Age | Commit message (Collapse) | Author |
|
Let's make count_memcg_events re-entrant safe against irqs. The only
thing needed is to convert the usage of __this_cpu_add() to
this_cpu_add(). In addition, with re-entrant safety, there is no need to
disable irqs. Also add warnings for in_nmi() as it is not safe against
nmi context.
Link: https://lkml.kernel.org/r/20250514184158.3471331-5-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Let's make mod_memcg_state re-entrant safe against irqs. The only thing
needed is to convert the usage of __this_cpu_add() to this_cpu_add(). In
addition, with re-entrant safety, there is no need to disable irqs.
mod_memcg_state() is not safe against nmi, so let's add warning if someone
tries to call it in nmi context.
Link: https://lkml.kernel.org/r/20250514184158.3471331-4-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "Use kmem_cache for memcg alloc", v3.
(willy tldr: "you've gone from allocating 8 objects per 32KiB to
allocating 13 objects per 32KiB, a 62% improvement in memory consumption"
[1])
The mem_cgroup_alloc function creates mem_cgroup struct and it's
associated structures including mem_cgroup_per_node. Through detailed
analysis on our test machine (Arm64, 16GB RAM, 6.6 kernel, 1 NUMA node,
memcgv2 with nokmem,nosocket,cgroup_disable=pressure), we can observe the
memory allocation for these structures using the following shell commands:
# Enable tracing
echo 1 > /sys/kernel/tracing/events/kmem/kmalloc/enable
echo 1 > /sys/kernel/tracing/tracing_on
cat /sys/kernel/tracing/trace_pipe | grep kmalloc | grep mem_cgroup
# Trigger allocation if cgroup subtree do not enable memcg
echo +memory > /sys/fs/cgroup/cgroup.subtree_control
Ftrace Output:
# mem_cgroup struct allocation
sh-6312 [000] ..... 58015.698365: kmalloc:
call_site=mem_cgroup_css_alloc+0xd8/0x5b4
ptr=000000003e4c3799 bytes_req=2312 bytes_alloc=4096
gfp_flags=GFP_KERNEL|__GFP_ZERO node=-1 accounted=false
# mem_cgroup_per_node allocation
sh-6312 [000] ..... 58015.698389: kmalloc:
call_site=mem_cgroup_css_alloc+0x1d8/0x5b4
ptr=00000000d798700c bytes_req=2896 bytes_alloc=4096
gfp_flags=GFP_KERNEL|__GFP_ZERO node=0 accounted=false
Key Observations:
1. Both structures use kmalloc with requested sizes between 2KB-4KB
2. Allocation alignment forces 4KB slab usage due to pre-defined sizes
(64B, 128B,..., 2KB, 4KB, 8KB)
3. Memory waste per memcg instance:
Base struct: 4096 - 2312 = 1784 bytes
Per-node struct: 4096 - 2896 = 1200 bytes
Total waste: 2984 bytes (1-node system)
NUMA scaling: (1200 + 8) * nr_node_ids bytes
So, it's a little waste.
This patchset introduces dedicated kmem_cache:
Patch2 - mem_cgroup kmem_cache - memcg_cachep
Patch3 - mem_cgroup_per_node kmem_cache - memcg_pn_cachep
The benefits of this change can be observed with the following tracing
commands:
# Enable tracing
echo 1 > /sys/kernel/tracing/events/kmem/kmem_cache_alloc/enable
echo 1 > /sys/kernel/tracing/tracing_on
cat /sys/kernel/tracing/trace_pipe | grep kmem_cache_alloc | grep mem_cgroup
# In another terminal:
echo +memory > /sys/fs/cgroup/cgroup.subtree_control
The output might now look like this:
# mem_cgroup struct allocation
sh-9827 [000] ..... 289.513598: kmem_cache_alloc:
call_site=mem_cgroup_css_alloc+0xbc/0x5d4 ptr=00000000695c1806
bytes_req=2312 bytes_alloc=2368 gfp_flags=GFP_KERNEL|__GFP_ZERO node=-1
accounted=false
# mem_cgroup_per_node allocation
sh-9827 [000] ..... 289.513602: kmem_cache_alloc:
call_site=mem_cgroup_css_alloc+0x1b8/0x5d4 ptr=000000002989e63a
bytes_req=2896 bytes_alloc=2944 gfp_flags=GFP_KERNEL|__GFP_ZERO node=0
accounted=false
This indicates that the `mem_cgroup` struct now requests 2312 bytes and is
allocated 2368 bytes, while `mem_cgroup_per_node` requests 2896 bytes and
is allocated 2944 bytes. The slight increase in allocated size is due to
`SLAB_HWCACHE_ALIGN` in the `kmem_cache`.
Without `SLAB_HWCACHE_ALIGN`, the allocation might appear as:
# mem_cgroup struct allocation
sh-9269 [003] ..... 80.396366: kmem_cache_alloc:
call_site=mem_cgroup_css_alloc+0xbc/0x5d4 ptr=000000005b12b475
bytes_req=2312 bytes_alloc=2312 gfp_flags=GFP_KERNEL|__GFP_ZERO node=-1
accounted=false
# mem_cgroup_per_node allocation
sh-9269 [003] ..... 80.396411: kmem_cache_alloc:
call_site=mem_cgroup_css_alloc+0x1b8/0x5d4 ptr=00000000f347adc6
bytes_req=2896 bytes_alloc=2896 gfp_flags=GFP_KERNEL|__GFP_ZERO node=0
accounted=false
While the `bytes_alloc` now matches the `bytes_req`, this patchset
defaults to using `SLAB_HWCACHE_ALIGN` as it is generally considered more
beneficial for performance. Please let me know if there are any issues or
if I've misunderstood anything.
This patchset also move mem_cgroup_init ahead of cgroup_init() due to
cgroup_init() will allocate root_mem_cgroup, but each initcall invoke
after cgroup_init, so if each kmem_cache do not prepare, we need testing
NULL before use it.
This patch (of 3):
When cgroup_init() creates root_mem_cgroup through css_alloc callback,
some critical resources might not be fully initialized, forcing later
operations to perform conditional checks for resource availability.
This patch move mem_cgroup_init() to address the init order, it invoke
before cgroup_init, so, compare to subsys_initcall, it can use to prepare
some key resources before root_mem_cgroup alloc.
Link: https://lkml.kernel.org/r/aAsRCj-niMMTtmK8@casper.infradead.org [1]
Link: https://lkml.kernel.org/r/20250425031935.76411-1-link@vivo.com
Link: https://lkml.kernel.org/r/20250425031935.76411-2-link@vivo.com
Signed-off-by: Huan Yang <link@vivo.com>
Suggested-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Francesco Valla <francesco@valla.it>
Cc: guoweikang <guoweikang.kernel@gmail.com>
Cc: Huang Shijie <shijie@os.amperecomputing.com>
Cc: KP Singh <kpsingh@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Raul E Rangel <rrangel@chromium.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: "Uladzislau Rezki (Sony)" <urezki@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It is possible for a reclaimer to cause demotions of an lruvec belonging
to a cgroup with cpuset.mems set to exclude some nodes. Attempt to apply
this limitation based on the lruvec's memcg and prevent demotion.
Notably, this may still allow demotion of shared libraries or any memory
first instantiated in another cgroup. This means cpusets still cannot
cannot guarantee complete isolation when demotion is enabled, and the docs
have been updated to reflect this.
This is useful for isolating workloads on a multi-tenant system from
certain classes of memory more consistently - with the noted exceptions.
Note on locking:
The cgroup_get_e_css reference protects the css->effective_mems, and calls
of this interface would be subject to the same race conditions associated
with a non-atomic access to cs->effective_mems.
So while this interface cannot make strong guarantees of correctness, it
can therefore avoid taking a global or rcu_read_lock for performance.
Link: https://lkml.kernel.org/r/20250424202806.52632-3-gourry@gourry.net
Signed-off-by: Gregory Price <gourry@gourry.net>
Suggested-by: Shakeel Butt <shakeel.butt@linux.dev>
Suggested-by: Waiman Long <longman@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Waiman Long <longman@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
kpageflags_read() and kpagecgroup_read() are quite similar to
kpagecount_read(). Refactor common code into a helper function to reduce
code duplication.
Link: https://lkml.kernel.org/r/20250318063226.223284-1-liuyerd@163.com
Signed-off-by: Liu Ye <liuye@kylinos.cn>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Ran Xiaokai <ran.xiaokai@zte.com.cn>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Svetly Todorov <svetly.todorov@memverge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There's no need to check which kind of pointer is in the memcg_data field,
all we actually care about is whether it's zero or not. Saves 70 bytes in
workingset_activation() with the Debian config.
Link: https://lkml.kernel.org/r/20250314133617.138071-5-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The last argument to split_page_memcg() is now always 0, so remove it,
effectively reverting commit b8791381d7ed.
Link: https://lkml.kernel.org/r/20250314133617.138071-3-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Zi Yan <ziy@nvidia.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "Minor memcg cleanups & prep for memdescs", v2.
Separate the handling of accounted folios and GFP_ACCOUNT pages for easier
to understand code. For more detail, see
https://lore.kernel.org/linux-mm/Z9LwTOudOlCGny3f@casper.infradead.org/
This patch (of 5):
Folios always use memcg_data to refer to the mem_cgroup while pages
allocated with GFP_ACCOUNT have a pointer to the obj_cgroup. Since the
caller already knows what it has, split the function into two and then we
don't need to check.
Move the assignment of split folio memcg_data to the point where we set up
the other parts of the new folio. That leaves folio_split_memcg_refs()
just handling the memcg accounting.
Link: https://lkml.kernel.org/r/20250314133617.138071-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20250314133617.138071-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Zi Yan <ziy@nvidia.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The interweaving of two entirely different swap accounting strategies has
been one of the more confusing parts of the memcg code. Split out the v1
code to clarify the implementation and a handful of callsites, and to
avoid building the v1 bits when !CONFIG_MEMCG_V1.
text data bss dec hex filename
39253 6446 4160 49859 c2c3 mm/memcontrol.o.old
38877 6382 4160 49419 c10b mm/memcontrol.o
Link: https://lkml.kernel.org/r/20250124054132.45643-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Balbir Singh <balbirs@nvidia.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This patch fully removes the mem_cgroup_{try, commit, cancel}_charge
functions, as well as their hugetlb variants.
Link: https://lkml.kernel.org/r/20241211203951.764733-4-joshua.hahnjy@gmail.com
Signed-off-by: Joshua Hahn <joshua.hahnjy@gmail.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This patch introduces mem_cgroup_charge_hugetlb which combines the logic
of mem_cgroup_hugetlb_try_charge / mem_cgroup_hugetlb_commit_charge and
removes the need for mem_cgroup_hugetlb_cancel_charge. It also reduces
the footprint of memcg in hugetlb code and consolidates all memcg related
error paths into one.
Link: https://lkml.kernel.org/r/20241211203951.764733-3-joshua.hahnjy@gmail.com
Signed-off-by: Joshua Hahn <joshua.hahnjy@gmail.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We are starting to deploy mmap_lock tracepoint monitoring across our
fleet and the early results showed that these tracepoints are consuming
significant amount of CPUs in kernfs_path_from_node when enabled.
It seems like the kernel is trying to resolve the cgroup path in the
fast path of the locking code path when the tracepoints are enabled. In
addition for some application their metrics are regressing when
monitoring is enabled.
The cgroup path resolution can be slow and should not be done in the
fast path. Most userspace tools, like bpftrace, provides functionality
to get the cgroup path from cgroup id, so let's just trace the cgroup
id and the users can use better tools to get the path in the slow path.
Link: https://lkml.kernel.org/r/20241125171617.113892-1-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Reviewed-by: Axel Rasmussen <axelrasmussen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm: zswap swap-out of large folios", v10.
This patch series enables zswap_store() to accept and store large folios.
The most significant contribution in this series is from the earlier RFC
submitted by Ryan Roberts [1]. Ryan's original RFC has been migrated to
mm-unstable as of 9-30-2024 in patch 6 of this series, and adapted based
on code review comments received for the current patch-series.
[1]: [RFC PATCH v1] mm: zswap: Store large folios without splitting
https://lore.kernel.org/linux-mm/20231019110543.3284654-1-ryan.roberts@arm.com/T/#u
The first few patches do the prep work for supporting large folios in
zswap_store. Patch 6 provides the main functionality to swap-out large
folios in zswap. Patch 7 adds sysfs per-order hugepages "zswpout"
counters that get incremented upon successful zswap_store of large folios,
and also updates the documentation for this:
/sys/kernel/mm/transparent_hugepage/hugepages-*kB/stats/zswpout
This patch series is a prerequisite for zswap compress batching of large
folio swap-out and decompress batching of swap-ins based on
swapin_readahead(), using Intel IAA hardware acceleration, which we would
like to submit in subsequent patch-series, with performance improvement
data.
Thanks to Ying Huang for pre-posting review feedback and suggestions!
Thanks also to Nhat, Yosry, Johannes, Barry, Chengming, Usama, Ying and
Matthew for their helpful feedback, code/data reviews and suggestions!
Co-development signoff request:
===============================
I would like to thank Ryan Roberts for his original RFC [1] and request
his co-developer signoff on patch 6 in this series. Thanks Ryan!
System setup for testing:
=========================
Testing of this patch series was done with mm-unstable as of 9-27-2024,
commit de2fbaa6d9c3576ec7133ed02a370ec9376bf000 (without this patch-series)
and mm-unstable 9-30-2024 commit c121617e3606be6575cdacfdb63cc8d67b46a568
(with this patch-series). Data was gathered on an Intel Sapphire Rapids
server, dual-socket 56 cores per socket, 4 IAA devices per socket, 503 GiB
RAM and 525G SSD disk partition swap. Core frequency was fixed at 2500MHz.
The vm-scalability "usemem" test was run in a cgroup whose memory.high
was fixed at 150G. The is no swap limit set for the cgroup. 30 usemem
processes were run, each allocating and writing 10G of memory, and sleeping
for 10 sec before exiting:
usemem --init-time -w -O -s 10 -n 30 10g
Other kernel configuration parameters:
zswap compressors : zstd, deflate-iaa
zswap allocator : zsmalloc
vm.page-cluster : 2
In the experiments where "deflate-iaa" is used as the zswap compressor,
IAA "compression verification" is enabled by default
(cat /sys/bus/dsa/drivers/crypto/verify_compress). Hence each IAA
compression will be decompressed internally by the "iaa_crypto" driver, the
crc-s returned by the hardware will be compared and errors reported in case
of mismatches. Thus "deflate-iaa" helps ensure better data integrity as
compared to the software compressors, and the experimental data listed
below is with verify_compress set to "1".
Metrics reporting methodology:
==============================
Total and average throughput are derived from the individual 30 processes'
throughputs reported by usemem. elapsed/sys times are measured with perf.
All percentage changes are "new" vs. "old"; hence a positive value
denotes an increase in the metric, whether it is throughput or latency,
and a negative value denotes a reduction in the metric. Positive throughput
change percentages and negative latency change percentages denote improvements.
The vm stats and sysfs hugepages stats included with the performance data
provide details on the swapout activity to zswap/swap device.
Testing labels used in data summaries:
======================================
The data refers to these test configurations and the before/after
comparisons that they do:
before-case1:
-------------
mm-unstable 9-27-2024, CONFIG_THP_SWAP=N (compares zswap 4K vs. zswap 64K)
In this scenario, CONFIG_THP_SWAP=N results in 64K/2M folios to be split
into 4K folios that get processed by zswap.
before-case2:
-------------
mm-unstable 9-27-2024, CONFIG_THP_SWAP=Y (compares SSD swap large folios vs. zswap large folios)
In this scenario, CONFIG_THP_SWAP=Y results in zswap rejecting large
folios, which will then be stored by the SSD swap device.
after:
------
v10 of this patch-series, CONFIG_THP_SWAP=Y
The "after" is CONFIG_THP_SWAP=Y and v10 of this patch-series, that results
in 64K/2M folios to not be split, and to be processed by zswap_store.
Regression Testing:
===================
I ran vm-scalability usemem without large folios, i.e., only 4K folios with
mm-unstable and this patch-series. The main goal was to make sure that
there is no functional or performance regression wrt the earlier zswap
behavior for 4K folios, now that 4K folios will be processed by the new
zswap_store() code.
The data indicates there is no significant regression.
-------------------------------------------------------------------------------
4K folios:
==========
zswap compressor zstd zstd zstd zstd v10
before-case1 before-case2 after vs. vs.
case1 case2
-------------------------------------------------------------------------------
Total throughput (KB/s) 4,793,363 4,880,978 4,853,074 1% -1%
Average throughput (KB/s) 159,778 162,699 161,769 1% -1%
elapsed time (sec) 130.14 123.17 126.29 -3% 3%
sys time (sec) 3,135.53 2,985.64 3,083.18 -2% 3%
memcg_high 446,826 444,626 452,930
memcg_swap_fail 0 0 0
zswpout 48,932,107 48,931,971 48,931,820
zswpin 383 386 397
pswpout 0 0 0
pswpin 0 0 0
thp_swpout 0 0 0
thp_swpout_fallback 0 0 0
64kB-mthp_swpout_fallback 0 0 0
pgmajfault 3,063 3,077 3,479
swap_ra 93 94 96
swap_ra_hit 47 47 50
ZSWPOUT-64kB n/a n/a 0
SWPOUT-64kB 0 0 0
-------------------------------------------------------------------------------
Performance Testing:
====================
We list the data for 64K folios with before/after data per-compressor,
followed by the same for 2M pmd-mappable folios.
-------------------------------------------------------------------------------
64K folios: zstd:
=================
zswap compressor zstd zstd zstd zstd v10
before-case1 before-case2 after vs. vs.
case1 case2
-------------------------------------------------------------------------------
Total throughput (KB/s) 5,222,213 1,076,611 6,159,776 18% 472%
Average throughput (KB/s) 174,073 35,887 205,325 18% 472%
elapsed time (sec) 120.50 347.16 108.33 -10% -69%
sys time (sec) 2,930.33 248.16 2,549.65 -13% 927%
memcg_high 416,773 552,200 465,874
memcg_swap_fail 3,192,906 1,293 1,012
zswpout 48,931,583 20,903 48,931,218
zswpin 384 363 410
pswpout 0 40,778,448 0
pswpin 0 16 0
thp_swpout 0 0 0
thp_swpout_fallback 0 0 0
64kB-mthp_swpout_fallback 3,192,906 1,293 1,012
pgmajfault 3,452 3,072 3,061
swap_ra 90 87 107
swap_ra_hit 42 43 57
ZSWPOUT-64kB n/a n/a 3,057,173
SWPOUT-64kB 0 2,548,653 0
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
64K folios: deflate-iaa:
========================
zswap compressor deflate-iaa deflate-iaa deflate-iaa deflate-iaa v10
before-case1 before-case2 after vs. vs.
case1 case2
-------------------------------------------------------------------------------
Total throughput (KB/s) 5,652,608 1,089,180 7,189,778 27% 560%
Average throughput (KB/s) 188,420 36,306 239,659 27% 560%
elapsed time (sec) 102.90 343.35 87.05 -15% -75%
sys time (sec) 2,246.86 213.53 1,864.16 -17% 773%
memcg_high 576,104 502,907 642,083
memcg_swap_fail 4,016,117 1,407 1,478
zswpout 61,163,423 22,444 57,798,716
zswpin 401 368 454
pswpout 0 40,862,080 0
pswpin 0 20 0
thp_swpout 0 0 0
thp_swpout_fallback 0 0 0
64kB-mthp_swpout_fallback 4,016,117 1,407 1,478
pgmajfault 3,063 3,153 3,122
swap_ra 96 93 156
swap_ra_hit 46 45 83
ZSWPOUT-64kB n/a n/a 3,611,032
SWPOUT-64kB 0 2,553,880 0
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
2M folios: zstd:
================
zswap compressor zstd zstd zstd zstd v10
before-case1 before-case2 after vs. vs.
case1 case2
-------------------------------------------------------------------------------
Total throughput (KB/s) 5,895,500 1,109,694 6,484,224 10% 484%
Average throughput (KB/s) 196,516 36,989 216,140 10% 484%
elapsed time (sec) 108.77 334.28 106.33 -2% -68%
sys time (sec) 2,657.14 94.88 2,376.13 -11% 2404%
memcg_high 64,200 66,316 56,898
memcg_swap_fail 101,182 70 27
zswpout 48,931,499 36,507 48,890,640
zswpin 380 379 377
pswpout 0 40,166,400 0
pswpin 0 0 0
thp_swpout 0 78,450 0
thp_swpout_fallback 101,182 70 27
2MB-mthp_swpout_fallback 0 0 27
pgmajfault 3,067 3,417 3,311
swap_ra 91 90 854
swap_ra_hit 45 45 810
ZSWPOUT-2MB n/a n/a 95,459
SWPOUT-2MB 0 78,450 0
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
2M folios: deflate-iaa:
=======================
zswap compressor deflate-iaa deflate-iaa deflate-iaa deflate-iaa v10
before-case1 before-case2 after vs. vs.
case1 case2
-------------------------------------------------------------------------------
Total throughput (KB/s) 6,286,587 1,126,785 7,073,464 13% 528%
Average throughput (KB/s) 209,552 37,559 235,782 13% 528%
elapsed time (sec) 96.19 333.03 85.79 -11% -74%
sys time (sec) 2,141.44 99.96 1,826.67 -15% 1727%
memcg_high 99,253 64,666 79,718
memcg_swap_fail 129,074 53 165
zswpout 61,312,794 28,321 56,045,120
zswpin 383 406 403
pswpout 0 40,048,128 0
pswpin 0 0 0
thp_swpout 0 78,219 0
thp_swpout_fallback 129,074 53 165
2MB-mthp_swpout_fallback 0 0 165
pgmajfault 3,430 3,077 31,468
swap_ra 91 103 84,373
swap_ra_hit 47 46 84,317
ZSWPOUT-2MB n/a n/a 109,229
SWPOUT-2MB 0 78,219 0
-------------------------------------------------------------------------------
And finally, this is a comparison of deflate-iaa vs. zstd with v10 of this
patch-series:
---------------------------------------------
zswap_store large folios v10
Impr w/ deflate-iaa vs. zstd
64K folios 2M folios
---------------------------------------------
Throughput (KB/s) 17% 9%
elapsed time (sec) -20% -19%
sys time (sec) -27% -23%
---------------------------------------------
Conclusions based on the performance results:
=============================================
v10 wrt before-case1:
---------------------
We see significant improvements in throughput, elapsed and sys time for
zstd and deflate-iaa, when comparing before-case1 (THP_SWAP=N) vs. after
(THP_SWAP=Y) with zswap_store large folios.
v10 wrt before-case2:
---------------------
We see even more significant improvements in throughput and elapsed time
for zstd and deflate-iaa, when comparing before-case2 (large-folio-SSD)
vs. after (large-folio-zswap). The sys time increases with
large-folio-zswap as expected, due to the CPU compression time
vs. asynchronous disk write times, as pointed out by Ying and Yosry.
In before-case2, when zswap does not store large folios, only allocations
and cgroup charging due to 4K folio zswap stores count towards the cgroup
memory limit. However, in the after scenario, with the introduction of
zswap_store() of large folios, there is an added component of the zswap
compressed pool usage from large folio stores from potentially all 30
processes, that gets counted towards the memory limit. As a result, we see
higher swapout activity in the "after" data.
Summary:
========
The v10 data presented above shows that zswap_store of large folios
demonstrates good throughput/performance improvements compared to
conventional SSD swap of large folios with a sufficiently large 525G SSD
swap device. Hence, it seems reasonable for zswap_store to support large
folios, so that further performance improvements can be implemented.
In the experimental setup used in this patchset, we have enabled IAA
compress verification to ensure additional hardware data integrity CRC
checks not currently done by the software compressors. We see good
throughput/latency improvements with deflate-iaa vs. zstd with zswap_store
of large folios.
Some of the ideas for further reducing latency that have shown promise in
our experiments, are:
1) IAA compress/decompress batching.
2) Distributing compress jobs across all IAA devices on the socket.
The tests run for this patchset are using only 1 IAA device per core, that
avails of 2 compress engines on the device. In our experiments with IAA
batching, we distribute compress jobs from all cores to the 8 compress
engines available per socket. We further compress the pages in each folio
in parallel in the accelerator. As a result, we improve compress latency
and reclaim throughput.
In decompress batching, we use swapin_readahead to generate a prefetch
batch of 4K folios that we decompress in parallel in IAA.
------------------------------------------------------------------------------
IAA compress/decompress batching
Further improvements wrt v10 zswap_store Sequential
subpage store using "deflate-iaa":
"deflate-iaa" Batching "deflate-iaa-canned" [2] Batching
Additional Impr Additional Impr
64K folios 2M folios 64K folios 2M folios
------------------------------------------------------------------------------
Throughput (KB/s) 19% 43% 26% 55%
elapsed time (sec) -5% -14% -10% -21%
sys time (sec) 4% -7% -4% -18%
------------------------------------------------------------------------------
With zswap IAA compress/decompress batching, we are able to demonstrate
significant performance improvements and memory savings in server
scalability experiments in highly contended system scenarios under
significant memory pressure; as compared to software compressors. We hope
to submit this work in subsequent patch series. The current patch-series is
a prequisite for these future submissions.
[1] https://lore.kernel.org/linux-mm/20231019110543.3284654-1-ryan.roberts@arm.com/T/#u
[2] https://patchwork.kernel.org/project/linux-crypto/cover/cover.1710969449.git.andre.glover@linux.intel.com/
This patch (of 6):
This resolves an issue with obj_cgroup_get() not being defined if
CONFIG_MEMCG is not defined.
Before this patch, we would see build errors if obj_cgroup_get() is called
from code that is agnostic of CONFIG_MEMCG.
The zswap_store() changes for large folios in subsequent commits will
require the use of obj_cgroup_get() in zswap code that falls into this
category.
Link: https://lkml.kernel.org/r/20241001053222.6944-1-kanchana.p.sridhar@intel.com
Link: https://lkml.kernel.org/r/20241001053222.6944-2-kanchana.p.sridhar@intel.com
Signed-off-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Wajdi Feghali <wajdi.k.feghali@intel.com>
Cc: "Zou, Nanhai" <nanhai.zou@intel.com>
Cc: Barry Song <21cnbao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Pick up e7ac4daeed91 ("mm: count zeromap read and set for swapout and
swapin") in order to move
mm: define obj_cgroup_get() if CONFIG_MEMCG is not defined
mm: zswap: modify zswap_compress() to accept a page instead of a folio
mm: zswap: rename zswap_pool_get() to zswap_pool_tryget()
mm: zswap: modify zswap_stored_pages to be atomic_long_t
mm: zswap: support large folios in zswap_store()
mm: swap: count successful large folio zswap stores in hugepage zswpout stats
mm: zswap: zswap_store_page() will initialize entry after adding to xarray.
mm: add per-order mTHP swpin counters
from mm-unstable into mm-stable.
|
|
When the proportion of folios from the zeromap is small, missing their
accounting may not significantly impact profiling. However, it's easy to
construct a scenario where this becomes an issue—for example, allocating
1 GB of memory, writing zeros from userspace, followed by MADV_PAGEOUT,
and then swapping it back in. In this case, the swap-out and swap-in
counts seem to vanish into a black hole, potentially causing semantic
ambiguity.
On the other hand, Usama reported that zero-filled pages can exceed 10% in
workloads utilizing zswap, while Hailong noted that some app in Android
have more than 6% zero-filled pages. Before commit 0ca0c24e3211 ("mm:
store zero pages to be swapped out in a bitmap"), both zswap and zRAM
implemented similar optimizations, leading to these optimized-out pages
being counted in either zswap or zRAM counters (with pswpin/pswpout also
increasing for zRAM). With zeromap functioning prior to both zswap and
zRAM, userspace will no longer detect these swap-out and swap-in actions.
We have three ways to address this:
1. Introduce a dedicated counter specifically for the zeromap.
2. Use pswpin/pswpout accounting, treating the zero map as a standard
backend. This approach aligns with zRAM's current handling of
same-page fills at the device level. However, it would mean losing the
optimized-out page counters previously available in zRAM and would not
align with systems using zswap. Additionally, as noted by Nhat Pham,
pswpin/pswpout counters apply only to I/O done directly to the backend
device.
3. Count zeromap pages under zswap, aligning with system behavior when
zswap is enabled. However, this would not be consistent with zRAM, nor
would it align with systems lacking both zswap and zRAM.
Given the complications with options 2 and 3, this patch selects
option 1.
We can find these counters from /proc/vmstat (counters for the whole
system) and memcg's memory.stat (counters for the interested memcg).
For example:
$ grep -E 'swpin_zero|swpout_zero' /proc/vmstat
swpin_zero 1648
swpout_zero 33536
$ grep -E 'swpin_zero|swpout_zero' /sys/fs/cgroup/system.slice/memory.stat
swpin_zero 3905
swpout_zero 3985
This patch does not address any specific zeromap bug, but the missing
swpout and swpin counts for zero-filled pages can be highly confusing and
may mislead user-space agents that rely on changes in these counters as
indicators. Therefore, we add a Fixes tag to encourage the inclusion of
this counter in any kernel versions with zeromap.
Many thanks to Kanchana for the contribution of changing
count_objcg_event() to count_objcg_events() to support large folios[1],
which has now been incorporated into this patch.
[1] https://lkml.kernel.org/r/20241001053222.6944-5-kanchana.p.sridhar@intel.com
Link: https://lkml.kernel.org/r/20241107011246.59137-1-21cnbao@gmail.com
Fixes: 0ca0c24e3211 ("mm: store zero pages to be swapped out in a bitmap")
Co-developed-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com>
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Hailong Liu <hailong.liu@oppo.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kairui Song <kasong@tencent.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The function workingset_activation() is called from folio_mark_accessed()
with the guarantee that the given folio can not be freed under us in
workingset_activation(). In addition, the association of the folio and
its memcg can not be broken here because charge migration is no more.
There is no need to use folio_memcg_rcu. Simply use folio_memcg_charged()
because that is what this function cares about.
[akpm@linux-foundation.org: provide folio_memcg_charged stub for CONFIG_MEMCG=n]
Link: https://lkml.kernel.org/r/20241026163707.2479526-1-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Suggested-by: Yu Zhao <yuzhao@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The memcg v1's charge move feature has been deprecated. All the places
using the memcg move lock, have stopped using it as they don't need the
protection any more. Let's proceed to remove all the locking code related
to charge moving.
Link: https://lkml.kernel.org/r/20241025012304.2473312-7-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The memcg-v1 charge move feature has been deprecated completely and let's
remove the relevant code as well.
Link: https://lkml.kernel.org/r/20241025012304.2473312-3-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
large folios
With large folios swap-in, we might need to uncharge multiple entries all
together, add nr argument in mem_cgroup_swapin_uncharge_swap().
For the existing two users, just pass nr=1.
Link: https://lkml.kernel.org/r/20240908232119.2157-3-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Acked-by: Chris Li <chrisl@kernel.org>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gao Xiang <xiang@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kairui Song <kasong@tencent.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Chuanhua Han <hanchuanhua@oppo.com>
Cc: Kanchana P Sridhar <kanchana.p.sridhar@intel.com>
Cc: Usama Arif <usamaarif642@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently, if multiple reclaimers raced on the same position, the
reclaimers which detect the race will still reclaim from the same memcg.
Instead, the reclaimers which detect the race should move on to the next
memcg in the hierarchy.
So, in the case where multiple traversals race, jump back to the start of
the mem_cgroup_iter() function to find the next memcg in the hierarchy to
reclaim from.
Link: https://lkml.kernel.org/r/20240905003058.1859929-5-kinseyho@google.com
Reported-by: syzbot+e099d407346c45275ce9@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/000000000000817cf10620e20d33@google.com/
Signed-off-by: Kinsey Ho <kinseyho@google.com>
Reviewed-by: T.J. Mercier <tjmercier@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Zefan Li <lizefan.x@bytedance.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The ability to observe the demotion and promotion decisions made by the
kernel on a per-cgroup basis is important for monitoring and tuning
containerized workloads on machines equipped with tiered memory.
Different containers in the system may experience drastically different
memory tiering actions that cannot be distinguished from the global
counters alone.
For example, a container running a workload that has a much hotter memory
accesses will likely see more promotions and fewer demotions, potentially
depriving a colocated container of top tier memory to such an extent that
its performance degrades unacceptably.
For another example, some containers may exhibit longer periods between
data reuse, causing much more numa_hint_faults than numa_pages_migrated.
In this case, tuning hot_threshold_ms may be appropriate, but the signal
can easily be lost if only global counters are available.
In the long term, we hope to introduce per-cgroup control of promotion and
demotion actions to implement memory placement policies in tiering.
This patch set adds seven counters to memory.stat in a cgroup:
numa_pages_migrated, numa_pte_updates, numa_hint_faults, pgdemote_kswapd,
pgdemote_khugepaged, pgdemote_direct and pgpromote_success. pgdemote_*
and pgpromote_success are also available in memory.numa_stat.
count_memcg_events_mm() is added to count multiple event occurrences at
once, and get_mem_cgroup_from_folio() is added because we need to get a
reference to the memcg of a folio before it's migrated to track
numa_pages_migrated. The accounting of PGDEMOTE_* is moved to
shrink_inactive_list() before being changed to per-cgroup.
[kaiyang2@cs.cmu.edu: add documentation of the memcg counters in cgroup-v2.rst]
Link: https://lkml.kernel.org/r/20240814235122.252309-1-kaiyang2@cs.cmu.edu
Link: https://lkml.kernel.org/r/20240814174227.30639-1-kaiyang2@cs.cmu.edu
Signed-off-by: Kaiyang Zhao <kaiyang2@cs.cmu.edu>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Wei Xu <weixugc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently memcg->events_percpu gets allocated on v2 deployments. Let's
move the allocation to v1 only codebase. This is not needed in v2.
Link: https://lkml.kernel.org/r/20240815050453.1298138-7-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: T.J. Mercier <tjmercier@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "memcg: further decouple v1 code from v2".
Some of the v1 code is still in v2 code base due to v1 fields in the
struct memcg_vmstats_percpu. This field decouples those fileds from v2
struct and move all the related code into v1 only code base.
This patch (of 7):
At the moment struct memcg_vmstats_percpu contains two v1 only fields
which consumes memory even when CONFIG_MEMCG_V1 is not enabled. In
addition there are v1 only functions accessing them and are in the main
memcontrol source file and can not be moved to v1 only source file due to
these fields. Let's move these fields into their own struct. Later
patches will move the functions accessing them to v1 source file and only
allocate these fields when CONFIG_MEMCG_V1 is enabled.
Link: https://lkml.kernel.org/r/20240815050453.1298138-1-shakeel.butt@linux.dev
Link: https://lkml.kernel.org/r/20240815050453.1298138-2-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: T.J. Mercier <tjmercier@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
obj_cgroup_memcg() is supposed to safe to prevent the returned memory
cgroup from being freed only when the caller is holding the rcu read lock
or objcg_lock or cgroup_mutex. It is very easy to ignore thoes conditions
when users call some upper APIs which call obj_cgroup_memcg() internally
like mem_cgroup_from_slab_obj() (See the link below). So it is better to
add lockdep assertion to obj_cgroup_memcg() to find those issues ASAP.
Because there is no user of obj_cgroup_memcg() holding objcg_lock to make
the returned memory cgroup safe, do not add objcg_lock assertion (We
should export objcg_lock if we really want to do). Additionally, this is
some internal implementation detail of memcg and should not be accessible
outside memcg code.
Some users like __mem_cgroup_uncharge() do not care the lifetime of the
returned memory cgroup, which just want to know if the folio is charged to
a memory cgroup, therefore, they do not need to hold the needed locks. In
which case, introduce a new helper folio_memcg_charged() to do this.
Compare it to folio_memcg(), it could eliminate a memory access of
objcg->memcg for kmem, actually, a really small gain.
[songmuchun@bytedance.com: fix split_page_memcg()]
Link: https://lkml.kernel.org/r/20240819080415.44964-1-songmuchun@bytedance.com
Link: https://lore.kernel.org/all/20240718083607.42068-1-songmuchun@bytedance.com/
Link: https://lkml.kernel.org/r/20240814093415.17634-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm, memcg: cg2 memory{.swap,}.peak write handlers", v7.
This patch (of 2):
Other mechanisms for querying the peak memory usage of either a process or
v1 memory cgroup allow for resetting the high watermark. Restore parity
with those mechanisms, but with a less racy API.
For example:
- Any write to memory.max_usage_in_bytes in a cgroup v1 mount resets
the high watermark.
- writing "5" to the clear_refs pseudo-file in a processes's proc
directory resets the peak RSS.
This change is an evolution of a previous patch, which mostly copied the
cgroup v1 behavior, however, there were concerns about races/ownership
issues with a global reset, so instead this change makes the reset
filedescriptor-local.
Writing any non-empty string to the memory.peak and memory.swap.peak
pseudo-files reset the high watermark to the current usage for subsequent
reads through that same FD.
Notably, following Johannes's suggestion, this implementation moves the
O(FDs that have written) behavior onto the FD write(2) path. Instead, on
the page-allocation path, we simply add one additional watermark to
conditionally bump per-hierarchy level in the page-counter.
Additionally, this takes Longman's suggestion of nesting the
page-charging-path checks for the two watermarks to reduce the number of
common-case comparisons.
This behavior is particularly useful for work scheduling systems that need
to track memory usage of worker processes/cgroups per-work-item. Since
memory can't be squeezed like CPU can (the OOM-killer has opinions), these
systems need to track the peak memory usage to compute system/container
fullness when binpacking workitems.
Most notably, Vimeo's use-case involves a system that's doing global
binpacking across many Kubernetes pods/containers, and while we can use
PSI for some local decisions about overload, we strive to avoid packing
workloads too tightly in the first place. To facilitate this, we track
the peak memory usage. However, since we run with long-lived workers (to
amortize startup costs) we need a way to track the high watermark while a
work-item is executing. Polling runs the risk of missing short spikes
that last for timescales below the polling interval, and peak memory
tracking at the cgroup level is otherwise perfect for this use-case.
As this data is used to ensure that binpacked work ends up with sufficient
headroom, this use-case mostly avoids the inaccuracies surrounding
reclaimable memory.
Link: https://lkml.kernel.org/r/20240730231304.761942-1-davidf@vimeo.com
Link: https://lkml.kernel.org/r/20240729143743.34236-1-davidf@vimeo.com
Link: https://lkml.kernel.org/r/20240729143743.34236-2-davidf@vimeo.com
Signed-off-by: David Finkel <davidf@vimeo.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Waiman Long <longman@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There is no user of mem_cgroup_from_obj(), remove it.
Link: https://lkml.kernel.org/r/20240718091821.44740-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Oliver Sand reported a performance regression caused by commit
98c9daf5ae6b ("mm: memcg: guard memcg1-specific members of struct
mem_cgroup_per_node"), which puts some fields of the mem_cgroup_per_node
structure under the CONFIG_MEMCG_V1 config option. Apparently it causes a
false cache sharing between lruvec and lru_zone_size members of the
structure. Fix it by adding an explicit padding after the lruvec member.
Even though the padding is not required with CONFIG_MEMCG_V1 set, it seems
like the introduced memory overhead is not significant enough to warrant
another divergence in the mem_cgroup_per_node layout, so the padding is
added unconditionally.
Link: https://lkml.kernel.org/r/20240723171244.747521-1-roman.gushchin@linux.dev
Fixes: 98c9daf5ae6b ("mm: memcg: guard memcg1-specific members of struct mem_cgroup_per_node")
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202407121335.31a10cb6-oliver.sang@intel.com
Tested-by: Oliver Sang <oliver.sang@intel.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
CONFIG_MEMCG_KMEM used to be a user-visible option for whether slab
tracking is enabled. It has been default-enabled and equivalent to
CONFIG_MEMCG for almost a decade. We've only grown more kernel memory
accounting sites since, and there is no imaginable cgroup usecase going
forward that wants to track user pages but not the multitude of
user-drivable kernel allocations.
Link: https://lkml.kernel.org/r/20240701153148.452230-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Memcg v1-specific fields serve a buffer function between read-mostly and
update often parts of the mem_cgroup_per_node structure. If
CONFIG_MEMCG_V1 is not set and these fields are not present, an explicit
cacheline padding is needed.
Link: https://lkml.kernel.org/r/20240701185932.704807-2-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Suggested-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
After the grouping of the cgroup v1-related fields and the corresponding
reorganization of the struct mem_cgroup, the existing cache line padding
doesn't make much sense anymore. Let's drop it for now and put back to
new places, if necessary.
Link: https://lkml.kernel.org/r/20240701185932.704807-1-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Suggested-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The struct task_struct's in_user_fault member is not used by the cgroup
v2's memory controller, so it can be put under the CONFIG_MEMCG_V1 config
option. To do so, mem_cgroup_enter_user_fault() and
mem_cgroup_exit_user_fault() are moved under the CONFIG_MEMCG_V1 option as
well.
Link: https://lkml.kernel.org/r/20240628210317.272856-10-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Put memcg1-specific members of struct mem_cgroup_per_node under the
CONFIG_MEMCG_V1 config option.
Link: https://lkml.kernel.org/r/20240628210317.272856-8-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Put memcg1-specific members of struct mem_cgroup under the CONFIG_MEMCG_V1
config option. Also group them close to the end of struct mem_cgroup just
before the dynamic per-node part.
Link: https://lkml.kernel.org/r/20240628210317.272856-7-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Move out the legacy cgroup v1 socket memory accounting code into
mm/memcontrol-v1.c.
This commit introduces three new functions: memcg1_tcpmem_active(),
memcg1_charge_skmem() and memcg1_uncharge_skmem(), which contain all
cgroup v1-specific code and become trivial if CONFIG_MEMCG_V1 isn't set.
Note, that !!memcg->tcpmem_pressure check in
mem_cgroup_under_socket_pressure() can't be easily moved into
memcontrol-v1.h without including memcontrol-v1.h from memcontrol.h which
isn't a good idea, so it's better to just #ifdef it.
Link: https://lkml.kernel.org/r/20240628210317.272856-3-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Put legacy cgroup v1 memory controller code under a new CONFIG_MEMCG_V1
config option. The option is turned off by default. Nobody except those
who are still using cgroup v1 should turn it on.
If the option is not set, memory controller can still be mounted under
cgroup v1, but none of memcg-specific control files are present.
Please note, that not all cgroup v1's memory controller code is guarded
yet (but most of it), it's a subject for some follow-up work.
Thanks to Michal Hocko for providing a better Kconfig option description.
[roman.gushchin@linux.dev: better config option description provided by Michal]
Link: https://lkml.kernel.org/r/ZnxXNtvqllc9CDoo@google.com
Link: https://lkml.kernel.org/r/20240625005906.106920-14-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Group all cgroup v1-related declarations at the end of memcontrol.h and
mm/memcontrol-v1.h with an intention to put them all together under a
config option later on. It should make things easier to follow and
maintain too.
Link: https://lkml.kernel.org/r/20240625005906.106920-13-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Cgroup v1's memory controller contains a pretty complicated event
notifications mechanism which is not used on cgroup v2. Let's move the
corresponding code into memcontrol-v1.c.
Please, note, that mem_cgroup_event_ratelimit() remains in memcontrol.c,
otherwise it would require exporting too many details on memcg stats
outside of memcontrol.c.
Link: https://lkml.kernel.org/r/20240625005906.106920-7-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Rename exported function related to the softlimit reclaim to have memcg1_
prefix.
Link: https://lkml.kernel.org/r/20240625005906.106920-4-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Kernel test robot reported [1] performance regression for will-it-scale
test suite's page_fault2 test case for the commit 70a64b7919cb ("memcg:
dynamically allocate lruvec_stats"). After inspection it seems like the
commit has unintentionally introduced false cache sharing.
After the commit the fields of mem_cgroup_per_node which get read on the
performance critical path share the cacheline with the fields which get
updated often on LRU page allocations or deallocations. This has caused
contention on that cacheline and the workloads which manipulates a lot of
LRU pages are regressed as reported by the test report.
The solution is to rearrange the fields of mem_cgroup_per_node such that
the false sharing is eliminated. Let's move all the read only pointers at
the start of the struct, followed by memcg-v1 only fields and at the end
fields which get updated often.
Experiment setup: Ran fallocate1, fallocate2, page_fault1, page_fault2 and
page_fault3 from the will-it-scale test suite inside a three level memcg
with /tmp mounted as tmpfs on two different machines, one a single numa
node and the other one, two node machine.
$ ./[testcase]_processes -t $NR_CPUS -s 50
Results for single node, 52 CPU machine:
Testcase base with-patch
fallocate1 1031081 1431291 (38.80 %)
fallocate2 1029993 1421421 (38.00 %)
page_fault1 2269440 3405788 (50.07 %)
page_fault2 2375799 3572868 (50.30 %)
page_fault3 28641143 28673950 ( 0.11 %)
Results for dual node, 80 CPU machine:
Testcase base with-patch
fallocate1 2976288 3641185 (22.33 %)
fallocate2 2979366 3638181 (22.11 %)
page_fault1 6221790 7748245 (24.53 %)
page_fault2 6482854 7847698 (21.05 %)
page_fault3 28804324 28991870 ( 0.65 %)
Link: https://lkml.kernel.org/r/20240528164050.2625718-1-shakeel.butt@linux.dev
Fixes: 70a64b7919cb ("memcg: dynamically allocate lruvec_stats")
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Reported-by: kernel test robot <oliver.sang@intel.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Feng Tang <feng.tang@intel.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The page_memcg() only called by mod_memcg_page_state(), so squash it to
cleanup page_memcg().
Link: https://lkml.kernel.org/r/20240524014950.187805-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The memcg stats update functions can take arbitrary integer but the only
input which make sense is enum memcg_stat_item and we don't want these
functions to be called with arbitrary integer, so replace the parameter
type with enum memcg_stat_item and compiler will be able to warn if memcg
stat update functions are called with incorrect index value.
Link: https://lkml.kernel.org/r/20240501172617.678560-9-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: T.J. Mercier <tjmercier@google.com>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
To decouple the dependency of lruvec_stats on NR_VM_NODE_STAT_ITEMS, we
need to dynamically allocate lruvec_stats in the mem_cgroup_per_node
structure. Also move the definition of lruvec_stats_percpu and
lruvec_stats and related functions to the memcontrol.c to facilitate later
patches. No functional changes in the patch.
Link: https://lkml.kernel.org/r/20240501172617.678560-3-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: T.J. Mercier <tjmercier@google.com>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
mod_memcg_lruvec_state() is never called from outside of memcontrol.c and
with always irq disabled. So, replace it with the irq disabled version
and add an assert that irq is disabled in the caller.
Similarly mod_objcg_state() is not called from outside of memcontrol.c, so
simply make it static and change it's name to __mod_objcg_state().
Link: https://lkml.kernel.org/r/20240420232505.2768428-1-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: T.J. Mercier <tjmercier@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
If slabobj_ext vector allocation for a slab object fails and later on it
succeeds for another object in the same slab, the slabobj_ext for the
original object will be NULL and will be flagged in case when
CONFIG_MEM_ALLOC_PROFILING_DEBUG is enabled.
Mark failed slabobj_ext vector allocations using a new objext_flags flag
stored in the lower bits of slab->obj_exts. When new allocation succeeds
it marks all tag references in the same slabobj_ext vector as empty to
avoid warnings implemented by CONFIG_MEM_ALLOC_PROFILING_DEBUG checks.
Link: https://lkml.kernel.org/r/20240321163705.3067592-36-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Tested-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alex Gaynor <alex.gaynor@gmail.com>
Cc: Alice Ryhl <aliceryhl@google.com>
Cc: Andreas Hindborg <a.hindborg@samsung.com>
Cc: Benno Lossin <benno.lossin@proton.me>
Cc: "Björn Roy Baron" <bjorn3_gh@protonmail.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Gary Guo <gary@garyguo.net>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wedson Almeida Filho <wedsonaf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
To store code tag for every slab object, a codetag reference is embedded
into slabobj_ext when CONFIG_MEM_ALLOC_PROFILING=y.
Link: https://lkml.kernel.org/r/20240321163705.3067592-23-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Co-developed-by: Kent Overstreet <kent.overstreet@linux.dev>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alex Gaynor <alex.gaynor@gmail.com>
Cc: Alice Ryhl <aliceryhl@google.com>
Cc: Andreas Hindborg <a.hindborg@samsung.com>
Cc: Benno Lossin <benno.lossin@proton.me>
Cc: "Björn Roy Baron" <bjorn3_gh@protonmail.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Gary Guo <gary@garyguo.net>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wedson Almeida Filho <wedsonaf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Introduce objext_flags to store additional objext flags unrelated to memcg.
Link: https://lkml.kernel.org/r/20240321163705.3067592-10-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alex Gaynor <alex.gaynor@gmail.com>
Cc: Alice Ryhl <aliceryhl@google.com>
Cc: Andreas Hindborg <a.hindborg@samsung.com>
Cc: Benno Lossin <benno.lossin@proton.me>
Cc: "Björn Roy Baron" <bjorn3_gh@protonmail.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Gary Guo <gary@garyguo.net>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wedson Almeida Filho <wedsonaf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently slab pages can store only vectors of obj_cgroup pointers in
page->memcg_data. Introduce slabobj_ext structure to allow more data to
be stored for each slab object. Wrap obj_cgroup into slabobj_ext to
support current functionality while allowing to extend slabobj_ext in the
future.
Link: https://lkml.kernel.org/r/20240321163705.3067592-7-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alex Gaynor <alex.gaynor@gmail.com>
Cc: Alice Ryhl <aliceryhl@google.com>
Cc: Andreas Hindborg <a.hindborg@samsung.com>
Cc: Benno Lossin <benno.lossin@proton.me>
Cc: "Björn Roy Baron" <bjorn3_gh@protonmail.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Gary Guo <gary@garyguo.net>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wedson Almeida Filho <wedsonaf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
9 out of 16 callers perform a NULL check before calling obj_cgroup_put().
Move the NULL check in the function, similar to mem_cgroup_put(). The
unlikely() NULL check in current_objcg_update() was left alone to avoid
dropping the unlikey() annotation as this a fast path.
Link: https://lkml.kernel.org/r/20240316015803.2777252-1-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
All users have been converted to mem_cgroup_uncharge_folios() so we can
remove this API.
Link: https://lkml.kernel.org/r/20240227174254.710559-14-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Pass a pointer to the lruvec so we can take advantage of the
folio_lruvec_relock_irqsave(). Adjust the calling convention of
folio_lruvec_relock_irqsave() to suit and add a page_cache_release()
wrapper.
Link: https://lkml.kernel.org/r/20240227174254.710559-9-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|