Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 resource control updates from Borislav Petkov:
"Carve out the resctrl filesystem-related code into fs/resctrl/ so that
multiple architectures can share the fs API for manipulating their
respective hw resource control implementation.
This is the second step in the work towards sharing the resctrl
filesystem interface, the next one being plugging ARM's MPAM into the
aforementioned fs API"
* tag 'x86_cache_for_v6.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
MAINTAINERS: Add reviewers for fs/resctrl
x86,fs/resctrl: Move the resctrl filesystem code to live in /fs/resctrl
x86/resctrl: Always initialise rid field in rdt_resources_all[]
x86/resctrl: Relax some asm #includes
x86/resctrl: Prefer alloc(sizeof(*foo)) idiom in rdt_init_fs_context()
x86/resctrl: Squelch whitespace anomalies in resctrl core code
x86/resctrl: Move pseudo lock prototypes to include/linux/resctrl.h
x86/resctrl: Fix types in resctrl_arch_mon_ctx_{alloc,free}() stubs
x86/resctrl: Move enum resctrl_event_id to resctrl.h
x86/resctrl: Move the filesystem bits to headers visible to fs/resctrl
fs/resctrl: Add boiler plate for external resctrl code
x86/resctrl: Add 'resctrl' to the title of the resctrl documentation
x86/resctrl: Split trace.h
x86/resctrl: Expand the width of domid by replacing mon_data_bits
x86/resctrl: Add end-marker to the resctrl_event_id enum
x86/resctrl: Move is_mba_sc() out of core.c
x86/resctrl: Drop __init/__exit on assorted symbols
x86/resctrl: Resctrl_exit() teardown resctrl but leave the mount point
x86/resctrl: Check all domains are offline in resctrl_exit()
x86/resctrl: Rename resctrl_sched_in() to begin with "resctrl_arch_"
...
|
|
resctrl_sched_in() loads the architecture specific CPU MSRs with the
CLOSID and RMID values. This function was named before resctrl was
split to have architecture specific code, and generic filesystem code.
This function is obviously architecture specific, but does not begin
with 'resctrl_arch_', making it the odd one out in the functions an
architecture needs to support to enable resctrl.
Rename it for consistency. This is purely cosmetic.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Amit Singh Tomar <amitsinght@marvell.com> # arm64
Tested-by: Shanker Donthineni <sdonthineni@nvidia.com> # arm64
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/20250515165855.31452-7-james.morse@arm.com
|
|
Conflicts:
arch/x86/boot/startup/sme.c
arch/x86/coco/sev/core.c
arch/x86/kernel/fpu/core.c
arch/x86/kernel/fpu/xstate.c
Semantic conflict:
arch/x86/include/asm/sev-internal.h
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Now that switch_fpu_finish() doesn't load the FPU state, it makes more
sense to fold it into switch_fpu_prepare() renamed to switch_fpu(), and
more importantly, use the "prev_p" task as a target for TIF_NEED_FPU_LOAD.
It doesn't make any sense to delay set_tsk_thread_flag(TIF_NEED_FPU_LOAD)
until "prev_p" is scheduled again.
There is no worry about the very first context switch, fpu_clone() must
always set TIF_NEED_FPU_LOAD.
Also, shift the test_tsk_thread_flag(TIF_NEED_FPU_LOAD) from the callers
to switch_fpu().
Note that the "PF_KTHREAD | PF_USER_WORKER" check can be removed but
this deserves a separate patch which can change more functions, say,
kernel_fpu_begin_mask().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Chang S . Bae <chang.seok.bae@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250503143830.GA8982@redhat.com
|
|
For historic reasons there are some TSC-related functions in the
<asm/msr.h> header, even though there's an <asm/tsc.h> header.
To facilitate the relocation of rdtsc{,_ordered}() from <asm/msr.h>
to <asm/tsc.h> and to eventually eliminate the inclusion of
<asm/msr.h> in <asm/tsc.h>, add an explicit <asm/msr.h> dependency
to the source files that reference definitions from <asm/msr.h>.
[ mingo: Clarified the changelog. ]
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Uros Bizjak <ubizjak@gmail.com>
Link: https://lore.kernel.org/r/20250501054241.1245648-1-xin@zytor.com
|
|
Suggested-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Xin Li <xin@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Suggested-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Xin Li <xin@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
|
|
No functional change.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Uros Bizjak <ubizjak@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250303165246.2175811-10-brgerst@gmail.com
|
|
No functional change.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Uros Bizjak <ubizjak@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250303165246.2175811-9-brgerst@gmail.com
|
|
No functional change.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Uros Bizjak <ubizjak@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250303165246.2175811-8-brgerst@gmail.com
|
|
Commit:
263042e4630a ("Save user RSP in pt_regs->sp on SYSCALL64 fastpath")
simplified the 64-bit implementation of KSTK_ESP() which is
now identical to 32-bit. Merge them into a common definition.
No functional change.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20250303183111.2245129-1-brgerst@gmail.com
|
|
process_64.c is not built on native 32-bit, so CONFIG_X86_32 will never
be set.
No change in functionality intended.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lore.kernel.org/r/20250202202323.422113-3-brgerst@gmail.com
|
|
Use in_ia32_syscall() instead of a compat syscall entry.
No change in functionality intended.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lore.kernel.org/r/20250202202323.422113-2-brgerst@gmail.com
|
|
There are two separate checks in prctl_enable_tagged_addr() that nr_bits
is in the correct range. The checks are arranged such the correct case
is sandwiched between both error cases, which do exactly the same thing.
Simplify the if condition and pull the correct case outside with the
rest of the success code path.
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/all/20240702132139.3332013-4-yosryahmed%40google.com
|
|
LAM can only be enabled when a process is single-threaded. But _kernel_
threads can temporarily use a single-threaded process's mm. That means
that a context-switching kernel thread can race and observe the mm's LAM
metadata (mm->context.lam_cr3_mask) change.
The context switch code does two logical things with that metadata:
populate CR3 and populate 'cpu_tlbstate.lam'. If it hits this race,
'cpu_tlbstate.lam' and CR3 can end up out of sync.
This de-synchronization is currently harmless. But it is confusing and
might lead to warnings or real bugs.
Update set_tlbstate_lam_mode() to take in the LAM mask and untag mask
instead of an mm_struct pointer, and while we are at it, rename it to
cpu_tlbstate_update_lam(). This should also make it clearer that we are
updating cpu_tlbstate. In switch_mm_irqs_off(), read the LAM mask once
and use it for both the cpu_tlbstate update and the CR3 update.
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/all/20240702132139.3332013-3-yosryahmed%40google.com
|
|
LAM can only be enabled when a process is single-threaded. But _kernel_
threads can temporarily use a single-threaded process's mm.
If LAM is enabled by a userspace process while a kthread is using its
mm, the kthread will not observe LAM enablement (i.e. LAM will be
disabled in CR3). This could be fine for the kthread itself, as LAM only
affects userspace addresses. However, if the kthread context switches to
a thread in the same userspace process, CR3 may or may not be updated
because the mm_struct doesn't change (based on pending TLB flushes). If
CR3 is not updated, the userspace thread will run incorrectly with LAM
disabled, which may cause page faults when using tagged addresses.
Example scenario:
CPU 1 CPU 2
/* kthread */
kthread_use_mm()
/* user thread */
prctl_enable_tagged_addr()
/* LAM enabled on CPU 2 */
/* LAM disabled on CPU 1 */
context_switch() /* to CPU 1 */
/* Switching to user thread */
switch_mm_irqs_off()
/* CR3 not updated */
/* LAM is still disabled on CPU 1 */
Synchronize LAM enablement by sending an IPI to all CPUs running with
the mm_struct to enable LAM. This makes sure LAM is enabled on CPU 1
in the above scenario before prctl_enable_tagged_addr() returns and
userspace starts using tagged addresses, and before it's possible to
run the userspace process on CPU 1.
In switch_mm_irqs_off(), move reading the LAM mask until after
mm_cpumask() is updated. This ensures that if an outdated LAM mask is
written to CR3, an IPI is received to update it right after IRQs are
re-enabled.
[ dhansen: Add a LAM enabling helper and comment it ]
Fixes: 82721d8b25d7 ("x86/mm: Handle LAM on context switch")
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/all/20240702132139.3332013-2-yosryahmed%40google.com
|
|
cpu_feature_enabled(X86_FEATURE_OSPKE) does not necessarily reflect
whether CR4.PKE is set on the CPU. In particular, they may differ on
non-BSP CPUs before setup_pku() is executed. In this scenario, RDPKRU
will #UD causing the system to hang.
Fix by checking CR4 for PKE enablement which is always correct for the
current CPU.
The scenario happens by inserting a WARN* before setup_pku() in
identiy_cpu() or some other diagnostic which would lead to calling
__show_regs().
[ bp: Massage commit message. ]
Signed-off-by: David Kaplan <david.kaplan@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240421191728.32239-1-bp@kernel.org
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core x86 updates from Ingo Molnar:
- The biggest change is the rework of the percpu code, to support the
'Named Address Spaces' GCC feature, by Uros Bizjak:
- This allows C code to access GS and FS segment relative memory
via variables declared with such attributes, which allows the
compiler to better optimize those accesses than the previous
inline assembly code.
- The series also includes a number of micro-optimizations for
various percpu access methods, plus a number of cleanups of %gs
accesses in assembly code.
- These changes have been exposed to linux-next testing for the
last ~5 months, with no known regressions in this area.
- Fix/clean up __switch_to()'s broken but accidentally working handling
of FPU switching - which also generates better code
- Propagate more RIP-relative addressing in assembly code, to generate
slightly better code
- Rework the CPU mitigations Kconfig space to be less idiosyncratic, to
make it easier for distros to follow & maintain these options
- Rework the x86 idle code to cure RCU violations and to clean up the
logic
- Clean up the vDSO Makefile logic
- Misc cleanups and fixes
* tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
x86/idle: Select idle routine only once
x86/idle: Let prefer_mwait_c1_over_halt() return bool
x86/idle: Cleanup idle_setup()
x86/idle: Clean up idle selection
x86/idle: Sanitize X86_BUG_AMD_E400 handling
sched/idle: Conditionally handle tick broadcast in default_idle_call()
x86: Increase brk randomness entropy for 64-bit systems
x86/vdso: Move vDSO to mmap region
x86/vdso/kbuild: Group non-standard build attributes and primary object file rules together
x86/vdso: Fix rethunk patching for vdso-image-{32,64}.o
x86/retpoline: Ensure default return thunk isn't used at runtime
x86/vdso: Use CONFIG_COMPAT_32 to specify vdso32
x86/vdso: Use $(addprefix ) instead of $(foreach )
x86/vdso: Simplify obj-y addition
x86/vdso: Consolidate targets and clean-files
x86/bugs: Rename CONFIG_RETHUNK => CONFIG_MITIGATION_RETHUNK
x86/bugs: Rename CONFIG_CPU_SRSO => CONFIG_MITIGATION_SRSO
x86/bugs: Rename CONFIG_CPU_IBRS_ENTRY => CONFIG_MITIGATION_IBRS_ENTRY
x86/bugs: Rename CONFIG_CPU_UNRET_ENTRY => CONFIG_MITIGATION_UNRET_ENTRY
x86/bugs: Rename CONFIG_SLS => CONFIG_MITIGATION_SLS
...
|
|
Entering a new task is logically speaking a return from a system call
(exec, fork, clone, etc.). As such, if ptrace enables single stepping
a single step exception should be allowed to trigger immediately upon
entering user space. This is not optional.
NMI should *never* be disabled in user space. As such, this is an
optional, opportunistic way to catch errors.
Allow single-step trap and NMI when starting a new task, thus once
the new task enters user space, single-step trap and NMI are both
enabled immediately.
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-21-xin3.li@intel.com
|
|
SWAPGS is no longer needed thus NOT allowed with FRED because FRED
transitions ensure that an operating system can _always_ operate
with its own GS base address:
- For events that occur in ring 3, FRED event delivery swaps the GS
base address with the IA32_KERNEL_GS_BASE MSR.
- ERETU (the FRED transition that returns to ring 3) also swaps the
GS base address with the IA32_KERNEL_GS_BASE MSR.
And the operating system can still setup the GS segment for a user
thread without the need of loading a user thread GS with:
- Using LKGS, available with FRED, to modify other attributes of the
GS segment without compromising its ability always to operate with
its own GS base address.
- Accessing the GS segment base address for a user thread as before
using RDMSR or WRMSR on the IA32_KERNEL_GS_BASE MSR.
Note, LKGS loads the GS base address into the IA32_KERNEL_GS_BASE MSR
instead of the GS segment's descriptor cache. As such, the operating
system never changes its runtime GS base address.
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-19-xin3.li@intel.com
|
|
struct pt_regs is hard to read because the member or section related
comments are not aligned with the members.
The 'cs' and 'ss' members of pt_regs are type of 'unsigned long' while
in reality they are only 16-bit wide. This works so far as the
remaining space is unused, but FRED will use the remaining bits for
other purposes.
To prepare for FRED:
- Cleanup the formatting
- Convert 'cs' and 'ss' to u16 and embed them into an union
with a u64
- Fixup the related printk() format strings
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Originally-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-14-xin3.li@intel.com
|
|
It happens to work, but it's very very wrong, because our 'current'
macro is magic that is supposedly loading a stable value.
It just happens to be not quite stable enough and the compilers
re-load the value enough for this code to work. But it's wrong.
The whole
struct fpu *prev_fpu = &prev->fpu;
thing in __switch_to() is pretty ugly. There's no reason why we
should look at that 'prev_fpu' pointer there, or pass it down.
And it only generates worse code, in how it loads 'current' when
__switch_to() has the right task pointers.
The attached patch not only cleans this up, it actually
generates better code too:
(a) it removes one push/pop pair at entry/exit because there's one
less register used (no 'current')
(b) it removes that pointless load of 'current' because it just uses
the right argument:
- movq %gs:pcpu_hot(%rip), %r12
- testq $16384, (%r12)
+ testq $16384, (%rdi)
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20231018184227.446318-1-ubizjak@gmail.com
|
|
CRIU and GDB need to get the current shadow stack and WRSS enablement
status. This information is already available via /proc/pid/status, but
this is inconvenient for CRIU because it involves parsing the text output
in an area of the code where this is difficult. Provide a status
arch_prctl(), ARCH_SHSTK_STATUS for retrieving the status. Have arg2 be a
userspace address, and make the new arch_prctl simply copy the features
out to userspace.
Suggested-by: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-43-rick.p.edgecombe%40intel.com
|
|
Userspace loaders may lock features before a CRIU restore operation has
the chance to set them to whatever state is required by the process
being restored. Allow a way for CRIU to unlock features. Add it as an
arch_prctl() like the other shadow stack operations, but restrict it being
called by the ptrace arch_pctl() interface.
[Merged into recent API changes, added commit log and docs]
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-42-rick.p.edgecombe%40intel.com
|
|
Add three new arch_prctl() handles:
- ARCH_SHSTK_ENABLE/DISABLE enables or disables the specified
feature. Returns 0 on success or a negative value on error.
- ARCH_SHSTK_LOCK prevents future disabling or enabling of the
specified feature. Returns 0 on success or a negative value
on error.
The features are handled per-thread and inherited over fork(2)/clone(2),
but reset on exec().
Co-developed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-27-rick.p.edgecombe%40intel.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull iommu updates from Joerg Roedel:
- Convert to platform remove callback returning void
- Extend changing default domain to normal group
- Intel VT-d updates:
- Remove VT-d virtual command interface and IOASID
- Allow the VT-d driver to support non-PRI IOPF
- Remove PASID supervisor request support
- Various small and misc cleanups
- ARM SMMU updates:
- Device-tree binding updates:
* Allow Qualcomm GPU SMMUs to accept relevant clock properties
* Document Qualcomm 8550 SoC as implementing an MMU-500
* Favour new "qcom,smmu-500" binding for Adreno SMMUs
- Fix S2CR quirk detection on non-architectural Qualcomm SMMU
implementations
- Acknowledge SMMUv3 PRI queue overflow when consuming events
- Document (in a comment) why ATS is disabled for bypass streams
- AMD IOMMU updates:
- 5-level page-table support
- NUMA awareness for memory allocations
- Unisoc driver: Support for reattaching an existing domain
- Rockchip driver: Add missing set_platform_dma_ops callback
- Mediatek driver: Adjust the dma-ranges
- Various other small fixes and cleanups
* tag 'iommu-updates-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (82 commits)
iommu: Remove iommu_group_get_by_id()
iommu: Make iommu_release_device() static
iommu/vt-d: Remove BUG_ON in dmar_insert_dev_scope()
iommu/vt-d: Remove a useless BUG_ON(dev->is_virtfn)
iommu/vt-d: Remove BUG_ON in map/unmap()
iommu/vt-d: Remove BUG_ON when domain->pgd is NULL
iommu/vt-d: Remove BUG_ON in handling iotlb cache invalidation
iommu/vt-d: Remove BUG_ON on checking valid pfn range
iommu/vt-d: Make size of operands same in bitwise operations
iommu/vt-d: Remove PASID supervisor request support
iommu/vt-d: Use non-privileged mode for all PASIDs
iommu/vt-d: Remove extern from function prototypes
iommu/vt-d: Do not use GFP_ATOMIC when not needed
iommu/vt-d: Remove unnecessary checks in iopf disabling path
iommu/vt-d: Move PRI handling to IOPF feature path
iommu/vt-d: Move pfsid and ats_qdep calculation to device probe path
iommu/vt-d: Move iopf code from SVA to IOPF enabling path
iommu/vt-d: Allow SVA with device-specific IOPF
dmaengine: idxd: Add enable/disable device IOPF feature
arm64: dts: mt8186: Add dma-ranges for the parent "soc" node
...
|
|
arch_prctl(ARCH_FORCE_TAGGED_SVA) overrides the default and allows LAM
and SVA to co-exist in the process. It is expected by called by the
process when it knows what it is doing.
arch_prctl() operates on the current process, but the same code is
reachable from ptrace where it can be called on arbitrary task.
Make it strict and only allow to set MM_CONTEXT_FORCE_TAGGED_SVA for the
current process.
Fixes: 23e5d9ec2bab ("x86/mm/iommu/sva: Make LAM and SVA mutually exclusive")
Suggested-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Link: https://lore.kernel.org/all/20230403111020.3136-3-kirill.shutemov%40linux.intel.com
|
|
Normally, LAM and SVA are mutually exclusive. LAM enabling will fail if
SVA is already in use.
Correct error code for the failure. EINTR is nonsensical there.
Fixes: 23e5d9ec2bab ("x86/mm/iommu/sva: Make LAM and SVA mutually exclusive")
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Link: https://lore.kernel.org/all/CACT4Y+YfqSMsZArhh25TESmG-U4jO5Hjphz87wKSnTiaw2Wrfw@mail.gmail.com
Link: https://lore.kernel.org/all/20230403111020.3136-2-kirill.shutemov%40linux.intel.com
|
|
IOMMU and SVA-capable devices know nothing about LAM and only expect
canonical addresses. An attempt to pass down tagged pointer will lead
to address translation failure.
By default do not allow to enable both LAM and use SVA in the same
process.
The new ARCH_FORCE_TAGGED_SVA arch_prctl() overrides the limitation.
By using the arch_prctl() userspace takes responsibility to never pass
tagged address to the device.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20230312112612.31869-12-kirill.shutemov%40linux.intel.com
|
|
Add a few of arch_prctl() handles:
- ARCH_ENABLE_TAGGED_ADDR enabled LAM. The argument is required number
of tag bits. It is rounded up to the nearest LAM mode that can
provide it. For now only LAM_U57 is supported, with 6 tag bits.
- ARCH_GET_UNTAG_MASK returns untag mask. It can indicates where tag
bits located in the address.
- ARCH_GET_MAX_TAG_BITS returns the maximum tag bits user can request.
Zero if LAM is not supported.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Alexander Potapenko <glider@google.com>
Link: https://lore.kernel.org/all/20230312112612.31869-9-kirill.shutemov%40linux.intel.com
|
|
So far there's no need in atomic setting of MM context flags in
mm_context_t::flags. The flags set early in exec and never change
after that.
LAM enabling requires atomic flag setting. The upcoming flag
MM_CONTEXT_FORCE_TAGGED_SVA can be set much later in the process
lifetime where multiple threads exist.
Convert the field to unsigned long and do MM_CONTEXT_* accesses with
__set_bit() and test_bit().
No functional changes.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Alexander Potapenko <glider@google.com>
Link: https://lore.kernel.org/all/20230312112612.31869-3-kirill.shutemov%40linux.intel.com
|
|
The implementation of 'current' on x86 is very intentionally special: it
is a very common thing to look up, and it uses 'this_cpu_read_stable()'
to get the current thread pointer efficiently from per-cpu storage.
And the keyword in there is 'stable': the current thread pointer never
changes as far as a single thread is concerned. Even if when a thread
is preempted, or moved to another CPU, or even across an explicit call
'schedule()' that thread will still have the same value for 'current'.
It is, after all, the kernel base pointer to thread-local storage.
That's why it's stable to begin with, but it's also why it's important
enough that we have that special 'this_cpu_read_stable()' access for it.
So this is all done very intentionally to allow the compiler to treat
'current' as a value that never visibly changes, so that the compiler
can do CSE and combine multiple different 'current' accesses into one.
However, there is obviously one very special situation when the
currently running thread does actually change: inside the scheduler
itself.
So the scheduler code paths are special, and do not have a 'current'
thread at all. Instead there are _two_ threads: the previous and the
next thread - typically called 'prev' and 'next' (or prev_p/next_p)
internally.
So this is all actually quite straightforward and simple, and not all
that complicated.
Except for when you then have special code that is run in scheduler
context, that code then has to be aware that 'current' isn't really a
valid thing. Did you mean 'prev'? Did you mean 'next'?
In fact, even if then look at the code, and you use 'current' after the
new value has been assigned to the percpu variable, we have explicitly
told the compiler that 'current' is magical and always stable. So the
compiler is quite free to use an older (or newer) value of 'current',
and the actual assignment to the percpu storage is not relevant even if
it might look that way.
Which is exactly what happened in the resctl code, that blithely used
'current' in '__resctrl_sched_in()' when it really wanted the new
process state (as implied by the name: we're scheduling 'into' that new
resctl state). And clang would end up just using the old thread pointer
value at least in some configurations.
This could have happened with gcc too, and purely depends on random
compiler details. Clang just seems to have been more aggressive about
moving the read of the per-cpu current_task pointer around.
The fix is trivial: just make the resctl code adhere to the scheduler
rules of using the prev/next thread pointer explicitly, instead of using
'current' in a situation where it just wasn't valid.
That same code is then also used outside of the scheduler context (when
a thread resctl state is explicitly changed), and then we will just pass
in 'current' as that pointer, of course. There is no ambiguity in that
case.
The fix may be trivial, but noticing and figuring out what went wrong
was not. The credit for that goes to Stephane Eranian.
Reported-by: Stephane Eranian <eranian@google.com>
Link: https://lore.kernel.org/lkml/20230303231133.1486085-1-eranian@google.com/
Link: https://lore.kernel.org/lkml/alpine.LFD.2.01.0908011214330.3304@localhost.localdomain/
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Tested-by: Stephane Eranian <eranian@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Borislav Petkov:
- Add the call depth tracking mitigation for Retbleed which has been
long in the making. It is a lighterweight software-only fix for
Skylake-based cores where enabling IBRS is a big hammer and causes a
significant performance impact.
What it basically does is, it aligns all kernel functions to 16 bytes
boundary and adds a 16-byte padding before the function, objtool
collects all functions' locations and when the mitigation gets
applied, it patches a call accounting thunk which is used to track
the call depth of the stack at any time.
When that call depth reaches a magical, microarchitecture-specific
value for the Return Stack Buffer, the code stuffs that RSB and
avoids its underflow which could otherwise lead to the Intel variant
of Retbleed.
This software-only solution brings a lot of the lost performance
back, as benchmarks suggest:
https://lore.kernel.org/all/20220915111039.092790446@infradead.org/
That page above also contains a lot more detailed explanation of the
whole mechanism
- Implement a new control flow integrity scheme called FineIBT which is
based on the software kCFI implementation and uses hardware IBT
support where present to annotate and track indirect branches using a
hash to validate them
- Other misc fixes and cleanups
* tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (80 commits)
x86/paravirt: Use common macro for creating simple asm paravirt functions
x86/paravirt: Remove clobber bitmask from .parainstructions
x86/debug: Include percpu.h in debugreg.h to get DECLARE_PER_CPU() et al
x86/cpufeatures: Move X86_FEATURE_CALL_DEPTH from bit 18 to bit 19 of word 11, to leave space for WIP X86_FEATURE_SGX_EDECCSSA bit
x86/Kconfig: Enable kernel IBT by default
x86,pm: Force out-of-line memcpy()
objtool: Fix weak hole vs prefix symbol
objtool: Optimize elf_dirty_reloc_sym()
x86/cfi: Add boot time hash randomization
x86/cfi: Boot time selection of CFI scheme
x86/ibt: Implement FineIBT
objtool: Add --cfi to generate the .cfi_sites section
x86: Add prefix symbols for function padding
objtool: Add option to generate prefix symbols
objtool: Avoid O(bloody terrible) behaviour -- an ode to libelf
objtool: Slice up elf_create_section_symbol()
kallsyms: Revert "Take callthunks into account"
x86: Unconfuse CONFIG_ and X86_FEATURE_ namespaces
x86/retpoline: Fix crash printing warning
x86/paravirt: Fix a !PARAVIRT build warning
...
|
|
Convert the remaining cases of static_cpu_has(X86_FEATURE_XENPV) and
boot_cpu_has(X86_FEATURE_XENPV) to use cpu_feature_enabled(), allowing
more efficient code in case the kernel is configured without
CONFIG_XEN_PV.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20221104072701.20283-6-jgross@suse.com
|
|
Further extend struct pcpu_hot with the hard and soft irq stack
pointers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111145.599170752@infradead.org
|
|
Extend the struct pcpu_hot cacheline with current_top_of_stack;
another very frequently used value.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111145.493038635@infradead.org
|
|
The layout of per-cpu variables is at the mercy of the compiler. This
can lead to random performance fluctuations from build to build.
Create a structure to hold some of the hottest per-cpu variables,
starting with current_task.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111145.179707194@infradead.org
|
|
When instrumenting functions, KMSAN obtains the per-task state (mostly
pointers to metadata for function arguments and return values) once per
function at its beginning, using the `current` pointer.
Every time the instrumented function calls another function, this state
(`struct kmsan_context_state`) is updated with shadow/origin data of the
passed and returned values.
When `current` changes in the low-level arch code, instrumented code can
not notice that, and will still refer to the old state, possibly
corrupting it or using stale data. This may result in false positive
reports.
To deal with that, we need to apply __no_kmsan_checks to the functions
performing context switching - this will result in skipping all KMSAN
shadow checks and marking newly created values as initialized, preventing
all false positive reports in those functions. False negatives are still
possible, but we expect them to be rare and impersistent.
Link: https://lkml.kernel.org/r/20220915150417.722975-34-glider@google.com
Suggested-by: Marco Elver <elver@google.com>
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The functions invoked via do_arch_prctl_common() can only operate on
the current task and none of these function uses the task argument.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/87lev7vtxj.ffs@tglx
|
|
Commit 0bf6276392e9 ("x32: Warn and disable rather than error if
binutils too old") added a small test in arch/x86/Makefile because
binutils 2.22 or newer is needed to properly support elf32-x86-64. This
check is no longer necessary, as the minimum supported version of
binutils is 2.23, which is enforced at configuration time with
scripts/min-tool-version.sh.
Remove this check and replace all uses of CONFIG_X86_X32 with
CONFIG_X86_X32_ABI, as two symbols are no longer necessary.
[nathan: Rebase, fix up a few places where CONFIG_X86_X32 was still
used, and simplify commit message to satisfy -tip requirements]
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220314194842.3452-2-nathan@kernel.org
|
|
internal.h is a kitchen sink which needs to get out of the way to prepare
for the upcoming changes.
Move the context switch and exit to user inlines into a separate header,
which is all that code needs.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011539.349132461@linutronix.de
|
|
Unused since the FPU switching rework.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011538.433135710@linutronix.de
|
|
PKRU is currently partly XSAVE-managed and partly not. It has space
in the task XSAVE buffer and is context-switched by XSAVE/XRSTOR.
However, it is switched more eagerly than FPU because there may be a
need for PKRU to be up-to-date for things like copy_to/from_user() since
PKRU affects user-permission memory accesses, not just accesses from
userspace itself.
This leaves PKRU in a very odd position. XSAVE brings very little value
to the table for how Linux uses PKRU except for signal related XSTATE
handling.
Prepare to move PKRU away from being XSAVE-managed. Allocate space in
the thread_struct for it and save/restore it in the context-switch path
separately from the XSAVE-managed features. task->thread_struct.pkru
is only valid when the task is scheduled out. For the current task the
authoritative source is the hardware, i.e. it has to be retrieved via
rdpkru().
Leave the XSAVE code in place for now to ensure bisectability.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121456.399107624@linutronix.de
|
|
X86_FEATURE_OSPKE is enabled first on the boot CPU and the feature flag is
set. Secondary CPUs have to enable CR4.PKE as well and set their per CPU
feature flag. That's ineffective because all call sites have checks for
boot_cpu_data.
Make it smarter and force the feature flag when PKU is enabled on the boot
cpu which allows then to use cpu_feature_enabled(X86_FEATURE_OSPKE) all
over the place. That either compiles the code out when PKEY support is
disabled in Kconfig or uses a static_cpu_has() for the feature check which
makes a significant difference in hotpaths, e.g. context switch.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121455.305113644@linutronix.de
|
|
write_pkru() was originally used just to write to the PKRU register. It
was mercifully short and sweet and was not out of place in pgtable.h with
some other pkey-related code.
But, later work included a requirement to also modify the task XSAVE
buffer when updating the register. This really is more related to the
XSAVE architecture than to paging.
Move the read/write_pkru() to asm/pkru.h. pgtable.h won't miss them.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121455.102647114@linutronix.de
|
|
The recursion protection for hard interrupt stacks is an unsigned int per
CPU variable initialized to -1 named __irq_count.
The irq stack switching is only done when the variable is -1, which creates
worse code than just checking for 0. When the stack switching happens it
uses this_cpu_add/sub(1), but there is no reason to do so. It simply can
use straight writes. This is a historical leftover from the low level ASM
code which used inc and jz to make a decision.
Rename it to hardirq_stack_inuse, make it a bool and use plain stores.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210210002512.228830141@linutronix.de
|
|
Now that these flags are no longer used, reclaim those TIF bits.
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201004032536.1229030-11-krisman@collabora.com
|
|
The ia32_compat attribute is a weird thing. It mirrors TIF_IA32 and
TIF_X32 and is used only in two very unrelated places: (1) to decide if
the vsyscall page is accessible (2) for uprobes to find whether the
patched instruction is 32 or 64 bit.
In preparation to remove the TIF flags, a new mechanism is required for
ia32_compat, but given its odd semantics, adding a real flags field which
configures these specific behaviours is the best option.
So, set_personality_x64() can ask for the vsyscall page, which is not
available in x32/ia32 and set_personality_ia32() can configure the uprobe
code as needed.
uprobe cannot rely on other methods like user_64bit_mode() to decide how
to patch, so it needs some specific flag like this.
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski<luto@kernel.org>
Link: https://lore.kernel.org/r/20201004032536.1229030-10-krisman@collabora.com
|
|
Since TIF_X32 is going away, avoid using it to find the ELF type in
compat_start_thread.
According to SysV AMD64 ABI Draft, an AMD64 ELF object using ILP32 must
have ELFCLASS32 with (E_MACHINE == EM_X86_64), so use that ELF field to
differentiate a x32 object from a IA32 object when executing start_thread()
in compat mode.
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20201004032536.1229030-7-krisman@collabora.com
|
|
ptrace and prctl() are not really fast paths to warrant the use of
static_cpu_has() and cause alternatives patching for no good reason.
Replace with boot_cpu_has() which is simple and fast enough.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200818103715.32736-1-bp@alien8.de
|