summaryrefslogtreecommitdiff
path: root/lib/cpu-notifier-error-inject.c
diff options
context:
space:
mode:
authorBoris Burkov <boris@bur.io>2025-07-14 16:44:28 -0700
committerDavid Sterba <dsterba@suse.com>2025-07-22 01:12:52 +0200
commit807d9023e75fc20bfd6dd2ac0408ce4af53f1648 (patch)
tree7071e4bd2d212918fc5cd2a4d558e315cde20ce8 /lib/cpu-notifier-error-inject.c
parent62be7afcc13b2727bdc6a4c91aefed6b452e6ecc (diff)
btrfs: fix ssd_spread overallocation
If the ssd_spread mount option is enabled, then we run the so called clustered allocator for data block groups. In practice, this results in creating a btrfs_free_cluster which caches a block_group and borrows its free extents for allocation. Since the introduction of allocation size classes in 6.1, there has been a bug in the interaction between that feature and ssd_spread. find_free_extent() has a number of nested loops. The loop going over the allocation stages, stored in ffe_ctl->loop and managed by find_free_extent_update_loop(), the loop over the raid levels, and the loop over all the block_groups in a space_info. The size class feature relies on the block_group loop to ensure it gets a chance to see a block_group of a given size class. However, the clustered allocator uses the cached cluster block_group and breaks that loop. Each call to do_allocation() will really just go back to the same cached block_group. Normally, this is OK, as the allocation either succeeds and we don't want to loop any more or it fails, and we clear the cluster and return its space to the block_group. But with size classes, the allocation can succeed, then later fail, outside of do_allocation() due to size class mismatch. That latter failure is not properly handled due to the highly complex multi loop logic. The result is a painful loop where we continue to allocate the same num_bytes from the cluster in a tight loop until it fails and releases the cluster and lets us try a new block_group. But by then, we have skipped great swaths of the available block_groups and are likely to fail to allocate, looping the outer loop. In pathological cases like the reproducer below, the cached block_group is often the very last one, in which case we don't perform this tight bg loop but instead rip through the ffe stages to LOOP_CHUNK_ALLOC and allocate a chunk, which is now the last one, and we enter the tight inner loop until an allocation failure. Then allocation succeeds on the final block_group and if the next allocation is a size mismatch, the exact same thing happens again. Triggering this is as easy as mounting with -o ssd_spread and then running: mount -o ssd_spread $dev $mnt dd if=/dev/zero of=$mnt/big bs=16M count=1 &>/dev/null dd if=/dev/zero of=$mnt/med bs=4M count=1 &>/dev/null sync if you do the two writes + sync in a loop, you can force btrfs to spin an excessive amount on semi-successful clustered allocations, before ultimately failing and advancing to the stage where we force a chunk allocation. This results in 2G of data allocated per iteration, despite only using ~20M of data. By using a small size classed extent, the inner loop takes longer and we can spin for longer. The simplest, shortest term fix to unbreak this is to make the clustered allocator size_class aware in the dumbest way, where it fails on size class mismatch. This may hinder the operation of the clustered allocator, but better hindered than completely broken and terribly overallocating. Further re-design improvements are also in the works. Fixes: 52bb7a2166af ("btrfs: introduce size class to block group allocator") CC: stable@vger.kernel.org # 6.1+ Reported-by: David Sterba <dsterba@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
Diffstat (limited to 'lib/cpu-notifier-error-inject.c')
0 files changed, 0 insertions, 0 deletions