summaryrefslogtreecommitdiff
path: root/drivers/firmware/efi/libstub/unaccepted_memory.c
blob: 9a655f30ba47db013c03f2f73da88d6405507c7f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// SPDX-License-Identifier: GPL-2.0-only

#include <linux/efi.h>
#include <asm/efi.h>
#include "efistub.h"

struct efi_unaccepted_memory *unaccepted_table;

efi_status_t allocate_unaccepted_bitmap(__u32 nr_desc,
					struct efi_boot_memmap *map)
{
	efi_guid_t unaccepted_table_guid = LINUX_EFI_UNACCEPTED_MEM_TABLE_GUID;
	u64 unaccepted_start = ULLONG_MAX, unaccepted_end = 0, bitmap_size;
	efi_status_t status;
	int i;

	/* Check if the table is already installed */
	unaccepted_table = get_efi_config_table(unaccepted_table_guid);
	if (unaccepted_table) {
		if (unaccepted_table->version != 1) {
			efi_err("Unknown version of unaccepted memory table\n");
			return EFI_UNSUPPORTED;
		}
		return EFI_SUCCESS;
	}

	/* Check if there's any unaccepted memory and find the max address */
	for (i = 0; i < nr_desc; i++) {
		efi_memory_desc_t *d;
		unsigned long m = (unsigned long)map->map;

		d = efi_early_memdesc_ptr(m, map->desc_size, i);
		if (d->type != EFI_UNACCEPTED_MEMORY)
			continue;

		unaccepted_start = min(unaccepted_start, d->phys_addr);
		unaccepted_end = max(unaccepted_end,
				     d->phys_addr + d->num_pages * PAGE_SIZE);
	}

	if (unaccepted_start == ULLONG_MAX)
		return EFI_SUCCESS;

	unaccepted_start = round_down(unaccepted_start,
				      EFI_UNACCEPTED_UNIT_SIZE);
	unaccepted_end = round_up(unaccepted_end, EFI_UNACCEPTED_UNIT_SIZE);

	/*
	 * If unaccepted memory is present, allocate a bitmap to track what
	 * memory has to be accepted before access.
	 *
	 * One bit in the bitmap represents 2MiB in the address space:
	 * A 4k bitmap can track 64GiB of physical address space.
	 *
	 * In the worst case scenario -- a huge hole in the middle of the
	 * address space -- It needs 256MiB to handle 4PiB of the address
	 * space.
	 *
	 * The bitmap will be populated in setup_e820() according to the memory
	 * map after efi_exit_boot_services().
	 */
	bitmap_size = DIV_ROUND_UP(unaccepted_end - unaccepted_start,
				   EFI_UNACCEPTED_UNIT_SIZE * BITS_PER_BYTE);

	status = efi_bs_call(allocate_pool, EFI_ACPI_RECLAIM_MEMORY,
			     sizeof(*unaccepted_table) + bitmap_size,
			     (void **)&unaccepted_table);
	if (status != EFI_SUCCESS) {
		efi_err("Failed to allocate unaccepted memory config table\n");
		return status;
	}

	unaccepted_table->version = 1;
	unaccepted_table->unit_size = EFI_UNACCEPTED_UNIT_SIZE;
	unaccepted_table->phys_base = unaccepted_start;
	unaccepted_table->size = bitmap_size;
	memset(unaccepted_table->bitmap, 0, bitmap_size);

	status = efi_bs_call(install_configuration_table,
			     &unaccepted_table_guid, unaccepted_table);
	if (status != EFI_SUCCESS) {
		efi_bs_call(free_pool, unaccepted_table);
		efi_err("Failed to install unaccepted memory config table!\n");
	}

	return status;
}

/*
 * The accepted memory bitmap only works at unit_size granularity.  Take
 * unaligned start/end addresses and either:
 *  1. Accepts the memory immediately and in its entirety
 *  2. Accepts unaligned parts, and marks *some* aligned part unaccepted
 *
 * The function will never reach the bitmap_set() with zero bits to set.
 */
void process_unaccepted_memory(u64 start, u64 end)
{
	u64 unit_size = unaccepted_table->unit_size;
	u64 unit_mask = unaccepted_table->unit_size - 1;
	u64 bitmap_size = unaccepted_table->size;

	/*
	 * Ensure that at least one bit will be set in the bitmap by
	 * immediately accepting all regions under 2*unit_size.  This is
	 * imprecise and may immediately accept some areas that could
	 * have been represented in the bitmap.  But, results in simpler
	 * code below
	 *
	 * Consider case like this (assuming unit_size == 2MB):
	 *
	 * | 4k | 2044k |    2048k   |
	 * ^ 0x0        ^ 2MB        ^ 4MB
	 *
	 * Only the first 4k has been accepted. The 0MB->2MB region can not be
	 * represented in the bitmap. The 2MB->4MB region can be represented in
	 * the bitmap. But, the 0MB->4MB region is <2*unit_size and will be
	 * immediately accepted in its entirety.
	 */
	if (end - start < 2 * unit_size) {
		arch_accept_memory(start, end);
		return;
	}

	/*
	 * No matter how the start and end are aligned, at least one unaccepted
	 * unit_size area will remain to be marked in the bitmap.
	 */

	/* Immediately accept a <unit_size piece at the start: */
	if (start & unit_mask) {
		arch_accept_memory(start, round_up(start, unit_size));
		start = round_up(start, unit_size);
	}

	/* Immediately accept a <unit_size piece at the end: */
	if (end & unit_mask) {
		arch_accept_memory(round_down(end, unit_size), end);
		end = round_down(end, unit_size);
	}

	/*
	 * Accept part of the range that before phys_base and cannot be recorded
	 * into the bitmap.
	 */
	if (start < unaccepted_table->phys_base) {
		arch_accept_memory(start,
				   min(unaccepted_table->phys_base, end));
		start = unaccepted_table->phys_base;
	}

	/* Nothing to record */
	if (end < unaccepted_table->phys_base)
		return;

	/* Translate to offsets from the beginning of the bitmap */
	start -= unaccepted_table->phys_base;
	end -= unaccepted_table->phys_base;

	/* Accept memory that doesn't fit into bitmap */
	if (end > bitmap_size * unit_size * BITS_PER_BYTE) {
		unsigned long phys_start, phys_end;

		phys_start = bitmap_size * unit_size * BITS_PER_BYTE +
			     unaccepted_table->phys_base;
		phys_end = end + unaccepted_table->phys_base;

		arch_accept_memory(phys_start, phys_end);
		end = bitmap_size * unit_size * BITS_PER_BYTE;
	}

	/*
	 * 'start' and 'end' are now both unit_size-aligned.
	 * Record the range as being unaccepted:
	 */
	bitmap_set(unaccepted_table->bitmap,
		   start / unit_size, (end - start) / unit_size);
}

void accept_memory(phys_addr_t start, phys_addr_t end)
{
	unsigned long range_start, range_end;
	unsigned long bitmap_size;
	u64 unit_size;

	if (!unaccepted_table)
		return;

	unit_size = unaccepted_table->unit_size;

	/*
	 * Only care for the part of the range that is represented
	 * in the bitmap.
	 */
	if (start < unaccepted_table->phys_base)
		start = unaccepted_table->phys_base;
	if (end < unaccepted_table->phys_base)
		return;

	/* Translate to offsets from the beginning of the bitmap */
	start -= unaccepted_table->phys_base;
	end -= unaccepted_table->phys_base;

	/* Make sure not to overrun the bitmap */
	if (end > unaccepted_table->size * unit_size * BITS_PER_BYTE)
		end = unaccepted_table->size * unit_size * BITS_PER_BYTE;

	range_start = start / unit_size;
	bitmap_size = DIV_ROUND_UP(end, unit_size);

	for_each_set_bitrange_from(range_start, range_end,
				   unaccepted_table->bitmap, bitmap_size) {
		unsigned long phys_start, phys_end;

		phys_start = range_start * unit_size + unaccepted_table->phys_base;
		phys_end = range_end * unit_size + unaccepted_table->phys_base;

		arch_accept_memory(phys_start, phys_end);
		bitmap_clear(unaccepted_table->bitmap,
			     range_start, range_end - range_start);
	}
}