1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
|
/* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */
//
// Copyright 2025 Google LLC
//
// Author: Eric Biggers <ebiggers@google.com>
//
// This file is dual-licensed, meaning that you can use it under your choice of
// either of the following two licenses:
//
// Licensed under the Apache License 2.0 (the "License"). You may obtain a copy
// of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// or
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------
//
// This file contains x86_64 assembly implementations of AES-CTR and AES-XCTR
// using the following sets of CPU features:
// - AES-NI && AVX
// - VAES && AVX2
// - VAES && (AVX10/256 || (AVX512BW && AVX512VL)) && BMI2
// - VAES && (AVX10/512 || (AVX512BW && AVX512VL)) && BMI2
//
// See the function definitions at the bottom of the file for more information.
#include <linux/linkage.h>
#include <linux/cfi_types.h>
.section .rodata
.p2align 4
.Lbswap_mask:
.octa 0x000102030405060708090a0b0c0d0e0f
.Lctr_pattern:
.quad 0, 0
.Lone:
.quad 1, 0
.Ltwo:
.quad 2, 0
.quad 3, 0
.Lfour:
.quad 4, 0
.text
// Move a vector between memory and a register.
// The register operand must be in the first 16 vector registers.
.macro _vmovdqu src, dst
.if VL < 64
vmovdqu \src, \dst
.else
vmovdqu8 \src, \dst
.endif
.endm
// Move a vector between registers.
// The registers must be in the first 16 vector registers.
.macro _vmovdqa src, dst
.if VL < 64
vmovdqa \src, \dst
.else
vmovdqa64 \src, \dst
.endif
.endm
// Broadcast a 128-bit value from memory to all 128-bit lanes of a vector
// register. The register operand must be in the first 16 vector registers.
.macro _vbroadcast128 src, dst
.if VL == 16
vmovdqu \src, \dst
.elseif VL == 32
vbroadcasti128 \src, \dst
.else
vbroadcasti32x4 \src, \dst
.endif
.endm
// XOR two vectors together.
// Any register operands must be in the first 16 vector registers.
.macro _vpxor src1, src2, dst
.if VL < 64
vpxor \src1, \src2, \dst
.else
vpxord \src1, \src2, \dst
.endif
.endm
// Load 1 <= %ecx <= 15 bytes from the pointer \src into the xmm register \dst
// and zeroize any remaining bytes. Clobbers %rax, %rcx, and \tmp{64,32}.
.macro _load_partial_block src, dst, tmp64, tmp32
sub $8, %ecx // LEN - 8
jle .Lle8\@
// Load 9 <= LEN <= 15 bytes.
vmovq (\src), \dst // Load first 8 bytes
mov (\src, %rcx), %rax // Load last 8 bytes
neg %ecx
shl $3, %ecx
shr %cl, %rax // Discard overlapping bytes
vpinsrq $1, %rax, \dst, \dst
jmp .Ldone\@
.Lle8\@:
add $4, %ecx // LEN - 4
jl .Llt4\@
// Load 4 <= LEN <= 8 bytes.
mov (\src), %eax // Load first 4 bytes
mov (\src, %rcx), \tmp32 // Load last 4 bytes
jmp .Lcombine\@
.Llt4\@:
// Load 1 <= LEN <= 3 bytes.
add $2, %ecx // LEN - 2
movzbl (\src), %eax // Load first byte
jl .Lmovq\@
movzwl (\src, %rcx), \tmp32 // Load last 2 bytes
.Lcombine\@:
shl $3, %ecx
shl %cl, \tmp64
or \tmp64, %rax // Combine the two parts
.Lmovq\@:
vmovq %rax, \dst
.Ldone\@:
.endm
// Store 1 <= %ecx <= 15 bytes from the xmm register \src to the pointer \dst.
// Clobbers %rax, %rcx, and \tmp{64,32}.
.macro _store_partial_block src, dst, tmp64, tmp32
sub $8, %ecx // LEN - 8
jl .Llt8\@
// Store 8 <= LEN <= 15 bytes.
vpextrq $1, \src, %rax
mov %ecx, \tmp32
shl $3, %ecx
ror %cl, %rax
mov %rax, (\dst, \tmp64) // Store last LEN - 8 bytes
vmovq \src, (\dst) // Store first 8 bytes
jmp .Ldone\@
.Llt8\@:
add $4, %ecx // LEN - 4
jl .Llt4\@
// Store 4 <= LEN <= 7 bytes.
vpextrd $1, \src, %eax
mov %ecx, \tmp32
shl $3, %ecx
ror %cl, %eax
mov %eax, (\dst, \tmp64) // Store last LEN - 4 bytes
vmovd \src, (\dst) // Store first 4 bytes
jmp .Ldone\@
.Llt4\@:
// Store 1 <= LEN <= 3 bytes.
vpextrb $0, \src, 0(\dst)
cmp $-2, %ecx // LEN - 4 == -2, i.e. LEN == 2?
jl .Ldone\@
vpextrb $1, \src, 1(\dst)
je .Ldone\@
vpextrb $2, \src, 2(\dst)
.Ldone\@:
.endm
// Prepare the next two vectors of AES inputs in AESDATA\i0 and AESDATA\i1, and
// XOR each with the zero-th round key. Also update LE_CTR if !\final.
.macro _prepare_2_ctr_vecs is_xctr, i0, i1, final=0
.if \is_xctr
.if USE_AVX10
_vmovdqa LE_CTR, AESDATA\i0
vpternlogd $0x96, XCTR_IV, RNDKEY0, AESDATA\i0
.else
vpxor XCTR_IV, LE_CTR, AESDATA\i0
vpxor RNDKEY0, AESDATA\i0, AESDATA\i0
.endif
vpaddq LE_CTR_INC1, LE_CTR, AESDATA\i1
.if USE_AVX10
vpternlogd $0x96, XCTR_IV, RNDKEY0, AESDATA\i1
.else
vpxor XCTR_IV, AESDATA\i1, AESDATA\i1
vpxor RNDKEY0, AESDATA\i1, AESDATA\i1
.endif
.else
vpshufb BSWAP_MASK, LE_CTR, AESDATA\i0
_vpxor RNDKEY0, AESDATA\i0, AESDATA\i0
vpaddq LE_CTR_INC1, LE_CTR, AESDATA\i1
vpshufb BSWAP_MASK, AESDATA\i1, AESDATA\i1
_vpxor RNDKEY0, AESDATA\i1, AESDATA\i1
.endif
.if !\final
vpaddq LE_CTR_INC2, LE_CTR, LE_CTR
.endif
.endm
// Do all AES rounds on the data in the given AESDATA vectors, excluding the
// zero-th and last rounds.
.macro _aesenc_loop vecs:vararg
mov KEY, %rax
1:
_vbroadcast128 (%rax), RNDKEY
.irp i, \vecs
vaesenc RNDKEY, AESDATA\i, AESDATA\i
.endr
add $16, %rax
cmp %rax, RNDKEYLAST_PTR
jne 1b
.endm
// Finalize the keystream blocks in the given AESDATA vectors by doing the last
// AES round, then XOR those keystream blocks with the corresponding data.
// Reduce latency by doing the XOR before the vaesenclast, utilizing the
// property vaesenclast(key, a) ^ b == vaesenclast(key ^ b, a).
.macro _aesenclast_and_xor vecs:vararg
.irp i, \vecs
_vpxor \i*VL(SRC), RNDKEYLAST, RNDKEY
vaesenclast RNDKEY, AESDATA\i, AESDATA\i
.endr
.irp i, \vecs
_vmovdqu AESDATA\i, \i*VL(DST)
.endr
.endm
// XOR the keystream blocks in the specified AESDATA vectors with the
// corresponding data.
.macro _xor_data vecs:vararg
.irp i, \vecs
_vpxor \i*VL(SRC), AESDATA\i, AESDATA\i
.endr
.irp i, \vecs
_vmovdqu AESDATA\i, \i*VL(DST)
.endr
.endm
.macro _aes_ctr_crypt is_xctr
// Define register aliases V0-V15 that map to the xmm, ymm, or zmm
// registers according to the selected Vector Length (VL).
.irp i, 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
.if VL == 16
.set V\i, %xmm\i
.elseif VL == 32
.set V\i, %ymm\i
.elseif VL == 64
.set V\i, %zmm\i
.else
.error "Unsupported Vector Length (VL)"
.endif
.endr
// Function arguments
.set KEY, %rdi // Initially points to the start of the
// crypto_aes_ctx, then is advanced to
// point to the index 1 round key
.set KEY32, %edi // Available as temp register after all
// keystream blocks have been generated
.set SRC, %rsi // Pointer to next source data
.set DST, %rdx // Pointer to next destination data
.set LEN, %ecx // Remaining length in bytes.
// Note: _load_partial_block relies on
// this being in %ecx.
.set LEN64, %rcx // Zero-extend LEN before using!
.set LEN8, %cl
.if \is_xctr
.set XCTR_IV_PTR, %r8 // const u8 iv[AES_BLOCK_SIZE];
.set XCTR_CTR, %r9 // u64 ctr;
.else
.set LE_CTR_PTR, %r8 // const u64 le_ctr[2];
.endif
// Additional local variables
.set RNDKEYLAST_PTR, %r10
.set AESDATA0, V0
.set AESDATA0_XMM, %xmm0
.set AESDATA1, V1
.set AESDATA1_XMM, %xmm1
.set AESDATA2, V2
.set AESDATA3, V3
.set AESDATA4, V4
.set AESDATA5, V5
.set AESDATA6, V6
.set AESDATA7, V7
.if \is_xctr
.set XCTR_IV, V8
.else
.set BSWAP_MASK, V8
.endif
.set LE_CTR, V9
.set LE_CTR_XMM, %xmm9
.set LE_CTR_INC1, V10
.set LE_CTR_INC2, V11
.set RNDKEY0, V12
.set RNDKEYLAST, V13
.set RNDKEY, V14
// Create the first vector of counters.
.if \is_xctr
.if VL == 16
vmovq XCTR_CTR, LE_CTR
.elseif VL == 32
vmovq XCTR_CTR, LE_CTR_XMM
inc XCTR_CTR
vmovq XCTR_CTR, AESDATA0_XMM
vinserti128 $1, AESDATA0_XMM, LE_CTR, LE_CTR
.else
vpbroadcastq XCTR_CTR, LE_CTR
vpsrldq $8, LE_CTR, LE_CTR
vpaddq .Lctr_pattern(%rip), LE_CTR, LE_CTR
.endif
_vbroadcast128 (XCTR_IV_PTR), XCTR_IV
.else
_vbroadcast128 (LE_CTR_PTR), LE_CTR
.if VL > 16
vpaddq .Lctr_pattern(%rip), LE_CTR, LE_CTR
.endif
_vbroadcast128 .Lbswap_mask(%rip), BSWAP_MASK
.endif
.if VL == 16
_vbroadcast128 .Lone(%rip), LE_CTR_INC1
.elseif VL == 32
_vbroadcast128 .Ltwo(%rip), LE_CTR_INC1
.else
_vbroadcast128 .Lfour(%rip), LE_CTR_INC1
.endif
vpsllq $1, LE_CTR_INC1, LE_CTR_INC2
// Load the AES key length: 16 (AES-128), 24 (AES-192), or 32 (AES-256).
movl 480(KEY), %eax
// Compute the pointer to the last round key.
lea 6*16(KEY, %rax, 4), RNDKEYLAST_PTR
// Load the zero-th and last round keys.
_vbroadcast128 (KEY), RNDKEY0
_vbroadcast128 (RNDKEYLAST_PTR), RNDKEYLAST
// Make KEY point to the first round key.
add $16, KEY
// This is the main loop, which encrypts 8 vectors of data at a time.
add $-8*VL, LEN
jl .Lloop_8x_done\@
.Lloop_8x\@:
_prepare_2_ctr_vecs \is_xctr, 0, 1
_prepare_2_ctr_vecs \is_xctr, 2, 3
_prepare_2_ctr_vecs \is_xctr, 4, 5
_prepare_2_ctr_vecs \is_xctr, 6, 7
_aesenc_loop 0,1,2,3,4,5,6,7
_aesenclast_and_xor 0,1,2,3,4,5,6,7
sub $-8*VL, SRC
sub $-8*VL, DST
add $-8*VL, LEN
jge .Lloop_8x\@
.Lloop_8x_done\@:
sub $-8*VL, LEN
jz .Ldone\@
// 1 <= LEN < 8*VL. Generate 2, 4, or 8 more vectors of keystream
// blocks, depending on the remaining LEN.
_prepare_2_ctr_vecs \is_xctr, 0, 1
_prepare_2_ctr_vecs \is_xctr, 2, 3
cmp $4*VL, LEN
jle .Lenc_tail_atmost4vecs\@
// 4*VL < LEN < 8*VL. Generate 8 vectors of keystream blocks. Use the
// first 4 to XOR 4 full vectors of data. Then XOR the remaining data.
_prepare_2_ctr_vecs \is_xctr, 4, 5
_prepare_2_ctr_vecs \is_xctr, 6, 7, final=1
_aesenc_loop 0,1,2,3,4,5,6,7
_aesenclast_and_xor 0,1,2,3
vaesenclast RNDKEYLAST, AESDATA4, AESDATA0
vaesenclast RNDKEYLAST, AESDATA5, AESDATA1
vaesenclast RNDKEYLAST, AESDATA6, AESDATA2
vaesenclast RNDKEYLAST, AESDATA7, AESDATA3
sub $-4*VL, SRC
sub $-4*VL, DST
add $-4*VL, LEN
cmp $1*VL-1, LEN
jle .Lxor_tail_partial_vec_0\@
_xor_data 0
cmp $2*VL-1, LEN
jle .Lxor_tail_partial_vec_1\@
_xor_data 1
cmp $3*VL-1, LEN
jle .Lxor_tail_partial_vec_2\@
_xor_data 2
cmp $4*VL-1, LEN
jle .Lxor_tail_partial_vec_3\@
_xor_data 3
jmp .Ldone\@
.Lenc_tail_atmost4vecs\@:
cmp $2*VL, LEN
jle .Lenc_tail_atmost2vecs\@
// 2*VL < LEN <= 4*VL. Generate 4 vectors of keystream blocks. Use the
// first 2 to XOR 2 full vectors of data. Then XOR the remaining data.
_aesenc_loop 0,1,2,3
_aesenclast_and_xor 0,1
vaesenclast RNDKEYLAST, AESDATA2, AESDATA0
vaesenclast RNDKEYLAST, AESDATA3, AESDATA1
sub $-2*VL, SRC
sub $-2*VL, DST
add $-2*VL, LEN
jmp .Lxor_tail_upto2vecs\@
.Lenc_tail_atmost2vecs\@:
// 1 <= LEN <= 2*VL. Generate 2 vectors of keystream blocks. Then XOR
// the remaining data.
_aesenc_loop 0,1
vaesenclast RNDKEYLAST, AESDATA0, AESDATA0
vaesenclast RNDKEYLAST, AESDATA1, AESDATA1
.Lxor_tail_upto2vecs\@:
cmp $1*VL-1, LEN
jle .Lxor_tail_partial_vec_0\@
_xor_data 0
cmp $2*VL-1, LEN
jle .Lxor_tail_partial_vec_1\@
_xor_data 1
jmp .Ldone\@
.Lxor_tail_partial_vec_1\@:
add $-1*VL, LEN
jz .Ldone\@
sub $-1*VL, SRC
sub $-1*VL, DST
_vmovdqa AESDATA1, AESDATA0
jmp .Lxor_tail_partial_vec_0\@
.Lxor_tail_partial_vec_2\@:
add $-2*VL, LEN
jz .Ldone\@
sub $-2*VL, SRC
sub $-2*VL, DST
_vmovdqa AESDATA2, AESDATA0
jmp .Lxor_tail_partial_vec_0\@
.Lxor_tail_partial_vec_3\@:
add $-3*VL, LEN
jz .Ldone\@
sub $-3*VL, SRC
sub $-3*VL, DST
_vmovdqa AESDATA3, AESDATA0
.Lxor_tail_partial_vec_0\@:
// XOR the remaining 1 <= LEN < VL bytes. It's easy if masked
// loads/stores are available; otherwise it's a bit harder...
.if USE_AVX10
.if VL <= 32
mov $-1, %eax
bzhi LEN, %eax, %eax
kmovd %eax, %k1
.else
mov $-1, %rax
bzhi LEN64, %rax, %rax
kmovq %rax, %k1
.endif
vmovdqu8 (SRC), AESDATA1{%k1}{z}
_vpxor AESDATA1, AESDATA0, AESDATA0
vmovdqu8 AESDATA0, (DST){%k1}
.else
.if VL == 32
cmp $16, LEN
jl 1f
vpxor (SRC), AESDATA0_XMM, AESDATA1_XMM
vmovdqu AESDATA1_XMM, (DST)
add $16, SRC
add $16, DST
sub $16, LEN
jz .Ldone\@
vextracti128 $1, AESDATA0, AESDATA0_XMM
1:
.endif
mov LEN, %r10d
_load_partial_block SRC, AESDATA1_XMM, KEY, KEY32
vpxor AESDATA1_XMM, AESDATA0_XMM, AESDATA0_XMM
mov %r10d, %ecx
_store_partial_block AESDATA0_XMM, DST, KEY, KEY32
.endif
.Ldone\@:
.if VL > 16
vzeroupper
.endif
RET
.endm
// Below are the definitions of the functions generated by the above macro.
// They have the following prototypes:
//
//
// void aes_ctr64_crypt_##suffix(const struct crypto_aes_ctx *key,
// const u8 *src, u8 *dst, int len,
// const u64 le_ctr[2]);
//
// void aes_xctr_crypt_##suffix(const struct crypto_aes_ctx *key,
// const u8 *src, u8 *dst, int len,
// const u8 iv[AES_BLOCK_SIZE], u64 ctr);
//
// Both functions generate |len| bytes of keystream, XOR it with the data from
// |src|, and write the result to |dst|. On non-final calls, |len| must be a
// multiple of 16. On the final call, |len| can be any value.
//
// aes_ctr64_crypt_* implement "regular" CTR, where the keystream is generated
// from a 128-bit big endian counter that increments by 1 for each AES block.
// HOWEVER, to keep the assembly code simple, some of the counter management is
// left to the caller. aes_ctr64_crypt_* take the counter in little endian
// form, only increment the low 64 bits internally, do the conversion to big
// endian internally, and don't write the updated counter back to memory. The
// caller is responsible for converting the starting IV to the little endian
// le_ctr, detecting the (very rare) case of a carry out of the low 64 bits
// being needed and splitting at that point with a carry done in between, and
// updating le_ctr after each part if the message is multi-part.
//
// aes_xctr_crypt_* implement XCTR as specified in "Length-preserving encryption
// with HCTR2" (https://eprint.iacr.org/2021/1441.pdf). XCTR is an
// easier-to-implement variant of CTR that uses little endian byte order and
// eliminates carries. |ctr| is the per-message block counter starting at 1.
.set VL, 16
.set USE_AVX10, 0
SYM_TYPED_FUNC_START(aes_ctr64_crypt_aesni_avx)
_aes_ctr_crypt 0
SYM_FUNC_END(aes_ctr64_crypt_aesni_avx)
SYM_TYPED_FUNC_START(aes_xctr_crypt_aesni_avx)
_aes_ctr_crypt 1
SYM_FUNC_END(aes_xctr_crypt_aesni_avx)
#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
.set VL, 32
.set USE_AVX10, 0
SYM_TYPED_FUNC_START(aes_ctr64_crypt_vaes_avx2)
_aes_ctr_crypt 0
SYM_FUNC_END(aes_ctr64_crypt_vaes_avx2)
SYM_TYPED_FUNC_START(aes_xctr_crypt_vaes_avx2)
_aes_ctr_crypt 1
SYM_FUNC_END(aes_xctr_crypt_vaes_avx2)
.set VL, 32
.set USE_AVX10, 1
SYM_TYPED_FUNC_START(aes_ctr64_crypt_vaes_avx10_256)
_aes_ctr_crypt 0
SYM_FUNC_END(aes_ctr64_crypt_vaes_avx10_256)
SYM_TYPED_FUNC_START(aes_xctr_crypt_vaes_avx10_256)
_aes_ctr_crypt 1
SYM_FUNC_END(aes_xctr_crypt_vaes_avx10_256)
.set VL, 64
.set USE_AVX10, 1
SYM_TYPED_FUNC_START(aes_ctr64_crypt_vaes_avx10_512)
_aes_ctr_crypt 0
SYM_FUNC_END(aes_ctr64_crypt_vaes_avx10_512)
SYM_TYPED_FUNC_START(aes_xctr_crypt_vaes_avx10_512)
_aes_ctr_crypt 1
SYM_FUNC_END(aes_xctr_crypt_vaes_avx10_512)
#endif // CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ
|