summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/netronome/nfp/nfpcore/nfp6000_pcie.c
blob: b454db283aefce409ed1db14ebe638c6e6d420b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
/* Copyright (C) 2015-2018 Netronome Systems, Inc. */

/*
 * nfp6000_pcie.c
 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
 *          Jason McMullan <jason.mcmullan@netronome.com>
 *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
 *
 * Multiplexes the NFP BARs between NFP internal resources and
 * implements the PCIe specific interface for generic CPP bus access.
 *
 * The BARs are managed with refcounts and are allocated/acquired
 * using target, token and offset/size matching.  The generic CPP bus
 * abstraction builds upon this BAR interface.
 */

#include <asm/unaligned.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kref.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/sort.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/pci.h>

#include "nfp_cpp.h"

#include "nfp6000/nfp6000.h"

#include "nfp6000_pcie.h"

#define NFP_PCIE_BAR(_pf)	(0x30000 + ((_pf) & 7) * 0xc0)
#define NFP_PCIE_BAR_EXPLICIT_BAR0(_x, _y) \
	(0x00000080 + (0x40 * ((_x) & 0x3)) + (0x10 * ((_y) & 0x3)))
#define   NFP_PCIE_BAR_EXPLICIT_BAR0_SignalType(_x)     (((_x) & 0x3) << 30)
#define   NFP_PCIE_BAR_EXPLICIT_BAR0_SignalType_of(_x)  (((_x) >> 30) & 0x3)
#define   NFP_PCIE_BAR_EXPLICIT_BAR0_Token(_x)          (((_x) & 0x3) << 28)
#define   NFP_PCIE_BAR_EXPLICIT_BAR0_Token_of(_x)       (((_x) >> 28) & 0x3)
#define   NFP_PCIE_BAR_EXPLICIT_BAR0_Address(_x)        (((_x) & 0xffffff) << 0)
#define   NFP_PCIE_BAR_EXPLICIT_BAR0_Address_of(_x)     (((_x) >> 0) & 0xffffff)
#define NFP_PCIE_BAR_EXPLICIT_BAR1(_x, _y) \
	(0x00000084 + (0x40 * ((_x) & 0x3)) + (0x10 * ((_y) & 0x3)))
#define   NFP_PCIE_BAR_EXPLICIT_BAR1_SignalRef(_x)      (((_x) & 0x7f) << 24)
#define   NFP_PCIE_BAR_EXPLICIT_BAR1_SignalRef_of(_x)   (((_x) >> 24) & 0x7f)
#define   NFP_PCIE_BAR_EXPLICIT_BAR1_DataMaster(_x)     (((_x) & 0x3ff) << 14)
#define   NFP_PCIE_BAR_EXPLICIT_BAR1_DataMaster_of(_x)  (((_x) >> 14) & 0x3ff)
#define   NFP_PCIE_BAR_EXPLICIT_BAR1_DataRef(_x)        (((_x) & 0x3fff) << 0)
#define   NFP_PCIE_BAR_EXPLICIT_BAR1_DataRef_of(_x)     (((_x) >> 0) & 0x3fff)
#define NFP_PCIE_BAR_EXPLICIT_BAR2(_x, _y) \
	(0x00000088 + (0x40 * ((_x) & 0x3)) + (0x10 * ((_y) & 0x3)))
#define   NFP_PCIE_BAR_EXPLICIT_BAR2_Target(_x)         (((_x) & 0xf) << 28)
#define   NFP_PCIE_BAR_EXPLICIT_BAR2_Target_of(_x)      (((_x) >> 28) & 0xf)
#define   NFP_PCIE_BAR_EXPLICIT_BAR2_Action(_x)         (((_x) & 0x1f) << 23)
#define   NFP_PCIE_BAR_EXPLICIT_BAR2_Action_of(_x)      (((_x) >> 23) & 0x1f)
#define   NFP_PCIE_BAR_EXPLICIT_BAR2_Length(_x)         (((_x) & 0x1f) << 18)
#define   NFP_PCIE_BAR_EXPLICIT_BAR2_Length_of(_x)      (((_x) >> 18) & 0x1f)
#define   NFP_PCIE_BAR_EXPLICIT_BAR2_ByteMask(_x)       (((_x) & 0xff) << 10)
#define   NFP_PCIE_BAR_EXPLICIT_BAR2_ByteMask_of(_x)    (((_x) >> 10) & 0xff)
#define   NFP_PCIE_BAR_EXPLICIT_BAR2_SignalMaster(_x)   (((_x) & 0x3ff) << 0)
#define   NFP_PCIE_BAR_EXPLICIT_BAR2_SignalMaster_of(_x) (((_x) >> 0) & 0x3ff)

#define   NFP_PCIE_BAR_PCIE2CPP_Action_BaseAddress(_x)  (((_x) & 0x1f) << 16)
#define   NFP_PCIE_BAR_PCIE2CPP_Action_BaseAddress_of(_x) (((_x) >> 16) & 0x1f)
#define   NFP_PCIE_BAR_PCIE2CPP_BaseAddress(_x)         (((_x) & 0xffff) << 0)
#define   NFP_PCIE_BAR_PCIE2CPP_BaseAddress_of(_x)      (((_x) >> 0) & 0xffff)
#define   NFP_PCIE_BAR_PCIE2CPP_LengthSelect(_x)        (((_x) & 0x3) << 27)
#define   NFP_PCIE_BAR_PCIE2CPP_LengthSelect_of(_x)     (((_x) >> 27) & 0x3)
#define     NFP_PCIE_BAR_PCIE2CPP_LengthSelect_32BIT    0
#define     NFP_PCIE_BAR_PCIE2CPP_LengthSelect_64BIT    1
#define     NFP_PCIE_BAR_PCIE2CPP_LengthSelect_0BYTE    3
#define   NFP_PCIE_BAR_PCIE2CPP_MapType(_x)             (((_x) & 0x7) << 29)
#define   NFP_PCIE_BAR_PCIE2CPP_MapType_of(_x)          (((_x) >> 29) & 0x7)
#define     NFP_PCIE_BAR_PCIE2CPP_MapType_FIXED         0
#define     NFP_PCIE_BAR_PCIE2CPP_MapType_BULK          1
#define     NFP_PCIE_BAR_PCIE2CPP_MapType_TARGET        2
#define     NFP_PCIE_BAR_PCIE2CPP_MapType_GENERAL       3
#define     NFP_PCIE_BAR_PCIE2CPP_MapType_EXPLICIT0     4
#define     NFP_PCIE_BAR_PCIE2CPP_MapType_EXPLICIT1     5
#define     NFP_PCIE_BAR_PCIE2CPP_MapType_EXPLICIT2     6
#define     NFP_PCIE_BAR_PCIE2CPP_MapType_EXPLICIT3     7
#define   NFP_PCIE_BAR_PCIE2CPP_Target_BaseAddress(_x)  (((_x) & 0xf) << 23)
#define   NFP_PCIE_BAR_PCIE2CPP_Target_BaseAddress_of(_x) (((_x) >> 23) & 0xf)
#define   NFP_PCIE_BAR_PCIE2CPP_Token_BaseAddress(_x)   (((_x) & 0x3) << 21)
#define   NFP_PCIE_BAR_PCIE2CPP_Token_BaseAddress_of(_x) (((_x) >> 21) & 0x3)
#define NFP_PCIE_EM                                     0x020000
#define NFP_PCIE_SRAM                                   0x000000

/* Minimal size of the PCIe cfg memory we depend on being mapped,
 * queue controller and DMA controller don't have to be covered.
 */
#define NFP_PCI_MIN_MAP_SIZE				0x080000

#define NFP_PCIE_P2C_FIXED_SIZE(bar)               (1 << (bar)->bitsize)
#define NFP_PCIE_P2C_BULK_SIZE(bar)                (1 << (bar)->bitsize)
#define NFP_PCIE_P2C_GENERAL_TARGET_OFFSET(bar, x) ((x) << ((bar)->bitsize - 2))
#define NFP_PCIE_P2C_GENERAL_TOKEN_OFFSET(bar, x) ((x) << ((bar)->bitsize - 4))
#define NFP_PCIE_P2C_GENERAL_SIZE(bar)             (1 << ((bar)->bitsize - 4))

#define NFP_PCIE_CFG_BAR_PCIETOCPPEXPANSIONBAR(bar, slot) \
	(0x400 + ((bar) * 8 + (slot)) * 4)

#define NFP_PCIE_CPP_BAR_PCIETOCPPEXPANSIONBAR(bar, slot) \
	(((bar) * 8 + (slot)) * 4)

/* The number of explicit BARs to reserve.
 * Minimum is 0, maximum is 4 on the NFP6000.
 * The NFP3800 can have only one per PF.
 */
#define NFP_PCIE_EXPLICIT_BARS		2

struct nfp6000_pcie;
struct nfp6000_area_priv;

/**
 * struct nfp_bar - describes BAR configuration and usage
 * @nfp:	backlink to owner
 * @barcfg:	cached contents of BAR config CSR
 * @base:	the BAR's base CPP offset
 * @mask:       mask for the BAR aperture (read only)
 * @bitsize:	bitsize of BAR aperture (read only)
 * @index:	index of the BAR
 * @refcnt:	number of current users
 * @iomem:	mapped IO memory
 * @resource:	iomem resource window
 */
struct nfp_bar {
	struct nfp6000_pcie *nfp;
	u32 barcfg;
	u64 base;          /* CPP address base */
	u64 mask;          /* Bit mask of the bar */
	u32 bitsize;       /* Bit size of the bar */
	int index;
	atomic_t refcnt;

	void __iomem *iomem;
	struct resource *resource;
};

#define NFP_PCI_BAR_MAX    (PCI_64BIT_BAR_COUNT * 8)

struct nfp6000_pcie {
	struct pci_dev *pdev;
	struct device *dev;

	/* PCI BAR management */
	spinlock_t bar_lock;		/* Protect the PCI2CPP BAR cache */
	int bars;
	struct nfp_bar bar[NFP_PCI_BAR_MAX];
	wait_queue_head_t bar_waiters;

	/* Reserved BAR access */
	struct {
		void __iomem *csr;
		void __iomem *em;
		void __iomem *expl[4];
	} iomem;

	/* Explicit IO access */
	struct {
		struct mutex mutex; /* Lock access to this explicit group */
		u8 master_id;
		u8 signal_ref;
		void __iomem *data;
		struct {
			void __iomem *addr;
			int bitsize;
			int free[4];
		} group[4];
	} expl;
};

static u32 nfp_bar_maptype(struct nfp_bar *bar)
{
	return NFP_PCIE_BAR_PCIE2CPP_MapType_of(bar->barcfg);
}

static resource_size_t nfp_bar_resource_len(struct nfp_bar *bar)
{
	return pci_resource_len(bar->nfp->pdev, (bar->index / 8) * 2) / 8;
}

static resource_size_t nfp_bar_resource_start(struct nfp_bar *bar)
{
	return pci_resource_start(bar->nfp->pdev, (bar->index / 8) * 2)
		+ nfp_bar_resource_len(bar) * (bar->index & 7);
}

#define TARGET_WIDTH_32    4
#define TARGET_WIDTH_64    8

static int
compute_bar(const struct nfp6000_pcie *nfp, const struct nfp_bar *bar,
	    u32 *bar_config, u64 *bar_base,
	    int tgt, int act, int tok, u64 offset, size_t size, int width)
{
	int bitsize;
	u32 newcfg;

	if (tgt >= NFP_CPP_NUM_TARGETS)
		return -EINVAL;

	switch (width) {
	case 8:
		newcfg = NFP_PCIE_BAR_PCIE2CPP_LengthSelect(
			NFP_PCIE_BAR_PCIE2CPP_LengthSelect_64BIT);
		break;
	case 4:
		newcfg = NFP_PCIE_BAR_PCIE2CPP_LengthSelect(
			NFP_PCIE_BAR_PCIE2CPP_LengthSelect_32BIT);
		break;
	case 0:
		newcfg = NFP_PCIE_BAR_PCIE2CPP_LengthSelect(
			NFP_PCIE_BAR_PCIE2CPP_LengthSelect_0BYTE);
		break;
	default:
		return -EINVAL;
	}

	if (act != NFP_CPP_ACTION_RW && act != 0) {
		/* Fixed CPP mapping with specific action */
		u64 mask = ~(NFP_PCIE_P2C_FIXED_SIZE(bar) - 1);

		newcfg |= NFP_PCIE_BAR_PCIE2CPP_MapType(
			  NFP_PCIE_BAR_PCIE2CPP_MapType_FIXED);
		newcfg |= NFP_PCIE_BAR_PCIE2CPP_Target_BaseAddress(tgt);
		newcfg |= NFP_PCIE_BAR_PCIE2CPP_Action_BaseAddress(act);
		newcfg |= NFP_PCIE_BAR_PCIE2CPP_Token_BaseAddress(tok);

		if ((offset & mask) != ((offset + size - 1) & mask))
			return -EINVAL;
		offset &= mask;

		bitsize = 40 - 16;
	} else {
		u64 mask = ~(NFP_PCIE_P2C_BULK_SIZE(bar) - 1);

		/* Bulk mapping */
		newcfg |= NFP_PCIE_BAR_PCIE2CPP_MapType(
			NFP_PCIE_BAR_PCIE2CPP_MapType_BULK);
		newcfg |= NFP_PCIE_BAR_PCIE2CPP_Target_BaseAddress(tgt);
		newcfg |= NFP_PCIE_BAR_PCIE2CPP_Token_BaseAddress(tok);

		if ((offset & mask) != ((offset + size - 1) & mask))
			return -EINVAL;

		offset &= mask;

		bitsize = 40 - 21;
	}

	if (bar->bitsize < bitsize)
		return -EINVAL;

	newcfg |= offset >> bitsize;

	if (bar_base)
		*bar_base = offset;

	if (bar_config)
		*bar_config = newcfg;

	return 0;
}

static int
nfp6000_bar_write(struct nfp6000_pcie *nfp, struct nfp_bar *bar, u32 newcfg)
{
	int base, slot;
	int xbar;

	base = bar->index >> 3;
	slot = bar->index & 7;

	if (nfp->iomem.csr) {
		xbar = NFP_PCIE_CPP_BAR_PCIETOCPPEXPANSIONBAR(base, slot);
		writel(newcfg, nfp->iomem.csr + xbar);
		/* Readback to ensure BAR is flushed */
		readl(nfp->iomem.csr + xbar);
	} else {
		xbar = NFP_PCIE_CFG_BAR_PCIETOCPPEXPANSIONBAR(base, slot);
		pci_write_config_dword(nfp->pdev, xbar, newcfg);
	}

	bar->barcfg = newcfg;

	return 0;
}

static int
reconfigure_bar(struct nfp6000_pcie *nfp, struct nfp_bar *bar,
		int tgt, int act, int tok, u64 offset, size_t size, int width)
{
	u64 newbase;
	u32 newcfg;
	int err;

	err = compute_bar(nfp, bar, &newcfg, &newbase,
			  tgt, act, tok, offset, size, width);
	if (err)
		return err;

	bar->base = newbase;

	return nfp6000_bar_write(nfp, bar, newcfg);
}

/* Check if BAR can be used with the given parameters. */
static int matching_bar(struct nfp_bar *bar, u32 tgt, u32 act, u32 tok,
			u64 offset, size_t size, int width)
{
	int bartgt, baract, bartok;
	int barwidth;
	u32 maptype;

	maptype = NFP_PCIE_BAR_PCIE2CPP_MapType_of(bar->barcfg);
	bartgt = NFP_PCIE_BAR_PCIE2CPP_Target_BaseAddress_of(bar->barcfg);
	bartok = NFP_PCIE_BAR_PCIE2CPP_Token_BaseAddress_of(bar->barcfg);
	baract = NFP_PCIE_BAR_PCIE2CPP_Action_BaseAddress_of(bar->barcfg);

	barwidth = NFP_PCIE_BAR_PCIE2CPP_LengthSelect_of(bar->barcfg);
	switch (barwidth) {
	case NFP_PCIE_BAR_PCIE2CPP_LengthSelect_32BIT:
		barwidth = 4;
		break;
	case NFP_PCIE_BAR_PCIE2CPP_LengthSelect_64BIT:
		barwidth = 8;
		break;
	case NFP_PCIE_BAR_PCIE2CPP_LengthSelect_0BYTE:
		barwidth = 0;
		break;
	default:
		barwidth = -1;
		break;
	}

	switch (maptype) {
	case NFP_PCIE_BAR_PCIE2CPP_MapType_TARGET:
		bartok = -1;
		/* FALLTHROUGH */
	case NFP_PCIE_BAR_PCIE2CPP_MapType_BULK:
		baract = NFP_CPP_ACTION_RW;
		if (act == 0)
			act = NFP_CPP_ACTION_RW;
		/* FALLTHROUGH */
	case NFP_PCIE_BAR_PCIE2CPP_MapType_FIXED:
		break;
	default:
		/* We don't match explicit bars through the area interface */
		return 0;
	}

	/* Make sure to match up the width */
	if (barwidth != width)
		return 0;

	if ((bartgt < 0 || bartgt == tgt) &&
	    (bartok < 0 || bartok == tok) &&
	    (baract == act) &&
	    bar->base <= offset &&
	    (bar->base + (1 << bar->bitsize)) >= (offset + size))
		return 1;

	/* No match */
	return 0;
}

static int
find_matching_bar(struct nfp6000_pcie *nfp,
		  u32 tgt, u32 act, u32 tok, u64 offset, size_t size, int width)
{
	int n;

	for (n = 0; n < nfp->bars; n++) {
		struct nfp_bar *bar = &nfp->bar[n];

		if (matching_bar(bar, tgt, act, tok, offset, size, width))
			return n;
	}

	return -1;
}

/* Return EAGAIN if no resource is available */
static int
find_unused_bar_noblock(const struct nfp6000_pcie *nfp,
			int tgt, int act, int tok,
			u64 offset, size_t size, int width)
{
	int n, busy = 0;

	for (n = 0; n < nfp->bars; n++) {
		const struct nfp_bar *bar = &nfp->bar[n];
		int err;

		if (!bar->bitsize)
			continue;

		/* Just check to see if we can make it fit... */
		err = compute_bar(nfp, bar, NULL, NULL,
				  tgt, act, tok, offset, size, width);
		if (err)
			continue;

		if (!atomic_read(&bar->refcnt))
			return n;

		busy++;
	}

	if (WARN(!busy, "No suitable BAR found for request tgt:0x%x act:0x%x tok:0x%x off:0x%llx size:%zd width:%d\n",
		 tgt, act, tok, offset, size, width))
		return -EINVAL;

	return -EAGAIN;
}

static int
find_unused_bar_and_lock(struct nfp6000_pcie *nfp,
			 int tgt, int act, int tok,
			 u64 offset, size_t size, int width)
{
	unsigned long flags;
	int n;

	spin_lock_irqsave(&nfp->bar_lock, flags);

	n = find_unused_bar_noblock(nfp, tgt, act, tok, offset, size, width);
	if (n < 0)
		spin_unlock_irqrestore(&nfp->bar_lock, flags);
	else
		__release(&nfp->bar_lock);

	return n;
}

static void nfp_bar_get(struct nfp6000_pcie *nfp, struct nfp_bar *bar)
{
	atomic_inc(&bar->refcnt);
}

static void nfp_bar_put(struct nfp6000_pcie *nfp, struct nfp_bar *bar)
{
	if (atomic_dec_and_test(&bar->refcnt))
		wake_up_interruptible(&nfp->bar_waiters);
}

static int
nfp_wait_for_bar(struct nfp6000_pcie *nfp, int *barnum,
		 u32 tgt, u32 act, u32 tok, u64 offset, size_t size, int width)
{
	return wait_event_interruptible(nfp->bar_waiters,
		(*barnum = find_unused_bar_and_lock(nfp, tgt, act, tok,
						    offset, size, width))
					!= -EAGAIN);
}

static int
nfp_alloc_bar(struct nfp6000_pcie *nfp,
	      u32 tgt, u32 act, u32 tok,
	      u64 offset, size_t size, int width, int nonblocking)
{
	unsigned long irqflags;
	int barnum, retval;

	if (size > (1 << 24))
		return -EINVAL;

	spin_lock_irqsave(&nfp->bar_lock, irqflags);
	barnum = find_matching_bar(nfp, tgt, act, tok, offset, size, width);
	if (barnum >= 0) {
		/* Found a perfect match. */
		nfp_bar_get(nfp, &nfp->bar[barnum]);
		spin_unlock_irqrestore(&nfp->bar_lock, irqflags);
		return barnum;
	}

	barnum = find_unused_bar_noblock(nfp, tgt, act, tok,
					 offset, size, width);
	if (barnum < 0) {
		if (nonblocking)
			goto err_nobar;

		/* Wait until a BAR becomes available.  The
		 * find_unused_bar function will reclaim the bar_lock
		 * if a free BAR is found.
		 */
		spin_unlock_irqrestore(&nfp->bar_lock, irqflags);
		retval = nfp_wait_for_bar(nfp, &barnum, tgt, act, tok,
					  offset, size, width);
		if (retval)
			return retval;
		__acquire(&nfp->bar_lock);
	}

	nfp_bar_get(nfp, &nfp->bar[barnum]);
	retval = reconfigure_bar(nfp, &nfp->bar[barnum],
				 tgt, act, tok, offset, size, width);
	if (retval < 0) {
		nfp_bar_put(nfp, &nfp->bar[barnum]);
		barnum = retval;
	}

err_nobar:
	spin_unlock_irqrestore(&nfp->bar_lock, irqflags);
	return barnum;
}

static void disable_bars(struct nfp6000_pcie *nfp);

static int bar_cmp(const void *aptr, const void *bptr)
{
	const struct nfp_bar *a = aptr, *b = bptr;

	if (a->bitsize == b->bitsize)
		return a->index - b->index;
	else
		return a->bitsize - b->bitsize;
}

/* Map all PCI bars and fetch the actual BAR configurations from the
 * board.  We assume that the BAR with the PCIe config block is
 * already mapped.
 *
 * BAR0.0: Reserved for General Mapping (for MSI-X access to PCIe SRAM)
 * BAR0.1: Reserved for XPB access (for MSI-X access to PCIe PBA)
 * BAR0.2: --
 * BAR0.3: --
 * BAR0.4: Reserved for Explicit 0.0-0.3 access
 * BAR0.5: Reserved for Explicit 1.0-1.3 access
 * BAR0.6: Reserved for Explicit 2.0-2.3 access
 * BAR0.7: Reserved for Explicit 3.0-3.3 access
 *
 * BAR1.0-BAR1.7: --
 * BAR2.0-BAR2.7: --
 */
static int enable_bars(struct nfp6000_pcie *nfp, u16 interface)
{
	const u32 barcfg_msix_general =
		NFP_PCIE_BAR_PCIE2CPP_MapType(
			NFP_PCIE_BAR_PCIE2CPP_MapType_GENERAL) |
		NFP_PCIE_BAR_PCIE2CPP_LengthSelect_32BIT;
	const u32 barcfg_msix_xpb =
		NFP_PCIE_BAR_PCIE2CPP_MapType(
			NFP_PCIE_BAR_PCIE2CPP_MapType_BULK) |
		NFP_PCIE_BAR_PCIE2CPP_LengthSelect_32BIT |
		NFP_PCIE_BAR_PCIE2CPP_Target_BaseAddress(
			NFP_CPP_TARGET_ISLAND_XPB);
	const u32 barcfg_explicit[4] = {
		NFP_PCIE_BAR_PCIE2CPP_MapType(
			NFP_PCIE_BAR_PCIE2CPP_MapType_EXPLICIT0),
		NFP_PCIE_BAR_PCIE2CPP_MapType(
			NFP_PCIE_BAR_PCIE2CPP_MapType_EXPLICIT1),
		NFP_PCIE_BAR_PCIE2CPP_MapType(
			NFP_PCIE_BAR_PCIE2CPP_MapType_EXPLICIT2),
		NFP_PCIE_BAR_PCIE2CPP_MapType(
			NFP_PCIE_BAR_PCIE2CPP_MapType_EXPLICIT3),
	};
	char status_msg[196] = {};
	int i, err, bars_free;
	struct nfp_bar *bar;
	int expl_groups;
	char *msg, *end;

	msg = status_msg +
		snprintf(status_msg, sizeof(status_msg) - 1, "RESERVED BARs: ");
	end = status_msg + sizeof(status_msg) - 1;

	bar = &nfp->bar[0];
	for (i = 0; i < ARRAY_SIZE(nfp->bar); i++, bar++) {
		struct resource *res;

		res = &nfp->pdev->resource[(i >> 3) * 2];

		/* Skip over BARs that are not IORESOURCE_MEM */
		if (!(resource_type(res) & IORESOURCE_MEM)) {
			bar--;
			continue;
		}

		bar->resource = res;
		bar->barcfg = 0;

		bar->nfp = nfp;
		bar->index = i;
		bar->mask = nfp_bar_resource_len(bar) - 1;
		bar->bitsize = fls(bar->mask);
		bar->base = 0;
		bar->iomem = NULL;
	}

	nfp->bars = bar - &nfp->bar[0];
	if (nfp->bars < 8) {
		dev_err(nfp->dev, "No usable BARs found!\n");
		return -EINVAL;
	}

	bars_free = nfp->bars;

	/* Convert unit ID (0..3) to signal master/data master ID (0x40..0x70)
	 */
	mutex_init(&nfp->expl.mutex);

	nfp->expl.master_id = ((NFP_CPP_INTERFACE_UNIT_of(interface) & 3) + 4)
		<< 4;
	nfp->expl.signal_ref = 0x10;

	/* Configure, and lock, BAR0.0 for General Target use (MSI-X SRAM) */
	bar = &nfp->bar[0];
	if (nfp_bar_resource_len(bar) >= NFP_PCI_MIN_MAP_SIZE)
		bar->iomem = ioremap(nfp_bar_resource_start(bar),
					     nfp_bar_resource_len(bar));
	if (bar->iomem) {
		int pf;

		msg += snprintf(msg, end - msg,	"0.0: General/MSI-X SRAM, ");
		atomic_inc(&bar->refcnt);
		bars_free--;

		nfp6000_bar_write(nfp, bar, barcfg_msix_general);

		nfp->expl.data = bar->iomem + NFP_PCIE_SRAM + 0x1000;

		switch (nfp->pdev->device) {
		case PCI_DEVICE_ID_NETRONOME_NFP3800:
			pf = nfp->pdev->devfn & 7;
			nfp->iomem.csr = bar->iomem + NFP_PCIE_BAR(pf);
			break;
		case PCI_DEVICE_ID_NETRONOME_NFP4000:
		case PCI_DEVICE_ID_NETRONOME_NFP5000:
		case PCI_DEVICE_ID_NETRONOME_NFP6000:
			nfp->iomem.csr = bar->iomem + NFP_PCIE_BAR(0);
			break;
		default:
			dev_err(nfp->dev, "Unsupported device ID: %04hx!\n",
				nfp->pdev->device);
			err = -EINVAL;
			goto err_unmap_bar0;
		}
		nfp->iomem.em = bar->iomem + NFP_PCIE_EM;
	}

	switch (nfp->pdev->device) {
	case PCI_DEVICE_ID_NETRONOME_NFP3800:
		expl_groups = 1;
		break;
	case PCI_DEVICE_ID_NETRONOME_NFP4000:
	case PCI_DEVICE_ID_NETRONOME_NFP5000:
	case PCI_DEVICE_ID_NETRONOME_NFP6000:
		expl_groups = 4;
		break;
	default:
		dev_err(nfp->dev, "Unsupported device ID: %04hx!\n",
			nfp->pdev->device);
		err = -EINVAL;
		goto err_unmap_bar0;
	}

	/* Configure, and lock, BAR0.1 for PCIe XPB (MSI-X PBA) */
	bar = &nfp->bar[1];
	msg += snprintf(msg, end - msg, "0.1: PCIe XPB/MSI-X PBA, ");
	atomic_inc(&bar->refcnt);
	bars_free--;

	nfp6000_bar_write(nfp, bar, barcfg_msix_xpb);

	/* Use BAR0.4..BAR0.7 for EXPL IO */
	for (i = 0; i < 4; i++) {
		int j;

		if (i >= NFP_PCIE_EXPLICIT_BARS || i >= expl_groups) {
			nfp->expl.group[i].bitsize = 0;
			continue;
		}

		bar = &nfp->bar[4 + i];
		bar->iomem = ioremap(nfp_bar_resource_start(bar),
					     nfp_bar_resource_len(bar));
		if (bar->iomem) {
			msg += snprintf(msg, end - msg,
					"0.%d: Explicit%d, ", 4 + i, i);
			atomic_inc(&bar->refcnt);
			bars_free--;

			nfp->expl.group[i].bitsize = bar->bitsize;
			nfp->expl.group[i].addr = bar->iomem;
			nfp6000_bar_write(nfp, bar, barcfg_explicit[i]);

			for (j = 0; j < 4; j++)
				nfp->expl.group[i].free[j] = true;
		}
		nfp->iomem.expl[i] = bar->iomem;
	}

	/* Sort bars by bit size - use the smallest possible first. */
	sort(&nfp->bar[0], nfp->bars, sizeof(nfp->bar[0]),
	     bar_cmp, NULL);

	dev_info(nfp->dev, "%sfree: %d/%d\n", status_msg, bars_free, nfp->bars);

	return 0;

err_unmap_bar0:
	if (nfp->bar[0].iomem)
		iounmap(nfp->bar[0].iomem);
	return err;
}

static void disable_bars(struct nfp6000_pcie *nfp)
{
	struct nfp_bar *bar = &nfp->bar[0];
	int n;

	for (n = 0; n < nfp->bars; n++, bar++) {
		if (bar->iomem) {
			iounmap(bar->iomem);
			bar->iomem = NULL;
		}
	}
}

/*
 * Generic CPP bus access interface.
 */

struct nfp6000_area_priv {
	atomic_t refcnt;

	struct nfp_bar *bar;
	u32 bar_offset;

	u32 target;
	u32 action;
	u32 token;
	u64 offset;
	struct {
		int read;
		int write;
		int bar;
	} width;
	size_t size;

	void __iomem *iomem;
	phys_addr_t phys;
	struct resource resource;
};

static int nfp6000_area_init(struct nfp_cpp_area *area, u32 dest,
			     unsigned long long address, unsigned long size)
{
	struct nfp6000_area_priv *priv = nfp_cpp_area_priv(area);
	u32 target = NFP_CPP_ID_TARGET_of(dest);
	u32 action = NFP_CPP_ID_ACTION_of(dest);
	u32 token = NFP_CPP_ID_TOKEN_of(dest);
	int pp;

	pp = nfp_target_pushpull(NFP_CPP_ID(target, action, token), address);
	if (pp < 0)
		return pp;

	priv->width.read = PUSH_WIDTH(pp);
	priv->width.write = PULL_WIDTH(pp);
	if (priv->width.read > 0 &&
	    priv->width.write > 0 &&
	    priv->width.read != priv->width.write) {
		return -EINVAL;
	}

	if (priv->width.read > 0)
		priv->width.bar = priv->width.read;
	else
		priv->width.bar = priv->width.write;

	atomic_set(&priv->refcnt, 0);
	priv->bar = NULL;

	priv->target = target;
	priv->action = action;
	priv->token = token;
	priv->offset = address;
	priv->size = size;
	memset(&priv->resource, 0, sizeof(priv->resource));

	return 0;
}

static void nfp6000_area_cleanup(struct nfp_cpp_area *area)
{
}

static void priv_area_get(struct nfp_cpp_area *area)
{
	struct nfp6000_area_priv *priv = nfp_cpp_area_priv(area);

	atomic_inc(&priv->refcnt);
}

static int priv_area_put(struct nfp_cpp_area *area)
{
	struct nfp6000_area_priv *priv = nfp_cpp_area_priv(area);

	if (WARN_ON(!atomic_read(&priv->refcnt)))
		return 0;

	return atomic_dec_and_test(&priv->refcnt);
}

static int nfp6000_area_acquire(struct nfp_cpp_area *area)
{
	struct nfp6000_pcie *nfp = nfp_cpp_priv(nfp_cpp_area_cpp(area));
	struct nfp6000_area_priv *priv = nfp_cpp_area_priv(area);
	int barnum, err;

	if (priv->bar) {
		/* Already allocated. */
		priv_area_get(area);
		return 0;
	}

	barnum = nfp_alloc_bar(nfp, priv->target, priv->action, priv->token,
			       priv->offset, priv->size, priv->width.bar, 1);

	if (barnum < 0) {
		err = barnum;
		goto err_alloc_bar;
	}
	priv->bar = &nfp->bar[barnum];

	/* Calculate offset into BAR. */
	if (nfp_bar_maptype(priv->bar) ==
	    NFP_PCIE_BAR_PCIE2CPP_MapType_GENERAL) {
		priv->bar_offset = priv->offset &
			(NFP_PCIE_P2C_GENERAL_SIZE(priv->bar) - 1);
		priv->bar_offset += NFP_PCIE_P2C_GENERAL_TARGET_OFFSET(
			priv->bar, priv->target);
		priv->bar_offset += NFP_PCIE_P2C_GENERAL_TOKEN_OFFSET(
			priv->bar, priv->token);
	} else {
		priv->bar_offset = priv->offset & priv->bar->mask;
	}

	/* We don't actually try to acquire the resource area using
	 * request_resource.  This would prevent sharing the mapped
	 * BAR between multiple CPP areas and prevent us from
	 * effectively utilizing the limited amount of BAR resources.
	 */
	priv->phys = nfp_bar_resource_start(priv->bar) + priv->bar_offset;
	priv->resource.name = nfp_cpp_area_name(area);
	priv->resource.start = priv->phys;
	priv->resource.end = priv->resource.start + priv->size - 1;
	priv->resource.flags = IORESOURCE_MEM;

	/* If the bar is already mapped in, use its mapping */
	if (priv->bar->iomem)
		priv->iomem = priv->bar->iomem + priv->bar_offset;
	else
		/* Must have been too big. Sub-allocate. */
		priv->iomem = ioremap(priv->phys, priv->size);

	if (IS_ERR_OR_NULL(priv->iomem)) {
		dev_err(nfp->dev, "Can't ioremap() a %d byte region of BAR %d\n",
			(int)priv->size, priv->bar->index);
		err = !priv->iomem ? -ENOMEM : PTR_ERR(priv->iomem);
		priv->iomem = NULL;
		goto err_iomem_remap;
	}

	priv_area_get(area);
	return 0;

err_iomem_remap:
	nfp_bar_put(nfp, priv->bar);
	priv->bar = NULL;
err_alloc_bar:
	return err;
}

static void nfp6000_area_release(struct nfp_cpp_area *area)
{
	struct nfp6000_pcie *nfp = nfp_cpp_priv(nfp_cpp_area_cpp(area));
	struct nfp6000_area_priv *priv = nfp_cpp_area_priv(area);

	if (!priv_area_put(area))
		return;

	if (!priv->bar->iomem)
		iounmap(priv->iomem);

	nfp_bar_put(nfp, priv->bar);

	priv->bar = NULL;
	priv->iomem = NULL;
}

static phys_addr_t nfp6000_area_phys(struct nfp_cpp_area *area)
{
	struct nfp6000_area_priv *priv = nfp_cpp_area_priv(area);

	return priv->phys;
}

static void __iomem *nfp6000_area_iomem(struct nfp_cpp_area *area)
{
	struct nfp6000_area_priv *priv = nfp_cpp_area_priv(area);

	return priv->iomem;
}

static struct resource *nfp6000_area_resource(struct nfp_cpp_area *area)
{
	/* Use the BAR resource as the resource for the CPP area.
	 * This enables us to share the BAR among multiple CPP areas
	 * without resource conflicts.
	 */
	struct nfp6000_area_priv *priv = nfp_cpp_area_priv(area);

	return priv->bar->resource;
}

static int nfp6000_area_read(struct nfp_cpp_area *area, void *kernel_vaddr,
			     unsigned long offset, unsigned int length)
{
	u64 __maybe_unused *wrptr64 = kernel_vaddr;
	const u64 __iomem __maybe_unused *rdptr64;
	struct nfp6000_area_priv *priv;
	u32 *wrptr32 = kernel_vaddr;
	const u32 __iomem *rdptr32;
	int n, width;

	priv = nfp_cpp_area_priv(area);
	rdptr64 = priv->iomem + offset;
	rdptr32 = priv->iomem + offset;

	if (offset + length > priv->size)
		return -EFAULT;

	width = priv->width.read;
	if (width <= 0)
		return -EINVAL;

	/* MU reads via a PCIe2CPP BAR support 32bit (and other) lengths */
	if (priv->target == (NFP_CPP_TARGET_MU & NFP_CPP_TARGET_ID_MASK) &&
	    priv->action == NFP_CPP_ACTION_RW &&
	    (offset % sizeof(u64) == 4 || length % sizeof(u64) == 4))
		width = TARGET_WIDTH_32;

	/* Unaligned? Translate to an explicit access */
	if ((priv->offset + offset) & (width - 1))
		return nfp_cpp_explicit_read(nfp_cpp_area_cpp(area),
					     NFP_CPP_ID(priv->target,
							priv->action,
							priv->token),
					     priv->offset + offset,
					     kernel_vaddr, length, width);

	if (WARN_ON(!priv->bar))
		return -EFAULT;

	switch (width) {
	case TARGET_WIDTH_32:
		if (offset % sizeof(u32) != 0 || length % sizeof(u32) != 0)
			return -EINVAL;

		for (n = 0; n < length; n += sizeof(u32))
			*wrptr32++ = __raw_readl(rdptr32++);
		return n;
#ifdef __raw_readq
	case TARGET_WIDTH_64:
		if (offset % sizeof(u64) != 0 || length % sizeof(u64) != 0)
			return -EINVAL;

		for (n = 0; n < length; n += sizeof(u64))
			*wrptr64++ = __raw_readq(rdptr64++);
		return n;
#endif
	default:
		return -EINVAL;
	}
}

static int
nfp6000_area_write(struct nfp_cpp_area *area,
		   const void *kernel_vaddr,
		   unsigned long offset, unsigned int length)
{
	const u64 __maybe_unused *rdptr64 = kernel_vaddr;
	u64 __iomem __maybe_unused *wrptr64;
	const u32 *rdptr32 = kernel_vaddr;
	struct nfp6000_area_priv *priv;
	u32 __iomem *wrptr32;
	int n, width;

	priv = nfp_cpp_area_priv(area);
	wrptr64 = priv->iomem + offset;
	wrptr32 = priv->iomem + offset;

	if (offset + length > priv->size)
		return -EFAULT;

	width = priv->width.write;
	if (width <= 0)
		return -EINVAL;

	/* MU writes via a PCIe2CPP BAR support 32bit (and other) lengths */
	if (priv->target == (NFP_CPP_TARGET_ID_MASK & NFP_CPP_TARGET_MU) &&
	    priv->action == NFP_CPP_ACTION_RW &&
	    (offset % sizeof(u64) == 4 || length % sizeof(u64) == 4))
		width = TARGET_WIDTH_32;

	/* Unaligned? Translate to an explicit access */
	if ((priv->offset + offset) & (width - 1))
		return nfp_cpp_explicit_write(nfp_cpp_area_cpp(area),
					      NFP_CPP_ID(priv->target,
							 priv->action,
							 priv->token),
					      priv->offset + offset,
					      kernel_vaddr, length, width);

	if (WARN_ON(!priv->bar))
		return -EFAULT;

	switch (width) {
	case TARGET_WIDTH_32:
		if (offset % sizeof(u32) != 0 || length % sizeof(u32) != 0)
			return -EINVAL;

		for (n = 0; n < length; n += sizeof(u32)) {
			__raw_writel(*rdptr32++, wrptr32++);
			wmb();
		}
		return n;
#ifdef __raw_writeq
	case TARGET_WIDTH_64:
		if (offset % sizeof(u64) != 0 || length % sizeof(u64) != 0)
			return -EINVAL;

		for (n = 0; n < length; n += sizeof(u64)) {
			__raw_writeq(*rdptr64++, wrptr64++);
			wmb();
		}
		return n;
#endif
	default:
		return -EINVAL;
	}
}

struct nfp6000_explicit_priv {
	struct nfp6000_pcie *nfp;
	struct {
		int group;
		int area;
	} bar;
	int bitsize;
	void __iomem *data;
	void __iomem *addr;
};

static int nfp6000_explicit_acquire(struct nfp_cpp_explicit *expl)
{
	struct nfp6000_pcie *nfp = nfp_cpp_priv(nfp_cpp_explicit_cpp(expl));
	struct nfp6000_explicit_priv *priv = nfp_cpp_explicit_priv(expl);
	int i, j;

	mutex_lock(&nfp->expl.mutex);
	for (i = 0; i < ARRAY_SIZE(nfp->expl.group); i++) {
		if (!nfp->expl.group[i].bitsize)
			continue;

		for (j = 0; j < ARRAY_SIZE(nfp->expl.group[i].free); j++) {
			u16 data_offset;

			if (!nfp->expl.group[i].free[j])
				continue;

			priv->nfp = nfp;
			priv->bar.group = i;
			priv->bar.area = j;
			priv->bitsize = nfp->expl.group[i].bitsize - 2;

			data_offset = (priv->bar.group << 9) +
				(priv->bar.area << 7);
			priv->data = nfp->expl.data + data_offset;
			priv->addr = nfp->expl.group[i].addr +
				(priv->bar.area << priv->bitsize);
			nfp->expl.group[i].free[j] = false;

			mutex_unlock(&nfp->expl.mutex);
			return 0;
		}
	}
	mutex_unlock(&nfp->expl.mutex);

	return -EAGAIN;
}

static void nfp6000_explicit_release(struct nfp_cpp_explicit *expl)
{
	struct nfp6000_explicit_priv *priv = nfp_cpp_explicit_priv(expl);
	struct nfp6000_pcie *nfp = priv->nfp;

	mutex_lock(&nfp->expl.mutex);
	nfp->expl.group[priv->bar.group].free[priv->bar.area] = true;
	mutex_unlock(&nfp->expl.mutex);
}

static int nfp6000_explicit_put(struct nfp_cpp_explicit *expl,
				const void *buff, size_t len)
{
	struct nfp6000_explicit_priv *priv = nfp_cpp_explicit_priv(expl);
	const u32 *src = buff;
	size_t i;

	for (i = 0; i < len; i += sizeof(u32))
		writel(*(src++), priv->data + i);

	return i;
}

static int
nfp6000_explicit_do(struct nfp_cpp_explicit *expl,
		    const struct nfp_cpp_explicit_command *cmd, u64 address)
{
	struct nfp6000_explicit_priv *priv = nfp_cpp_explicit_priv(expl);
	u8 signal_master, signal_ref, data_master;
	struct nfp6000_pcie *nfp = priv->nfp;
	int sigmask = 0;
	u16 data_ref;
	u32 csr[3];

	if (cmd->siga_mode)
		sigmask |= 1 << cmd->siga;
	if (cmd->sigb_mode)
		sigmask |= 1 << cmd->sigb;

	signal_master = cmd->signal_master;
	if (!signal_master)
		signal_master = nfp->expl.master_id;

	signal_ref = cmd->signal_ref;
	if (signal_master == nfp->expl.master_id)
		signal_ref = nfp->expl.signal_ref +
			((priv->bar.group * 4 + priv->bar.area) << 1);

	data_master = cmd->data_master;
	if (!data_master)
		data_master = nfp->expl.master_id;

	data_ref = cmd->data_ref;
	if (data_master == nfp->expl.master_id)
		data_ref = 0x1000 +
			(priv->bar.group << 9) + (priv->bar.area << 7);

	csr[0] = NFP_PCIE_BAR_EXPLICIT_BAR0_SignalType(sigmask) |
		NFP_PCIE_BAR_EXPLICIT_BAR0_Token(
			NFP_CPP_ID_TOKEN_of(cmd->cpp_id)) |
		NFP_PCIE_BAR_EXPLICIT_BAR0_Address(address >> 16);

	csr[1] = NFP_PCIE_BAR_EXPLICIT_BAR1_SignalRef(signal_ref) |
		NFP_PCIE_BAR_EXPLICIT_BAR1_DataMaster(data_master) |
		NFP_PCIE_BAR_EXPLICIT_BAR1_DataRef(data_ref);

	csr[2] = NFP_PCIE_BAR_EXPLICIT_BAR2_Target(
			NFP_CPP_ID_TARGET_of(cmd->cpp_id)) |
		NFP_PCIE_BAR_EXPLICIT_BAR2_Action(
			NFP_CPP_ID_ACTION_of(cmd->cpp_id)) |
		NFP_PCIE_BAR_EXPLICIT_BAR2_Length(cmd->len) |
		NFP_PCIE_BAR_EXPLICIT_BAR2_ByteMask(cmd->byte_mask) |
		NFP_PCIE_BAR_EXPLICIT_BAR2_SignalMaster(signal_master);

	if (nfp->iomem.csr) {
		writel(csr[0], nfp->iomem.csr +
		       NFP_PCIE_BAR_EXPLICIT_BAR0(priv->bar.group,
						  priv->bar.area));
		writel(csr[1], nfp->iomem.csr +
		       NFP_PCIE_BAR_EXPLICIT_BAR1(priv->bar.group,
						  priv->bar.area));
		writel(csr[2], nfp->iomem.csr +
		       NFP_PCIE_BAR_EXPLICIT_BAR2(priv->bar.group,
						  priv->bar.area));
		/* Readback to ensure BAR is flushed */
		readl(nfp->iomem.csr +
		      NFP_PCIE_BAR_EXPLICIT_BAR0(priv->bar.group,
						 priv->bar.area));
		readl(nfp->iomem.csr +
		      NFP_PCIE_BAR_EXPLICIT_BAR1(priv->bar.group,
						 priv->bar.area));
		readl(nfp->iomem.csr +
		      NFP_PCIE_BAR_EXPLICIT_BAR2(priv->bar.group,
						 priv->bar.area));
	} else {
		pci_write_config_dword(nfp->pdev, 0x400 +
				       NFP_PCIE_BAR_EXPLICIT_BAR0(
					       priv->bar.group, priv->bar.area),
				       csr[0]);

		pci_write_config_dword(nfp->pdev, 0x400 +
				       NFP_PCIE_BAR_EXPLICIT_BAR1(
					       priv->bar.group, priv->bar.area),
				       csr[1]);

		pci_write_config_dword(nfp->pdev, 0x400 +
				       NFP_PCIE_BAR_EXPLICIT_BAR2(
					       priv->bar.group, priv->bar.area),
				       csr[2]);
	}

	/* Issue the 'kickoff' transaction */
	readb(priv->addr + (address & ((1 << priv->bitsize) - 1)));

	return sigmask;
}

static int nfp6000_explicit_get(struct nfp_cpp_explicit *expl,
				void *buff, size_t len)
{
	struct nfp6000_explicit_priv *priv = nfp_cpp_explicit_priv(expl);
	u32 *dst = buff;
	size_t i;

	for (i = 0; i < len; i += sizeof(u32))
		*(dst++) = readl(priv->data + i);

	return i;
}

static int nfp6000_init(struct nfp_cpp *cpp)
{
	nfp_cpp_area_cache_add(cpp, SZ_64K);
	nfp_cpp_area_cache_add(cpp, SZ_64K);
	nfp_cpp_area_cache_add(cpp, SZ_256K);

	return 0;
}

static void nfp6000_free(struct nfp_cpp *cpp)
{
	struct nfp6000_pcie *nfp = nfp_cpp_priv(cpp);

	disable_bars(nfp);
	kfree(nfp);
}

static int nfp6000_read_serial(struct device *dev, u8 *serial)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int pos;
	u32 reg;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_DSN);
	if (!pos) {
		dev_err(dev, "can't find PCIe Serial Number Capability\n");
		return -EINVAL;
	}

	pci_read_config_dword(pdev, pos + 4, &reg);
	put_unaligned_be16(reg >> 16, serial + 4);
	pci_read_config_dword(pdev, pos + 8, &reg);
	put_unaligned_be32(reg, serial);

	return 0;
}

static int nfp6000_get_interface(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int pos;
	u32 reg;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_DSN);
	if (!pos) {
		dev_err(dev, "can't find PCIe Serial Number Capability\n");
		return -EINVAL;
	}

	pci_read_config_dword(pdev, pos + 4, &reg);

	return reg & 0xffff;
}

static const struct nfp_cpp_operations nfp6000_pcie_ops = {
	.owner			= THIS_MODULE,

	.init			= nfp6000_init,
	.free			= nfp6000_free,

	.read_serial		= nfp6000_read_serial,
	.get_interface		= nfp6000_get_interface,

	.area_priv_size		= sizeof(struct nfp6000_area_priv),
	.area_init		= nfp6000_area_init,
	.area_cleanup		= nfp6000_area_cleanup,
	.area_acquire		= nfp6000_area_acquire,
	.area_release		= nfp6000_area_release,
	.area_phys		= nfp6000_area_phys,
	.area_iomem		= nfp6000_area_iomem,
	.area_resource		= nfp6000_area_resource,
	.area_read		= nfp6000_area_read,
	.area_write		= nfp6000_area_write,

	.explicit_priv_size	= sizeof(struct nfp6000_explicit_priv),
	.explicit_acquire	= nfp6000_explicit_acquire,
	.explicit_release	= nfp6000_explicit_release,
	.explicit_put		= nfp6000_explicit_put,
	.explicit_do		= nfp6000_explicit_do,
	.explicit_get		= nfp6000_explicit_get,
};

/**
 * nfp_cpp_from_nfp6000_pcie() - Build a NFP CPP bus from a NFP6000 PCI device
 * @pdev:	NFP6000 PCI device
 *
 * Return: NFP CPP handle
 */
struct nfp_cpp *nfp_cpp_from_nfp6000_pcie(struct pci_dev *pdev)
{
	struct nfp6000_pcie *nfp;
	u16 interface;
	int err;

	/*  Finished with card initialization. */
	dev_info(&pdev->dev,
		 "Netronome Flow Processor NFP4000/NFP5000/NFP6000 PCIe Card Probe\n");
	pcie_print_link_status(pdev);

	nfp = kzalloc(sizeof(*nfp), GFP_KERNEL);
	if (!nfp) {
		err = -ENOMEM;
		goto err_ret;
	}

	nfp->dev = &pdev->dev;
	nfp->pdev = pdev;
	init_waitqueue_head(&nfp->bar_waiters);
	spin_lock_init(&nfp->bar_lock);

	interface = nfp6000_get_interface(&pdev->dev);

	if (NFP_CPP_INTERFACE_TYPE_of(interface) !=
	    NFP_CPP_INTERFACE_TYPE_PCI) {
		dev_err(&pdev->dev,
			"Interface type %d is not the expected %d\n",
			NFP_CPP_INTERFACE_TYPE_of(interface),
			NFP_CPP_INTERFACE_TYPE_PCI);
		err = -ENODEV;
		goto err_free_nfp;
	}

	if (NFP_CPP_INTERFACE_CHANNEL_of(interface) !=
	    NFP_CPP_INTERFACE_CHANNEL_PEROPENER) {
		dev_err(&pdev->dev, "Interface channel %d is not the expected %d\n",
			NFP_CPP_INTERFACE_CHANNEL_of(interface),
			NFP_CPP_INTERFACE_CHANNEL_PEROPENER);
		err = -ENODEV;
		goto err_free_nfp;
	}

	err = enable_bars(nfp, interface);
	if (err)
		goto err_free_nfp;

	/* Probe for all the common NFP devices */
	return nfp_cpp_from_operations(&nfp6000_pcie_ops, &pdev->dev, nfp);

err_free_nfp:
	kfree(nfp);
err_ret:
	dev_err(&pdev->dev, "NFP6000 PCI setup failed\n");
	return ERR_PTR(err);
}