summaryrefslogtreecommitdiff
path: root/drivers/pci/endpoint/functions/pci-epf-mhi.c
blob: 1c3e4ea76bd2578e47397d0ddbcfa96a8f705574 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
// SPDX-License-Identifier: GPL-2.0
/*
 * PCI EPF driver for MHI Endpoint devices
 *
 * Copyright (C) 2023 Linaro Ltd.
 * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
 */

#include <linux/dmaengine.h>
#include <linux/mhi_ep.h>
#include <linux/module.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/pci-epc.h>
#include <linux/pci-epf.h>

#define MHI_VERSION_1_0 0x01000000

#define to_epf_mhi(cntrl) container_of(cntrl, struct pci_epf_mhi, cntrl)

/* Platform specific flags */
#define MHI_EPF_USE_DMA BIT(0)

struct pci_epf_mhi_dma_transfer {
	struct pci_epf_mhi *epf_mhi;
	struct mhi_ep_buf_info buf_info;
	struct list_head node;
	dma_addr_t paddr;
	enum dma_data_direction dir;
	size_t size;
};

struct pci_epf_mhi_ep_info {
	const struct mhi_ep_cntrl_config *config;
	struct pci_epf_header *epf_header;
	enum pci_barno bar_num;
	u32 epf_flags;
	u32 msi_count;
	u32 mru;
	u32 flags;
};

#define MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, direction)	\
	{							\
		.num = ch_num,					\
		.name = ch_name,				\
		.dir = direction,				\
	}

#define MHI_EP_CHANNEL_CONFIG_UL(ch_num, ch_name)		\
	MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_TO_DEVICE)

#define MHI_EP_CHANNEL_CONFIG_DL(ch_num, ch_name)		\
	MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_FROM_DEVICE)

static const struct mhi_ep_channel_config mhi_v1_channels[] = {
	MHI_EP_CHANNEL_CONFIG_UL(0, "LOOPBACK"),
	MHI_EP_CHANNEL_CONFIG_DL(1, "LOOPBACK"),
	MHI_EP_CHANNEL_CONFIG_UL(2, "SAHARA"),
	MHI_EP_CHANNEL_CONFIG_DL(3, "SAHARA"),
	MHI_EP_CHANNEL_CONFIG_UL(4, "DIAG"),
	MHI_EP_CHANNEL_CONFIG_DL(5, "DIAG"),
	MHI_EP_CHANNEL_CONFIG_UL(6, "SSR"),
	MHI_EP_CHANNEL_CONFIG_DL(7, "SSR"),
	MHI_EP_CHANNEL_CONFIG_UL(8, "QDSS"),
	MHI_EP_CHANNEL_CONFIG_DL(9, "QDSS"),
	MHI_EP_CHANNEL_CONFIG_UL(10, "EFS"),
	MHI_EP_CHANNEL_CONFIG_DL(11, "EFS"),
	MHI_EP_CHANNEL_CONFIG_UL(12, "MBIM"),
	MHI_EP_CHANNEL_CONFIG_DL(13, "MBIM"),
	MHI_EP_CHANNEL_CONFIG_UL(14, "QMI"),
	MHI_EP_CHANNEL_CONFIG_DL(15, "QMI"),
	MHI_EP_CHANNEL_CONFIG_UL(16, "QMI"),
	MHI_EP_CHANNEL_CONFIG_DL(17, "QMI"),
	MHI_EP_CHANNEL_CONFIG_UL(18, "IP-CTRL-1"),
	MHI_EP_CHANNEL_CONFIG_DL(19, "IP-CTRL-1"),
	MHI_EP_CHANNEL_CONFIG_UL(20, "IPCR"),
	MHI_EP_CHANNEL_CONFIG_DL(21, "IPCR"),
	MHI_EP_CHANNEL_CONFIG_UL(32, "DUN"),
	MHI_EP_CHANNEL_CONFIG_DL(33, "DUN"),
	MHI_EP_CHANNEL_CONFIG_UL(46, "IP_SW0"),
	MHI_EP_CHANNEL_CONFIG_DL(47, "IP_SW0"),
};

static const struct mhi_ep_cntrl_config mhi_v1_config = {
	.max_channels = 128,
	.num_channels = ARRAY_SIZE(mhi_v1_channels),
	.ch_cfg = mhi_v1_channels,
	.mhi_version = MHI_VERSION_1_0,
};

static struct pci_epf_header sdx55_header = {
	.vendorid = PCI_VENDOR_ID_QCOM,
	.deviceid = 0x0306,
	.baseclass_code = PCI_BASE_CLASS_COMMUNICATION,
	.subclass_code = PCI_CLASS_COMMUNICATION_MODEM & 0xff,
	.interrupt_pin	= PCI_INTERRUPT_INTA,
};

static const struct pci_epf_mhi_ep_info sdx55_info = {
	.config = &mhi_v1_config,
	.epf_header = &sdx55_header,
	.bar_num = BAR_0,
	.epf_flags = PCI_BASE_ADDRESS_MEM_TYPE_32,
	.msi_count = 32,
	.mru = 0x8000,
};

static struct pci_epf_header sm8450_header = {
	.vendorid = PCI_VENDOR_ID_QCOM,
	.deviceid = 0x0306,
	.baseclass_code = PCI_CLASS_OTHERS,
	.interrupt_pin = PCI_INTERRUPT_INTA,
};

static const struct pci_epf_mhi_ep_info sm8450_info = {
	.config = &mhi_v1_config,
	.epf_header = &sm8450_header,
	.bar_num = BAR_0,
	.epf_flags = PCI_BASE_ADDRESS_MEM_TYPE_32,
	.msi_count = 32,
	.mru = 0x8000,
	.flags = MHI_EPF_USE_DMA,
};

struct pci_epf_mhi {
	const struct pci_epc_features *epc_features;
	const struct pci_epf_mhi_ep_info *info;
	struct mhi_ep_cntrl mhi_cntrl;
	struct pci_epf *epf;
	struct mutex lock;
	void __iomem *mmio;
	resource_size_t mmio_phys;
	struct dma_chan *dma_chan_tx;
	struct dma_chan *dma_chan_rx;
	struct workqueue_struct *dma_wq;
	struct work_struct dma_work;
	struct list_head dma_list;
	spinlock_t list_lock;
	u32 mmio_size;
	int irq;
};

static size_t get_align_offset(struct pci_epf_mhi *epf_mhi, u64 addr)
{
	return addr & (epf_mhi->epc_features->align -1);
}

static int __pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
				 phys_addr_t *paddr, void __iomem **vaddr,
				 size_t offset, size_t size)
{
	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
	struct pci_epf *epf = epf_mhi->epf;
	struct pci_epc *epc = epf->epc;
	int ret;

	*vaddr = pci_epc_mem_alloc_addr(epc, paddr, size + offset);
	if (!*vaddr)
		return -ENOMEM;

	ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, *paddr,
			       pci_addr - offset, size + offset);
	if (ret) {
		pci_epc_mem_free_addr(epc, *paddr, *vaddr, size + offset);
		return ret;
	}

	*paddr = *paddr + offset;
	*vaddr = *vaddr + offset;

	return 0;
}

static int pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
				 phys_addr_t *paddr, void __iomem **vaddr,
				 size_t size)
{
	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
	size_t offset = get_align_offset(epf_mhi, pci_addr);

	return __pci_epf_mhi_alloc_map(mhi_cntrl, pci_addr, paddr, vaddr,
				      offset, size);
}

static void __pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl,
				     u64 pci_addr, phys_addr_t paddr,
				     void __iomem *vaddr, size_t offset,
				     size_t size)
{
	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
	struct pci_epf *epf = epf_mhi->epf;
	struct pci_epc *epc = epf->epc;

	pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, paddr - offset);
	pci_epc_mem_free_addr(epc, paddr - offset, vaddr - offset,
			      size + offset);
}

static void pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
				   phys_addr_t paddr, void __iomem *vaddr,
				   size_t size)
{
	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
	size_t offset = get_align_offset(epf_mhi, pci_addr);

	__pci_epf_mhi_unmap_free(mhi_cntrl, pci_addr, paddr, vaddr, offset,
				 size);
}

static void pci_epf_mhi_raise_irq(struct mhi_ep_cntrl *mhi_cntrl, u32 vector)
{
	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
	struct pci_epf *epf = epf_mhi->epf;
	struct pci_epc *epc = epf->epc;

	/*
	 * MHI supplies 0 based MSI vectors but the API expects the vector
	 * number to start from 1, so we need to increment the vector by 1.
	 */
	pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, PCI_IRQ_MSI,
			  vector + 1);
}

static int pci_epf_mhi_iatu_read(struct mhi_ep_cntrl *mhi_cntrl,
				 struct mhi_ep_buf_info *buf_info)
{
	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
	size_t offset = get_align_offset(epf_mhi, buf_info->host_addr);
	void __iomem *tre_buf;
	phys_addr_t tre_phys;
	int ret;

	mutex_lock(&epf_mhi->lock);

	ret = __pci_epf_mhi_alloc_map(mhi_cntrl, buf_info->host_addr, &tre_phys,
				      &tre_buf, offset, buf_info->size);
	if (ret) {
		mutex_unlock(&epf_mhi->lock);
		return ret;
	}

	memcpy_fromio(buf_info->dev_addr, tre_buf, buf_info->size);

	__pci_epf_mhi_unmap_free(mhi_cntrl, buf_info->host_addr, tre_phys,
				 tre_buf, offset, buf_info->size);

	mutex_unlock(&epf_mhi->lock);

	if (buf_info->cb)
		buf_info->cb(buf_info);

	return 0;
}

static int pci_epf_mhi_iatu_write(struct mhi_ep_cntrl *mhi_cntrl,
				  struct mhi_ep_buf_info *buf_info)
{
	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
	size_t offset = get_align_offset(epf_mhi, buf_info->host_addr);
	void __iomem *tre_buf;
	phys_addr_t tre_phys;
	int ret;

	mutex_lock(&epf_mhi->lock);

	ret = __pci_epf_mhi_alloc_map(mhi_cntrl, buf_info->host_addr, &tre_phys,
				      &tre_buf, offset, buf_info->size);
	if (ret) {
		mutex_unlock(&epf_mhi->lock);
		return ret;
	}

	memcpy_toio(tre_buf, buf_info->dev_addr, buf_info->size);

	__pci_epf_mhi_unmap_free(mhi_cntrl, buf_info->host_addr, tre_phys,
				 tre_buf, offset, buf_info->size);

	mutex_unlock(&epf_mhi->lock);

	if (buf_info->cb)
		buf_info->cb(buf_info);

	return 0;
}

static void pci_epf_mhi_dma_callback(void *param)
{
	complete(param);
}

static int pci_epf_mhi_edma_read(struct mhi_ep_cntrl *mhi_cntrl,
				 struct mhi_ep_buf_info *buf_info)
{
	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
	struct dma_chan *chan = epf_mhi->dma_chan_rx;
	struct device *dev = &epf_mhi->epf->dev;
	DECLARE_COMPLETION_ONSTACK(complete);
	struct dma_async_tx_descriptor *desc;
	struct dma_slave_config config = {};
	dma_cookie_t cookie;
	dma_addr_t dst_addr;
	int ret;

	if (buf_info->size < SZ_4K)
		return pci_epf_mhi_iatu_read(mhi_cntrl, buf_info);

	mutex_lock(&epf_mhi->lock);

	config.direction = DMA_DEV_TO_MEM;
	config.src_addr = buf_info->host_addr;

	ret = dmaengine_slave_config(chan, &config);
	if (ret) {
		dev_err(dev, "Failed to configure DMA channel\n");
		goto err_unlock;
	}

	dst_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
				  DMA_FROM_DEVICE);
	ret = dma_mapping_error(dma_dev, dst_addr);
	if (ret) {
		dev_err(dev, "Failed to map remote memory\n");
		goto err_unlock;
	}

	desc = dmaengine_prep_slave_single(chan, dst_addr, buf_info->size,
					   DMA_DEV_TO_MEM,
					   DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
	if (!desc) {
		dev_err(dev, "Failed to prepare DMA\n");
		ret = -EIO;
		goto err_unmap;
	}

	desc->callback = pci_epf_mhi_dma_callback;
	desc->callback_param = &complete;

	cookie = dmaengine_submit(desc);
	ret = dma_submit_error(cookie);
	if (ret) {
		dev_err(dev, "Failed to do DMA submit\n");
		goto err_unmap;
	}

	dma_async_issue_pending(chan);
	ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000));
	if (!ret) {
		dev_err(dev, "DMA transfer timeout\n");
		dmaengine_terminate_sync(chan);
		ret = -ETIMEDOUT;
	}

err_unmap:
	dma_unmap_single(dma_dev, dst_addr, buf_info->size, DMA_FROM_DEVICE);
err_unlock:
	mutex_unlock(&epf_mhi->lock);

	return ret;
}

static int pci_epf_mhi_edma_write(struct mhi_ep_cntrl *mhi_cntrl,
				  struct mhi_ep_buf_info *buf_info)
{
	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
	struct dma_chan *chan = epf_mhi->dma_chan_tx;
	struct device *dev = &epf_mhi->epf->dev;
	DECLARE_COMPLETION_ONSTACK(complete);
	struct dma_async_tx_descriptor *desc;
	struct dma_slave_config config = {};
	dma_cookie_t cookie;
	dma_addr_t src_addr;
	int ret;

	if (buf_info->size < SZ_4K)
		return pci_epf_mhi_iatu_write(mhi_cntrl, buf_info);

	mutex_lock(&epf_mhi->lock);

	config.direction = DMA_MEM_TO_DEV;
	config.dst_addr = buf_info->host_addr;

	ret = dmaengine_slave_config(chan, &config);
	if (ret) {
		dev_err(dev, "Failed to configure DMA channel\n");
		goto err_unlock;
	}

	src_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
				  DMA_TO_DEVICE);
	ret = dma_mapping_error(dma_dev, src_addr);
	if (ret) {
		dev_err(dev, "Failed to map remote memory\n");
		goto err_unlock;
	}

	desc = dmaengine_prep_slave_single(chan, src_addr, buf_info->size,
					   DMA_MEM_TO_DEV,
					   DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
	if (!desc) {
		dev_err(dev, "Failed to prepare DMA\n");
		ret = -EIO;
		goto err_unmap;
	}

	desc->callback = pci_epf_mhi_dma_callback;
	desc->callback_param = &complete;

	cookie = dmaengine_submit(desc);
	ret = dma_submit_error(cookie);
	if (ret) {
		dev_err(dev, "Failed to do DMA submit\n");
		goto err_unmap;
	}

	dma_async_issue_pending(chan);
	ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000));
	if (!ret) {
		dev_err(dev, "DMA transfer timeout\n");
		dmaengine_terminate_sync(chan);
		ret = -ETIMEDOUT;
	}

err_unmap:
	dma_unmap_single(dma_dev, src_addr, buf_info->size, DMA_TO_DEVICE);
err_unlock:
	mutex_unlock(&epf_mhi->lock);

	return ret;
}

static void pci_epf_mhi_dma_worker(struct work_struct *work)
{
	struct pci_epf_mhi *epf_mhi = container_of(work, struct pci_epf_mhi, dma_work);
	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
	struct pci_epf_mhi_dma_transfer *itr, *tmp;
	struct mhi_ep_buf_info *buf_info;
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&epf_mhi->list_lock, flags);
	list_splice_tail_init(&epf_mhi->dma_list, &head);
	spin_unlock_irqrestore(&epf_mhi->list_lock, flags);

	list_for_each_entry_safe(itr, tmp, &head, node) {
		list_del(&itr->node);
		dma_unmap_single(dma_dev, itr->paddr, itr->size, itr->dir);
		buf_info = &itr->buf_info;
		buf_info->cb(buf_info);
		kfree(itr);
	}
}

static void pci_epf_mhi_dma_async_callback(void *param)
{
	struct pci_epf_mhi_dma_transfer *transfer = param;
	struct pci_epf_mhi *epf_mhi = transfer->epf_mhi;

	spin_lock(&epf_mhi->list_lock);
	list_add_tail(&transfer->node, &epf_mhi->dma_list);
	spin_unlock(&epf_mhi->list_lock);

	queue_work(epf_mhi->dma_wq, &epf_mhi->dma_work);
}

static int pci_epf_mhi_edma_read_async(struct mhi_ep_cntrl *mhi_cntrl,
				       struct mhi_ep_buf_info *buf_info)
{
	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
	struct pci_epf_mhi_dma_transfer *transfer = NULL;
	struct dma_chan *chan = epf_mhi->dma_chan_rx;
	struct device *dev = &epf_mhi->epf->dev;
	DECLARE_COMPLETION_ONSTACK(complete);
	struct dma_async_tx_descriptor *desc;
	struct dma_slave_config config = {};
	dma_cookie_t cookie;
	dma_addr_t dst_addr;
	int ret;

	mutex_lock(&epf_mhi->lock);

	config.direction = DMA_DEV_TO_MEM;
	config.src_addr = buf_info->host_addr;

	ret = dmaengine_slave_config(chan, &config);
	if (ret) {
		dev_err(dev, "Failed to configure DMA channel\n");
		goto err_unlock;
	}

	dst_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
				  DMA_FROM_DEVICE);
	ret = dma_mapping_error(dma_dev, dst_addr);
	if (ret) {
		dev_err(dev, "Failed to map remote memory\n");
		goto err_unlock;
	}

	desc = dmaengine_prep_slave_single(chan, dst_addr, buf_info->size,
					   DMA_DEV_TO_MEM,
					   DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
	if (!desc) {
		dev_err(dev, "Failed to prepare DMA\n");
		ret = -EIO;
		goto err_unmap;
	}

	transfer = kzalloc(sizeof(*transfer), GFP_KERNEL);
	if (!transfer) {
		ret = -ENOMEM;
		goto err_unmap;
	}

	transfer->epf_mhi = epf_mhi;
	transfer->paddr = dst_addr;
	transfer->size = buf_info->size;
	transfer->dir = DMA_FROM_DEVICE;
	memcpy(&transfer->buf_info, buf_info, sizeof(*buf_info));

	desc->callback = pci_epf_mhi_dma_async_callback;
	desc->callback_param = transfer;

	cookie = dmaengine_submit(desc);
	ret = dma_submit_error(cookie);
	if (ret) {
		dev_err(dev, "Failed to do DMA submit\n");
		goto err_free_transfer;
	}

	dma_async_issue_pending(chan);

	goto err_unlock;

err_free_transfer:
	kfree(transfer);
err_unmap:
	dma_unmap_single(dma_dev, dst_addr, buf_info->size, DMA_FROM_DEVICE);
err_unlock:
	mutex_unlock(&epf_mhi->lock);

	return ret;
}

static int pci_epf_mhi_edma_write_async(struct mhi_ep_cntrl *mhi_cntrl,
					struct mhi_ep_buf_info *buf_info)
{
	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
	struct pci_epf_mhi_dma_transfer *transfer = NULL;
	struct dma_chan *chan = epf_mhi->dma_chan_tx;
	struct device *dev = &epf_mhi->epf->dev;
	DECLARE_COMPLETION_ONSTACK(complete);
	struct dma_async_tx_descriptor *desc;
	struct dma_slave_config config = {};
	dma_cookie_t cookie;
	dma_addr_t src_addr;
	int ret;

	mutex_lock(&epf_mhi->lock);

	config.direction = DMA_MEM_TO_DEV;
	config.dst_addr = buf_info->host_addr;

	ret = dmaengine_slave_config(chan, &config);
	if (ret) {
		dev_err(dev, "Failed to configure DMA channel\n");
		goto err_unlock;
	}

	src_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
				  DMA_TO_DEVICE);
	ret = dma_mapping_error(dma_dev, src_addr);
	if (ret) {
		dev_err(dev, "Failed to map remote memory\n");
		goto err_unlock;
	}

	desc = dmaengine_prep_slave_single(chan, src_addr, buf_info->size,
					   DMA_MEM_TO_DEV,
					   DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
	if (!desc) {
		dev_err(dev, "Failed to prepare DMA\n");
		ret = -EIO;
		goto err_unmap;
	}

	transfer = kzalloc(sizeof(*transfer), GFP_KERNEL);
	if (!transfer) {
		ret = -ENOMEM;
		goto err_unmap;
	}

	transfer->epf_mhi = epf_mhi;
	transfer->paddr = src_addr;
	transfer->size = buf_info->size;
	transfer->dir = DMA_TO_DEVICE;
	memcpy(&transfer->buf_info, buf_info, sizeof(*buf_info));

	desc->callback = pci_epf_mhi_dma_async_callback;
	desc->callback_param = transfer;

	cookie = dmaengine_submit(desc);
	ret = dma_submit_error(cookie);
	if (ret) {
		dev_err(dev, "Failed to do DMA submit\n");
		goto err_free_transfer;
	}

	dma_async_issue_pending(chan);

	goto err_unlock;

err_free_transfer:
	kfree(transfer);
err_unmap:
	dma_unmap_single(dma_dev, src_addr, buf_info->size, DMA_TO_DEVICE);
err_unlock:
	mutex_unlock(&epf_mhi->lock);

	return ret;
}

struct epf_dma_filter {
	struct device *dev;
	u32 dma_mask;
};

static bool pci_epf_mhi_filter(struct dma_chan *chan, void *node)
{
	struct epf_dma_filter *filter = node;
	struct dma_slave_caps caps;

	memset(&caps, 0, sizeof(caps));
	dma_get_slave_caps(chan, &caps);

	return chan->device->dev == filter->dev && filter->dma_mask &
					caps.directions;
}

static int pci_epf_mhi_dma_init(struct pci_epf_mhi *epf_mhi)
{
	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
	struct device *dev = &epf_mhi->epf->dev;
	struct epf_dma_filter filter;
	dma_cap_mask_t mask;
	int ret;

	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);

	filter.dev = dma_dev;
	filter.dma_mask = BIT(DMA_MEM_TO_DEV);
	epf_mhi->dma_chan_tx = dma_request_channel(mask, pci_epf_mhi_filter,
						   &filter);
	if (IS_ERR_OR_NULL(epf_mhi->dma_chan_tx)) {
		dev_err(dev, "Failed to request tx channel\n");
		return -ENODEV;
	}

	filter.dma_mask = BIT(DMA_DEV_TO_MEM);
	epf_mhi->dma_chan_rx = dma_request_channel(mask, pci_epf_mhi_filter,
						   &filter);
	if (IS_ERR_OR_NULL(epf_mhi->dma_chan_rx)) {
		dev_err(dev, "Failed to request rx channel\n");
		ret = -ENODEV;
		goto err_release_tx;
	}

	epf_mhi->dma_wq = alloc_workqueue("pci_epf_mhi_dma_wq", 0, 0);
	if (!epf_mhi->dma_wq) {
		ret = -ENOMEM;
		goto err_release_rx;
	}

	INIT_LIST_HEAD(&epf_mhi->dma_list);
	INIT_WORK(&epf_mhi->dma_work, pci_epf_mhi_dma_worker);
	spin_lock_init(&epf_mhi->list_lock);

	return 0;

err_release_rx:
	dma_release_channel(epf_mhi->dma_chan_rx);
	epf_mhi->dma_chan_rx = NULL;
err_release_tx:
	dma_release_channel(epf_mhi->dma_chan_tx);
	epf_mhi->dma_chan_tx = NULL;

	return ret;
}

static void pci_epf_mhi_dma_deinit(struct pci_epf_mhi *epf_mhi)
{
	destroy_workqueue(epf_mhi->dma_wq);
	dma_release_channel(epf_mhi->dma_chan_tx);
	dma_release_channel(epf_mhi->dma_chan_rx);
	epf_mhi->dma_chan_tx = NULL;
	epf_mhi->dma_chan_rx = NULL;
}

static int pci_epf_mhi_core_init(struct pci_epf *epf)
{
	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
	struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num];
	struct pci_epc *epc = epf->epc;
	struct device *dev = &epf->dev;
	int ret;

	epf_bar->phys_addr = epf_mhi->mmio_phys;
	epf_bar->size = epf_mhi->mmio_size;
	epf_bar->barno = info->bar_num;
	epf_bar->flags = info->epf_flags;
	ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no, epf_bar);
	if (ret) {
		dev_err(dev, "Failed to set BAR: %d\n", ret);
		return ret;
	}

	ret = pci_epc_set_msi(epc, epf->func_no, epf->vfunc_no,
			      order_base_2(info->msi_count));
	if (ret) {
		dev_err(dev, "Failed to set MSI configuration: %d\n", ret);
		return ret;
	}

	ret = pci_epc_write_header(epc, epf->func_no, epf->vfunc_no,
				   epf->header);
	if (ret) {
		dev_err(dev, "Failed to set Configuration header: %d\n", ret);
		return ret;
	}

	epf_mhi->epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no);
	if (!epf_mhi->epc_features)
		return -ENODATA;

	return 0;
}

static int pci_epf_mhi_link_up(struct pci_epf *epf)
{
	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
	struct pci_epc *epc = epf->epc;
	struct device *dev = &epf->dev;
	int ret;

	if (info->flags & MHI_EPF_USE_DMA) {
		ret = pci_epf_mhi_dma_init(epf_mhi);
		if (ret) {
			dev_err(dev, "Failed to initialize DMA: %d\n", ret);
			return ret;
		}
	}

	mhi_cntrl->mmio = epf_mhi->mmio;
	mhi_cntrl->irq = epf_mhi->irq;
	mhi_cntrl->mru = info->mru;

	/* Assign the struct dev of PCI EP as MHI controller device */
	mhi_cntrl->cntrl_dev = epc->dev.parent;
	mhi_cntrl->raise_irq = pci_epf_mhi_raise_irq;
	mhi_cntrl->alloc_map = pci_epf_mhi_alloc_map;
	mhi_cntrl->unmap_free = pci_epf_mhi_unmap_free;
	mhi_cntrl->read_sync = mhi_cntrl->read_async = pci_epf_mhi_iatu_read;
	mhi_cntrl->write_sync = mhi_cntrl->write_async = pci_epf_mhi_iatu_write;
	if (info->flags & MHI_EPF_USE_DMA) {
		mhi_cntrl->read_sync = pci_epf_mhi_edma_read;
		mhi_cntrl->write_sync = pci_epf_mhi_edma_write;
		mhi_cntrl->read_async = pci_epf_mhi_edma_read_async;
		mhi_cntrl->write_async = pci_epf_mhi_edma_write_async;
	}

	/* Register the MHI EP controller */
	ret = mhi_ep_register_controller(mhi_cntrl, info->config);
	if (ret) {
		dev_err(dev, "Failed to register MHI EP controller: %d\n", ret);
		if (info->flags & MHI_EPF_USE_DMA)
			pci_epf_mhi_dma_deinit(epf_mhi);
		return ret;
	}

	return 0;
}

static int pci_epf_mhi_link_down(struct pci_epf *epf)
{
	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;

	if (mhi_cntrl->mhi_dev) {
		mhi_ep_power_down(mhi_cntrl);
		if (info->flags & MHI_EPF_USE_DMA)
			pci_epf_mhi_dma_deinit(epf_mhi);
		mhi_ep_unregister_controller(mhi_cntrl);
	}

	return 0;
}

static int pci_epf_mhi_bme(struct pci_epf *epf)
{
	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
	struct device *dev = &epf->dev;
	int ret;

	/*
	 * Power up the MHI EP stack if link is up and stack is in power down
	 * state.
	 */
	if (!mhi_cntrl->enabled && mhi_cntrl->mhi_dev) {
		ret = mhi_ep_power_up(mhi_cntrl);
		if (ret) {
			dev_err(dev, "Failed to power up MHI EP: %d\n", ret);
			if (info->flags & MHI_EPF_USE_DMA)
				pci_epf_mhi_dma_deinit(epf_mhi);
			mhi_ep_unregister_controller(mhi_cntrl);
		}
	}

	return 0;
}

static int pci_epf_mhi_bind(struct pci_epf *epf)
{
	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
	struct pci_epc *epc = epf->epc;
	struct platform_device *pdev = to_platform_device(epc->dev.parent);
	struct resource *res;
	int ret;

	/* Get MMIO base address from Endpoint controller */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mmio");
	epf_mhi->mmio_phys = res->start;
	epf_mhi->mmio_size = resource_size(res);

	epf_mhi->mmio = ioremap(epf_mhi->mmio_phys, epf_mhi->mmio_size);
	if (!epf_mhi->mmio)
		return -ENOMEM;

	ret = platform_get_irq_byname(pdev, "doorbell");
	if (ret < 0) {
		iounmap(epf_mhi->mmio);
		return ret;
	}

	epf_mhi->irq = ret;

	return 0;
}

static void pci_epf_mhi_unbind(struct pci_epf *epf)
{
	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
	struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num];
	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
	struct pci_epc *epc = epf->epc;

	/*
	 * Forcefully power down the MHI EP stack. Only way to bring the MHI EP
	 * stack back to working state after successive bind is by getting BME
	 * from host.
	 */
	if (mhi_cntrl->mhi_dev) {
		mhi_ep_power_down(mhi_cntrl);
		if (info->flags & MHI_EPF_USE_DMA)
			pci_epf_mhi_dma_deinit(epf_mhi);
		mhi_ep_unregister_controller(mhi_cntrl);
	}

	iounmap(epf_mhi->mmio);
	pci_epc_clear_bar(epc, epf->func_no, epf->vfunc_no, epf_bar);
}

static const struct pci_epc_event_ops pci_epf_mhi_event_ops = {
	.core_init = pci_epf_mhi_core_init,
	.link_up = pci_epf_mhi_link_up,
	.link_down = pci_epf_mhi_link_down,
	.bme = pci_epf_mhi_bme,
};

static int pci_epf_mhi_probe(struct pci_epf *epf,
			     const struct pci_epf_device_id *id)
{
	struct pci_epf_mhi_ep_info *info =
			(struct pci_epf_mhi_ep_info *)id->driver_data;
	struct pci_epf_mhi *epf_mhi;
	struct device *dev = &epf->dev;

	epf_mhi = devm_kzalloc(dev, sizeof(*epf_mhi), GFP_KERNEL);
	if (!epf_mhi)
		return -ENOMEM;

	epf->header = info->epf_header;
	epf_mhi->info = info;
	epf_mhi->epf = epf;

	epf->event_ops = &pci_epf_mhi_event_ops;

	mutex_init(&epf_mhi->lock);

	epf_set_drvdata(epf, epf_mhi);

	return 0;
}

static const struct pci_epf_device_id pci_epf_mhi_ids[] = {
	{ .name = "sdx55", .driver_data = (kernel_ulong_t)&sdx55_info },
	{ .name = "sm8450", .driver_data = (kernel_ulong_t)&sm8450_info },
	{},
};

static const struct pci_epf_ops pci_epf_mhi_ops = {
	.unbind	= pci_epf_mhi_unbind,
	.bind	= pci_epf_mhi_bind,
};

static struct pci_epf_driver pci_epf_mhi_driver = {
	.driver.name	= "pci_epf_mhi",
	.probe		= pci_epf_mhi_probe,
	.id_table	= pci_epf_mhi_ids,
	.ops		= &pci_epf_mhi_ops,
	.owner		= THIS_MODULE,
};

static int __init pci_epf_mhi_init(void)
{
	return pci_epf_register_driver(&pci_epf_mhi_driver);
}
module_init(pci_epf_mhi_init);

static void __exit pci_epf_mhi_exit(void)
{
	pci_epf_unregister_driver(&pci_epf_mhi_driver);
}
module_exit(pci_epf_mhi_exit);

MODULE_DESCRIPTION("PCI EPF driver for MHI Endpoint devices");
MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
MODULE_LICENSE("GPL");