summaryrefslogtreecommitdiff
path: root/drivers/crypto/intel/qat/qat_common/adf_gen4_hw_data.c
blob: 9985683056d5ffe423f020d88eb62567cc3e2ad1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only)
/* Copyright(c) 2020 Intel Corporation */
#include <linux/iopoll.h>
#include "adf_accel_devices.h"
#include "adf_cfg_services.h"
#include "adf_common_drv.h"
#include "adf_gen4_hw_data.h"
#include "adf_gen4_pm.h"

static u64 build_csr_ring_base_addr(dma_addr_t addr, u32 size)
{
	return BUILD_RING_BASE_ADDR(addr, size);
}

static u32 read_csr_ring_head(void __iomem *csr_base_addr, u32 bank, u32 ring)
{
	return READ_CSR_RING_HEAD(csr_base_addr, bank, ring);
}

static void write_csr_ring_head(void __iomem *csr_base_addr, u32 bank, u32 ring,
				u32 value)
{
	WRITE_CSR_RING_HEAD(csr_base_addr, bank, ring, value);
}

static u32 read_csr_ring_tail(void __iomem *csr_base_addr, u32 bank, u32 ring)
{
	return READ_CSR_RING_TAIL(csr_base_addr, bank, ring);
}

static void write_csr_ring_tail(void __iomem *csr_base_addr, u32 bank, u32 ring,
				u32 value)
{
	WRITE_CSR_RING_TAIL(csr_base_addr, bank, ring, value);
}

static u32 read_csr_e_stat(void __iomem *csr_base_addr, u32 bank)
{
	return READ_CSR_E_STAT(csr_base_addr, bank);
}

static void write_csr_ring_config(void __iomem *csr_base_addr, u32 bank, u32 ring,
				  u32 value)
{
	WRITE_CSR_RING_CONFIG(csr_base_addr, bank, ring, value);
}

static void write_csr_ring_base(void __iomem *csr_base_addr, u32 bank, u32 ring,
				dma_addr_t addr)
{
	WRITE_CSR_RING_BASE(csr_base_addr, bank, ring, addr);
}

static void write_csr_int_flag(void __iomem *csr_base_addr, u32 bank,
			       u32 value)
{
	WRITE_CSR_INT_FLAG(csr_base_addr, bank, value);
}

static void write_csr_int_srcsel(void __iomem *csr_base_addr, u32 bank)
{
	WRITE_CSR_INT_SRCSEL(csr_base_addr, bank);
}

static void write_csr_int_col_en(void __iomem *csr_base_addr, u32 bank, u32 value)
{
	WRITE_CSR_INT_COL_EN(csr_base_addr, bank, value);
}

static void write_csr_int_col_ctl(void __iomem *csr_base_addr, u32 bank,
				  u32 value)
{
	WRITE_CSR_INT_COL_CTL(csr_base_addr, bank, value);
}

static void write_csr_int_flag_and_col(void __iomem *csr_base_addr, u32 bank,
				       u32 value)
{
	WRITE_CSR_INT_FLAG_AND_COL(csr_base_addr, bank, value);
}

static void write_csr_ring_srv_arb_en(void __iomem *csr_base_addr, u32 bank,
				      u32 value)
{
	WRITE_CSR_RING_SRV_ARB_EN(csr_base_addr, bank, value);
}

void adf_gen4_init_hw_csr_ops(struct adf_hw_csr_ops *csr_ops)
{
	csr_ops->build_csr_ring_base_addr = build_csr_ring_base_addr;
	csr_ops->read_csr_ring_head = read_csr_ring_head;
	csr_ops->write_csr_ring_head = write_csr_ring_head;
	csr_ops->read_csr_ring_tail = read_csr_ring_tail;
	csr_ops->write_csr_ring_tail = write_csr_ring_tail;
	csr_ops->read_csr_e_stat = read_csr_e_stat;
	csr_ops->write_csr_ring_config = write_csr_ring_config;
	csr_ops->write_csr_ring_base = write_csr_ring_base;
	csr_ops->write_csr_int_flag = write_csr_int_flag;
	csr_ops->write_csr_int_srcsel = write_csr_int_srcsel;
	csr_ops->write_csr_int_col_en = write_csr_int_col_en;
	csr_ops->write_csr_int_col_ctl = write_csr_int_col_ctl;
	csr_ops->write_csr_int_flag_and_col = write_csr_int_flag_and_col;
	csr_ops->write_csr_ring_srv_arb_en = write_csr_ring_srv_arb_en;
}
EXPORT_SYMBOL_GPL(adf_gen4_init_hw_csr_ops);

u32 adf_gen4_get_accel_mask(struct adf_hw_device_data *self)
{
	return ADF_GEN4_ACCELERATORS_MASK;
}
EXPORT_SYMBOL_GPL(adf_gen4_get_accel_mask);

u32 adf_gen4_get_num_accels(struct adf_hw_device_data *self)
{
	return ADF_GEN4_MAX_ACCELERATORS;
}
EXPORT_SYMBOL_GPL(adf_gen4_get_num_accels);

u32 adf_gen4_get_num_aes(struct adf_hw_device_data *self)
{
	if (!self || !self->ae_mask)
		return 0;

	return hweight32(self->ae_mask);
}
EXPORT_SYMBOL_GPL(adf_gen4_get_num_aes);

u32 adf_gen4_get_misc_bar_id(struct adf_hw_device_data *self)
{
	return ADF_GEN4_PMISC_BAR;
}
EXPORT_SYMBOL_GPL(adf_gen4_get_misc_bar_id);

u32 adf_gen4_get_etr_bar_id(struct adf_hw_device_data *self)
{
	return ADF_GEN4_ETR_BAR;
}
EXPORT_SYMBOL_GPL(adf_gen4_get_etr_bar_id);

u32 adf_gen4_get_sram_bar_id(struct adf_hw_device_data *self)
{
	return ADF_GEN4_SRAM_BAR;
}
EXPORT_SYMBOL_GPL(adf_gen4_get_sram_bar_id);

enum dev_sku_info adf_gen4_get_sku(struct adf_hw_device_data *self)
{
	return DEV_SKU_1;
}
EXPORT_SYMBOL_GPL(adf_gen4_get_sku);

void adf_gen4_get_arb_info(struct arb_info *arb_info)
{
	arb_info->arb_cfg = ADF_GEN4_ARB_CONFIG;
	arb_info->arb_offset = ADF_GEN4_ARB_OFFSET;
	arb_info->wt2sam_offset = ADF_GEN4_ARB_WRK_2_SER_MAP_OFFSET;
}
EXPORT_SYMBOL_GPL(adf_gen4_get_arb_info);

void adf_gen4_get_admin_info(struct admin_info *admin_csrs_info)
{
	admin_csrs_info->mailbox_offset = ADF_GEN4_MAILBOX_BASE_OFFSET;
	admin_csrs_info->admin_msg_ur = ADF_GEN4_ADMINMSGUR_OFFSET;
	admin_csrs_info->admin_msg_lr = ADF_GEN4_ADMINMSGLR_OFFSET;
}
EXPORT_SYMBOL_GPL(adf_gen4_get_admin_info);

u32 adf_gen4_get_heartbeat_clock(struct adf_hw_device_data *self)
{
	/*
	 * GEN4 uses KPT counter for HB
	 */
	return ADF_GEN4_KPT_COUNTER_FREQ;
}
EXPORT_SYMBOL_GPL(adf_gen4_get_heartbeat_clock);

void adf_gen4_enable_error_correction(struct adf_accel_dev *accel_dev)
{
	struct adf_bar *misc_bar = &GET_BARS(accel_dev)[ADF_GEN4_PMISC_BAR];
	void __iomem *csr = misc_bar->virt_addr;

	/* Enable all in errsou3 except VFLR notification on host */
	ADF_CSR_WR(csr, ADF_GEN4_ERRMSK3, ADF_GEN4_VFLNOTIFY);
}
EXPORT_SYMBOL_GPL(adf_gen4_enable_error_correction);

void adf_gen4_enable_ints(struct adf_accel_dev *accel_dev)
{
	void __iomem *addr;

	addr = (&GET_BARS(accel_dev)[ADF_GEN4_PMISC_BAR])->virt_addr;

	/* Enable bundle interrupts */
	ADF_CSR_WR(addr, ADF_GEN4_SMIAPF_RP_X0_MASK_OFFSET, 0);
	ADF_CSR_WR(addr, ADF_GEN4_SMIAPF_RP_X1_MASK_OFFSET, 0);

	/* Enable misc interrupts */
	ADF_CSR_WR(addr, ADF_GEN4_SMIAPF_MASK_OFFSET, 0);
}
EXPORT_SYMBOL_GPL(adf_gen4_enable_ints);

int adf_gen4_init_device(struct adf_accel_dev *accel_dev)
{
	void __iomem *addr;
	u32 status;
	u32 csr;
	int ret;

	addr = (&GET_BARS(accel_dev)[ADF_GEN4_PMISC_BAR])->virt_addr;

	/* Temporarily mask PM interrupt */
	csr = ADF_CSR_RD(addr, ADF_GEN4_ERRMSK2);
	csr |= ADF_GEN4_PM_SOU;
	ADF_CSR_WR(addr, ADF_GEN4_ERRMSK2, csr);

	/* Set DRV_ACTIVE bit to power up the device */
	ADF_CSR_WR(addr, ADF_GEN4_PM_INTERRUPT, ADF_GEN4_PM_DRV_ACTIVE);

	/* Poll status register to make sure the device is powered up */
	ret = read_poll_timeout(ADF_CSR_RD, status,
				status & ADF_GEN4_PM_INIT_STATE,
				ADF_GEN4_PM_POLL_DELAY_US,
				ADF_GEN4_PM_POLL_TIMEOUT_US, true, addr,
				ADF_GEN4_PM_STATUS);
	if (ret)
		dev_err(&GET_DEV(accel_dev), "Failed to power up the device\n");

	return ret;
}
EXPORT_SYMBOL_GPL(adf_gen4_init_device);

static inline void adf_gen4_unpack_ssm_wdtimer(u64 value, u32 *upper,
					       u32 *lower)
{
	*lower = lower_32_bits(value);
	*upper = upper_32_bits(value);
}

void adf_gen4_set_ssm_wdtimer(struct adf_accel_dev *accel_dev)
{
	void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev);
	u64 timer_val_pke = ADF_SSM_WDT_PKE_DEFAULT_VALUE;
	u64 timer_val = ADF_SSM_WDT_DEFAULT_VALUE;
	u32 ssm_wdt_pke_high = 0;
	u32 ssm_wdt_pke_low = 0;
	u32 ssm_wdt_high = 0;
	u32 ssm_wdt_low = 0;

	/* Convert 64bit WDT timer value into 32bit values for
	 * mmio write to 32bit CSRs.
	 */
	adf_gen4_unpack_ssm_wdtimer(timer_val, &ssm_wdt_high, &ssm_wdt_low);
	adf_gen4_unpack_ssm_wdtimer(timer_val_pke, &ssm_wdt_pke_high,
				    &ssm_wdt_pke_low);

	/* Enable WDT for sym and dc */
	ADF_CSR_WR(pmisc_addr, ADF_SSMWDTL_OFFSET, ssm_wdt_low);
	ADF_CSR_WR(pmisc_addr, ADF_SSMWDTH_OFFSET, ssm_wdt_high);
	/* Enable WDT for pke */
	ADF_CSR_WR(pmisc_addr, ADF_SSMWDTPKEL_OFFSET, ssm_wdt_pke_low);
	ADF_CSR_WR(pmisc_addr, ADF_SSMWDTPKEH_OFFSET, ssm_wdt_pke_high);
}
EXPORT_SYMBOL_GPL(adf_gen4_set_ssm_wdtimer);

/*
 * The vector routing table is used to select the MSI-X entry to use for each
 * interrupt source.
 * The first ADF_GEN4_ETR_MAX_BANKS entries correspond to ring interrupts.
 * The final entry corresponds to VF2PF or error interrupts.
 * This vector table could be used to configure one MSI-X entry to be shared
 * between multiple interrupt sources.
 *
 * The default routing is set to have a one to one correspondence between the
 * interrupt source and the MSI-X entry used.
 */
void adf_gen4_set_msix_default_rttable(struct adf_accel_dev *accel_dev)
{
	void __iomem *csr;
	int i;

	csr = (&GET_BARS(accel_dev)[ADF_GEN4_PMISC_BAR])->virt_addr;
	for (i = 0; i <= ADF_GEN4_ETR_MAX_BANKS; i++)
		ADF_CSR_WR(csr, ADF_GEN4_MSIX_RTTABLE_OFFSET(i), i);
}
EXPORT_SYMBOL_GPL(adf_gen4_set_msix_default_rttable);

int adf_pfvf_comms_disabled(struct adf_accel_dev *accel_dev)
{
	return 0;
}
EXPORT_SYMBOL_GPL(adf_pfvf_comms_disabled);

static int reset_ring_pair(void __iomem *csr, u32 bank_number)
{
	u32 status;
	int ret;

	/* Write rpresetctl register BIT(0) as 1
	 * Since rpresetctl registers have no RW fields, no need to preserve
	 * values for other bits. Just write directly.
	 */
	ADF_CSR_WR(csr, ADF_WQM_CSR_RPRESETCTL(bank_number),
		   ADF_WQM_CSR_RPRESETCTL_RESET);

	/* Read rpresetsts register and wait for rp reset to complete */
	ret = read_poll_timeout(ADF_CSR_RD, status,
				status & ADF_WQM_CSR_RPRESETSTS_STATUS,
				ADF_RPRESET_POLL_DELAY_US,
				ADF_RPRESET_POLL_TIMEOUT_US, true,
				csr, ADF_WQM_CSR_RPRESETSTS(bank_number));
	if (!ret) {
		/* When rp reset is done, clear rpresetsts */
		ADF_CSR_WR(csr, ADF_WQM_CSR_RPRESETSTS(bank_number),
			   ADF_WQM_CSR_RPRESETSTS_STATUS);
	}

	return ret;
}

int adf_gen4_ring_pair_reset(struct adf_accel_dev *accel_dev, u32 bank_number)
{
	struct adf_hw_device_data *hw_data = accel_dev->hw_device;
	u32 etr_bar_id = hw_data->get_etr_bar_id(hw_data);
	void __iomem *csr;
	int ret;

	if (bank_number >= hw_data->num_banks)
		return -EINVAL;

	dev_dbg(&GET_DEV(accel_dev),
		"ring pair reset for bank:%d\n", bank_number);

	csr = (&GET_BARS(accel_dev)[etr_bar_id])->virt_addr;
	ret = reset_ring_pair(csr, bank_number);
	if (ret)
		dev_err(&GET_DEV(accel_dev),
			"ring pair reset failed (timeout)\n");
	else
		dev_dbg(&GET_DEV(accel_dev), "ring pair reset successful\n");

	return ret;
}
EXPORT_SYMBOL_GPL(adf_gen4_ring_pair_reset);

static const u32 thrd_to_arb_map_dcc[] = {
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x0000FFFF, 0x0000FFFF, 0x0000FFFF, 0x0000FFFF,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x0
};

static const u16 rp_group_to_arb_mask[] = {
	[RP_GROUP_0] = 0x5,
	[RP_GROUP_1] = 0xA,
};

static bool is_single_service(int service_id)
{
	switch (service_id) {
	case SVC_DC:
	case SVC_SYM:
	case SVC_ASYM:
		return true;
	case SVC_CY:
	case SVC_CY2:
	case SVC_DCC:
	case SVC_ASYM_DC:
	case SVC_DC_ASYM:
	case SVC_SYM_DC:
	case SVC_DC_SYM:
	default:
		return false;
	}
}

int adf_gen4_init_thd2arb_map(struct adf_accel_dev *accel_dev)
{
	struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev);
	u32 *thd2arb_map = hw_data->thd_to_arb_map;
	unsigned int ae_cnt, worker_obj_cnt, i, j;
	unsigned long ae_mask, thds_mask;
	int srv_id, rp_group;
	u32 thd2arb_map_base;
	u16 arb_mask;

	if (!hw_data->get_rp_group || !hw_data->get_ena_thd_mask ||
	    !hw_data->get_num_aes || !hw_data->uof_get_num_objs ||
	    !hw_data->uof_get_ae_mask)
		return -EFAULT;

	srv_id = adf_get_service_enabled(accel_dev);
	if (srv_id < 0)
		return srv_id;

	ae_cnt = hw_data->get_num_aes(hw_data);
	worker_obj_cnt = hw_data->uof_get_num_objs(accel_dev) -
			 ADF_GEN4_ADMIN_ACCELENGINES;

	if (srv_id == SVC_DCC) {
		memcpy(thd2arb_map, thrd_to_arb_map_dcc,
		       array_size(sizeof(*thd2arb_map), ae_cnt));
		return 0;
	}

	for (i = 0; i < worker_obj_cnt; i++) {
		ae_mask = hw_data->uof_get_ae_mask(accel_dev, i);
		rp_group = hw_data->get_rp_group(accel_dev, ae_mask);
		thds_mask = hw_data->get_ena_thd_mask(accel_dev, i);
		thd2arb_map_base = 0;

		if (rp_group >= RP_GROUP_COUNT || rp_group < RP_GROUP_0)
			return -EINVAL;

		if (thds_mask == ADF_GEN4_ENA_THD_MASK_ERROR)
			return -EINVAL;

		if (is_single_service(srv_id))
			arb_mask = rp_group_to_arb_mask[RP_GROUP_0] |
				   rp_group_to_arb_mask[RP_GROUP_1];
		else
			arb_mask = rp_group_to_arb_mask[rp_group];

		for_each_set_bit(j, &thds_mask, ADF_NUM_THREADS_PER_AE)
			thd2arb_map_base |= arb_mask << (j * 4);

		for_each_set_bit(j, &ae_mask, ae_cnt)
			thd2arb_map[j] = thd2arb_map_base;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(adf_gen4_init_thd2arb_map);