1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
// SPDX-License-Identifier: GPL-2.0
/* Author: Dan Scally <djrscally@gmail.com> */
#include <linux/acpi.h>
#include <linux/clkdev.h>
#include <linux/clk-provider.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_data/x86/int3472.h>
#include <linux/regulator/driver.h>
#include <linux/slab.h>
/*
* 82c0d13a-78c5-4244-9bb1-eb8b539a8d11
* This _DSM GUID allows controlling the sensor clk when it is not controlled
* through a GPIO.
*/
static const guid_t img_clk_guid =
GUID_INIT(0x82c0d13a, 0x78c5, 0x4244,
0x9b, 0xb1, 0xeb, 0x8b, 0x53, 0x9a, 0x8d, 0x11);
static void skl_int3472_enable_clk(struct int3472_clock *clk, int enable)
{
struct int3472_discrete_device *int3472 = to_int3472_device(clk);
union acpi_object args[3];
union acpi_object argv4;
if (clk->ena_gpio) {
gpiod_set_value_cansleep(clk->ena_gpio, enable);
return;
}
args[0].integer.type = ACPI_TYPE_INTEGER;
args[0].integer.value = clk->imgclk_index;
args[1].integer.type = ACPI_TYPE_INTEGER;
args[1].integer.value = enable;
args[2].integer.type = ACPI_TYPE_INTEGER;
args[2].integer.value = 1;
argv4.type = ACPI_TYPE_PACKAGE;
argv4.package.count = 3;
argv4.package.elements = args;
acpi_evaluate_dsm(acpi_device_handle(int3472->adev), &img_clk_guid,
0, 1, &argv4);
}
/*
* The regulators have to have .ops to be valid, but the only ops we actually
* support are .enable and .disable which are handled via .ena_gpiod. Pass an
* empty struct to clear the check without lying about capabilities.
*/
static const struct regulator_ops int3472_gpio_regulator_ops;
static int skl_int3472_clk_prepare(struct clk_hw *hw)
{
skl_int3472_enable_clk(to_int3472_clk(hw), 1);
return 0;
}
static void skl_int3472_clk_unprepare(struct clk_hw *hw)
{
skl_int3472_enable_clk(to_int3472_clk(hw), 0);
}
static int skl_int3472_clk_enable(struct clk_hw *hw)
{
/*
* We're just turning a GPIO on to enable the clock, which operation
* has the potential to sleep. Given .enable() cannot sleep, but
* .prepare() can, we toggle the GPIO in .prepare() instead. Thus,
* nothing to do here.
*/
return 0;
}
static void skl_int3472_clk_disable(struct clk_hw *hw)
{
/* Likewise, nothing to do here... */
}
static unsigned int skl_int3472_get_clk_frequency(struct int3472_discrete_device *int3472)
{
union acpi_object *obj;
unsigned int freq;
obj = skl_int3472_get_acpi_buffer(int3472->sensor, "SSDB");
if (IS_ERR(obj))
return 0; /* report rate as 0 on error */
if (obj->buffer.length < CIO2_SENSOR_SSDB_MCLKSPEED_OFFSET + sizeof(u32)) {
dev_err(int3472->dev, "The buffer is too small\n");
kfree(obj);
return 0;
}
freq = *(u32 *)(obj->buffer.pointer + CIO2_SENSOR_SSDB_MCLKSPEED_OFFSET);
kfree(obj);
return freq;
}
static unsigned long skl_int3472_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct int3472_clock *clk = to_int3472_clk(hw);
return clk->frequency;
}
static const struct clk_ops skl_int3472_clock_ops = {
.prepare = skl_int3472_clk_prepare,
.unprepare = skl_int3472_clk_unprepare,
.enable = skl_int3472_clk_enable,
.disable = skl_int3472_clk_disable,
.recalc_rate = skl_int3472_clk_recalc_rate,
};
static int skl_int3472_register_clock(struct int3472_discrete_device *int3472)
{
struct acpi_device *adev = int3472->adev;
struct clk_init_data init = {
.ops = &skl_int3472_clock_ops,
.flags = CLK_GET_RATE_NOCACHE,
};
int ret;
init.name = kasprintf(GFP_KERNEL, "%s-clk", acpi_dev_name(adev));
if (!init.name)
return -ENOMEM;
int3472->clock.frequency = skl_int3472_get_clk_frequency(int3472);
int3472->clock.clk_hw.init = &init;
int3472->clock.clk = clk_register(&adev->dev, &int3472->clock.clk_hw);
if (IS_ERR(int3472->clock.clk)) {
ret = PTR_ERR(int3472->clock.clk);
goto out_free_init_name;
}
int3472->clock.cl = clkdev_create(int3472->clock.clk, NULL, int3472->sensor_name);
if (!int3472->clock.cl) {
ret = -ENOMEM;
goto err_unregister_clk;
}
kfree(init.name);
return 0;
err_unregister_clk:
clk_unregister(int3472->clock.clk);
out_free_init_name:
kfree(init.name);
return ret;
}
int skl_int3472_register_dsm_clock(struct int3472_discrete_device *int3472)
{
if (int3472->clock.cl)
return 0; /* A GPIO controlled clk has already been registered */
if (!acpi_check_dsm(int3472->adev->handle, &img_clk_guid, 0, BIT(1)))
return 0; /* DSM clock control is not available */
return skl_int3472_register_clock(int3472);
}
int skl_int3472_register_gpio_clock(struct int3472_discrete_device *int3472,
struct gpio_desc *gpio)
{
if (int3472->clock.cl)
return -EBUSY;
int3472->clock.ena_gpio = gpio;
return skl_int3472_register_clock(int3472);
}
void skl_int3472_unregister_clock(struct int3472_discrete_device *int3472)
{
if (!int3472->clock.cl)
return;
clkdev_drop(int3472->clock.cl);
clk_unregister(int3472->clock.clk);
gpiod_put(int3472->clock.ena_gpio);
}
int skl_int3472_register_regulator(struct int3472_discrete_device *int3472,
struct gpio_desc *gpio,
unsigned int enable_time,
const char *supply_name,
const char *second_sensor)
{
struct regulator_init_data init_data = { };
struct int3472_gpio_regulator *regulator;
struct regulator_config cfg = { };
int i, j;
if (int3472->n_regulator_gpios >= INT3472_MAX_REGULATORS) {
dev_err(int3472->dev, "Too many regulators mapped\n");
return -EINVAL;
}
if (strlen(supply_name) >= GPIO_SUPPLY_NAME_LENGTH) {
dev_err(int3472->dev, "supply-name '%s' length too long\n", supply_name);
return -E2BIG;
}
regulator = &int3472->regulators[int3472->n_regulator_gpios];
string_upper(regulator->supply_name_upper, supply_name);
/* The below code assume that map-count is 2 (upper- and lower-case) */
static_assert(GPIO_REGULATOR_SUPPLY_MAP_COUNT == 2);
for (i = 0, j = 0; i < GPIO_REGULATOR_SUPPLY_MAP_COUNT; i++) {
const char *supply = i ? regulator->supply_name_upper : supply_name;
regulator->supply_map[j].supply = supply;
regulator->supply_map[j].dev_name = int3472->sensor_name;
j++;
if (second_sensor) {
regulator->supply_map[j].supply = supply;
regulator->supply_map[j].dev_name = second_sensor;
j++;
}
}
init_data.constraints.valid_ops_mask = REGULATOR_CHANGE_STATUS;
init_data.consumer_supplies = regulator->supply_map;
init_data.num_consumer_supplies = j;
snprintf(regulator->regulator_name, sizeof(regulator->regulator_name), "%s-%s",
acpi_dev_name(int3472->adev), supply_name);
regulator->rdesc = INT3472_REGULATOR(regulator->regulator_name,
&int3472_gpio_regulator_ops,
enable_time, GPIO_REGULATOR_OFF_ON_DELAY);
cfg.dev = &int3472->adev->dev;
cfg.init_data = &init_data;
cfg.ena_gpiod = gpio;
regulator->rdev = regulator_register(int3472->dev, ®ulator->rdesc, &cfg);
if (IS_ERR(regulator->rdev))
return PTR_ERR(regulator->rdev);
int3472->regulators[int3472->n_regulator_gpios].ena_gpio = gpio;
int3472->n_regulator_gpios++;
return 0;
}
void skl_int3472_unregister_regulator(struct int3472_discrete_device *int3472)
{
for (int i = 0; i < int3472->n_regulator_gpios; i++) {
regulator_unregister(int3472->regulators[i].rdev);
gpiod_put(int3472->regulators[i].ena_gpio);
}
}
|