summaryrefslogtreecommitdiff
path: root/net/ipv6/seg6_local.c
AgeCommit message (Collapse)Author
2023-08-15seg6: add NEXT-C-SID support for SRv6 End.X behaviorAndrea Mayer
The NEXT-C-SID mechanism described in [1] offers the possibility of encoding several SRv6 segments within a single 128 bit SID address. Such a SID address is called a Compressed SID (C-SID) container. In this way, the length of the SID List can be drastically reduced. A SID instantiated with the NEXT-C-SID flavor considers an IPv6 address logically structured in three main blocks: i) Locator-Block; ii) Locator-Node Function; iii) Argument. C-SID container +------------------------------------------------------------------+ | Locator-Block |Loc-Node| Argument | | |Function| | +------------------------------------------------------------------+ <--------- B -----------> <- NF -> <------------- A ---------------> (i) The Locator-Block can be any IPv6 prefix available to the provider; (ii) The Locator-Node Function represents the node and the function to be triggered when a packet is received on the node; (iii) The Argument carries the remaining C-SIDs in the current C-SID container. This patch leverages the NEXT-C-SID mechanism previously introduced in the Linux SRv6 subsystem [2] to support SID compression capabilities in the SRv6 End.X behavior [3]. An SRv6 End.X behavior with NEXT-C-SID flavor works as an End.X behavior but it is capable of processing the compressed SID List encoded in C-SID containers. An SRv6 End.X behavior with NEXT-C-SID flavor can be configured to support user-provided Locator-Block and Locator-Node Function lengths. In this implementation, such lengths must be evenly divisible by 8 (i.e. must be byte-aligned), otherwise the kernel informs the user about invalid values with a meaningful error code and message through netlink_ext_ack. If Locator-Block and/or Locator-Node Function lengths are not provided by the user during configuration of an SRv6 End.X behavior instance with NEXT-C-SID flavor, the kernel will choose their default values i.e., 32-bit Locator-Block and 16-bit Locator-Node Function. [1] - https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-srh-compression [2] - https://lore.kernel.org/all/20220912171619.16943-1-andrea.mayer@uniroma2.it/ [3] - https://datatracker.ietf.org/doc/html/rfc8986#name-endx-l3-cross-connect Signed-off-by: Andrea Mayer <andrea.mayer@uniroma2.it> Reviewed-by: Hangbin Liu <liuhangbin@gmail.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20230812180926.16689-2-andrea.mayer@uniroma2.it Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-02-16seg6: add PSP flavor support for SRv6 End behaviorAndrea Mayer
The "flavors" framework defined in RFC8986 [1] represents additional operations that can modify or extend a subset of existing behaviors such as SRv6 End, End.X and End.T. We report these flavors hereafter: - Penultimate Segment Pop (PSP); - Ultimate Segment Pop (USP); - Ultimate Segment Decapsulation (USD). Depending on how the Segment Routing Header (SRH) has to be handled, an SRv6 End* behavior can support these flavors either individually or in combinations. In this patch, we only consider the PSP flavor for the SRv6 End behavior. A PSP enabled SRv6 End behavior is used by the Source/Ingress SR node (i.e., the one applying the SRv6 Policy) when it needs to instruct the penultimate SR Endpoint node listed in the SID List (carried by the SRH) to remove the SRH from the IPv6 header. Specifically, a PSP enabled SRv6 End behavior processes the SRH by: i) decreasing the Segment Left (SL) from 1 to 0; ii) copying the Last Segment IDentifier (SID) into the IPv6 Destination Address (DA); iii) removing (i.e., popping) the outer SRH from the extension headers following the IPv6 header. It is important to note that PSP operation (steps i, ii, iii) takes place only at a penultimate SR Segment Endpoint node (i.e., when the SL=1) and does not happen at non-penultimate Endpoint nodes. Indeed, when a SID of PSP flavor is processed at a non-penultimate SR Segment Endpoint node, the PSP operation is not performed because it would not be possible to decrease the SL from 1 to 0. SL=2 SL=1 SL=0 | | | For example, given the SRv6 policy (SID List := < X, Y, Z >): - a PSP enabled SRv6 End behavior bound to SID "Y" will apply the PSP operation as Segment Left (SL) is 1, corresponding to the Penultimate Segment of the SID List; - a PSP enabled SRv6 End behavior bound to SID "X" will *NOT* apply the PSP operation as the Segment Left is 2. This behavior instance will apply the "standard" End packet processing, ignoring the configured PSP flavor at all. [1] - RFC8986: https://datatracker.ietf.org/doc/html/rfc8986 Signed-off-by: Andrea Mayer <andrea.mayer@uniroma2.it> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-02-16seg6: factor out End lookup nexthop processing to a dedicated functionAndrea Mayer
The End nexthop lookup/input operations are moved into a new helper function named input_action_end_finish(). This avoids duplicating the code needed to compute the nexthop in the different flavors of the End behavior. Signed-off-by: Andrea Mayer <andrea.mayer@uniroma2.it> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2022-10-28net: Remove the obsolte u64_stats_fetch_*_irq() users (net).Thomas Gleixner
Now that the 32bit UP oddity is gone and 32bit uses always a sequence count, there is no need for the fetch_irq() variants anymore. Convert to the regular interface. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-20seg6: add NEXT-C-SID support for SRv6 End behaviorAndrea Mayer
The NEXT-C-SID mechanism described in [1] offers the possibility of encoding several SRv6 segments within a single 128 bit SID address. Such a SID address is called a Compressed SID (C-SID) container. In this way, the length of the SID List can be drastically reduced. A SID instantiated with the NEXT-C-SID flavor considers an IPv6 address logically structured in three main blocks: i) Locator-Block; ii) Locator-Node Function; iii) Argument. C-SID container +------------------------------------------------------------------+ | Locator-Block |Loc-Node| Argument | | |Function| | +------------------------------------------------------------------+ <--------- B -----------> <- NF -> <------------- A ---------------> (i) The Locator-Block can be any IPv6 prefix available to the provider; (ii) The Locator-Node Function represents the node and the function to be triggered when a packet is received on the node; (iii) The Argument carries the remaining C-SIDs in the current C-SID container. The NEXT-C-SID mechanism relies on the "flavors" framework defined in [2]. The flavors represent additional operations that can modify or extend a subset of the existing behaviors. This patch introduces the support for flavors in SRv6 End behavior implementing the NEXT-C-SID one. An SRv6 End behavior with NEXT-C-SID flavor works as an End behavior but it is capable of processing the compressed SID List encoded in C-SID containers. An SRv6 End behavior with NEXT-C-SID flavor can be configured to support user-provided Locator-Block and Locator-Node Function lengths. In this implementation, such lengths must be evenly divisible by 8 (i.e. must be byte-aligned), otherwise the kernel informs the user about invalid values with a meaningful error code and message through netlink_ext_ack. If Locator-Block and/or Locator-Node Function lengths are not provided by the user during configuration of an SRv6 End behavior instance with NEXT-C-SID flavor, the kernel will choose their default values i.e., 32-bit Locator-Block and 16-bit Locator-Node Function. [1] - https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-srh-compression [2] - https://datatracker.ietf.org/doc/html/rfc8986 Signed-off-by: Andrea Mayer <andrea.mayer@uniroma2.it> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2022-09-20seg6: add netlink_ext_ack support in parsing SRv6 behavior attributesAndrea Mayer
An SRv6 behavior instance can be set up using mandatory and/or optional attributes. In the setup phase, each supplied attribute is parsed and processed. If the parsing operation fails, the creation of the behavior instance stops and an error number/code is reported to the user. In many cases, it is challenging for the user to figure out exactly what happened by relying only on the error code. For this reason, we add the support for netlink_ext_ack in parsing SRv6 behavior attributes. In this way, when an SRv6 behavior attribute is parsed and an error occurs, the kernel can send a message to the userspace describing the error through a meaningful text message in addition to the classic error code. Signed-off-by: Andrea Mayer <andrea.mayer@uniroma2.it> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2022-08-05net: seg6: initialize induction variable to first valid array indexNick Desaulniers
Fixes the following warnings observed when building CONFIG_IPV6_SEG6_LWTUNNEL=y with clang: net/ipv6/seg6_local.o: warning: objtool: seg6_local_fill_encap() falls through to next function seg6_local_get_encap_size() net/ipv6/seg6_local.o: warning: objtool: seg6_local_cmp_encap() falls through to next function input_action_end() LLVM can fully unroll loops in seg6_local_get_encap_size() and seg6_local_cmp_encap(). One issue in those loops is that the induction variable is initialized to 0. The loop iterates over members of seg6_action_params, a global array of struct seg6_action_param calling their put() function pointer members. seg6_action_param uses an array initializer to initialize SEG6_LOCAL_SRH and later elements, which is the third enumeration of an anonymous union. The guard `if (attrs & SEG6_F_ATTR(i))` may prevent this from being called at runtime, but it would still be UB for `seg6_action_params[0]->put` to be called; the unrolled loop will make the initial iterations unreachable, which LLVM will later rotate to fallthrough to the next function. Make this more obvious that this cannot happen to the compiler by initializing the loop induction variable to the minimum valid index that seg6_action_params is initialized to. Reported-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Nick Desaulniers <ndesaulniers@google.com> Link: https://lore.kernel.org/r/20220802161203.622293-1-ndesaulniers@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-07-14seg6: fix skb checksum in SRv6 End.B6 and End.B6.Encaps behaviorsAndrea Mayer
The SRv6 End.B6 and End.B6.Encaps behaviors rely on functions seg6_do_srh_{encap,inline}() to, respectively: i) encapsulate the packet within an outer IPv6 header with the specified Segment Routing Header (SRH); ii) insert the specified SRH directly after the IPv6 header of the packet. This patch removes the initialization of the IPv6 header payload length from the input_action_end_b6{_encap}() functions, as it is now handled properly by seg6_do_srh_{encap,inline}() to avoid corruption of the skb checksum. Fixes: 140f04c33bbc ("ipv6: sr: implement several seg6local actions") Signed-off-by: Andrea Mayer <andrea.mayer@uniroma2.it> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2022-06-09net: seg6: fix seg6_lookup_any_nexthop() to handle VRFs using flowi_l3mdevAndrea Mayer
Commit 40867d74c374 ("net: Add l3mdev index to flow struct and avoid oif reset for port devices") adds a new entry (flowi_l3mdev) in the common flow struct used for indicating the l3mdev index for later rule and table matching. The l3mdev_update_flow() has been adapted to properly set the flowi_l3mdev based on the flowi_oif/flowi_iif. In fact, when a valid flowi_iif is supplied to the l3mdev_update_flow(), this function can update the flowi_l3mdev entry only if it has not yet been set (i.e., the flowi_l3mdev entry is equal to 0). The SRv6 End.DT6 behavior in VRF mode leverages a VRF device in order to force the routing lookup into the associated routing table. This routing operation is performed by seg6_lookup_any_nextop() preparing a flowi6 data structure used by ip6_route_input_lookup() which, in turn, (indirectly) invokes l3mdev_update_flow(). However, seg6_lookup_any_nexthop() does not initialize the new flowi_l3mdev entry which is filled with random garbage data. This prevents l3mdev_update_flow() from properly updating the flowi_l3mdev with the VRF index, and thus SRv6 End.DT6 (VRF mode)/DT46 behaviors are broken. This patch correctly initializes the flowi6 instance allocated and used by seg6_lookup_any_nexhtop(). Specifically, the entire flowi6 instance is wiped out: in case new entries are added to flowi/flowi6 (as happened with the flowi_l3mdev entry), we should no longer have incorrectly initialized values. As a result of this operation, the value of flowi_l3mdev is also set to 0. The proposed fix can be tested easily. Starting from the commit referenced in the Fixes, selftests [1],[2] indicate that the SRv6 End.DT6 (VRF mode)/DT46 behaviors no longer work correctly. By applying this patch, those behaviors are back to work properly again. [1] - tools/testing/selftests/net/srv6_end_dt46_l3vpn_test.sh [2] - tools/testing/selftests/net/srv6_end_dt6_l3vpn_test.sh Fixes: 40867d74c374 ("net: Add l3mdev index to flow struct and avoid oif reset for port devices") Reported-by: Anton Makarov <am@3a-alliance.com> Signed-off-by: Andrea Mayer <andrea.mayer@uniroma2.it> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20220608091917.20345-1-andrea.mayer@uniroma2.it Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-01-05Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
No conflicts. Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-01-04seg6: export get_srh() for ICMP handlingAndrew Lunn
An ICMP error message can contain in its message body part of an IPv6 packet which invoked the error. Such a packet might contain a segment router header. Export get_srh() so the ICMP code can make use of it. Since his changes the scope of the function from local to global, add the seg6_ prefix to keep the namespace clean. And move it into seg6.c so it is always available, not just when IPV6_SEG6_LWTUNNEL is enabled. Signed-off-by: Andrew Lunn <andrew@lunn.ch> Reviewed-by: David Ahern <dsahern@kernel.org> Reviewed-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-12-29net: Don't include filter.h from net/sock.hJakub Kicinski
sock.h is pretty heavily used (5k objects rebuilt on x86 after it's touched). We can drop the include of filter.h from it and add a forward declaration of struct sk_filter instead. This decreases the number of rebuilt objects when bpf.h is touched from ~5k to ~1k. There's a lot of missing includes this was masking. Primarily in networking tho, this time. Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Marc Kleine-Budde <mkl@pengutronix.de> Acked-by: Florian Fainelli <f.fainelli@gmail.com> Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com> Acked-by: Stefano Garzarella <sgarzare@redhat.com> Link: https://lore.kernel.org/bpf/20211229004913.513372-1-kuba@kernel.org
2021-08-31ipv6: seg6: remove duplicated includeLv Ruyi
Remove all but the first include of net/lwtunnel.h from 'seg6_local.c. Reported-by: Zeal Robot <zealci@zte.com.cn> Signed-off-by: Lv Ruyi <lv.ruyi@zte.com.cn> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-30netfilter: add netfilter hooks to SRv6 data planeRyoga Saito
This patch introduces netfilter hooks for solving the problem that conntrack couldn't record both inner flows and outer flows. This patch also introduces a new sysctl toggle for enabling lightweight tunnel netfilter hooks. Signed-off-by: Ryoga Saito <contact@proelbtn.com> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2021-06-18seg6: add support for SRv6 End.DT46 BehaviorAndrea Mayer
IETF RFC 8986 [1] includes the definition of SRv6 End.DT4, End.DT6, and End.DT46 Behaviors. The current SRv6 code in the Linux kernel only implements End.DT4 and End.DT6 which can be used respectively to support IPv4-in-IPv6 and IPv6-in-IPv6 VPNs. With End.DT4 and End.DT6 it is not possible to create a single SRv6 VPN tunnel to carry both IPv4 and IPv6 traffic. The proposed End.DT46 implementation is meant to support the decapsulation of IPv4 and IPv6 traffic coming from a single SRv6 tunnel. The implementation of the SRv6 End.DT46 Behavior in the Linux kernel greatly simplifies the setup and operations of SRv6 VPNs. The SRv6 End.DT46 Behavior leverages the infrastructure of SRv6 End.DT{4,6} Behaviors implemented so far, because it makes use of a VRF device in order to force the routing lookup into the associated routing table. To make the End.DT46 work properly, it must be guaranteed that the routing table used for routing lookup operations is bound to one and only one VRF during the tunnel creation. Such constraint has to be enforced by enabling the VRF strict_mode sysctl parameter, i.e.: $ sysctl -wq net.vrf.strict_mode=1 Note that the same approach is used for the SRv6 End.DT4 Behavior and for the End.DT6 Behavior in VRF mode. The command used to instantiate an SRv6 End.DT46 Behavior is straightforward, i.e.: $ ip -6 route add 2001:db8::1 encap seg6local action End.DT46 vrftable 100 dev vrf100. [1] https://www.rfc-editor.org/rfc/rfc8986.html#name-enddt46-decapsulation-and-s ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Performance and impact of SRv6 End.DT46 Behavior on the SRv6 Networking ======================================================================= This patch aims to add the SRv6 End.DT46 Behavior with minimal impact on the performance of SRv6 End.DT4 and End.DT6 Behaviors. In order to verify this, we tested the performance of the newly introduced SRv6 End.DT46 Behavior and compared it with the performance of SRv6 End.DT{4,6} Behaviors, considering both the patched kernel and the kernel before applying the End.DT46 patch (referred to as vanilla kernel). In details, the following decapsulation scenarios were considered: 1.a) IPv6 traffic in SRv6 End.DT46 Behavior on patched kernel; 1.b) IPv4 traffic in SRv6 End.DT46 Behavior on patched kernel; 2.a) SRv6 End.DT6 Behavior (VRF mode) on patched kernel; 2.b) SRv6 End.DT4 Behavior on patched kernel; 3.a) SRv6 End.DT6 Behavior (VRF mode) on vanilla kernel (without the End.DT46 patch); 3.b) SRv6 End.DT4 Behavior on vanilla kernel (without the End.DT46 patch). All tests were performed on a testbed deployed on the CloudLab [2] facilities. We considered IPv{4,6} traffic handled by a single core (at 2.4 GHz on a Xeon(R) CPU E5-2630 v3) on kernel 5.13-rc1 using packets of size ~ 100 bytes. Scenario (1.a): average 684.70 kpps; std. dev. 0.7 kpps; Scenario (1.b): average 711.69 kpps; std. dev. 1.2 kpps; Scenario (2.a): average 690.70 kpps; std. dev. 1.2 kpps; Scenario (2.b): average 722.22 kpps; std. dev. 1.7 kpps; Scenario (3.a): average 690.02 kpps; std. dev. 2.6 kpps; Scenario (3.b): average 721.91 kpps; std. dev. 1.2 kpps; Considering the results for the patched kernel (1.a, 1.b, 2.a, 2.b) we observe that the performance degradation incurred in using End.DT46 rather than End.DT6 and End.DT4 respectively for IPv6 and IPv4 traffic is minimal, around 0.9% and 1.5%. Such very minimal performance degradation is the price to be paid if one prefers to use a single tunnel capable of handling both types of traffic (IPv4 and IPv6). Comparing the results for End.DT4 and End.DT6 under the patched and the vanilla kernel (2.a, 2.b, 3.a, 3.b) we observe that the introduction of the End.DT46 patch has no impact on the performance of End.DT4 and End.DT6. [2] https://www.cloudlab.us Signed-off-by: Andrea Mayer <andrea.mayer@uniroma2.it> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-04-29seg6: add counters support for SRv6 BehaviorsAndrea Mayer
This patch provides counters for SRv6 Behaviors as defined in [1], section 6. For each SRv6 Behavior instance, counters defined in [1] are: - the total number of packets that have been correctly processed; - the total amount of traffic in bytes of all packets that have been correctly processed; In addition, this patch introduces a new counter that counts the number of packets that have NOT been properly processed (i.e. errors) by an SRv6 Behavior instance. Counters are not only interesting for network monitoring purposes (i.e. counting the number of packets processed by a given behavior) but they also provide a simple tool for checking whether a behavior instance is working as we expect or not. Counters can be useful for troubleshooting misconfigured SRv6 networks. Indeed, an SRv6 Behavior can silently drop packets for very different reasons (i.e. wrong SID configuration, interfaces set with SID addresses, etc) without any notification/message to the user. Due to the nature of SRv6 networks, diagnostic tools such as ping and traceroute may be ineffective: paths used for reaching a given router can be totally different from the ones followed by probe packets. In addition, paths are often asymmetrical and this makes it even more difficult to keep up with the journey of the packets and to understand which behaviors are actually processing our traffic. When counters are enabled on an SRv6 Behavior instance, it is possible to verify if packets are actually processed by such behavior and what is the outcome of the processing. Therefore, the counters for SRv6 Behaviors offer an non-invasive observability point which can be leveraged for both traffic monitoring and troubleshooting purposes. [1] https://www.rfc-editor.org/rfc/rfc8986.html#name-counters Troubleshooting using SRv6 Behavior counters -------------------------------------------- Let's make a brief example to see how helpful counters can be for SRv6 networks. Let's consider a node where an SRv6 End Behavior receives an SRv6 packet whose Segment Left (SL) is equal to 0. In this case, the End Behavior (which accepts only packets with SL >= 1) discards the packet and increases the error counter. This information can be leveraged by the network operator for troubleshooting. Indeed, the error counter is telling the user that the packet: (i) arrived at the node; (ii) the packet has been taken into account by the SRv6 End behavior; (iii) but an error has occurred during the processing. The error (iii) could be caused by different reasons, such as wrong route settings on the node or due to an invalid SID List carried by the SRv6 packet. Anyway, the error counter is used to exclude that the packet did not arrive at the node or it has not been processed by the behavior at all. Turning on/off counters for SRv6 Behaviors ------------------------------------------ Each SRv6 Behavior instance can be configured, at the time of its creation, to make use of counters. This is done through iproute2 which allows the user to create an SRv6 Behavior instance specifying the optional "count" attribute as shown in the following example: $ ip -6 route add 2001:db8::1 encap seg6local action End count dev eth0 per-behavior counters can be shown by adding "-s" to the iproute2 command line, i.e.: $ ip -s -6 route show 2001:db8::1 2001:db8::1 encap seg6local action End packets 0 bytes 0 errors 0 dev eth0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Impact of counters for SRv6 Behaviors on performance ==================================================== To determine the performance impact due to the introduction of counters in the SRv6 Behavior subsystem, we have carried out extensive tests. We chose to test the throughput achieved by the SRv6 End.DX2 Behavior because, among all the other behaviors implemented so far, it reaches the highest throughput which is around 1.5 Mpps (per core at 2.4 GHz on a Xeon(R) CPU E5-2630 v3) on kernel 5.12-rc2 using packets of size ~ 100 bytes. Three different tests were conducted in order to evaluate the overall throughput of the SRv6 End.DX2 Behavior in the following scenarios: 1) vanilla kernel (without the SRv6 Behavior counters patch) and a single instance of an SRv6 End.DX2 Behavior; 2) patched kernel with SRv6 Behavior counters and a single instance of an SRv6 End.DX2 Behavior with counters turned off; 3) patched kernel with SRv6 Behavior counters and a single instance of SRv6 End.DX2 Behavior with counters turned on. All tests were performed on a testbed deployed on the CloudLab facilities [2], a flexible infrastructure dedicated to scientific research on the future of Cloud Computing. Results of tests are shown in the following table: Scenario (1): average 1504764,81 pps (~1504,76 kpps); std. dev 3956,82 pps Scenario (2): average 1501469,78 pps (~1501,47 kpps); std. dev 2979,85 pps Scenario (3): average 1501315,13 pps (~1501,32 kpps); std. dev 2956,00 pps As can be observed, throughputs achieved in scenarios (2),(3) did not suffer any observable degradation compared to scenario (1). Thanks to Jakub Kicinski and David Ahern for their valuable suggestions and comments provided during the discussion of the proposed RFCs. [2] https://www.cloudlab.us Signed-off-by: Andrea Mayer <andrea.mayer@uniroma2.it> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-04-12net: seg6: trivial fix of a spelling mistake in commentAndrea Mayer
There is a comment spelling mistake "interfarence" -> "interference" in function parse_nla_action(). Fix it. Signed-off-by: Andrea Mayer <andrea.mayer@uniroma2.it> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-03-11seg6: ignore routing header with segments left equal to 0Julien Massonneau
When there are 2 segments routing header, after an End.B6 action for example, the second SRH will never be handled by an action, packet will be dropped when the first SRH has segments left equal to 0. For actions that doesn't perform decapsulation (currently: End, End.X, End.T, End.B6, End.B6.Encaps), this patch adds the IP6_FH_F_SKIP_RH flag in arguments for ipv6_find_hdr(). Signed-off-by: Julien Massonneau <julien.massonneau@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-08seg6: fool-proof the processing of SRv6 behavior attributesAndrea Mayer
The set of required attributes for a given SRv6 behavior is identified using a bitmap stored in an unsigned long, since the initial design of SRv6 networking in Linux. Recently the same approach has been used for identifying the optional attributes. However, the number of attributes supported by SRv6 behaviors depends on the size of the unsigned long type which changes with the architecture. Indeed, on a 64-bit architecture, an SRv6 behavior can support up to 64 attributes while on a 32-bit architecture it can support at most 32 attributes. To fool-proof the processing of SRv6 behaviors we verify, at compile time, that the set of all supported SRv6 attributes can be encoded into a bitmap stored in an unsigned long. Otherwise, kernel build fails forcing developers to reconsider adding a new attribute or extend the total number of supported attributes by the SRv6 behaviors. Moreover, we replace all patterns (1 << i) with the macro SEG6_F_ATTR(i) in order to address potential overflow issues caused by 32-bit signed arithmetic. Thanks to Colin Ian King for catching the overflow problem, providing a solution and inspiring this patch. Thanks to Jakub Kicinski for his useful suggestions during the design of this patch. v2: - remove the SEG6_LOCAL_MAX_SUPP which is not strictly needed: it can be derived from the unsigned long type. Thanks to David Ahern for pointing it out. Signed-off-by: Andrea Mayer <andrea.mayer@uniroma2.it> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20210206170934.5982-1-andrea.mayer@uniroma2.it Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-12-04seg6: add VRF support for SRv6 End.DT6 behaviorAndrea Mayer
SRv6 End.DT6 is defined in the SRv6 Network Programming [1]. The Linux kernel already offers an implementation of the SRv6 End.DT6 behavior which permits IPv6 L3 VPNs over SRv6 networks. This implementation is not particularly suitable in contexts where we need to deploy IPv6 L3 VPNs among different tenants which share the same network address schemes. The underlying problem lies in the fact that the current version of DT6 (called legacy DT6 from now on) needs a complex configuration to be applied on routers which requires ad-hoc routes and routing policy rules to ensure the correct isolation of tenants. Consequently, a new implementation of DT6 has been introduced with the aim of simplifying the construction of IPv6 L3 VPN services in the multi-tenant environment using SRv6 networks. To accomplish this task, we reused the same VRF infrastructure and SRv6 core components already exploited for implementing the SRv6 End.DT4 behavior. Currently the two End.DT6 implementations coexist seamlessly and can be used depending on the context and the user preferences. So, in order to support both versions of DT6 a new attribute (vrftable) has been introduced which allows us to differentiate the implementation of the behavior to be used. A SRv6 End.DT6 legacy behavior is still instantiated using a command like the following one: $ ip -6 route add 2001:db8::1 encap seg6local action End.DT6 table 100 dev eth0 While to instantiate the SRv6 End.DT6 in VRF mode, the command is still pretty straight forward: $ ip -6 route add 2001:db8::1 encap seg6local action End.DT6 vrftable 100 dev eth0. Obviously as in the case of SRv6 End.DT4, the VRF strict_mode parameter must be set (net.vrf.strict_mode=1) and the VRF associated with table 100 must exist. Please note that the instances of SRv6 End.DT6 legacy and End.DT6 VRF mode can coexist in the same system/configuration without problems. [1] https://tools.ietf.org/html/draft-ietf-spring-srv6-network-programming Signed-off-by: Andrea Mayer <andrea.mayer@uniroma2.it> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-12-04seg6: add support for the SRv6 End.DT4 behaviorAndrea Mayer
SRv6 End.DT4 is defined in the SRv6 Network Programming [1]. The SRv6 End.DT4 is used to implement IPv4 L3VPN use-cases in multi-tenants environments. It decapsulates the received packets and it performs IPv4 routing lookup in the routing table of the tenant. The SRv6 End.DT4 Linux implementation leverages a VRF device in order to force the routing lookup into the associated routing table. To make the End.DT4 work properly, it must be guaranteed that the routing table used for routing lookup operations is bound to one and only one VRF during the tunnel creation. Such constraint has to be enforced by enabling the VRF strict_mode sysctl parameter, i.e: $ sysctl -wq net.vrf.strict_mode=1. At JANOG44, LINE corporation presented their multi-tenant DC architecture using SRv6 [2]. In the slides, they reported that the Linux kernel is missing the support of SRv6 End.DT4 behavior. The SRv6 End.DT4 behavior can be instantiated using a command similar to the following: $ ip route add 2001:db8::1 encap seg6local action End.DT4 vrftable 100 dev eth0 We introduce the "vrftable" extension in iproute2 in a following patch. [1] https://tools.ietf.org/html/draft-ietf-spring-srv6-network-programming [2] https://speakerdeck.com/line_developers/line-data-center-networking-with-srv6 Signed-off-by: Andrea Mayer <andrea.mayer@uniroma2.it> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-12-04seg6: add callbacks for customizing the creation/destruction of a behaviorAndrea Mayer
We introduce two callbacks used for customizing the creation/destruction of a SRv6 behavior. Such callbacks are defined in the new struct seg6_local_lwtunnel_ops and hereafter we provide a brief description of them: - build_state(...): used for calling the custom constructor of the behavior during its initialization phase and after all the attributes have been parsed successfully; - destroy_state(...): used for calling the custom destructor of the behavior before it is completely destroyed. Signed-off-by: Andrea Mayer <andrea.mayer@uniroma2.it> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-12-04seg6: add support for optional attributes in SRv6 behaviorsAndrea Mayer
Before this patch, each SRv6 behavior specifies a set of required attributes that must be provided by the userspace application when such behavior is going to be instantiated. If at least one of the required attributes is not provided, the creation of the behavior fails. The SRv6 behavior framework lacks a way to manage optional attributes. By definition, an optional attribute for a SRv6 behavior consists of an attribute which may or may not be provided by the userspace. Therefore, if an optional attribute is missing (and thus not supplied by the user) the creation of the behavior goes ahead without any issue. This patch explicitly differentiates the required attributes from the optional attributes. In particular, each behavior can declare a set of required attributes and a set of optional ones. The semantic of the required attributes remains *totally* unaffected by this patch. The introduction of the optional attributes does NOT impact on the backward compatibility of the existing SRv6 behaviors. It is essential to note that if an (optional or required) attribute is supplied to a SRv6 behavior which does not expect it, the behavior simply discards such attribute without generating any error or warning. This operating mode remained unchanged both before and after the introduction of the optional attributes extension. The optional attributes are one of the key components used to implement the SRv6 End.DT6 behavior based on the Virtual Routing and Forwarding (VRF) framework. The optional attributes make possible the coexistence of the already existing SRv6 End.DT6 implementation with the new SRv6 End.DT6 VRF-based implementation without breaking any backward compatibility. Further details on the SRv6 End.DT6 behavior (VRF mode) are reported in subsequent patches. From the userspace point of view, the support for optional attributes DO NOT require any changes to the userspace applications, i.e: iproute2 unless new attributes (required or optional) are needed. Signed-off-by: Andrea Mayer <andrea.mayer@uniroma2.it> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-12-04seg6: improve management of behavior attributesAndrea Mayer
Depending on the attribute (i.e.: SEG6_LOCAL_SRH, SEG6_LOCAL_TABLE, etc), the parse() callback performs some validity checks on the provided input and updates the tunnel state (slwt) with the result of the parsing operation. However, an attribute may also need to reserve some additional resources (i.e.: memory or setting up an eBPF program) in the parse() callback to complete the parsing operation. The parse() callbacks are invoked by the parse_nla_action() for each attribute belonging to a specific behavior. Given a behavior with N attributes, if the parsing of the i-th attribute fails, the parse_nla_action() returns immediately with an error. Nonetheless, the resources acquired during the parsing of the i-1 attributes are not freed by the parse_nla_action(). Attributes which acquire resources must release them *in an explicit way* in both the seg6_local_{build/destroy}_state(). However, adding a new attribute of this type requires changes to seg6_local_{build/destroy}_state() to release the resources correctly. The seg6local infrastructure still lacks a simple and structured way to release the resources acquired in the parse() operations. We introduced a new callback in the struct seg6_action_param named destroy(). This callback releases any resource which may have been acquired in the parse() counterpart. Each attribute may or may not implement the destroy() callback depending on whether it needs to free some acquired resources. The destroy() callback comes with several of advantages: 1) we can have many attributes as we want for a given behavior with no need to explicitly free the taken resources; 2) As in case of the seg6_local_build_state(), the seg6_local_destroy_state() does not need to handle the release of resources directly. Indeed, it calls the destroy_attrs() function which is in charge of calling the destroy() callback for every set attribute. We do not need to patch seg6_local_{build/destroy}_state() anymore as we add new attributes; 3) the code is more readable and better structured. Indeed, all the information needed to handle a given attribute are contained in only one place; 4) it facilitates the integration with new features introduced in further patches. Signed-off-by: Andrea Mayer <andrea.mayer@uniroma2.it> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-06-04seg6: fix seg6_validate_srh() to avoid slab-out-of-boundsAhmed Abdelsalam
The seg6_validate_srh() is used to validate SRH for three cases: case1: SRH of data-plane SRv6 packets to be processed by the Linux kernel. Case2: SRH of the netlink message received from user-space (iproute2) Case3: SRH injected into packets through setsockopt In case1, the SRH can be encoded in the Reduced way (i.e., first SID is carried in DA only and not represented as SID in the SRH) and the seg6_validate_srh() now handles this case correctly. In case2 and case3, the SRH shouldn’t be encoded in the Reduced way otherwise we lose the first segment (i.e., the first hop). The current implementation of the seg6_validate_srh() allow SRH of case2 and case3 to be encoded in the Reduced way. This leads a slab-out-of-bounds problem. This patch verifies SRH of case1, case2 and case3. Allowing case1 to be reduced while preventing SRH of case2 and case3 from being reduced . Reported-by: syzbot+e8c028b62439eac42073@syzkaller.appspotmail.com Reported-by: YueHaibing <yuehaibing@huawei.com> Fixes: 0cb7498f234e ("seg6: fix SRH processing to comply with RFC8754") Signed-off-by: Ahmed Abdelsalam <ahabdels@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-29net: add net available in build_stateAlexander Aring
The build_state callback of lwtunnel doesn't contain the net namespace structure yet. This patch will add it so we can check on specific address configuration at creation time of rpl source routes. Signed-off-by: Alexander Aring <alex.aring@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-11seg6: fix SRv6 L2 tunnels to use IANA-assigned protocol numberPaolo Lungaroni
The Internet Assigned Numbers Authority (IANA) has recently assigned a protocol number value of 143 for Ethernet [1]. Before this assignment, encapsulation mechanisms such as Segment Routing used the IPv6-NoNxt protocol number (59) to indicate that the encapsulated payload is an Ethernet frame. In this patch, we add the definition of the Ethernet protocol number to the kernel headers and update the SRv6 L2 tunnels to use it. [1] https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml Signed-off-by: Paolo Lungaroni <paolo.lungaroni@cnit.it> Reviewed-by: Andrea Mayer <andrea.mayer@uniroma2.it> Acked-by: Ahmed Abdelsalam <ahmed.abdelsalam@gssi.it> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-21ipv6: sr: remove SKB_GSO_IPXIP6 on End.D* actionsYuki Taguchi
After LRO/GRO is applied, SRv6 encapsulated packets have SKB_GSO_IPXIP6 feature flag, and this flag must be removed right after decapulation procedure. Currently, SKB_GSO_IPXIP6 flag is not removed on End.D* actions, which creates inconsistent packet state, that is, a normal TCP/IP packets have the SKB_GSO_IPXIP6 flag. This behavior can cause unexpected fallback to GSO on routing to netdevices that do not support SKB_GSO_IPXIP6. For example, on inter-VRF forwarding, decapsulated packets separated into small packets by GSO because VRF devices do not support TSO for packets with SKB_GSO_IPXIP6 flag, and this degrades forwarding performance. This patch removes encapsulation related GSO flags from the skb right after the End.D* action is applied. Fixes: d7a669dd2f8b ("ipv6: sr: add helper functions for seg6local") Signed-off-by: Yuki Taguchi <tagyounit@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-22seg6: allow local packet processing for SRv6 End.DT6 behaviorAndrea Mayer
End.DT6 behavior makes use of seg6_lookup_nexthop() function which drops all packets that are destined to be locally processed. However, DT* should be able to deliver decapsulated packets that are destined to local addresses. Function seg6_lookup_nexthop() is also used by DX6, so in order to maintain compatibility I created another routing helper function which is called seg6_lookup_any_nexthop(). This function is able to take into account both packets that have to be processed locally and the ones that are destined to be forwarded directly to another machine. Hence, seg6_lookup_any_nexthop() is used in DT6 rather than seg6_lookup_nexthop() to allow local delivery. Signed-off-by: Andrea Mayer <andrea.mayer@uniroma2.it> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-16seg6: fix skb transport_header after decap_and_validate()Andrea Mayer
in the receive path (more precisely in ip6_rcv_core()) the skb->transport_header is set to skb->network_header + sizeof(*hdr). As a consequence, after routing operations, destination input expects to find skb->transport_header correctly set to the next protocol (or extension header) that follows the network protocol. However, decap behaviors (DX*, DT*) remove the outer IPv6 and SRH extension and do not set again the skb->transport_header pointer correctly. For this reason, the patch sets the skb->transport_header to the skb->network_header + sizeof(hdr) in each DX* and DT* behavior. Signed-off-by: Andrea Mayer <andrea.mayer@uniroma2.it> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-16seg6: fix srh pointer in get_srh()Andrea Mayer
pskb_may_pull may change pointers in header. For this reason, it is mandatory to reload any pointer that points into skb header. Signed-off-by: Andrea Mayer <andrea.mayer@uniroma2.it> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-30treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152Thomas Gleixner
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 3029 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27netlink: make validation more configurable for future strictnessJohannes Berg
We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-27netlink: make nla_nest_start() add NLA_F_NESTED flagMichal Kubecek
Even if the NLA_F_NESTED flag was introduced more than 11 years ago, most netlink based interfaces (including recently added ones) are still not setting it in kernel generated messages. Without the flag, message parsers not aware of attribute semantics (e.g. wireshark dissector or libmnl's mnl_nlmsg_fprintf()) cannot recognize nested attributes and won't display the structure of their contents. Unfortunately we cannot just add the flag everywhere as there may be userspace applications which check nlattr::nla_type directly rather than through a helper masking out the flags. Therefore the patch renames nla_nest_start() to nla_nest_start_noflag() and introduces nla_nest_start() as a wrapper adding NLA_F_NESTED. The calls which add NLA_F_NESTED manually are rewritten to use nla_nest_start(). Except for changes in include/net/netlink.h, the patch was generated using this semantic patch: @@ expression E1, E2; @@ -nla_nest_start(E1, E2) +nla_nest_start_noflag(E1, E2) @@ expression E1, E2; @@ -nla_nest_start_noflag(E1, E2 | NLA_F_NESTED) +nla_nest_start(E1, E2) Signed-off-by: Michal Kubecek <mkubecek@suse.cz> Acked-by: Jiri Pirko <jiri@mellanox.com> Acked-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-31bpf: add End.DT6 action to bpf_lwt_seg6_action helperMathieu Xhonneux
The seg6local LWT provides the End.DT6 action, which allows to decapsulate an outer IPv6 header containing a Segment Routing Header (SRH), full specification is available here: https://tools.ietf.org/html/draft-filsfils-spring-srv6-network-programming-05 This patch adds this action now to the seg6local BPF interface. Since it is not mandatory that the inner IPv6 header also contains a SRH, seg6_bpf_srh_state has been extended with a pointer to a possible SRH of the outermost IPv6 header. This helps assessing if the validation must be triggered or not, and avoids some calls to ipv6_find_hdr. v3: s/1/true, s/0/false for boolean values v2: - changed true/false -> 1/0 - preempt_enable no longer called in first conditional block Signed-off-by: Mathieu Xhonneux <m.xhonneux@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-07-23ipv6: sr: Use kmemdup instead of duplicating it in parse_nla_srhYueHaibing
Replace calls to kmalloc followed by a memcpy with a direct call to kmemdup. Signed-off-by: YueHaibing <yuehaibing@huawei.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-24ipv6: sr: Add seg6local action End.BPFMathieu Xhonneux
This patch adds the End.BPF action to the LWT seg6local infrastructure. This action works like any other seg6local End action, meaning that an IPv6 header with SRH is needed, whose DA has to be equal to the SID of the action. It will also advance the SRH to the next segment, the BPF program does not have to take care of this. Since the BPF program may not be a source of instability in the kernel, it is important to ensure that the integrity of the packet is maintained before yielding it back to the IPv6 layer. The hook hence keeps track if the SRH has been altered through the helpers, and re-validates its content if needed with seg6_validate_srh. The state kept for validation is stored in a per-CPU buffer. The BPF program is not allowed to directly write into the packet, and only some fields of the SRH can be altered through the helper bpf_lwt_seg6_store_bytes. Performances profiling has shown that the SRH re-validation does not induce a significant overhead. If the altered SRH is deemed as invalid, the packet is dropped. This validation is also done before executing any action through bpf_lwt_seg6_action, and will not be performed again if the SRH is not modified after calling the action. The BPF program may return 3 types of return codes: - BPF_OK: the End.BPF action will look up the next destination through seg6_lookup_nexthop. - BPF_REDIRECT: if an action has been executed through the bpf_lwt_seg6_action helper, the BPF program should return this value, as the skb's destination is already set and the default lookup should not be performed. - BPF_DROP : the packet will be dropped. Signed-off-by: Mathieu Xhonneux <m.xhonneux@gmail.com> Acked-by: David Lebrun <dlebrun@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-05-24bpf: Add IPv6 Segment Routing helpersMathieu Xhonneux
The BPF seg6local hook should be powerful enough to enable users to implement most of the use-cases one could think of. After some thinking, we figured out that the following actions should be possible on a SRv6 packet, requiring 3 specific helpers : - bpf_lwt_seg6_store_bytes: Modify non-sensitive fields of the SRH - bpf_lwt_seg6_adjust_srh: Allow to grow or shrink a SRH (to add/delete TLVs) - bpf_lwt_seg6_action: Apply some SRv6 network programming actions (specifically End.X, End.T, End.B6 and End.B6.Encap) The specifications of these helpers are provided in the patch (see include/uapi/linux/bpf.h). The non-sensitive fields of the SRH are the following : flags, tag and TLVs. The other fields can not be modified, to maintain the SRH integrity. Flags, tag and TLVs can easily be modified as their validity can be checked afterwards via seg6_validate_srh. It is not allowed to modify the segments directly. If one wants to add segments on the path, he should stack a new SRH using the End.B6 action via bpf_lwt_seg6_action. Growing, shrinking or editing TLVs via the helpers will flag the SRH as invalid, and it will have to be re-validated before re-entering the IPv6 layer. This flag is stored in a per-CPU buffer, along with the current header length in bytes. Storing the SRH len in bytes in the control block is mandatory when using bpf_lwt_seg6_adjust_srh. The Header Ext. Length field contains the SRH len rounded to 8 bytes (a padding TLV can be inserted to ensure the 8-bytes boundary). When adding/deleting TLVs within the BPF program, the SRH may temporary be in an invalid state where its length cannot be rounded to 8 bytes without remainder, hence the need to store the length in bytes separately. The caller of the BPF program can then ensure that the SRH's final length is valid using this value. Again, a final SRH modified by a BPF program which doesn’t respect the 8-bytes boundary will be discarded as it will be considered as invalid. Finally, a fourth helper is provided, bpf_lwt_push_encap, which is available from the LWT BPF IN hook, but not from the seg6local BPF one. This helper allows to encapsulate a Segment Routing Header (either with a new outer IPv6 header, or by inlining it directly in the existing IPv6 header) into a non-SRv6 packet. This helper is required if we want to offer the possibility to dynamically encapsulate a SRH for non-SRv6 packet, as the BPF seg6local hook only works on traffic already containing a SRH. This is the BPF equivalent of the seg6 LWT infrastructure, which achieves the same purpose but with a static SRH per route. These helpers require CONFIG_IPV6=y (and not =m). Signed-off-by: Mathieu Xhonneux <m.xhonneux@gmail.com> Acked-by: David Lebrun <dlebrun@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-05-24ipv6: sr: export function lookup_nexthopMathieu Xhonneux
The function lookup_nexthop is essential to implement most of the seg6local actions. As we want to provide a BPF helper allowing to apply some of these actions on the packet being processed, the helper should be able to call this function, hence the need to make it public. Moreover, if one argument is incorrect or if the next hop can not be found, an error should be returned by the BPF helper so the BPF program can adapt its processing of the packet (return an error, properly force the drop, ...). This patch hence makes this function return dst->error to indicate a possible error. Signed-off-by: Mathieu Xhonneux <m.xhonneux@gmail.com> Acked-by: David Lebrun <dlebrun@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-04net/ipv6: Pass skb to route lookupDavid Ahern
IPv6 does path selection for multipath routes deep in the lookup functions. The next patch adds L4 hash option and needs the skb for the forward path. To get the skb to the relevant FIB lookup functions it needs to go through the fib rules layer, so add a lookup_data argument to the fib_lookup_arg struct. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Ido Schimmel <idosch@mellanox.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-01-09ipv6: use ARRAY_SIZE for array sizing calculation on array seg6_action_tableColin Ian King
Use the ARRAY_SIZE macro on array seg6_action_table to determine size of the array. Improvement suggested by coccinelle. Signed-off-by: Colin Ian King <colin.king@canonical.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-09-11ipv6: sr: remove duplicate routing header type checkDavid Lebrun
As seg6_validate_srh() already checks that the Routing Header type is correct, it is not necessary to do it again in get_srh(). Fixes: 5829d70b ("ipv6: sr: fix get_srh() to comply with IPv6 standard "RFC 8200") Signed-off-by: David Lebrun <dlebrun@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-30ipv6: sr: fix get_srh() to comply with IPv6 standard "RFC 8200"Ahmed Abdelsalam
IPv6 packet may carry more than one extension header, and IPv6 nodes must accept and attempt to process extension headers in any order and occurring any number of times in the same packet. Hence, there should be no assumption that Segment Routing extension header is to appear immediately after the IPv6 header. Moreover, section 4.1 of RFC 8200 gives a recommendation on the order of appearance of those extension headers within an IPv6 packet. According to this recommendation, Segment Routing extension header should appear after Hop-by-Hop and Destination Options headers (if they present). This patch fixes the get_srh(), so it gets the segment routing header regardless of its position in the chain of the extension headers in IPv6 packet, and makes sure that the IPv6 routing extension header is of Type 4. Signed-off-by: Ahmed Abdelsalam <amsalam20@gmail.com> Acked-by: David Lebrun <david.lebrun@uclouvain.be> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-25ipv6: sr: implement additional seg6local actionsDavid Lebrun
This patch implements the following seg6local actions. - SEG6_LOCAL_ACTION_END_T: regular SRH processing and forward to the next-hop looked up in the specified routing table. - SEG6_LOCAL_ACTION_END_DX2: decapsulate an L2 frame and forward it to the specified network interface. - SEG6_LOCAL_ACTION_END_DX4: decapsulate an IPv4 packet and forward it, possibly to the specified next-hop. - SEG6_LOCAL_ACTION_END_DT6: decapsulate an IPv6 packet and forward it to the next-hop looked up in the specified routing table. Signed-off-by: David Lebrun <david.lebrun@uclouvain.be> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-25ipv6: sr: add helper functions for seg6localDavid Lebrun
This patch adds three helper functions to be used with the seg6local packet processing actions. The decap_and_validate() function will be used by the End.D* actions, that decapsulate an SR-enabled packet. The advance_nextseg() function applies the fundamental operations to update an SRH for the next segment. The lookup_nexthop() function helps select the next-hop for the processed SR packets. It supports an optional next-hop address to route the packet specifically through it, and an optional routing table to use. Signed-off-by: David Lebrun <david.lebrun@uclouvain.be> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-25ipv6: sr: enforce IPv6 packets for seg6local lwtDavid Lebrun
This patch ensures that the seg6local lightweight tunnel is used solely with IPv6 routes and processes only IPv6 packets. Signed-off-by: David Lebrun <david.lebrun@uclouvain.be> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-25ipv6: sr: add support for ip4ip6 encapsulationDavid Lebrun
This patch enables the SRv6 encapsulation mode to carry an IPv4 payload. All the infrastructure was already present, I just had to add a parameter to seg6_do_srh_encap() to specify the inner packet protocol, and perform some additional checks. Usage example: ip route add 1.2.3.4 encap seg6 mode encap segs fc00::1,fc00::2 dev eth0 Signed-off-by: David Lebrun <david.lebrun@uclouvain.be> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-07ipv6: sr: implement several seg6local actionsDavid Lebrun
This patch implements the following seg6local actions. - SEG6_LOCAL_ACTION_END: regular SRH processing. The DA of the packet is updated to the next segment and forwarded accordingly. - SEG6_LOCAL_ACTION_END_X: same as above, except that the packet is forwarded to the specified IPv6 next-hop. - SEG6_LOCAL_ACTION_END_DX6: decapsulate the packet and forward to inner IPv6 packet to the specified IPv6 next-hop. - SEG6_LOCAL_ACTION_END_B6: insert the specified SRH directly after the IPv6 header of the packet. - SEG6_LOCAL_ACTION_END_B6_ENCAP: encapsulate the packet within an outer IPv6 header, containing the specified SRH. Signed-off-by: David Lebrun <david.lebrun@uclouvain.be> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-07ipv6: sr: add rtnetlink functions for seg6local action parametersDavid Lebrun
This patch adds the necessary functions to parse, fill, and compare seg6local rtnetlink attributes, for all defined action parameters. - The SRH parameter defines an SRH to be inserted or encapsulated. - The TABLE parameter defines the table to use for the route lookup of the next segment or the inner decapsulated packet. - The NH4 parameter defines the IPv4 next-hop for an inner decapsulated IPv4 packet. - The NH6 parameter defines the IPv6 next-hop for the next segment or for an inner decapsulated IPv6 packet - The IIF parameter defines an ingress interface index. - The OIF parameter defines an egress interface index. Signed-off-by: David Lebrun <david.lebrun@uclouvain.be> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-07ipv6: sr: define core operations for seg6local lightweight tunnelDavid Lebrun
This patch implements a new type of lightweight tunnel named seg6local. A seg6local lwt is defined by a type of action and a set of parameters. The action represents the operation to perform on the packets matching the lwt's route, and is not necessarily an encapsulation. The set of parameters are arguments for the processing function. Each action is defined in a struct seg6_action_desc within seg6_action_table[]. This structure contains the action, mandatory attributes, the processing function, and a static headroom size required by the action. The mandatory attributes are encoded as a bitmask field. The static headroom is set to a non-zero value when the processing function always add a constant number of bytes to the skb (e.g. the header size for encapsulations). To facilitate rtnetlink-related operations such as parsing, fill_encap, and cmp_encap, each type of action parameter is associated to three function pointers, in seg6_action_params[]. All actions defined in seg6_local.h are detailed in [1]. [1] https://tools.ietf.org/html/draft-filsfils-spring-srv6-network-programming-01 Signed-off-by: David Lebrun <david.lebrun@uclouvain.be> Signed-off-by: David S. Miller <davem@davemloft.net>