summaryrefslogtreecommitdiff
path: root/Documentation/trace/coresight/coresight-config.rst
blob: a4e3ef29524011a9ca121428a85b568c631c5fd7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
.. SPDX-License-Identifier: GPL-2.0

======================================
CoreSight System Configuration Manager
======================================

    :Author:   Mike Leach <mike.leach@linaro.org>
    :Date:     October 2020

Introduction
============

The CoreSight System Configuration manager is an API that allows the
programming of the CoreSight system with pre-defined configurations that
can then be easily enabled from sysfs or perf.

Many CoreSight components can be programmed in complex ways - especially ETMs.
In addition, components can interact across the CoreSight system, often via
the cross trigger components such as CTI and CTM. These system settings can
be defined and enabled as named configurations.


Basic Concepts
==============

This section introduces the basic concepts of a CoreSight system configuration.


Features
--------

A feature is a named set of programming for a CoreSight device. The programming
is device dependent, and can be defined in terms of absolute register values,
resource usage and parameter values.

The feature is defined using a descriptor. This descriptor is used to load onto
a matching device, either when the feature is loaded into the system, or when the
CoreSight device is registered with the configuration manager.

The load process involves interpreting the descriptor into a set of register
accesses in the driver - the resource usage and parameter descriptions
translated into appropriate register accesses. This interpretation makes it easy
and efficient for the feature to be programmed onto the device when required.

The feature will not be active on the device until the feature is enabled, and
the device itself is enabled. When the device is enabled then enabled features
will be programmed into the device hardware.

A feature is enabled as part of a configuration being enabled on the system.


Parameter Value
~~~~~~~~~~~~~~~

A parameter value is a named value that may be set by the user prior to the
feature being enabled that can adjust the behaviour of the operation programmed
by the feature.

For example, this could be a count value in a programmed operation that repeats
at a given rate. When the feature is enabled then the current value of the
parameter is used in programming the device.

The feature descriptor defines a default value for a parameter, which is used
if the user does not supply a new value.

Users can update parameter values using the configfs API for the CoreSight
system - which is described below.

The current value of the parameter is loaded into the device when the feature
is enabled on that device.


Configurations
--------------

A configuration defines a set of features that are to be used in a trace
session where the configuration is selected. For any trace session only one
configuration may be selected.

The features defined may be on any type of device that is registered
to support system configuration. A configuration may select features to be
enabled on a class of devices - i.e. any ETMv4, or specific devices, e.g. a
specific CTI on the system.

As with the feature, a descriptor is used to define the configuration.
This will define the features that must be enabled as part of the configuration
as well as any preset values that can be used to override default parameter
values.


Preset Values
~~~~~~~~~~~~~

Preset values are easily selectable sets of parameter values for the features
that the configuration uses. The number of values in a single preset set, equals
the sum of parameter values in the features used by the configuration.

e.g. a configuration consists of 3 features, one has 2 parameters, one has
a single parameter, and another has no parameters. A single preset set will
therefore have 3 values.

Presets are optionally defined by the configuration, up to 15 can be defined.
If no preset is selected, then the parameter values defined in the feature
are used as normal.


Operation
~~~~~~~~~

The following steps take place in the operation of a configuration.

1) In this example, the configuration is 'autofdo', which has an
   associated feature 'strobing' that works on ETMv4 CoreSight Devices.

2) The configuration is enabled. For example 'perf' may select the
   configuration as part of its command line::

    perf record -e cs_etm/autofdo/ myapp

   which will enable the 'autofdo' configuration.

3) perf starts tracing on the system. As each ETMv4 that perf uses for
   trace is enabled,  the configuration manager will check if the ETMv4
   has a feature that relates to the currently active configuration.
   In this case 'strobing' is enabled & programmed into the ETMv4.

4) When the ETMv4 is disabled, any registers marked as needing to be
   saved will be read back.

5) At the end of the perf session, the configuration will be disabled.


Viewing Configurations and Features
===================================

The set of configurations and features that are currently loaded into the
system can be viewed using the configfs API.

Mount configfs as normal and the 'cs-syscfg' subsystem will appear::

    $ ls /config
    cs-syscfg  stp-policy

This has two sub-directories::

    $ cd cs-syscfg/
    $ ls
    configurations  features

The system has the configuration 'autofdo' built in. It may be examined as
follows::

    $ cd configurations/
    $ ls
    autofdo
    $ cd autofdo/
    $ ls
    description   preset1  preset3  preset5  preset7  preset9
    feature_refs  preset2  preset4  preset6  preset8
    $ cat description
    Setup ETMs with strobing for autofdo
    $ cat feature_refs
    strobing

Each preset declared has a preset<n> subdirectory declared. The values for
the preset can be examined::

    $ cat preset1/values
    strobing.window = 0x1388 strobing.period = 0x2
    $ cat preset2/values
    strobing.window = 0x1388 strobing.period = 0x4

The features referenced by the configuration can be examined in the features
directory::

    $ cd ../../features/strobing/
    $ ls
    description  matches  nr_params  params
    $ cat description
    Generate periodic trace capture windows.
    parameter 'window': a number of CPU cycles (W)
    parameter 'period': trace enabled for W cycles every period x W cycles
    $ cat matches
    SRC_ETMV4
    $ cat nr_params
    2

Move to the params directory to examine and adjust parameters::

    cd params
    $ ls
    period  window
    $ cd period
    $ ls
    value
    $ cat value
    0x2710
    # echo 15000 > value
    # cat value
    0x3a98

Parameters adjusted in this way are reflected in all device instances that have
loaded the feature.


Using Configurations in perf
============================

The configurations loaded into the CoreSight configuration management are
also declared in the perf 'cs_etm' event infrastructure so that they can
be selected when running trace under perf::

    $ ls /sys/devices/cs_etm
    configurations  format  perf_event_mux_interval_ms  sinks  type
    events  nr_addr_filters  power

Key directories here are 'configurations' - which lists the loaded
configurations, and 'events' - a generic perf directory which allows
selection on the perf command line.::

    $ ls configurations/
    autofdo
    $ cat configurations/autofdo
    0xa7c3dddd

As with the sinks entries, this provides a hash of the configuration name.
The entry in the 'events' directory uses perfs built in syntax generator
to substitute the syntax for the name when evaluating the command::

    $ ls events/
    autofdo
    $ cat events/autofdo
    configid=0xa7c3dddd

The 'autofdo' configuration may be selected on the perf command line::

    $ perf record -e cs_etm/autofdo/u --per-thread <application>

A preset to override the current parameter values can also be selected::

    $ perf record -e cs_etm/autofdo,preset=1/u --per-thread <application>

When configurations are selected in this way, then the trace sink used is
automatically selected.