summaryrefslogtreecommitdiff
path: root/drivers/mmc/host/mmci_stm32_sdmmc.c
blob: f5da7f9baa52d4b29cd396f0aa88e1ff7891666c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) STMicroelectronics 2018 - All Rights Reserved
 * Author: Ludovic.barre@st.com for STMicroelectronics.
 */
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/iopoll.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/of_address.h>
#include <linux/reset.h>
#include <linux/scatterlist.h>
#include "mmci.h"

#define SDMMC_LLI_BUF_LEN	PAGE_SIZE

#define DLYB_CR			0x0
#define DLYB_CR_DEN		BIT(0)
#define DLYB_CR_SEN		BIT(1)

#define DLYB_CFGR		0x4
#define DLYB_CFGR_SEL_MASK	GENMASK(3, 0)
#define DLYB_CFGR_UNIT_MASK	GENMASK(14, 8)
#define DLYB_CFGR_LNG_MASK	GENMASK(27, 16)
#define DLYB_CFGR_LNGF		BIT(31)

#define DLYB_NB_DELAY		11
#define DLYB_CFGR_SEL_MAX	(DLYB_NB_DELAY + 1)
#define DLYB_CFGR_UNIT_MAX	127

#define DLYB_LNG_TIMEOUT_US	1000
#define SDMMC_VSWEND_TIMEOUT_US 10000

#define SYSCFG_DLYBSD_CR	0x0
#define DLYBSD_CR_EN		BIT(0)
#define DLYBSD_CR_RXTAPSEL_MASK	GENMASK(6, 1)
#define DLYBSD_TAPSEL_NB	32
#define DLYBSD_BYP_EN		BIT(16)
#define DLYBSD_BYP_CMD		GENMASK(21, 17)
#define DLYBSD_ANTIGLITCH_EN	BIT(22)

#define SYSCFG_DLYBSD_SR	0x4
#define DLYBSD_SR_LOCK		BIT(0)
#define DLYBSD_SR_RXTAPSEL_ACK	BIT(1)

#define DLYBSD_TIMEOUT_1S_IN_US	1000000

struct sdmmc_lli_desc {
	u32 idmalar;
	u32 idmabase;
	u32 idmasize;
};

struct sdmmc_idma {
	dma_addr_t sg_dma;
	void *sg_cpu;
	dma_addr_t bounce_dma_addr;
	void *bounce_buf;
	bool use_bounce_buffer;
};

struct sdmmc_dlyb;

struct sdmmc_tuning_ops {
	int (*dlyb_enable)(struct sdmmc_dlyb *dlyb);
	void (*set_input_ck)(struct sdmmc_dlyb *dlyb);
	int (*tuning_prepare)(struct mmci_host *host);
	int (*set_cfg)(struct sdmmc_dlyb *dlyb, int unit __maybe_unused,
		       int phase, bool sampler __maybe_unused);
};

struct sdmmc_dlyb {
	void __iomem *base;
	u32 unit;
	u32 max;
	struct sdmmc_tuning_ops *ops;
};

static int sdmmc_idma_validate_data(struct mmci_host *host,
				    struct mmc_data *data)
{
	struct sdmmc_idma *idma = host->dma_priv;
	struct device *dev = mmc_dev(host->mmc);
	struct scatterlist *sg;
	int i;

	/*
	 * idma has constraints on idmabase & idmasize for each element
	 * excepted the last element which has no constraint on idmasize
	 */
	idma->use_bounce_buffer = false;
	for_each_sg(data->sg, sg, data->sg_len - 1, i) {
		if (!IS_ALIGNED(sg->offset, sizeof(u32)) ||
		    !IS_ALIGNED(sg->length,
				host->variant->stm32_idmabsize_align)) {
			dev_dbg(mmc_dev(host->mmc),
				"unaligned scatterlist: ofst:%x length:%d\n",
				data->sg->offset, data->sg->length);
			goto use_bounce_buffer;
		}
	}

	if (!IS_ALIGNED(sg->offset, sizeof(u32))) {
		dev_dbg(mmc_dev(host->mmc),
			"unaligned last scatterlist: ofst:%x length:%d\n",
			data->sg->offset, data->sg->length);
		goto use_bounce_buffer;
	}

	return 0;

use_bounce_buffer:
	if (!idma->bounce_buf) {
		idma->bounce_buf = dmam_alloc_coherent(dev,
						       host->mmc->max_req_size,
						       &idma->bounce_dma_addr,
						       GFP_KERNEL);
		if (!idma->bounce_buf) {
			dev_err(dev, "Unable to map allocate DMA bounce buffer.\n");
			return -ENOMEM;
		}
	}

	idma->use_bounce_buffer = true;

	return 0;
}

static int _sdmmc_idma_prep_data(struct mmci_host *host,
				 struct mmc_data *data)
{
	struct sdmmc_idma *idma = host->dma_priv;

	if (idma->use_bounce_buffer) {
		if (data->flags & MMC_DATA_WRITE) {
			unsigned int xfer_bytes = data->blksz * data->blocks;

			sg_copy_to_buffer(data->sg, data->sg_len,
					  idma->bounce_buf, xfer_bytes);
			dma_wmb();
		}
	} else {
		int n_elem;

		n_elem = dma_map_sg(mmc_dev(host->mmc),
				    data->sg,
				    data->sg_len,
				    mmc_get_dma_dir(data));

		if (!n_elem) {
			dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
			return -EINVAL;
		}
	}
	return 0;
}

static int sdmmc_idma_prep_data(struct mmci_host *host,
				struct mmc_data *data, bool next)
{
	/* Check if job is already prepared. */
	if (!next && data->host_cookie == host->next_cookie)
		return 0;

	return _sdmmc_idma_prep_data(host, data);
}

static void sdmmc_idma_unprep_data(struct mmci_host *host,
				   struct mmc_data *data, int err)
{
	struct sdmmc_idma *idma = host->dma_priv;

	if (idma->use_bounce_buffer) {
		if (data->flags & MMC_DATA_READ) {
			unsigned int xfer_bytes = data->blksz * data->blocks;

			sg_copy_from_buffer(data->sg, data->sg_len,
					    idma->bounce_buf, xfer_bytes);
		}
	} else {
		dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
			     mmc_get_dma_dir(data));
	}
}

static int sdmmc_idma_setup(struct mmci_host *host)
{
	struct sdmmc_idma *idma;
	struct device *dev = mmc_dev(host->mmc);

	idma = devm_kzalloc(dev, sizeof(*idma), GFP_KERNEL);
	if (!idma)
		return -ENOMEM;

	host->dma_priv = idma;

	if (host->variant->dma_lli) {
		idma->sg_cpu = dmam_alloc_coherent(dev, SDMMC_LLI_BUF_LEN,
						   &idma->sg_dma, GFP_KERNEL);
		if (!idma->sg_cpu) {
			dev_err(dev, "Failed to alloc IDMA descriptor\n");
			return -ENOMEM;
		}
		host->mmc->max_segs = SDMMC_LLI_BUF_LEN /
			sizeof(struct sdmmc_lli_desc);
		host->mmc->max_seg_size = host->variant->stm32_idmabsize_mask;

		host->mmc->max_req_size = SZ_1M;
	} else {
		host->mmc->max_segs = 1;
		host->mmc->max_seg_size = host->mmc->max_req_size;
	}

	return dma_set_max_seg_size(dev, host->mmc->max_seg_size);
}

static int sdmmc_idma_start(struct mmci_host *host, unsigned int *datactrl)

{
	struct sdmmc_idma *idma = host->dma_priv;
	struct sdmmc_lli_desc *desc = (struct sdmmc_lli_desc *)idma->sg_cpu;
	struct mmc_data *data = host->data;
	struct scatterlist *sg;
	int i;

	host->dma_in_progress = true;

	if (!host->variant->dma_lli || data->sg_len == 1 ||
	    idma->use_bounce_buffer) {
		u32 dma_addr;

		if (idma->use_bounce_buffer)
			dma_addr = idma->bounce_dma_addr;
		else
			dma_addr = sg_dma_address(data->sg);

		writel_relaxed(dma_addr,
			       host->base + MMCI_STM32_IDMABASE0R);
		writel_relaxed(MMCI_STM32_IDMAEN,
			       host->base + MMCI_STM32_IDMACTRLR);
		return 0;
	}

	for_each_sg(data->sg, sg, data->sg_len, i) {
		desc[i].idmalar = (i + 1) * sizeof(struct sdmmc_lli_desc);
		desc[i].idmalar |= MMCI_STM32_ULA | MMCI_STM32_ULS
			| MMCI_STM32_ABR;
		desc[i].idmabase = sg_dma_address(sg);
		desc[i].idmasize = sg_dma_len(sg);
	}

	/* notice the end of link list */
	desc[data->sg_len - 1].idmalar &= ~MMCI_STM32_ULA;

	dma_wmb();
	writel_relaxed(idma->sg_dma, host->base + MMCI_STM32_IDMABAR);
	writel_relaxed(desc[0].idmalar, host->base + MMCI_STM32_IDMALAR);
	writel_relaxed(desc[0].idmabase, host->base + MMCI_STM32_IDMABASE0R);
	writel_relaxed(desc[0].idmasize, host->base + MMCI_STM32_IDMABSIZER);
	writel_relaxed(MMCI_STM32_IDMAEN | MMCI_STM32_IDMALLIEN,
		       host->base + MMCI_STM32_IDMACTRLR);

	return 0;
}

static void sdmmc_idma_error(struct mmci_host *host)
{
	struct mmc_data *data = host->data;
	struct sdmmc_idma *idma = host->dma_priv;

	if (!dma_inprogress(host))
		return;

	writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR);
	host->dma_in_progress = false;
	data->host_cookie = 0;

	if (!idma->use_bounce_buffer)
		dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
			     mmc_get_dma_dir(data));
}

static void sdmmc_idma_finalize(struct mmci_host *host, struct mmc_data *data)
{
	if (!dma_inprogress(host))
		return;

	writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR);
	host->dma_in_progress = false;

	if (!data->host_cookie)
		sdmmc_idma_unprep_data(host, data, 0);
}

static void mmci_sdmmc_set_clkreg(struct mmci_host *host, unsigned int desired)
{
	unsigned int clk = 0, ddr = 0;

	if (host->mmc->ios.timing == MMC_TIMING_MMC_DDR52 ||
	    host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
		ddr = MCI_STM32_CLK_DDR;

	/*
	 * cclk = mclk / (2 * clkdiv)
	 * clkdiv 0 => bypass
	 * in ddr mode bypass is not possible
	 */
	if (desired) {
		if (desired >= host->mclk && !ddr) {
			host->cclk = host->mclk;
		} else {
			clk = DIV_ROUND_UP(host->mclk, 2 * desired);
			if (clk > MCI_STM32_CLK_CLKDIV_MSK)
				clk = MCI_STM32_CLK_CLKDIV_MSK;
			host->cclk = host->mclk / (2 * clk);
		}
	} else {
		/*
		 * while power-on phase the clock can't be define to 0,
		 * Only power-off and power-cyc deactivate the clock.
		 * if desired clock is 0, set max divider
		 */
		clk = MCI_STM32_CLK_CLKDIV_MSK;
		host->cclk = host->mclk / (2 * clk);
	}

	/* Set actual clock for debug */
	if (host->mmc->ios.power_mode == MMC_POWER_ON)
		host->mmc->actual_clock = host->cclk;
	else
		host->mmc->actual_clock = 0;

	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
		clk |= MCI_STM32_CLK_WIDEBUS_4;
	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
		clk |= MCI_STM32_CLK_WIDEBUS_8;

	clk |= MCI_STM32_CLK_HWFCEN;
	clk |= host->clk_reg_add;
	clk |= ddr;

	if (host->mmc->ios.timing >= MMC_TIMING_UHS_SDR50)
		clk |= MCI_STM32_CLK_BUSSPEED;

	mmci_write_clkreg(host, clk);
}

static void sdmmc_dlyb_mp15_input_ck(struct sdmmc_dlyb *dlyb)
{
	if (!dlyb || !dlyb->base)
		return;

	/* Output clock = Input clock */
	writel_relaxed(0, dlyb->base + DLYB_CR);
}

static void mmci_sdmmc_set_pwrreg(struct mmci_host *host, unsigned int pwr)
{
	struct mmc_ios ios = host->mmc->ios;
	struct sdmmc_dlyb *dlyb = host->variant_priv;

	/* adds OF options */
	pwr = host->pwr_reg_add;

	if (dlyb && dlyb->ops->set_input_ck)
		dlyb->ops->set_input_ck(dlyb);

	if (ios.power_mode == MMC_POWER_OFF) {
		/* Only a reset could power-off sdmmc */
		reset_control_assert(host->rst);
		udelay(2);
		reset_control_deassert(host->rst);

		/*
		 * Set the SDMMC in Power-cycle state.
		 * This will make that the SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK
		 * are driven low, to prevent the Card from being supplied
		 * through the signal lines.
		 */
		mmci_write_pwrreg(host, MCI_STM32_PWR_CYC | pwr);
	} else if (ios.power_mode == MMC_POWER_ON) {
		/*
		 * After power-off (reset): the irq mask defined in probe
		 * functionis lost
		 * ault irq mask (probe) must be activated
		 */
		writel(MCI_IRQENABLE | host->variant->start_err,
		       host->base + MMCIMASK0);

		/* preserves voltage switch bits */
		pwr |= host->pwr_reg & (MCI_STM32_VSWITCHEN |
					MCI_STM32_VSWITCH);

		/*
		 * After a power-cycle state, we must set the SDMMC in
		 * Power-off. The SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK are
		 * driven high. Then we can set the SDMMC to Power-on state
		 */
		mmci_write_pwrreg(host, MCI_PWR_OFF | pwr);
		mdelay(1);
		mmci_write_pwrreg(host, MCI_PWR_ON | pwr);
	}
}

static u32 sdmmc_get_dctrl_cfg(struct mmci_host *host)
{
	u32 datactrl;

	datactrl = mmci_dctrl_blksz(host);

	if (host->hw_revision >= 3) {
		u32 thr = 0;

		if (host->mmc->ios.timing == MMC_TIMING_UHS_SDR104 ||
		    host->mmc->ios.timing == MMC_TIMING_MMC_HS200) {
			thr = ffs(min_t(unsigned int, host->data->blksz,
					host->variant->fifosize));
			thr = min_t(u32, thr, MMCI_STM32_THR_MASK);
		}

		writel_relaxed(thr, host->base + MMCI_STM32_FIFOTHRR);
	}

	if (host->mmc->card && mmc_card_sdio(host->mmc->card) &&
	    host->data->blocks == 1)
		datactrl |= MCI_DPSM_STM32_MODE_SDIO;
	else if (host->data->stop && !host->mrq->sbc)
		datactrl |= MCI_DPSM_STM32_MODE_BLOCK_STOP;
	else
		datactrl |= MCI_DPSM_STM32_MODE_BLOCK;

	return datactrl;
}

static bool sdmmc_busy_complete(struct mmci_host *host, struct mmc_command *cmd,
				u32 status, u32 err_msk)
{
	void __iomem *base = host->base;
	u32 busy_d0, busy_d0end, mask, sdmmc_status;

	mask = readl_relaxed(base + MMCIMASK0);
	sdmmc_status = readl_relaxed(base + MMCISTATUS);
	busy_d0end = sdmmc_status & MCI_STM32_BUSYD0END;
	busy_d0 = sdmmc_status & MCI_STM32_BUSYD0;

	/* complete if there is an error or busy_d0end */
	if ((status & err_msk) || busy_d0end)
		goto complete;

	/*
	 * On response the busy signaling is reflected in the BUSYD0 flag.
	 * if busy_d0 is in-progress we must activate busyd0end interrupt
	 * to wait this completion. Else this request has no busy step.
	 */
	if (busy_d0) {
		if (!host->busy_status) {
			writel_relaxed(mask | host->variant->busy_detect_mask,
				       base + MMCIMASK0);
			host->busy_status = status &
				(MCI_CMDSENT | MCI_CMDRESPEND);
		}
		return false;
	}

complete:
	if (host->busy_status) {
		writel_relaxed(mask & ~host->variant->busy_detect_mask,
			       base + MMCIMASK0);
		host->busy_status = 0;
	}

	writel_relaxed(host->variant->busy_detect_mask, base + MMCICLEAR);

	return true;
}

static int sdmmc_dlyb_mp15_enable(struct sdmmc_dlyb *dlyb)
{
	writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR);

	return 0;
}

static int sdmmc_dlyb_mp15_set_cfg(struct sdmmc_dlyb *dlyb,
				   int unit, int phase, bool sampler)
{
	u32 cfgr;

	writel_relaxed(DLYB_CR_SEN | DLYB_CR_DEN, dlyb->base + DLYB_CR);

	cfgr = FIELD_PREP(DLYB_CFGR_UNIT_MASK, unit) |
	       FIELD_PREP(DLYB_CFGR_SEL_MASK, phase);
	writel_relaxed(cfgr, dlyb->base + DLYB_CFGR);

	if (!sampler)
		writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR);

	return 0;
}

static int sdmmc_dlyb_mp15_prepare(struct mmci_host *host)
{
	struct sdmmc_dlyb *dlyb = host->variant_priv;
	u32 cfgr;
	int i, lng, ret;

	for (i = 0; i <= DLYB_CFGR_UNIT_MAX; i++) {
		dlyb->ops->set_cfg(dlyb, i, DLYB_CFGR_SEL_MAX, true);

		ret = readl_relaxed_poll_timeout(dlyb->base + DLYB_CFGR, cfgr,
						 (cfgr & DLYB_CFGR_LNGF),
						 1, DLYB_LNG_TIMEOUT_US);
		if (ret) {
			dev_warn(mmc_dev(host->mmc),
				 "delay line cfg timeout unit:%d cfgr:%d\n",
				 i, cfgr);
			continue;
		}

		lng = FIELD_GET(DLYB_CFGR_LNG_MASK, cfgr);
		if (lng < BIT(DLYB_NB_DELAY) && lng > 0)
			break;
	}

	if (i > DLYB_CFGR_UNIT_MAX)
		return -EINVAL;

	dlyb->unit = i;
	dlyb->max = __fls(lng);

	return 0;
}

static int sdmmc_dlyb_mp25_enable(struct sdmmc_dlyb *dlyb)
{
	u32 cr, sr;

	cr = readl_relaxed(dlyb->base + SYSCFG_DLYBSD_CR);
	cr |= DLYBSD_CR_EN;

	writel_relaxed(cr, dlyb->base + SYSCFG_DLYBSD_CR);

	return readl_relaxed_poll_timeout(dlyb->base + SYSCFG_DLYBSD_SR,
					   sr, sr & DLYBSD_SR_LOCK, 1,
					   DLYBSD_TIMEOUT_1S_IN_US);
}

static int sdmmc_dlyb_mp25_set_cfg(struct sdmmc_dlyb *dlyb,
				   int unit __maybe_unused, int phase,
				   bool sampler __maybe_unused)
{
	u32 cr, sr;

	cr = readl_relaxed(dlyb->base + SYSCFG_DLYBSD_CR);
	cr &= ~DLYBSD_CR_RXTAPSEL_MASK;
	cr |= FIELD_PREP(DLYBSD_CR_RXTAPSEL_MASK, phase);

	writel_relaxed(cr, dlyb->base + SYSCFG_DLYBSD_CR);

	return readl_relaxed_poll_timeout(dlyb->base + SYSCFG_DLYBSD_SR,
					  sr, sr & DLYBSD_SR_RXTAPSEL_ACK, 1,
					  DLYBSD_TIMEOUT_1S_IN_US);
}

static int sdmmc_dlyb_mp25_prepare(struct mmci_host *host)
{
	struct sdmmc_dlyb *dlyb = host->variant_priv;

	dlyb->max = DLYBSD_TAPSEL_NB;

	return 0;
}

static int sdmmc_dlyb_phase_tuning(struct mmci_host *host, u32 opcode)
{
	struct sdmmc_dlyb *dlyb = host->variant_priv;
	int cur_len = 0, max_len = 0, end_of_len = 0;
	int phase, ret;

	for (phase = 0; phase <= dlyb->max; phase++) {
		ret = dlyb->ops->set_cfg(dlyb, dlyb->unit, phase, false);
		if (ret) {
			dev_err(mmc_dev(host->mmc), "tuning config failed\n");
			return ret;
		}

		if (mmc_send_tuning(host->mmc, opcode, NULL)) {
			cur_len = 0;
		} else {
			cur_len++;
			if (cur_len > max_len) {
				max_len = cur_len;
				end_of_len = phase;
			}
		}
	}

	if (!max_len) {
		dev_err(mmc_dev(host->mmc), "no tuning point found\n");
		return -EINVAL;
	}

	if (dlyb->ops->set_input_ck)
		dlyb->ops->set_input_ck(dlyb);

	phase = end_of_len - max_len / 2;
	ret = dlyb->ops->set_cfg(dlyb, dlyb->unit, phase, false);
	if (ret) {
		dev_err(mmc_dev(host->mmc), "tuning reconfig failed\n");
		return ret;
	}

	dev_dbg(mmc_dev(host->mmc), "unit:%d max_dly:%d phase:%d\n",
		dlyb->unit, dlyb->max, phase);

	return 0;
}

static int sdmmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
	struct mmci_host *host = mmc_priv(mmc);
	struct sdmmc_dlyb *dlyb = host->variant_priv;
	u32 clk;
	int ret;

	if ((host->mmc->ios.timing != MMC_TIMING_UHS_SDR104 &&
	     host->mmc->ios.timing != MMC_TIMING_MMC_HS200) ||
	    host->mmc->actual_clock <= 50000000)
		return 0;

	if (!dlyb || !dlyb->base)
		return -EINVAL;

	ret = dlyb->ops->dlyb_enable(dlyb);
	if (ret)
		return ret;

	/*
	 * SDMMC_FBCK is selected when an external Delay Block is needed
	 * with SDR104 or HS200.
	 */
	clk = host->clk_reg;
	clk &= ~MCI_STM32_CLK_SEL_MSK;
	clk |= MCI_STM32_CLK_SELFBCK;
	mmci_write_clkreg(host, clk);

	ret = dlyb->ops->tuning_prepare(host);
	if (ret)
		return ret;

	return sdmmc_dlyb_phase_tuning(host, opcode);
}

static void sdmmc_pre_sig_volt_vswitch(struct mmci_host *host)
{
	/* clear the voltage switch completion flag */
	writel_relaxed(MCI_STM32_VSWENDC, host->base + MMCICLEAR);
	/* enable Voltage switch procedure */
	mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCHEN);
}

static int sdmmc_post_sig_volt_switch(struct mmci_host *host,
				      struct mmc_ios *ios)
{
	unsigned long flags;
	u32 status;
	int ret = 0;

	spin_lock_irqsave(&host->lock, flags);
	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180 &&
	    host->pwr_reg & MCI_STM32_VSWITCHEN) {
		mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCH);
		spin_unlock_irqrestore(&host->lock, flags);

		/* wait voltage switch completion while 10ms */
		ret = readl_relaxed_poll_timeout(host->base + MMCISTATUS,
						 status,
						 (status & MCI_STM32_VSWEND),
						 10, SDMMC_VSWEND_TIMEOUT_US);

		writel_relaxed(MCI_STM32_VSWENDC | MCI_STM32_CKSTOPC,
			       host->base + MMCICLEAR);
		spin_lock_irqsave(&host->lock, flags);
		mmci_write_pwrreg(host, host->pwr_reg &
				  ~(MCI_STM32_VSWITCHEN | MCI_STM32_VSWITCH));
	}
	spin_unlock_irqrestore(&host->lock, flags);

	return ret;
}

static struct mmci_host_ops sdmmc_variant_ops = {
	.validate_data = sdmmc_idma_validate_data,
	.prep_data = sdmmc_idma_prep_data,
	.unprep_data = sdmmc_idma_unprep_data,
	.get_datactrl_cfg = sdmmc_get_dctrl_cfg,
	.dma_setup = sdmmc_idma_setup,
	.dma_start = sdmmc_idma_start,
	.dma_finalize = sdmmc_idma_finalize,
	.dma_error = sdmmc_idma_error,
	.set_clkreg = mmci_sdmmc_set_clkreg,
	.set_pwrreg = mmci_sdmmc_set_pwrreg,
	.busy_complete = sdmmc_busy_complete,
	.pre_sig_volt_switch = sdmmc_pre_sig_volt_vswitch,
	.post_sig_volt_switch = sdmmc_post_sig_volt_switch,
};

static struct sdmmc_tuning_ops dlyb_tuning_mp15_ops = {
	.dlyb_enable = sdmmc_dlyb_mp15_enable,
	.set_input_ck = sdmmc_dlyb_mp15_input_ck,
	.tuning_prepare = sdmmc_dlyb_mp15_prepare,
	.set_cfg = sdmmc_dlyb_mp15_set_cfg,
};

static struct sdmmc_tuning_ops dlyb_tuning_mp25_ops = {
	.dlyb_enable = sdmmc_dlyb_mp25_enable,
	.tuning_prepare = sdmmc_dlyb_mp25_prepare,
	.set_cfg = sdmmc_dlyb_mp25_set_cfg,
};

void sdmmc_variant_init(struct mmci_host *host)
{
	struct device_node *np = host->mmc->parent->of_node;
	void __iomem *base_dlyb;
	struct sdmmc_dlyb *dlyb;

	host->ops = &sdmmc_variant_ops;
	host->pwr_reg = readl_relaxed(host->base + MMCIPOWER);

	base_dlyb = devm_of_iomap(mmc_dev(host->mmc), np, 1, NULL);
	if (IS_ERR(base_dlyb))
		return;

	dlyb = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dlyb), GFP_KERNEL);
	if (!dlyb)
		return;

	dlyb->base = base_dlyb;
	if (of_device_is_compatible(np, "st,stm32mp25-sdmmc2"))
		dlyb->ops = &dlyb_tuning_mp25_ops;
	else
		dlyb->ops = &dlyb_tuning_mp15_ops;

	host->variant_priv = dlyb;
	host->mmc_ops->execute_tuning = sdmmc_execute_tuning;
}