|
size at runtime
Currently, the size used in mmap() is statically defined, leading to
skipping of the test on a hugepage size other than 2 MB, since munmap()
won't free the hugepage for a size greater than 2 MB. Hence, query the
size at runtime.
Also, there is no reason why a hugepage allocation should fail, since we
are using a simple mmap() using MAP_HUGETLB; hence, instead of skipping
the test, make it fail.
Link: https://lkml.kernel.org/r/20240509095447.3791573-1-dev.jain@arm.com
Signed-off-by: Dev Jain <dev.jain@arm.com>
Reviewed-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This test stresses the race between of madvise(DONTNEED), a page fault
and a parallel huge page mmap, which should fail due to lack of
available page available for mapping.
This test case must run on a system with one and only one huge page
available.
# echo 1 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
During setup, the test allocates the only available page, and starts
three threads:
- thread 1:
* madvise(MADV_DONTNEED) on the allocated huge page
- thread 2:
* Write to the allocated huge page
- thread 3:
* Tries to allocated (steal) an extra huge page (which is not
available)
thread 3 should never succeed in the allocation, since the only huge
page was never unmapped, and should be reserved.
Touching the old page after thread3 allocation will raise a SIGBUS.
Link: https://lkml.kernel.org/r/20240105155419.1939484-2-leitao@debian.org
Signed-off-by: Breno Leitao <leitao@debian.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|