, 1); - kvm_arch_hardware_unsetup(); - kvm_arch_exit(); kvm_irqfd_exit(); - free_cpumask_var(cpus_hardware_enabled); } -EXPORT_SYMBOL_GPL(kvm_exit); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_exit); |
