summaryrefslogtreecommitdiff
path: root/mm/mmap_lock.c
blob: 5f725cc67334f6de5fb0448045f580c1c0f1d7a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
// SPDX-License-Identifier: GPL-2.0
#define CREATE_TRACE_POINTS
#include <trace/events/mmap_lock.h>

#include <linux/mm.h>
#include <linux/cgroup.h>
#include <linux/memcontrol.h>
#include <linux/mmap_lock.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/rcupdate.h>
#include <linux/smp.h>
#include <linux/trace_events.h>
#include <linux/local_lock.h>

EXPORT_TRACEPOINT_SYMBOL(mmap_lock_start_locking);
EXPORT_TRACEPOINT_SYMBOL(mmap_lock_acquire_returned);
EXPORT_TRACEPOINT_SYMBOL(mmap_lock_released);

#ifdef CONFIG_TRACING
/*
 * Trace calls must be in a separate file, as otherwise there's a circular
 * dependency between linux/mmap_lock.h and trace/events/mmap_lock.h.
 */

void __mmap_lock_do_trace_start_locking(struct mm_struct *mm, bool write)
{
	trace_mmap_lock_start_locking(mm, write);
}
EXPORT_SYMBOL(__mmap_lock_do_trace_start_locking);

void __mmap_lock_do_trace_acquire_returned(struct mm_struct *mm, bool write,
					   bool success)
{
	trace_mmap_lock_acquire_returned(mm, write, success);
}
EXPORT_SYMBOL(__mmap_lock_do_trace_acquire_returned);

void __mmap_lock_do_trace_released(struct mm_struct *mm, bool write)
{
	trace_mmap_lock_released(mm, write);
}
EXPORT_SYMBOL(__mmap_lock_do_trace_released);
#endif /* CONFIG_TRACING */

#ifdef CONFIG_MMU
#ifdef CONFIG_PER_VMA_LOCK
static inline bool __vma_enter_locked(struct vm_area_struct *vma, bool detaching)
{
	unsigned int tgt_refcnt = VMA_LOCK_OFFSET;

	/* Additional refcnt if the vma is attached. */
	if (!detaching)
		tgt_refcnt++;

	/*
	 * If vma is detached then only vma_mark_attached() can raise the
	 * vm_refcnt. mmap_write_lock prevents racing with vma_mark_attached().
	 */
	if (!refcount_add_not_zero(VMA_LOCK_OFFSET, &vma->vm_refcnt))
		return false;

	rwsem_acquire(&vma->vmlock_dep_map, 0, 0, _RET_IP_);
	rcuwait_wait_event(&vma->vm_mm->vma_writer_wait,
		   refcount_read(&vma->vm_refcnt) == tgt_refcnt,
		   TASK_UNINTERRUPTIBLE);
	lock_acquired(&vma->vmlock_dep_map, _RET_IP_);

	return true;
}

static inline void __vma_exit_locked(struct vm_area_struct *vma, bool *detached)
{
	*detached = refcount_sub_and_test(VMA_LOCK_OFFSET, &vma->vm_refcnt);
	rwsem_release(&vma->vmlock_dep_map, _RET_IP_);
}

void __vma_start_write(struct vm_area_struct *vma, unsigned int mm_lock_seq)
{
	bool locked;

	/*
	 * __vma_enter_locked() returns false immediately if the vma is not
	 * attached, otherwise it waits until refcnt is indicating that vma
	 * is attached with no readers.
	 */
	locked = __vma_enter_locked(vma, false);

	/*
	 * We should use WRITE_ONCE() here because we can have concurrent reads
	 * from the early lockless pessimistic check in vma_start_read().
	 * We don't really care about the correctness of that early check, but
	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
	 */
	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);

	if (locked) {
		bool detached;

		__vma_exit_locked(vma, &detached);
		WARN_ON_ONCE(detached); /* vma should remain attached */
	}
}
EXPORT_SYMBOL_GPL(__vma_start_write);

void vma_mark_detached(struct vm_area_struct *vma)
{
	vma_assert_write_locked(vma);
	vma_assert_attached(vma);

	/*
	 * We are the only writer, so no need to use vma_refcount_put().
	 * The condition below is unlikely because the vma has been already
	 * write-locked and readers can increment vm_refcnt only temporarily
	 * before they check vm_lock_seq, realize the vma is locked and drop
	 * back the vm_refcnt. That is a narrow window for observing a raised
	 * vm_refcnt.
	 */
	if (unlikely(!refcount_dec_and_test(&vma->vm_refcnt))) {
		/* Wait until vma is detached with no readers. */
		if (__vma_enter_locked(vma, true)) {
			bool detached;

			__vma_exit_locked(vma, &detached);
			WARN_ON_ONCE(!detached);
		}
	}
}

/*
 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
 * stable and not isolated. If the VMA is not found or is being modified the
 * function returns NULL.
 */
struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
					  unsigned long address)
{
	MA_STATE(mas, &mm->mm_mt, address, address);
	struct vm_area_struct *vma;

	rcu_read_lock();
retry:
	vma = mas_walk(&mas);
	if (!vma)
		goto inval;

	vma = vma_start_read(mm, vma);
	if (IS_ERR_OR_NULL(vma)) {
		/* Check if the VMA got isolated after we found it */
		if (PTR_ERR(vma) == -EAGAIN) {
			count_vm_vma_lock_event(VMA_LOCK_MISS);
			/* The area was replaced with another one */
			goto retry;
		}

		/* Failed to lock the VMA */
		goto inval;
	}
	/*
	 * At this point, we have a stable reference to a VMA: The VMA is
	 * locked and we know it hasn't already been isolated.
	 * From here on, we can access the VMA without worrying about which
	 * fields are accessible for RCU readers.
	 */

	/* Check if the vma we locked is the right one. */
	if (unlikely(vma->vm_mm != mm ||
		     address < vma->vm_start || address >= vma->vm_end))
		goto inval_end_read;

	rcu_read_unlock();
	return vma;

inval_end_read:
	vma_end_read(vma);
inval:
	rcu_read_unlock();
	count_vm_vma_lock_event(VMA_LOCK_ABORT);
	return NULL;
}
#endif /* CONFIG_PER_VMA_LOCK */

#ifdef CONFIG_LOCK_MM_AND_FIND_VMA
#include <linux/extable.h>

static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
{
	if (likely(mmap_read_trylock(mm)))
		return true;

	if (regs && !user_mode(regs)) {
		unsigned long ip = exception_ip(regs);
		if (!search_exception_tables(ip))
			return false;
	}

	return !mmap_read_lock_killable(mm);
}

static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
{
	/*
	 * We don't have this operation yet.
	 *
	 * It should be easy enough to do: it's basically a
	 *    atomic_long_try_cmpxchg_acquire()
	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
	 * it also needs the proper lockdep magic etc.
	 */
	return false;
}

static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
{
	mmap_read_unlock(mm);
	if (regs && !user_mode(regs)) {
		unsigned long ip = exception_ip(regs);
		if (!search_exception_tables(ip))
			return false;
	}
	return !mmap_write_lock_killable(mm);
}

/*
 * Helper for page fault handling.
 *
 * This is kind of equivalent to "mmap_read_lock()" followed
 * by "find_extend_vma()", except it's a lot more careful about
 * the locking (and will drop the lock on failure).
 *
 * For example, if we have a kernel bug that causes a page
 * fault, we don't want to just use mmap_read_lock() to get
 * the mm lock, because that would deadlock if the bug were
 * to happen while we're holding the mm lock for writing.
 *
 * So this checks the exception tables on kernel faults in
 * order to only do this all for instructions that are actually
 * expected to fault.
 *
 * We can also actually take the mm lock for writing if we
 * need to extend the vma, which helps the VM layer a lot.
 */
struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
			unsigned long addr, struct pt_regs *regs)
{
	struct vm_area_struct *vma;

	if (!get_mmap_lock_carefully(mm, regs))
		return NULL;

	vma = find_vma(mm, addr);
	if (likely(vma && (vma->vm_start <= addr)))
		return vma;

	/*
	 * Well, dang. We might still be successful, but only
	 * if we can extend a vma to do so.
	 */
	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
		mmap_read_unlock(mm);
		return NULL;
	}

	/*
	 * We can try to upgrade the mmap lock atomically,
	 * in which case we can continue to use the vma
	 * we already looked up.
	 *
	 * Otherwise we'll have to drop the mmap lock and
	 * re-take it, and also look up the vma again,
	 * re-checking it.
	 */
	if (!mmap_upgrade_trylock(mm)) {
		if (!upgrade_mmap_lock_carefully(mm, regs))
			return NULL;

		vma = find_vma(mm, addr);
		if (!vma)
			goto fail;
		if (vma->vm_start <= addr)
			goto success;
		if (!(vma->vm_flags & VM_GROWSDOWN))
			goto fail;
	}

	if (expand_stack_locked(vma, addr))
		goto fail;

success:
	mmap_write_downgrade(mm);
	return vma;

fail:
	mmap_write_unlock(mm);
	return NULL;
}
#endif /* CONFIG_LOCK_MM_AND_FIND_VMA */

#else /* CONFIG_MMU */

/*
 * At least xtensa ends up having protection faults even with no
 * MMU.. No stack expansion, at least.
 */
struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
			unsigned long addr, struct pt_regs *regs)
{
	struct vm_area_struct *vma;

	mmap_read_lock(mm);
	vma = vma_lookup(mm, addr);
	if (!vma)
		mmap_read_unlock(mm);
	return vma;
}

#endif /* CONFIG_MMU */