summaryrefslogtreecommitdiff
path: root/rust/kernel/firmware.rs
blob: f04b058b09b2d2397e26344d0e055b3aa5061432 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
// SPDX-License-Identifier: GPL-2.0

//! Firmware abstraction
//!
//! C header: [`include/linux/firmware.h`](srctree/include/linux/firmware.h)

use crate::{bindings, device::Device, error::Error, error::Result, str::CStr};
use core::ptr::NonNull;

/// # Invariants
///
/// One of the following: `bindings::request_firmware`, `bindings::firmware_request_nowarn`,
/// `bindings::firmware_request_platform`, `bindings::request_firmware_direct`.
struct FwFunc(
    unsafe extern "C" fn(*mut *const bindings::firmware, *const u8, *mut bindings::device) -> i32,
);

impl FwFunc {
    fn request() -> Self {
        Self(bindings::request_firmware)
    }

    fn request_nowarn() -> Self {
        Self(bindings::firmware_request_nowarn)
    }
}

/// Abstraction around a C `struct firmware`.
///
/// This is a simple abstraction around the C firmware API. Just like with the C API, firmware can
/// be requested. Once requested the abstraction provides direct access to the firmware buffer as
/// `&[u8]`. The firmware is released once [`Firmware`] is dropped.
///
/// # Invariants
///
/// The pointer is valid, and has ownership over the instance of `struct firmware`.
///
/// The `Firmware`'s backing buffer is not modified.
///
/// # Examples
///
/// ```no_run
/// # use kernel::{c_str, device::Device, firmware::Firmware};
///
/// # fn no_run() -> Result<(), Error> {
/// # // SAFETY: *NOT* safe, just for the example to get an `ARef<Device>` instance
/// # let dev = unsafe { Device::get_device(core::ptr::null_mut()) };
///
/// let fw = Firmware::request(c_str!("path/to/firmware.bin"), &dev)?;
/// let blob = fw.data();
///
/// # Ok(())
/// # }
/// ```
pub struct Firmware(NonNull<bindings::firmware>);

impl Firmware {
    fn request_internal(name: &CStr, dev: &Device, func: FwFunc) -> Result<Self> {
        let mut fw: *mut bindings::firmware = core::ptr::null_mut();
        let pfw: *mut *mut bindings::firmware = &mut fw;

        // SAFETY: `pfw` is a valid pointer to a NULL initialized `bindings::firmware` pointer.
        // `name` and `dev` are valid as by their type invariants.
        let ret = unsafe { func.0(pfw as _, name.as_char_ptr(), dev.as_raw()) };
        if ret != 0 {
            return Err(Error::from_errno(ret));
        }

        // SAFETY: `func` not bailing out with a non-zero error code, guarantees that `fw` is a
        // valid pointer to `bindings::firmware`.
        Ok(Firmware(unsafe { NonNull::new_unchecked(fw) }))
    }

    /// Send a firmware request and wait for it. See also `bindings::request_firmware`.
    pub fn request(name: &CStr, dev: &Device) -> Result<Self> {
        Self::request_internal(name, dev, FwFunc::request())
    }

    /// Send a request for an optional firmware module. See also
    /// `bindings::firmware_request_nowarn`.
    pub fn request_nowarn(name: &CStr, dev: &Device) -> Result<Self> {
        Self::request_internal(name, dev, FwFunc::request_nowarn())
    }

    fn as_raw(&self) -> *mut bindings::firmware {
        self.0.as_ptr()
    }

    /// Returns the size of the requested firmware in bytes.
    pub fn size(&self) -> usize {
        // SAFETY: `self.as_raw()` is valid by the type invariant.
        unsafe { (*self.as_raw()).size }
    }

    /// Returns the requested firmware as `&[u8]`.
    pub fn data(&self) -> &[u8] {
        // SAFETY: `self.as_raw()` is valid by the type invariant. Additionally,
        // `bindings::firmware` guarantees, if successfully requested, that
        // `bindings::firmware::data` has a size of `bindings::firmware::size` bytes.
        unsafe { core::slice::from_raw_parts((*self.as_raw()).data, self.size()) }
    }
}

impl Drop for Firmware {
    fn drop(&mut self) {
        // SAFETY: `self.as_raw()` is valid by the type invariant.
        unsafe { bindings::release_firmware(self.as_raw()) };
    }
}

// SAFETY: `Firmware` only holds a pointer to a C `struct firmware`, which is safe to be used from
// any thread.
unsafe impl Send for Firmware {}

// SAFETY: `Firmware` only holds a pointer to a C `struct firmware`, references to which are safe to
// be used from any thread.
unsafe impl Sync for Firmware {}

/// Create firmware .modinfo entries.
///
/// This macro is the counterpart of the C macro `MODULE_FIRMWARE()`, but instead of taking a
/// simple string literals, which is already covered by the `firmware` field of
/// [`crate::prelude::module!`], it allows the caller to pass a builder type, based on the
/// [`ModInfoBuilder`], which can create the firmware modinfo strings in a more flexible way.
///
/// Drivers should extend the [`ModInfoBuilder`] with their own driver specific builder type.
///
/// The `builder` argument must be a type which implements the following function.
///
/// `const fn create(module_name: &'static CStr) -> ModInfoBuilder`
///
/// `create` should pass the `module_name` to the [`ModInfoBuilder`] and, with the help of
/// it construct the corresponding firmware modinfo.
///
/// Typically, such contracts would be enforced by a trait, however traits do not (yet) support
/// const functions.
///
/// # Example
///
/// ```
/// # mod module_firmware_test {
/// # use kernel::firmware;
/// # use kernel::prelude::*;
/// #
/// # struct MyModule;
/// #
/// # impl kernel::Module for MyModule {
/// #     fn init(_module: &'static ThisModule) -> Result<Self> {
/// #         Ok(Self)
/// #     }
/// # }
/// #
/// #
/// struct Builder<const N: usize>;
///
/// impl<const N: usize> Builder<N> {
///     const DIR: &'static str = "vendor/chip/";
///     const FILES: [&'static str; 3] = [ "foo", "bar", "baz" ];
///
///     const fn create(module_name: &'static kernel::str::CStr) -> firmware::ModInfoBuilder<N> {
///         let mut builder = firmware::ModInfoBuilder::new(module_name);
///
///         let mut i = 0;
///         while i < Self::FILES.len() {
///             builder = builder.new_entry()
///                 .push(Self::DIR)
///                 .push(Self::FILES[i])
///                 .push(".bin");
///
///                 i += 1;
///         }
///
///         builder
///      }
/// }
///
/// module! {
///    type: MyModule,
///    name: "module_firmware_test",
///    author: "Rust for Linux",
///    description: "module_firmware! test module",
///    license: "GPL",
/// }
///
/// kernel::module_firmware!(Builder);
/// # }
/// ```
#[macro_export]
macro_rules! module_firmware {
    // The argument is the builder type without the const generic, since it's deferred from within
    // this macro. Hence, we can neither use `expr` nor `ty`.
    ($($builder:tt)*) => {
        const _: () = {
            const __MODULE_FIRMWARE_PREFIX: &'static $crate::str::CStr = if cfg!(MODULE) {
                $crate::c_str!("")
            } else {
                <LocalModule as $crate::ModuleMetadata>::NAME
            };

            #[link_section = ".modinfo"]
            #[used]
            static __MODULE_FIRMWARE: [u8; $($builder)*::create(__MODULE_FIRMWARE_PREFIX)
                .build_length()] = $($builder)*::create(__MODULE_FIRMWARE_PREFIX).build();
        };
    };
}

/// Builder for firmware module info.
///
/// [`ModInfoBuilder`] is a helper component to flexibly compose firmware paths strings for the
/// .modinfo section in const context.
///
/// Therefore the [`ModInfoBuilder`] provides the methods [`ModInfoBuilder::new_entry`] and
/// [`ModInfoBuilder::push`], where the latter is used to push path components and the former to
/// mark the beginning of a new path string.
///
/// [`ModInfoBuilder`] is meant to be used in combination with [`kernel::module_firmware!`].
///
/// The const generic `N` as well as the `module_name` parameter of [`ModInfoBuilder::new`] is an
/// internal implementation detail and supplied through the above macro.
pub struct ModInfoBuilder<const N: usize> {
    buf: [u8; N],
    n: usize,
    module_name: &'static CStr,
}

impl<const N: usize> ModInfoBuilder<N> {
    /// Create an empty builder instance.
    pub const fn new(module_name: &'static CStr) -> Self {
        Self {
            buf: [0; N],
            n: 0,
            module_name,
        }
    }

    const fn push_internal(mut self, bytes: &[u8]) -> Self {
        let mut j = 0;

        if N == 0 {
            self.n += bytes.len();
            return self;
        }

        while j < bytes.len() {
            if self.n < N {
                self.buf[self.n] = bytes[j];
            }
            self.n += 1;
            j += 1;
        }
        self
    }

    /// Push an additional path component.
    ///
    /// Append path components to the [`ModInfoBuilder`] instance. Paths need to be separated
    /// with [`ModInfoBuilder::new_entry`].
    ///
    /// # Example
    ///
    /// ```
    /// use kernel::firmware::ModInfoBuilder;
    ///
    /// # const DIR: &str = "vendor/chip/";
    /// # const fn no_run<const N: usize>(builder: ModInfoBuilder<N>) {
    /// let builder = builder.new_entry()
    ///     .push(DIR)
    ///     .push("foo.bin")
    ///     .new_entry()
    ///     .push(DIR)
    ///     .push("bar.bin");
    /// # }
    /// ```
    pub const fn push(self, s: &str) -> Self {
        // Check whether there has been an initial call to `next_entry()`.
        if N != 0 && self.n == 0 {
            crate::build_error!("Must call next_entry() before push().");
        }

        self.push_internal(s.as_bytes())
    }

    const fn push_module_name(self) -> Self {
        let mut this = self;
        let module_name = this.module_name;

        if !this.module_name.is_empty() {
            this = this.push_internal(module_name.as_bytes_with_nul());

            if N != 0 {
                // Re-use the space taken by the NULL terminator and swap it with the '.' separator.
                this.buf[this.n - 1] = b'.';
            }
        }

        this
    }

    /// Prepare the [`ModInfoBuilder`] for the next entry.
    ///
    /// This method acts as a separator between module firmware path entries.
    ///
    /// Must be called before constructing a new entry with subsequent calls to
    /// [`ModInfoBuilder::push`].
    ///
    /// See [`ModInfoBuilder::push`] for an example.
    pub const fn new_entry(self) -> Self {
        self.push_internal(b"\0")
            .push_module_name()
            .push_internal(b"firmware=")
    }

    /// Build the byte array.
    pub const fn build(self) -> [u8; N] {
        // Add the final NULL terminator.
        let this = self.push_internal(b"\0");

        if this.n == N {
            this.buf
        } else {
            crate::build_error!("Length mismatch.");
        }
    }
}

impl ModInfoBuilder<0> {
    /// Return the length of the byte array to build.
    pub const fn build_length(self) -> usize {
        // Compensate for the NULL terminator added by `build`.
        self.n + 1
    }
}