Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Pull bpf updates from Alexei Starovoitov:
- Fix and improve BTF deduplication of identical BTF types (Alan
Maguire and Andrii Nakryiko)
- Support up to 12 arguments in BPF trampoline on arm64 (Xu Kuohai and
Alexis Lothoré)
- Support load-acquire and store-release instructions in BPF JIT on
riscv64 (Andrea Parri)
- Fix uninitialized values in BPF_{CORE,PROBE}_READ macros (Anton
Protopopov)
- Streamline allowed helpers across program types (Feng Yang)
- Support atomic update for hashtab of BPF maps (Hou Tao)
- Implement json output for BPF helpers (Ihor Solodrai)
- Several s390 JIT fixes (Ilya Leoshkevich)
- Various sockmap fixes (Jiayuan Chen)
- Support mmap of vmlinux BTF data (Lorenz Bauer)
- Support BPF rbtree traversal and list peeking (Martin KaFai Lau)
- Tests for sockmap/sockhash redirection (Michal Luczaj)
- Introduce kfuncs for memory reads into dynptrs (Mykyta Yatsenko)
- Add support for dma-buf iterators in BPF (T.J. Mercier)
- The verifier support for __bpf_trap() (Yonghong Song)
* tag 'bpf-next-6.16' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (135 commits)
bpf, arm64: Remove unused-but-set function and variable.
selftests/bpf: Add tests with stack ptr register in conditional jmp
bpf: Do not include stack ptr register in precision backtracking bookkeeping
selftests/bpf: enable many-args tests for arm64
bpf, arm64: Support up to 12 function arguments
bpf: Check rcu_read_lock_trace_held() in bpf_map_lookup_percpu_elem()
bpf: Avoid __bpf_prog_ret0_warn when jit fails
bpftool: Add support for custom BTF path in prog load/loadall
selftests/bpf: Add unit tests with __bpf_trap() kfunc
bpf: Warn with __bpf_trap() kfunc maybe due to uninitialized variable
bpf: Remove special_kfunc_set from verifier
selftests/bpf: Add test for open coded dmabuf_iter
selftests/bpf: Add test for dmabuf_iter
bpf: Add open coded dmabuf iterator
bpf: Add dmabuf iterator
dma-buf: Rename debugfs symbols
bpf: Fix error return value in bpf_copy_from_user_dynptr
libbpf: Use mmap to parse vmlinux BTF from sysfs
selftests: bpf: Add a test for mmapable vmlinux BTF
btf: Allow mmap of vmlinux btf
...
|
|
Adding support to retrieve ref_ctr_offset for uprobe perf link,
which got somehow omitted from the initial uprobe link info changes.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/bpf/20250509153539.779599-2-jolsa@kernel.org
|
|
When switching network namespaces with the bpf_redirect_peer helper, the
skb->mark and skb->tstamp fields are not zeroed out like they can be on
a typical netns switch. This patch clarifies that in the helper
description.
Signed-off-by: Paul Chaignon <paul.chaignon@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://patch.msgid.link/ccc86af26d43c5c0b776bcba2601b7479c0d46d0.1746460653.git.paul.chaignon@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
In the bpf_l4_csum_replace helper, the BPF_F_PSEUDO_HDR flag should only
be set if the modified header field is part of the pseudo-header.
If you modify for example the UDP ports and pass BPF_F_PSEUDO_HDR,
inet_proto_csum_replace4 will update skb->csum even though it shouldn't
(the port and the UDP checksum updates null each other).
Signed-off-by: Paul Chaignon <paul.chaignon@gmail.com>
Link: https://lore.kernel.org/r/5126ef84ba75425b689482cbc98bffe75e5d8ab0.1744102490.git.paul.chaignon@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
BPF_F_RECOMPUTE_CSUM doesn't update the actual L3 and L4 checksums in
the packet, but simply updates skb->csum (according to skb->ip_summed).
This patch clarifies that to avoid confusions.
Signed-off-by: Paul Chaignon <paul.chaignon@gmail.com>
Link: https://lore.kernel.org/r/ff6895d42936f03dbb82334d8bcfd50e00c79086.1744102490.git.paul.chaignon@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
The map_fd field of the bpf_attr union is used in the BPF_MAP_FREEZE
syscall. Explicitly mention this in the comments.
Signed-off-by: Anton Protopopov <a.s.protopopov@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20250331203618.1973691-2-a.s.protopopov@gmail.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Pull bpf updates from Alexei Starovoitov:
"For this merge window we're splitting BPF pull request into three for
higher visibility: main changes, res_spin_lock, try_alloc_pages.
These are the main BPF changes:
- Add DFA-based live registers analysis to improve verification of
programs with loops (Eduard Zingerman)
- Introduce load_acquire and store_release BPF instructions and add
x86, arm64 JIT support (Peilin Ye)
- Fix loop detection logic in the verifier (Eduard Zingerman)
- Drop unnecesary lock in bpf_map_inc_not_zero() (Eric Dumazet)
- Add kfunc for populating cpumask bits (Emil Tsalapatis)
- Convert various shell based tests to selftests/bpf/test_progs
format (Bastien Curutchet)
- Allow passing referenced kptrs into struct_ops callbacks (Amery
Hung)
- Add a flag to LSM bpf hook to facilitate bpf program signing
(Blaise Boscaccy)
- Track arena arguments in kfuncs (Ihor Solodrai)
- Add copy_remote_vm_str() helper for reading strings from remote VM
and bpf_copy_from_user_task_str() kfunc (Jordan Rome)
- Add support for timed may_goto instruction (Kumar Kartikeya
Dwivedi)
- Allow bpf_get_netns_cookie() int cgroup_skb programs (Mahe Tardy)
- Reduce bpf_cgrp_storage_busy false positives when accessing cgroup
local storage (Martin KaFai Lau)
- Introduce bpf_dynptr_copy() kfunc (Mykyta Yatsenko)
- Allow retrieving BTF data with BTF token (Mykyta Yatsenko)
- Add BPF kfuncs to set and get xattrs with 'security.bpf.' prefix
(Song Liu)
- Reject attaching programs to noreturn functions (Yafang Shao)
- Introduce pre-order traversal of cgroup bpf programs (Yonghong
Song)"
* tag 'bpf-next-6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (186 commits)
selftests/bpf: Add selftests for load-acquire/store-release when register number is invalid
bpf: Fix out-of-bounds read in check_atomic_load/store()
libbpf: Add namespace for errstr making it libbpf_errstr
bpf: Add struct_ops context information to struct bpf_prog_aux
selftests/bpf: Sanitize pointer prior fclose()
selftests/bpf: Migrate test_xdp_vlan.sh into test_progs
selftests/bpf: test_xdp_vlan: Rename BPF sections
bpf: clarify a misleading verifier error message
selftests/bpf: Add selftest for attaching fexit to __noreturn functions
bpf: Reject attaching fexit/fmod_ret to __noreturn functions
bpf: Only fails the busy counter check in bpf_cgrp_storage_get if it creates storage
bpf: Make perf_event_read_output accessible in all program types.
bpftool: Using the right format specifiers
bpftool: Add -Wformat-signedness flag to detect format errors
selftests/bpf: Test freplace from user namespace
libbpf: Pass BPF token from find_prog_btf_id to BPF_BTF_GET_FD_BY_ID
bpf: Return prog btf_id without capable check
bpf: BPF token support for BPF_BTF_GET_FD_BY_ID
bpf, x86: Fix objtool warning for timed may_goto
bpf: Check map->record at the beginning of check_and_free_fields()
...
|
|
Currently BPF_BTF_GET_FD_BY_ID requires CAP_SYS_ADMIN, which does not
allow running it from user namespace. This creates a problem when
freplace program running from user namespace needs to query target
program BTF.
This patch relaxes capable check from CAP_SYS_ADMIN to CAP_BPF and adds
support for BPF token that can be passed in attributes to syscall.
Signed-off-by: Mykyta Yatsenko <yatsenko@meta.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20250317174039.161275-2-mykyta.yatsenko5@gmail.com
|
|
Introduce BPF instructions with load-acquire and store-release
semantics, as discussed in [1]. Define 2 new flags:
#define BPF_LOAD_ACQ 0x100
#define BPF_STORE_REL 0x110
A "load-acquire" is a BPF_STX | BPF_ATOMIC instruction with the 'imm'
field set to BPF_LOAD_ACQ (0x100).
Similarly, a "store-release" is a BPF_STX | BPF_ATOMIC instruction with
the 'imm' field set to BPF_STORE_REL (0x110).
Unlike existing atomic read-modify-write operations that only support
BPF_W (32-bit) and BPF_DW (64-bit) size modifiers, load-acquires and
store-releases also support BPF_B (8-bit) and BPF_H (16-bit). As an
exception, however, 64-bit load-acquires/store-releases are not
supported on 32-bit architectures (to fix a build error reported by the
kernel test robot).
An 8- or 16-bit load-acquire zero-extends the value before writing it to
a 32-bit register, just like ARM64 instruction LDARH and friends.
Similar to existing atomic read-modify-write operations, misaligned
load-acquires/store-releases are not allowed (even if
BPF_F_ANY_ALIGNMENT is set).
As an example, consider the following 64-bit load-acquire BPF
instruction (assuming little-endian):
db 10 00 00 00 01 00 00 r0 = load_acquire((u64 *)(r1 + 0x0))
opcode (0xdb): BPF_ATOMIC | BPF_DW | BPF_STX
imm (0x00000100): BPF_LOAD_ACQ
Similarly, a 16-bit BPF store-release:
cb 21 00 00 10 01 00 00 store_release((u16 *)(r1 + 0x0), w2)
opcode (0xcb): BPF_ATOMIC | BPF_H | BPF_STX
imm (0x00000110): BPF_STORE_REL
In arch/{arm64,s390,x86}/net/bpf_jit_comp.c, have
bpf_jit_supports_insn(..., /*in_arena=*/true) return false for the new
instructions, until the corresponding JIT compiler supports them in
arena.
[1] https://lore.kernel.org/all/20240729183246.4110549-1-yepeilin@google.com/
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: kernel test robot <lkp@intel.com>
Signed-off-by: Peilin Ye <yepeilin@google.com>
Link: https://lore.kernel.org/r/a217f46f0e445fbd573a1a024be5c6bf1d5fe716.1741049567.git.yepeilin@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Currently for bpf progs in a cgroup hierarchy, the effective prog array
is computed from bottom cgroup to upper cgroups (post-ordering). For
example, the following cgroup hierarchy
root cgroup: p1, p2
subcgroup: p3, p4
have BPF_F_ALLOW_MULTI for both cgroup levels.
The effective cgroup array ordering looks like
p3 p4 p1 p2
and at run time, progs will execute based on that order.
But in some cases, it is desirable to have root prog executes earlier than
children progs (pre-ordering). For example,
- prog p1 intends to collect original pkt dest addresses.
- prog p3 will modify original pkt dest addresses to a proxy address for
security reason.
The end result is that prog p1 gets proxy address which is not what it
wants. Putting p1 to every child cgroup is not desirable either as it
will duplicate itself in many child cgroups. And this is exactly a use case
we are encountering in Meta.
To fix this issue, let us introduce a flag BPF_F_PREORDER. If the flag
is specified at attachment time, the prog has higher priority and the
ordering with that flag will be from top to bottom (pre-ordering).
For example, in the above example,
root cgroup: p1, p2
subcgroup: p3, p4
Let us say p2 and p4 are marked with BPF_F_PREORDER. The final
effective array ordering will be
p2 p4 p3 p1
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20250224230116.283071-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This patch introduces a new callback in tcp_tx_timestamp() to correlate
tcp_sendmsg timestamp with timestamps from other tx timestamping
callbacks (e.g., SND/SW/ACK).
Without this patch, BPF program wouldn't know which timestamps belong
to which flow because of no socket lock protection. This new callback
is inserted in tcp_tx_timestamp() to address this issue because
tcp_tx_timestamp() still owns the same socket lock with
tcp_sendmsg_locked() in the meanwhile tcp_tx_timestamp() initializes
the timestamping related fields for the skb, especially tskey. The
tskey is the bridge to do the correlation.
For TCP, BPF program hooks the beginning of tcp_sendmsg_locked() and
then stores the sendmsg timestamp at the bpf_sk_storage, correlating
this timestamp with its tskey that are later used in other sending
timestamping callbacks.
Signed-off-by: Jason Xing <kerneljasonxing@gmail.com>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Link: https://patch.msgid.link/20250220072940.99994-11-kerneljasonxing@gmail.com
|
|
Support the ACK case for bpf timestamping.
Add a new sock_ops callback, BPF_SOCK_OPS_TSTAMP_ACK_CB. This
callback will occur at the same timestamping point as the user
space's SCM_TSTAMP_ACK. The BPF program can use it to get the
same SCM_TSTAMP_ACK timestamp without modifying the user-space
application.
This patch extends txstamp_ack to two bits: 1 stands for
SO_TIMESTAMPING mode, 2 bpf extension.
Signed-off-by: Jason Xing <kerneljasonxing@gmail.com>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Link: https://patch.msgid.link/20250220072940.99994-10-kerneljasonxing@gmail.com
|
|
Support hw SCM_TSTAMP_SND case for bpf timestamping.
Add a new sock_ops callback, BPF_SOCK_OPS_TSTAMP_SND_HW_CB. This
callback will occur at the same timestamping point as the user
space's hardware SCM_TSTAMP_SND. The BPF program can use it to
get the same SCM_TSTAMP_SND timestamp without modifying the
user-space application.
To avoid increasing the code complexity, replace SKBTX_HW_TSTAMP
with SKBTX_HW_TSTAMP_NOBPF instead of changing numerous callers
from driver side using SKBTX_HW_TSTAMP. The new definition of
SKBTX_HW_TSTAMP means the combination tests of socket timestamping
and bpf timestamping. After this patch, drivers can work under the
bpf timestamping.
Considering some drivers don't assign the skb with hardware
timestamp, this patch does the assignment and then BPF program
can acquire the hwstamp from skb directly.
Signed-off-by: Jason Xing <kerneljasonxing@gmail.com>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Link: https://patch.msgid.link/20250220072940.99994-9-kerneljasonxing@gmail.com
|
|
Support sw SCM_TSTAMP_SND case for bpf timestamping.
Add a new sock_ops callback, BPF_SOCK_OPS_TSTAMP_SND_SW_CB. This
callback will occur at the same timestamping point as the user
space's software SCM_TSTAMP_SND. The BPF program can use it to
get the same SCM_TSTAMP_SND timestamp without modifying the
user-space application.
Based on this patch, BPF program will get the software
timestamp when the driver is ready to send the skb. In the
sebsequent patch, the hardware timestamp will be supported.
Signed-off-by: Jason Xing <kerneljasonxing@gmail.com>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Link: https://patch.msgid.link/20250220072940.99994-8-kerneljasonxing@gmail.com
|
|
Support SCM_TSTAMP_SCHED case for bpf timestamping.
Add a new sock_ops callback, BPF_SOCK_OPS_TSTAMP_SCHED_CB. This
callback will occur at the same timestamping point as the user
space's SCM_TSTAMP_SCHED. The BPF program can use it to get the
same SCM_TSTAMP_SCHED timestamp without modifying the user-space
application.
A new SKBTX_BPF flag is added to mark skb_shinfo(skb)->tx_flags,
ensuring that the new BPF timestamping and the current user
space's SO_TIMESTAMPING do not interfere with each other.
Signed-off-by: Jason Xing <kerneljasonxing@gmail.com>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Link: https://patch.msgid.link/20250220072940.99994-7-kerneljasonxing@gmail.com
|
|
The new SK_BPF_CB_FLAGS and new SK_BPF_CB_TX_TIMESTAMPING are
added to bpf_get/setsockopt. The later patches will implement the
BPF networking timestamping. The BPF program will use
bpf_setsockopt(SK_BPF_CB_FLAGS, SK_BPF_CB_TX_TIMESTAMPING) to
enable the BPF networking timestamping on a socket.
Signed-off-by: Jason Xing <kerneljasonxing@gmail.com>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Link: https://patch.msgid.link/20250220072940.99994-2-kerneljasonxing@gmail.com
|
|
Commit 0abff462d802 ("bpf: Add comment about helper freeze") missed the
tooling header sync. Fix it.
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20250213050427.2788837-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
The fd_array attribute of the BPF_PROG_LOAD syscall may contain a set
of file descriptors: maps or btfs. This field was introduced as a
sparse array. Introduce a new attribute, fd_array_cnt, which, if
present, indicates that the fd_array is a continuous array of the
corresponding length.
If fd_array_cnt is non-zero, then every map in the fd_array will be
bound to the program, as if it was used by the program. This
functionality is similar to the BPF_PROG_BIND_MAP syscall, but such
maps can be used by the verifier during the program load.
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241213130934.1087929-5-aspsk@isovalent.com
|
|
Adding support to attach BPF program for entry and return probe
of the same function. This is common use case which at the moment
requires to create two uprobe multi links.
Adding new BPF_TRACE_UPROBE_SESSION attach type that instructs
kernel to attach single link program to both entry and exit probe.
It's possible to control execution of the BPF program on return
probe simply by returning zero or non zero from the entry BPF
program execution to execute or not the BPF program on return
probe respectively.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241108134544.480660-4-jolsa@kernel.org
|
|
Cross-merge bpf fixes after downstream PR.
No conflicts.
Adjacent changes in:
include/linux/bpf.h
include/uapi/linux/bpf.h
kernel/bpf/btf.c
kernel/bpf/helpers.c
kernel/bpf/syscall.c
kernel/bpf/verifier.c
kernel/trace/bpf_trace.c
mm/slab_common.c
tools/include/uapi/linux/bpf.h
tools/testing/selftests/bpf/Makefile
Link: https://lore.kernel.org/all/20241024215724.60017-1-daniel@iogearbox.net/
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
There is an out-of-bounds read in bpf_link_show_fdinfo() for the sockmap
link fd. Fix it by adding the missing BPF_LINK_TYPE invocation for
sockmap link
Also add comments for bpf_link_type to prevent missing updates in the
future.
Fixes: 699c23f02c65 ("bpf: Add bpf_link support for sk_msg and sk_skb progs")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241024013558.1135167-2-houtao@huaweicloud.com
|
|
The documentation says CONFIG_FUNCTION_ERROR_INJECTION is supported only
on x86. This was presumably true at the time of writing, but it's now
supported on many other architectures too. Drop this statement, since
it's not correct anymore and it fits better in other documentation
anyway.
Signed-off-by: Martin Kelly <martin.kelly@crowdstrike.com>
Link: https://lore.kernel.org/r/20241010193301.995909-1-martin.kelly@crowdstrike.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
The `index` argument to bpf_loop() is threaded as an u64.
This lead in a subtle verifier denial where clang cloned the argument
in another register[1].
[1] https://github.com/systemd/systemd/pull/34650#issuecomment-2401092895
Signed-off-by: Matteo Croce <teknoraver@meta.com>
Link: https://lore.kernel.org/r/20241010035652.17830-1-technoboy85@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Since [1] kernel supports __bpf_fastcall attribute for helper function
bpf_get_smp_processor_id(). Update uapi definition for this helper in
order to have this attribute in the generated bpf_helper_defs.h
[1] commit 91b7fbf3936f ("bpf, x86, riscv, arm: no_caller_saved_registers for bpf_get_smp_processor_id()")
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240916091712.2929279-3-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
There is a delta between kernel UAPI bpf.h and tools UAPI bpf.h,
thus sync them again.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Pull bpf updates from Alexei Starovoitov:
- Introduce '__attribute__((bpf_fastcall))' for helpers and kfuncs with
corresponding support in LLVM.
It is similar to existing 'no_caller_saved_registers' attribute in
GCC/LLVM with a provision for backward compatibility. It allows
compilers generate more efficient BPF code assuming the verifier or
JITs will inline or partially inline a helper/kfunc with such
attribute. bpf_cast_to_kern_ctx, bpf_rdonly_cast,
bpf_get_smp_processor_id are the first set of such helpers.
- Harden and extend ELF build ID parsing logic.
When called from sleepable context the relevants parts of ELF file
will be read to find and fetch .note.gnu.build-id information. Also
harden the logic to avoid TOCTOU, overflow, out-of-bounds problems.
- Improvements and fixes for sched-ext:
- Allow passing BPF iterators as kfunc arguments
- Make the pointer returned from iter_next method trusted
- Fix x86 JIT convergence issue due to growing/shrinking conditional
jumps in variable length encoding
- BPF_LSM related:
- Introduce few VFS kfuncs and consolidate them in
fs/bpf_fs_kfuncs.c
- Enforce correct range of return values from certain LSM hooks
- Disallow attaching to other LSM hooks
- Prerequisite work for upcoming Qdisc in BPF:
- Allow kptrs in program provided structs
- Support for gen_epilogue in verifier_ops
- Important fixes:
- Fix uprobe multi pid filter check
- Fix bpf_strtol and bpf_strtoul helpers
- Track equal scalars history on per-instruction level
- Fix tailcall hierarchy on x86 and arm64
- Fix signed division overflow to prevent INT_MIN/-1 trap on x86
- Fix get kernel stack in BPF progs attached to tracepoint:syscall
- Selftests:
- Add uprobe bench/stress tool
- Generate file dependencies to drastically improve re-build time
- Match JIT-ed and BPF asm with __xlated/__jited keywords
- Convert older tests to test_progs framework
- Add support for RISC-V
- Few fixes when BPF programs are compiled with GCC-BPF backend
(support for GCC-BPF in BPF CI is ongoing in parallel)
- Add traffic monitor
- Enable cross compile and musl libc
* tag 'bpf-next-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (260 commits)
btf: require pahole 1.21+ for DEBUG_INFO_BTF with default DWARF version
btf: move pahole check in scripts/link-vmlinux.sh to lib/Kconfig.debug
btf: remove redundant CONFIG_BPF test in scripts/link-vmlinux.sh
bpf: Call the missed kfree() when there is no special field in btf
bpf: Call the missed btf_record_free() when map creation fails
selftests/bpf: Add a test case to write mtu result into .rodata
selftests/bpf: Add a test case to write strtol result into .rodata
selftests/bpf: Rename ARG_PTR_TO_LONG test description
selftests/bpf: Fix ARG_PTR_TO_LONG {half-,}uninitialized test
bpf: Zero former ARG_PTR_TO_{LONG,INT} args in case of error
bpf: Improve check_raw_mode_ok test for MEM_UNINIT-tagged types
bpf: Fix helper writes to read-only maps
bpf: Remove truncation test in bpf_strtol and bpf_strtoul helpers
bpf: Fix bpf_strtol and bpf_strtoul helpers for 32bit
selftests/bpf: Add tests for sdiv/smod overflow cases
bpf: Fix a sdiv overflow issue
libbpf: Add bpf_object__token_fd accessor
docs/bpf: Add missing BPF program types to docs
docs/bpf: Add constant values for linkages
bpf: Use fake pt_regs when doing bpf syscall tracepoint tracing
...
|
|
This adds a kfunc wrapper around strncpy_from_user,
which can be called from sleepable BPF programs.
This matches the non-sleepable 'bpf_probe_read_user_str'
helper except it includes an additional 'flags'
param, which allows consumers to clear the entire
destination buffer on success or failure.
Signed-off-by: Jordan Rome <linux@jordanrome.com>
Link: https://lore.kernel.org/r/20240823195101.3621028-1-linux@jordanrome.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Currently the only opportunity to set sock ops flags dictating
which callbacks fire for a socket is from within a TCP-BPF sockops
program. This is problematic if the connection is already set up
as there is no further chance to specify callbacks for that socket.
Add TCP_BPF_SOCK_OPS_CB_FLAGS to bpf_setsockopt() and bpf_getsockopt()
to allow users to specify callbacks later, either via an iterator
over sockets or via a socket-specific program triggered by a
setsockopt() on the socket.
Previous discussion on this here [1].
[1] https://lore.kernel.org/bpf/f42f157b-6e52-dd4d-3d97-9b86c84c0b00@oracle.com/
Signed-off-by: Alan Maguire <alan.maguire@oracle.com>
Link: https://lore.kernel.org/r/20240808150558.1035626-2-alan.maguire@oracle.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
Add special flag to validate that TC BPF program properly updates
checksum information in skb.
Signed-off-by: Vadim Fedorenko <vadfed@meta.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20240606145851.229116-1-vadfed@meta.com
|
|
tstamp_type is now set based on actual clockid_t compressed
into 2 bits.
To make the design scalable for future needs this commit bring in
the change to extend the tstamp_type:1 to tstamp_type:2 to support
other clockid_t timestamp.
We now support CLOCK_TAI as part of tstamp_type as part of this
commit with existing support CLOCK_MONOTONIC and CLOCK_REALTIME.
Signed-off-by: Abhishek Chauhan <quic_abchauha@quicinc.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Reviewed-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20240509211834.3235191-3-quic_abchauha@quicinc.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
Adding support to attach bpf program for entry and return probe
of the same function. This is common use case which at the moment
requires to create two kprobe multi links.
Adding new BPF_TRACE_KPROBE_SESSION attach type that instructs
kernel to attach single link program to both entry and exit probe.
It's possible to control execution of the bpf program on return
probe simply by returning zero or non zero from the entry bpf
program execution to execute or not the bpf program on return
probe respectively.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240430112830.1184228-2-jolsa@kernel.org
|
|
Two important arguments in RTT estimation, mrtt and srtt, are passed to
tcp_bpf_rtt(), so that bpf programs get more information about RTT
computation in BPF_SOCK_OPS_RTT_CB.
The difference between bpf_sock_ops->srtt_us and the srtt here is: the
former is an old rtt before update, while srtt passed by tcp_bpf_rtt()
is that after update.
Signed-off-by: Philo Lu <lulie@linux.alibaba.com>
Link: https://lore.kernel.org/r/20240425161724.73707-2-lulie@linux.alibaba.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
cp include/uapi/linux/bpf.h tools/include/uapi/linux/bpf.h
Signed-off-by: Benjamin Tissoires <bentiss@kernel.org>
Link: https://lore.kernel.org/r/20240420-bpf_wq-v2-6-6c986a5a741f@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Add bpf_link support for sk_msg and sk_skb programs. We have an
internal request to support bpf_link for sk_msg programs so user
space can have a uniform handling with bpf_link based libbpf
APIs. Using bpf_link based libbpf API also has a benefit which
makes system robust by decoupling prog life cycle and
attachment life cycle.
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20240410043527.3737160-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
The struct bpf_fib_lookup is supposed to be of size 64. A recent commit
59b418c7063d ("bpf: Add a check for struct bpf_fib_lookup size") added
a static assertion to check this property so that future changes to the
structure will not accidentally break this assumption.
As it immediately turned out, on some 32-bit arm systems, when AEABI=n,
the total size of the structure was equal to 68, see [1]. This happened
because the bpf_fib_lookup structure contains a union of two 16-bit
fields:
union {
__u16 tot_len;
__u16 mtu_result;
};
which was supposed to compile to a 16-bit-aligned 16-bit field. On the
aforementioned setups it was instead both aligned and padded to 32-bits.
Declare this inner union as __attribute__((packed, aligned(2))) such
that it always is of size 2 and is aligned to 16 bits.
[1] https://lore.kernel.org/all/CA+G9fYtsoP51f-oP_Sp5MOq-Ffv8La2RztNpwvE6+R1VtFiLrw@mail.gmail.com/#t
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Fixes: e1850ea9bd9e ("bpf: bpf_fib_lookup return MTU value as output when looked up")
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20240403123303.1452184-1-aspsk@isovalent.com
|
|
In a few places in the bpf uapi headers, EOPNOTSUPP is missing a "P" in
the doc comments. This adds the missing "P".
Signed-off-by: David Lechner <dlechner@baylibre.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20240329152900.398260-2-dlechner@baylibre.com
|
|
Extend the bpf_fib_lookup() helper by making it to utilize mark if
the BPF_FIB_LOOKUP_MARK flag is set. In order to pass the mark the
four bytes of struct bpf_fib_lookup are used, shared with the
output-only smac/dmac fields.
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: David Ahern <dsahern@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20240326101742.17421-2-aspsk@isovalent.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
There is a difference between kernel uapi bpf.h and tools
uapi bpf.h. There is no functionality difference, but let
us sync properly to make it easy for later bpf.h update.
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20240325033842.1693553-1-yonghong.song@linux.dev
|
|
Wire up BPF cookie for raw tracepoint programs (both BTF and non-BTF
aware variants). This brings them up to part w.r.t. BPF cookie usage
with classic tracepoint and fentry/fexit programs.
Acked-by: Stanislav Fomichev <sdf@google.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Message-ID: <20240319233852.1977493-4-andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
LLVM generates rX = addr_space_cast(rY, dst_addr_space, src_addr_space)
instruction when pointers in non-zero address space are used by the bpf
program. Recognize this insn in uapi and in bpf disassembler.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-3-alexei.starovoitov@gmail.com
|
|
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
|
|
Introduce may_goto instruction that from the verifier pov is similar to
open coded iterators bpf_for()/bpf_repeat() and bpf_loop() helper, but it
doesn't iterate any objects.
In assembly 'may_goto' is a nop most of the time until bpf runtime has to
terminate the program for whatever reason. In the current implementation
may_goto has a hidden counter, but other mechanisms can be used.
For programs written in C the later patch introduces 'cond_break' macro
that combines 'may_goto' with 'break' statement and has similar semantics:
cond_break is a nop until bpf runtime has to break out of this loop.
It can be used in any normal "for" or "while" loop, like
for (i = zero; i < cnt; cond_break, i++) {
The verifier recognizes that may_goto is used in the program, reserves
additional 8 bytes of stack, initializes them in subprog prologue, and
replaces may_goto instruction with:
aux_reg = *(u64 *)(fp - 40)
if aux_reg == 0 goto pc+off
aux_reg -= 1
*(u64 *)(fp - 40) = aux_reg
may_goto instruction can be used by LLVM to implement __builtin_memcpy,
__builtin_strcmp.
may_goto is not a full substitute for bpf_for() macro.
bpf_for() doesn't have induction variable that verifiers sees,
so 'i' in bpf_for(i, 0, 100) is seen as imprecise and bounded.
But when the code is written as:
for (i = 0; i < 100; cond_break, i++)
the verifier see 'i' as precise constant zero,
hence cond_break (aka may_goto) doesn't help to converge the loop.
A static or global variable can be used as a workaround:
static int zero = 0;
for (i = zero; i < 100; cond_break, i++) // works!
may_goto works well with arena pointers that don't need to be bounds
checked on access. Load/store from arena returns imprecise unbounded
scalar and loops with may_goto pass the verifier.
Reserve new opcode BPF_JMP | BPF_JCOND for may_goto insn.
JCOND stands for conditional pseudo jump.
Since goto_or_nop insn was proposed, it may use the same opcode.
may_goto vs goto_or_nop can be distinguished by src_reg:
code = BPF_JMP | BPF_JCOND
src_reg = 0 - may_goto
src_reg = 1 - goto_or_nop
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Tested-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20240306031929.42666-2-alexei.starovoitov@gmail.com
|
|
Replace deprecated 0-length array in struct bpf_lpm_trie_key with
flexible array. Found with GCC 13:
../kernel/bpf/lpm_trie.c:207:51: warning: array subscript i is outside array bounds of 'const __u8[0]' {aka 'const unsigned char[]'} [-Warray-bounds=]
207 | *(__be16 *)&key->data[i]);
| ^~~~~~~~~~~~~
../include/uapi/linux/swab.h:102:54: note: in definition of macro '__swab16'
102 | #define __swab16(x) (__u16)__builtin_bswap16((__u16)(x))
| ^
../include/linux/byteorder/generic.h:97:21: note: in expansion of macro '__be16_to_cpu'
97 | #define be16_to_cpu __be16_to_cpu
| ^~~~~~~~~~~~~
../kernel/bpf/lpm_trie.c:206:28: note: in expansion of macro 'be16_to_cpu'
206 | u16 diff = be16_to_cpu(*(__be16 *)&node->data[i]
^
| ^~~~~~~~~~~
In file included from ../include/linux/bpf.h:7:
../include/uapi/linux/bpf.h:82:17: note: while referencing 'data'
82 | __u8 data[0]; /* Arbitrary size */
| ^~~~
And found at run-time under CONFIG_FORTIFY_SOURCE:
UBSAN: array-index-out-of-bounds in kernel/bpf/lpm_trie.c:218:49
index 0 is out of range for type '__u8 [*]'
Changing struct bpf_lpm_trie_key is difficult since has been used by
userspace. For example, in Cilium:
struct egress_gw_policy_key {
struct bpf_lpm_trie_key lpm_key;
__u32 saddr;
__u32 daddr;
};
While direct references to the "data" member haven't been found, there
are static initializers what include the final member. For example,
the "{}" here:
struct egress_gw_policy_key in_key = {
.lpm_key = { 32 + 24, {} },
.saddr = CLIENT_IP,
.daddr = EXTERNAL_SVC_IP & 0Xffffff,
};
To avoid the build time and run time warnings seen with a 0-sized
trailing array for struct bpf_lpm_trie_key, introduce a new struct
that correctly uses a flexible array for the trailing bytes,
struct bpf_lpm_trie_key_u8. As part of this, include the "header"
portion (which is just the "prefixlen" member), so it can be used
by anything building a bpf_lpr_trie_key that has trailing members that
aren't a u8 flexible array (like the self-test[1]), which is named
struct bpf_lpm_trie_key_hdr.
Unfortunately, C++ refuses to parse the __struct_group() helper, so
it is not possible to define struct bpf_lpm_trie_key_hdr directly in
struct bpf_lpm_trie_key_u8, so we must open-code the union directly.
Adjust the kernel code to use struct bpf_lpm_trie_key_u8 through-out,
and for the selftest to use struct bpf_lpm_trie_key_hdr. Add a comment
to the UAPI header directing folks to the two new options.
Reported-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Closes: https://paste.debian.net/hidden/ca500597/
Link: https://lore.kernel.org/all/202206281009.4332AA33@keescook/ [1]
Link: https://lore.kernel.org/bpf/20240222155612.it.533-kees@kernel.org
|
|
The batch lookup and lookup_and_delete APIs have two parameters,
in_batch and out_batch, to facilitate iterative
lookup/lookup_and_deletion operations for supported maps. Except NULL
for in_batch at the start of these two batch operations, both parameters
need to point to memory equal or larger than the respective map key
size, except for various hashmaps (hash, percpu_hash, lru_hash,
lru_percpu_hash) where the in_batch/out_batch memory size should be
at least 4 bytes.
Document these semantics to clarify the API.
Signed-off-by: Martin Kelly <martin.kelly@crowdstrike.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20240221211838.1241578-1-martin.kelly@crowdstrike.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
Add basic support of BPF token to BPF_PROG_LOAD. BPF_F_TOKEN_FD flag
should be set in prog_flags field when providing prog_token_fd.
Wire through a set of allowed BPF program types and attach types,
derived from BPF FS at BPF token creation time. Then make sure we
perform bpf_token_capable() checks everywhere where it's relevant.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-7-andrii@kernel.org
|
|
Accept BPF token FD in BPF_BTF_LOAD command to allow BTF data loading
through delegated BPF token. BPF_F_TOKEN_FD flag has to be specified
when passing BPF token FD. Given BPF_BTF_LOAD command didn't have flags
field before, we also add btf_flags field.
BTF loading is a pretty straightforward operation, so as long as BPF
token is created with allow_cmds granting BPF_BTF_LOAD command, kernel
proceeds to parsing BTF data and creating BTF object.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-6-andrii@kernel.org
|
|
Allow providing token_fd for BPF_MAP_CREATE command to allow controlled
BPF map creation from unprivileged process through delegated BPF token.
New BPF_F_TOKEN_FD flag is added to specify together with BPF token FD
for BPF_MAP_CREATE command.
Wire through a set of allowed BPF map types to BPF token, derived from
BPF FS at BPF token creation time. This, in combination with allowed_cmds
allows to create a narrowly-focused BPF token (controlled by privileged
agent) with a restrictive set of BPF maps that application can attempt
to create.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-5-andrii@kernel.org
|
|
Add new kind of BPF kernel object, BPF token. BPF token is meant to
allow delegating privileged BPF functionality, like loading a BPF
program or creating a BPF map, from privileged process to a *trusted*
unprivileged process, all while having a good amount of control over which
privileged operations could be performed using provided BPF token.
This is achieved through mounting BPF FS instance with extra delegation
mount options, which determine what operations are delegatable, and also
constraining it to the owning user namespace (as mentioned in the
previous patch).
BPF token itself is just a derivative from BPF FS and can be created
through a new bpf() syscall command, BPF_TOKEN_CREATE, which accepts BPF
FS FD, which can be attained through open() API by opening BPF FS mount
point. Currently, BPF token "inherits" delegated command, map types,
prog type, and attach type bit sets from BPF FS as is. In the future,
having an BPF token as a separate object with its own FD, we can allow
to further restrict BPF token's allowable set of things either at the
creation time or after the fact, allowing the process to guard itself
further from unintentionally trying to load undesired kind of BPF
programs. But for now we keep things simple and just copy bit sets as is.
When BPF token is created from BPF FS mount, we take reference to the
BPF super block's owning user namespace, and then use that namespace for
checking all the {CAP_BPF, CAP_PERFMON, CAP_NET_ADMIN, CAP_SYS_ADMIN}
capabilities that are normally only checked against init userns (using
capable()), but now we check them using ns_capable() instead (if BPF
token is provided). See bpf_token_capable() for details.
Such setup means that BPF token in itself is not sufficient to grant BPF
functionality. User namespaced process has to *also* have necessary
combination of capabilities inside that user namespace. So while
previously CAP_BPF was useless when granted within user namespace, now
it gains a meaning and allows container managers and sys admins to have
a flexible control over which processes can and need to use BPF
functionality within the user namespace (i.e., container in practice).
And BPF FS delegation mount options and derived BPF tokens serve as
a per-container "flag" to grant overall ability to use bpf() (plus further
restrict on which parts of bpf() syscalls are treated as namespaced).
Note also, BPF_TOKEN_CREATE command itself requires ns_capable(CAP_BPF)
within the BPF FS owning user namespace, rounding up the ns_capable()
story of BPF token. Also creating BPF token in init user namespace is
currently not supported, given BPF token doesn't have any effect in init
user namespace anyways.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Christian Brauner <brauner@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-4-andrii@kernel.org
|
|
Pass the fd of a btf from the userspace to the bpf() syscall, and then
convert the fd into a btf. The btf is generated from the module that
defines the target BPF struct_ops type.
In order to inform the kernel about the module that defines the target
struct_ops type, the userspace program needs to provide a btf fd for the
respective module's btf. This btf contains essential information on the
types defined within the module, including the target struct_ops type.
A btf fd must be provided to the kernel for struct_ops maps and for the bpf
programs attached to those maps.
In the case of the bpf programs, the attach_btf_obj_fd parameter is passed
as part of the bpf_attr and is converted into a btf. This btf is then
stored in the prog->aux->attach_btf field. Here, it just let the verifier
access attach_btf directly.
In the case of struct_ops maps, a btf fd is passed as value_type_btf_obj_fd
of bpf_attr. The bpf_struct_ops_map_alloc() function converts the fd to a
btf and stores it as st_map->btf. A flag BPF_F_VTYPE_BTF_OBJ_FD is added
for map_flags to indicate that the value of value_type_btf_obj_fd is set.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-9-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
Include btf object id (btf_obj_id) in bpf_map_info so that tools (ex:
bpftools struct_ops dump) know the correct btf from the kernel to look up
type information of struct_ops types.
Since struct_ops types can be defined and registered in a module. The
type information of a struct_ops type are defined in the btf of the
module defining it. The userspace tools need to know which btf is for
the module defining a struct_ops type.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-7-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|