Age | Commit message (Collapse) | Author |
|
Unlike with previous Data Fabric versions, with Data Fabric 4.5
non-power-of-2 denormalization, there are bits of the system physical
address that can't be fully reconstructed from the normalized address.
To determine the proper combination of missing system physical address
bits, iterate through each possible combination of these bits, normalize
the resulting system physical address, and compare to the original
address that is being translated. If the addresses match, then the
correct permutation of bits has been found.
Signed-off-by: John Allen <john.allen@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Yazen Ghannam <yazen.ghannam@amd.com>
Link: https://lore.kernel.org/r/20240606203313.51197-6-john.allen@amd.com
|
|
Validate address maps at the time the information is gathered as the
address map will not change during translation.
Signed-off-by: John Allen <john.allen@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Yazen Ghannam <yazen.ghannam@amd.com>
Link: https://lore.kernel.org/r/20240606203313.51197-5-john.allen@amd.com
|
|
AMD MI300 systems include on-die HBM3 memory and a unique topology. And
they fall under Data Fabric version 4.5 in overall design.
Generally, topology information (IDs, etc.) is gathered from Data Fabric
registers. However, the unique topology for MI300 means that some
topology information is fixed in hardware and follows arbitrary
mappings. Furthermore, not all hardware instances are software-visible,
so register accesses must be adjusted.
Recognize and add helper functions for the new MI300 interleave modes.
Add lookup tables for fixed values where appropriate. Adjust how Die and
Node IDs are found and used.
Also, fix some register bitmasks that were mislabeled.
Signed-off-by: Muralidhara M K <muralidhara.mk@amd.com>
Co-developed-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240128155950.1434067-1-yazen.ghannam@amd.com
|
|
AMD Zen-based systems report memory errors through Machine Check banks
representing Unified Memory Controllers (UMCs). The address value
reported for DRAM ECC errors is a "normalized address" that is relative
to the UMC. This normalized address must be converted to a system
physical address to be usable by the OS.
Support for this address translation was introduced to the MCA subsystem
with Zen1 systems. The code was later moved to the AMD64 EDAC module,
since this was the only user of the code at the time.
However, there are uses for this translation outside of EDAC. The system
physical address can be used in MCA for preemptive page offlining as done
in some MCA notifier functions. Also, this translation is needed as the
basis of similar functionality needed for some CXL configurations on AMD
systems.
Introduce a common address translation library that can be used for
multiple subsystems including MCA, EDAC, and CXL.
Include support for UMC normalized to system physical address
translation for current CPU systems.
The Data Fabric Indirect register access offsets and one of the register
fields were changed. Default to the current offsets and register field
definition. And fallback to the older values if running on a "legacy"
system.
Provide built-in code to facilitate the loading and unloading of the
library module without affecting other modules or built-in code.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240123041401.79812-2-yazen.ghannam@amd.com
|