summaryrefslogtreecommitdiff
path: root/arch/arc
diff options
context:
space:
mode:
Diffstat (limited to 'arch/arc')
-rw-r--r--arch/arc/Kbuild1
-rw-r--r--arch/arc/Kconfig2
-rw-r--r--arch/arc/boot/Makefile4
-rw-r--r--arch/arc/boot/dts/Makefile3
-rw-r--r--arch/arc/boot/dts/axc003.dtsi4
-rw-r--r--arch/arc/boot/dts/hsdk.dts1
-rw-r--r--arch/arc/boot/dts/vdk_axs10x_mb.dtsi2
-rw-r--r--arch/arc/include/asm/cachetype.h9
-rw-r--r--arch/arc/include/asm/dsp.h2
-rw-r--r--arch/arc/include/asm/entry-compact.h10
-rw-r--r--arch/arc/include/asm/entry.h4
-rw-r--r--arch/arc/include/asm/fb.h8
-rw-r--r--arch/arc/include/asm/irq.h2
-rw-r--r--arch/arc/include/asm/irqflags-compact.h2
-rw-r--r--arch/arc/include/asm/mmu-arcv2.h2
-rw-r--r--arch/arc/include/asm/mmu_context.h2
-rw-r--r--arch/arc/include/asm/pgtable-bits-arcv2.h2
-rw-r--r--arch/arc/include/asm/ptrace.h2
-rw-r--r--arch/arc/include/asm/shmparam.h2
-rw-r--r--arch/arc/include/asm/smp.h4
-rw-r--r--arch/arc/include/asm/thread_info.h2
-rw-r--r--arch/arc/include/uapi/asm/swab.h2
-rw-r--r--arch/arc/kernel/entry-arcv2.S8
-rw-r--r--arch/arc/kernel/entry.S4
-rw-r--r--arch/arc/kernel/head.S2
-rw-r--r--arch/arc/kernel/intc-arcv2.c2
-rw-r--r--arch/arc/kernel/kprobes.c7
-rw-r--r--arch/arc/kernel/perf_event.c2
-rw-r--r--arch/arc/kernel/setup.c2
-rw-r--r--arch/arc/kernel/signal.c7
-rw-r--r--arch/arc/kernel/traps.c2
-rw-r--r--arch/arc/kernel/vmlinux.lds.S4
-rw-r--r--arch/arc/mm/dma.c3
-rw-r--r--arch/arc/mm/mmap.c4
-rw-r--r--arch/arc/mm/tlb.c4
-rw-r--r--arch/arc/mm/tlbex.S8
-rw-r--r--arch/arc/net/Makefile6
-rw-r--r--arch/arc/net/bpf_jit.h164
-rw-r--r--arch/arc/net/bpf_jit_arcv2.c3007
-rw-r--r--arch/arc/net/bpf_jit_core.c1425
40 files changed, 4659 insertions, 74 deletions
diff --git a/arch/arc/Kbuild b/arch/arc/Kbuild
index b94102fff68b..20ea7dd482d4 100644
--- a/arch/arc/Kbuild
+++ b/arch/arc/Kbuild
@@ -1,6 +1,7 @@
# SPDX-License-Identifier: GPL-2.0
obj-y += kernel/
obj-y += mm/
+obj-y += net/
# for cleaning
subdir- += boot
diff --git a/arch/arc/Kconfig b/arch/arc/Kconfig
index 99d2845f3feb..fd0b0a0d4686 100644
--- a/arch/arc/Kconfig
+++ b/arch/arc/Kconfig
@@ -6,7 +6,6 @@
config ARC
def_bool y
select ARC_TIMERS
- select ARCH_HAS_CPU_CACHE_ALIASING
select ARCH_HAS_CACHE_LINE_SIZE
select ARCH_HAS_DEBUG_VM_PGTABLE
select ARCH_HAS_DMA_PREP_COHERENT
@@ -52,6 +51,7 @@ config ARC
select PCI_SYSCALL if PCI
select HAVE_ARCH_JUMP_LABEL if ISA_ARCV2 && !CPU_ENDIAN_BE32
select TRACE_IRQFLAGS_SUPPORT
+ select HAVE_EBPF_JIT if ISA_ARCV2
config LOCKDEP_SUPPORT
def_bool y
diff --git a/arch/arc/boot/Makefile b/arch/arc/boot/Makefile
index 5648748c285f..5a8550124b73 100644
--- a/arch/arc/boot/Makefile
+++ b/arch/arc/boot/Makefile
@@ -1,8 +1,8 @@
# SPDX-License-Identifier: GPL-2.0
-# uImage build relies on mkimage being availble on your host for ARC target
+# uImage build relies on mkimage being available on your host for ARC target
# You will need to build u-boot for ARC, rename mkimage to arc-elf32-mkimage
-# and make sure it's reacable from your PATH
+# and make sure it's reachable from your PATH
OBJCOPYFLAGS= -O binary -R .note -R .note.gnu.build-id -R .comment -S
diff --git a/arch/arc/boot/dts/Makefile b/arch/arc/boot/dts/Makefile
index 4237aa5de3a3..48704dfdf75c 100644
--- a/arch/arc/boot/dts/Makefile
+++ b/arch/arc/boot/dts/Makefile
@@ -10,8 +10,7 @@ obj-y += $(builtindtb-y).dtb.o
dtb-y := $(builtindtb-y).dtb
# for CONFIG_OF_ALL_DTBS test
-dtstree := $(srctree)/$(src)
-dtb- := $(patsubst $(dtstree)/%.dts,%.dtb, $(wildcard $(dtstree)/*.dts))
+dtb- := $(patsubst $(src)/%.dts,%.dtb, $(wildcard $(src)/*.dts))
# board-specific dtc flags
DTC_FLAGS_hsdk += --pad 20
diff --git a/arch/arc/boot/dts/axc003.dtsi b/arch/arc/boot/dts/axc003.dtsi
index 3434c8131ecd..c0a812674ce9 100644
--- a/arch/arc/boot/dts/axc003.dtsi
+++ b/arch/arc/boot/dts/axc003.dtsi
@@ -119,9 +119,9 @@
/*
* The DW APB ICTL intc on MB is connected to CPU intc via a
* DT "invisible" DW APB GPIO block, configured to simply pass thru
- * interrupts - setup accordinly in platform init (plat-axs10x/ax10x.c)
+ * interrupts - setup accordingly in platform init (plat-axs10x/ax10x.c)
*
- * So here we mimic a direct connection betwen them, ignoring the
+ * So here we mimic a direct connection between them, ignoring the
* ABPG GPIO. Thus set "interrupts = <24>" (DW APB GPIO to core)
* instead of "interrupts = <12>" (DW APB ICTL to DW APB GPIO)
*
diff --git a/arch/arc/boot/dts/hsdk.dts b/arch/arc/boot/dts/hsdk.dts
index 6691f4255077..41b980df862b 100644
--- a/arch/arc/boot/dts/hsdk.dts
+++ b/arch/arc/boot/dts/hsdk.dts
@@ -205,7 +205,6 @@
};
gmac: ethernet@8000 {
- #interrupt-cells = <1>;
compatible = "snps,dwmac";
reg = <0x8000 0x2000>;
interrupts = <10>;
diff --git a/arch/arc/boot/dts/vdk_axs10x_mb.dtsi b/arch/arc/boot/dts/vdk_axs10x_mb.dtsi
index 90a412026e64..0e0e2d337bf8 100644
--- a/arch/arc/boot/dts/vdk_axs10x_mb.dtsi
+++ b/arch/arc/boot/dts/vdk_axs10x_mb.dtsi
@@ -113,7 +113,7 @@
/*
* Embedded Vision subsystem UIO mappings; only relevant for EV VDK
*
- * This node is intentionally put outside of MB above becase
+ * This node is intentionally put outside of MB above because
* it maps areas outside of MB's 0xez-0xfz.
*/
uio_ev: uio@d0000000 {
diff --git a/arch/arc/include/asm/cachetype.h b/arch/arc/include/asm/cachetype.h
deleted file mode 100644
index 05fc7ed59712..000000000000
--- a/arch/arc/include/asm/cachetype.h
+++ /dev/null
@@ -1,9 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0 */
-#ifndef __ASM_ARC_CACHETYPE_H
-#define __ASM_ARC_CACHETYPE_H
-
-#include <linux/types.h>
-
-#define cpu_dcache_is_aliasing() true
-
-#endif
diff --git a/arch/arc/include/asm/dsp.h b/arch/arc/include/asm/dsp.h
index 202c78e56704..f496dbc4640b 100644
--- a/arch/arc/include/asm/dsp.h
+++ b/arch/arc/include/asm/dsp.h
@@ -12,7 +12,7 @@
/*
* DSP-related saved registers - need to be saved only when you are
* scheduled out.
- * structure fields name must correspond to aux register defenitions for
+ * structure fields name must correspond to aux register definitions for
* automatic offset calculation in DSP_AUX_SAVE_RESTORE macros
*/
struct dsp_callee_regs {
diff --git a/arch/arc/include/asm/entry-compact.h b/arch/arc/include/asm/entry-compact.h
index 92c3e9f13252..00946fe04c9b 100644
--- a/arch/arc/include/asm/entry-compact.h
+++ b/arch/arc/include/asm/entry-compact.h
@@ -7,7 +7,7 @@
* Stack switching code can no longer reliably rely on the fact that
* if we are NOT in user mode, stack is switched to kernel mode.
* e.g. L2 IRQ interrupted a L1 ISR which had not yet completed
- * it's prologue including stack switching from user mode
+ * its prologue including stack switching from user mode
*
* Vineetg: Aug 28th 2008: Bug #94984
* -Zero Overhead Loop Context shd be cleared when entering IRQ/EXcp/Trap
@@ -143,7 +143,7 @@
* 2. L1 IRQ taken, ISR starts (CPU auto-switched to KERNEL mode)
* 3. But before it could switch SP from USER to KERNEL stack
* a L2 IRQ "Interrupts" L1
- * Thay way although L2 IRQ happened in Kernel mode, stack is still
+ * That way although L2 IRQ happened in Kernel mode, stack is still
* not switched.
* To handle this, we may need to switch stack even if in kernel mode
* provided SP has values in range of USER mode stack ( < 0x7000_0000 )
@@ -173,7 +173,7 @@
GET_CURR_TASK_ON_CPU r9
- /* With current tsk in r9, get it's kernel mode stack base */
+ /* With current tsk in r9, get its kernel mode stack base */
GET_TSK_STACK_BASE r9, r9
/* save U mode SP @ pt_regs->sp */
@@ -282,7 +282,7 @@
* NOTE:
*
* It is recommended that lp_count/ilink1/ilink2 not be used as a dest reg
- * for memory load operations. If used in that way interrupts are deffered
+ * for memory load operations. If used in that way interrupts are deferred
* by hardware and that is not good.
*-------------------------------------------------------------*/
.macro EXCEPTION_EPILOGUE
@@ -350,7 +350,7 @@
* NOTE:
*
* It is recommended that lp_count/ilink1/ilink2 not be used as a dest reg
- * for memory load operations. If used in that way interrupts are deffered
+ * for memory load operations. If used in that way interrupts are deferred
* by hardware and that is not good.
*-------------------------------------------------------------*/
.macro INTERRUPT_EPILOGUE LVL
diff --git a/arch/arc/include/asm/entry.h b/arch/arc/include/asm/entry.h
index cf1ba376e992..38c35722cebf 100644
--- a/arch/arc/include/asm/entry.h
+++ b/arch/arc/include/asm/entry.h
@@ -7,7 +7,7 @@
#ifndef __ASM_ARC_ENTRY_H
#define __ASM_ARC_ENTRY_H
-#include <asm/unistd.h> /* For NR_syscalls defination */
+#include <asm/unistd.h> /* For NR_syscalls definition */
#include <asm/arcregs.h>
#include <asm/ptrace.h>
#include <asm/processor.h> /* For VMALLOC_START */
@@ -56,7 +56,7 @@
.endm
/*-------------------------------------------------------------
- * given a tsk struct, get to the base of it's kernel mode stack
+ * given a tsk struct, get to the base of its kernel mode stack
* tsk->thread_info is really a PAGE, whose bottom hoists stack
* which grows upwards towards thread_info
*------------------------------------------------------------*/
diff --git a/arch/arc/include/asm/fb.h b/arch/arc/include/asm/fb.h
deleted file mode 100644
index 9c2383d29cbb..000000000000
--- a/arch/arc/include/asm/fb.h
+++ /dev/null
@@ -1,8 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0 */
-
-#ifndef _ASM_FB_H_
-#define _ASM_FB_H_
-
-#include <asm-generic/fb.h>
-
-#endif /* _ASM_FB_H_ */
diff --git a/arch/arc/include/asm/irq.h b/arch/arc/include/asm/irq.h
index c574712ad865..9cd79263acba 100644
--- a/arch/arc/include/asm/irq.h
+++ b/arch/arc/include/asm/irq.h
@@ -10,7 +10,7 @@
* ARCv2 can support 240 interrupts in the core interrupts controllers and
* 128 interrupts in IDU. Thus 512 virtual IRQs must be enough for most
* configurations of boards.
- * This doesnt affect ARCompact, but we change it to same value
+ * This doesn't affect ARCompact, but we change it to same value
*/
#define NR_IRQS 512
diff --git a/arch/arc/include/asm/irqflags-compact.h b/arch/arc/include/asm/irqflags-compact.h
index 0d63e568d64c..936a2f21f315 100644
--- a/arch/arc/include/asm/irqflags-compact.h
+++ b/arch/arc/include/asm/irqflags-compact.h
@@ -46,7 +46,7 @@
* IRQ Control Macros
*
* All of them have "memory" clobber (compiler barrier) which is needed to
- * ensure that LD/ST requiring irq safetly (R-M-W when LLSC is not available)
+ * ensure that LD/ST requiring irq safety (R-M-W when LLSC is not available)
* are redone after IRQs are re-enabled (and gcc doesn't reuse stale register)
*
* Noted at the time of Abilis Timer List corruption
diff --git a/arch/arc/include/asm/mmu-arcv2.h b/arch/arc/include/asm/mmu-arcv2.h
index ed9036d4ede3..d85dc0721907 100644
--- a/arch/arc/include/asm/mmu-arcv2.h
+++ b/arch/arc/include/asm/mmu-arcv2.h
@@ -9,6 +9,8 @@
#ifndef _ASM_ARC_MMU_ARCV2_H
#define _ASM_ARC_MMU_ARCV2_H
+#include <soc/arc/aux.h>
+
/*
* TLB Management regs
*/
diff --git a/arch/arc/include/asm/mmu_context.h b/arch/arc/include/asm/mmu_context.h
index dda471f5f05b..9963bb1a5733 100644
--- a/arch/arc/include/asm/mmu_context.h
+++ b/arch/arc/include/asm/mmu_context.h
@@ -165,7 +165,7 @@ static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
* for retiring-mm. However destroy_context( ) still needs to do that because
* between mm_release( ) = >deactive_mm( ) and
* mmput => .. => __mmdrop( ) => destroy_context( )
- * there is a good chance that task gets sched-out/in, making it's ASID valid
+ * there is a good chance that task gets sched-out/in, making its ASID valid
* again (this teased me for a whole day).
*/
diff --git a/arch/arc/include/asm/pgtable-bits-arcv2.h b/arch/arc/include/asm/pgtable-bits-arcv2.h
index f3eea3f30b2e..8ebec1b21d24 100644
--- a/arch/arc/include/asm/pgtable-bits-arcv2.h
+++ b/arch/arc/include/asm/pgtable-bits-arcv2.h
@@ -66,7 +66,7 @@
* Other rules which cause the divergence from 1:1 mapping
*
* 1. Although ARC700 can do exclusive execute/write protection (meaning R
- * can be tracked independet of X/W unlike some other CPUs), still to
+ * can be tracked independently of X/W unlike some other CPUs), still to
* keep things consistent with other archs:
* -Write implies Read: W => R
* -Execute implies Read: X => R
diff --git a/arch/arc/include/asm/ptrace.h b/arch/arc/include/asm/ptrace.h
index 00b9318e551e..cf79df0b2570 100644
--- a/arch/arc/include/asm/ptrace.h
+++ b/arch/arc/include/asm/ptrace.h
@@ -169,7 +169,7 @@ static inline unsigned long regs_get_register(struct pt_regs *regs,
return *(unsigned long *)((unsigned long)regs + offset);
}
-extern int syscall_trace_entry(struct pt_regs *);
+extern int syscall_trace_enter(struct pt_regs *);
extern void syscall_trace_exit(struct pt_regs *);
#endif /* !__ASSEMBLY__ */
diff --git a/arch/arc/include/asm/shmparam.h b/arch/arc/include/asm/shmparam.h
index 8b0251464ffd..719112af0f41 100644
--- a/arch/arc/include/asm/shmparam.h
+++ b/arch/arc/include/asm/shmparam.h
@@ -6,7 +6,7 @@
#ifndef __ARC_ASM_SHMPARAM_H
#define __ARC_ASM_SHMPARAM_H
-/* Handle upto 2 cache bins */
+/* Handle up to 2 cache bins */
#define SHMLBA (2 * PAGE_SIZE)
/* Enforce SHMLBA in shmat */
diff --git a/arch/arc/include/asm/smp.h b/arch/arc/include/asm/smp.h
index e0913f52c2cd..990f834909f0 100644
--- a/arch/arc/include/asm/smp.h
+++ b/arch/arc/include/asm/smp.h
@@ -77,7 +77,7 @@ static inline const char *arc_platform_smp_cpuinfo(void)
/*
* ARC700 doesn't support atomic Read-Modify-Write ops.
- * Originally Interrupts had to be disabled around code to gaurantee atomicity.
+ * Originally Interrupts had to be disabled around code to guarantee atomicity.
* The LLOCK/SCOND insns allow writing interrupt-hassle-free based atomic ops
* based on retry-if-irq-in-atomic (with hardware assist).
* However despite these, we provide the IRQ disabling variant
@@ -86,7 +86,7 @@ static inline const char *arc_platform_smp_cpuinfo(void)
* support needed.
*
* (2) In a SMP setup, the LLOCK/SCOND atomicity across CPUs needs to be
- * gaurantted by the platform (not something which core handles).
+ * guaranteed by the platform (not something which core handles).
* Assuming a platform won't, SMP Linux needs to use spinlocks + local IRQ
* disabling for atomicity.
*
diff --git a/arch/arc/include/asm/thread_info.h b/arch/arc/include/asm/thread_info.h
index 4c530cf131f3..12daaf3a61ea 100644
--- a/arch/arc/include/asm/thread_info.h
+++ b/arch/arc/include/asm/thread_info.h
@@ -38,7 +38,7 @@
struct thread_info {
unsigned long flags; /* low level flags */
unsigned long ksp; /* kernel mode stack top in __switch_to */
- int preempt_count; /* 0 => preemptable, <0 => BUG */
+ int preempt_count; /* 0 => preemptible, <0 => BUG */
int cpu; /* current CPU */
unsigned long thr_ptr; /* TLS ptr */
struct task_struct *task; /* main task structure */
diff --git a/arch/arc/include/uapi/asm/swab.h b/arch/arc/include/uapi/asm/swab.h
index 02109cd48ee1..8d1f1ef44ba7 100644
--- a/arch/arc/include/uapi/asm/swab.h
+++ b/arch/arc/include/uapi/asm/swab.h
@@ -62,7 +62,7 @@
* 8051fdc4: st r2,[r1,20] ; Mem op : save result back to mem
*
* Joern suggested a better "C" algorithm which is great since
- * (1) It is portable to any architecure
+ * (1) It is portable to any architecture
* (2) At the same time it takes advantage of ARC ISA (rotate intrns)
*/
diff --git a/arch/arc/kernel/entry-arcv2.S b/arch/arc/kernel/entry-arcv2.S
index 2e49c81c8086..e238b5fd3c8c 100644
--- a/arch/arc/kernel/entry-arcv2.S
+++ b/arch/arc/kernel/entry-arcv2.S
@@ -5,7 +5,7 @@
* Copyright (C) 2013 Synopsys, Inc. (www.synopsys.com)
*/
-#include <linux/linkage.h> /* ARC_{EXTRY,EXIT} */
+#include <linux/linkage.h> /* ARC_{ENTRY,EXIT} */
#include <asm/entry.h> /* SAVE_ALL_{INT1,INT2,TRAP...} */
#include <asm/errno.h>
#include <asm/arcregs.h>
@@ -31,7 +31,7 @@ VECTOR res_service ; Reset Vector
VECTOR mem_service ; Mem exception
VECTOR instr_service ; Instrn Error
VECTOR EV_MachineCheck ; Fatal Machine check
-VECTOR EV_TLBMissI ; Intruction TLB miss
+VECTOR EV_TLBMissI ; Instruction TLB miss
VECTOR EV_TLBMissD ; Data TLB miss
VECTOR EV_TLBProtV ; Protection Violation
VECTOR EV_PrivilegeV ; Privilege Violation
@@ -76,11 +76,11 @@ ENTRY(handle_interrupt)
# query in hard ISR path would return false (since .IE is set) which would
# trips genirq interrupt handling asserts.
#
- # So do a "soft" disable of interrutps here.
+ # So do a "soft" disable of interrupts here.
#
# Note this disable is only for consistent book-keeping as further interrupts
# will be disabled anyways even w/o this. Hardware tracks active interrupts
- # seperately in AUX_IRQ_ACT.active and will not take new interrupts
+ # separately in AUX_IRQ_ACT.active and will not take new interrupts
# unless this one returns (or higher prio becomes pending in 2-prio scheme)
IRQ_DISABLE
diff --git a/arch/arc/kernel/entry.S b/arch/arc/kernel/entry.S
index 089f6680518f..3c7e74aba679 100644
--- a/arch/arc/kernel/entry.S
+++ b/arch/arc/kernel/entry.S
@@ -95,7 +95,7 @@ ENTRY(EV_MachineCheck)
lr r0, [efa]
mov r1, sp
- ; MC excpetions disable MMU
+ ; MC exceptions disable MMU
ARC_MMU_REENABLE r3
lsr r3, r10, 8
@@ -209,7 +209,7 @@ trap_with_param:
; ---------------------------------------------
; syscall TRAP
-; ABI: (r0-r7) upto 8 args, (r8) syscall number
+; ABI: (r0-r7) up to 8 args, (r8) syscall number
; ---------------------------------------------
ENTRY(EV_Trap)
diff --git a/arch/arc/kernel/head.S b/arch/arc/kernel/head.S
index 9152782444b5..8d541f53fae3 100644
--- a/arch/arc/kernel/head.S
+++ b/arch/arc/kernel/head.S
@@ -165,7 +165,7 @@ ENTRY(first_lines_of_secondary)
; setup stack (fp, sp)
mov fp, 0
- ; set it's stack base to tsk->thread_info bottom
+ ; set its stack base to tsk->thread_info bottom
GET_TSK_STACK_BASE r0, sp
j start_kernel_secondary
diff --git a/arch/arc/kernel/intc-arcv2.c b/arch/arc/kernel/intc-arcv2.c
index 678898757e47..f324f0e3341a 100644
--- a/arch/arc/kernel/intc-arcv2.c
+++ b/arch/arc/kernel/intc-arcv2.c
@@ -56,7 +56,7 @@ void arc_init_IRQ(void)
WRITE_AUX(AUX_IRQ_CTRL, ictrl);
/*
- * ARCv2 core intc provides multiple interrupt priorities (upto 16).
+ * ARCv2 core intc provides multiple interrupt priorities (up to 16).
* Typical builds though have only two levels (0-high, 1-low)
* Linux by default uses lower prio 1 for most irqs, reserving 0 for
* NMI style interrupts in future (say perf)
diff --git a/arch/arc/kernel/kprobes.c b/arch/arc/kernel/kprobes.c
index e71d64119d71..f8e2960832d9 100644
--- a/arch/arc/kernel/kprobes.c
+++ b/arch/arc/kernel/kprobes.c
@@ -190,7 +190,8 @@ static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs)
}
}
-int __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs)
+static int
+__kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs)
{
struct kprobe *p;
struct kprobe_ctlblk *kcb;
@@ -241,8 +242,8 @@ int __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs)
return 0;
}
-static int __kprobes arc_post_kprobe_handler(unsigned long addr,
- struct pt_regs *regs)
+static int
+__kprobes arc_post_kprobe_handler(unsigned long addr, struct pt_regs *regs)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
diff --git a/arch/arc/kernel/perf_event.c b/arch/arc/kernel/perf_event.c
index adff957962da..6e5a651cd75c 100644
--- a/arch/arc/kernel/perf_event.c
+++ b/arch/arc/kernel/perf_event.c
@@ -38,7 +38,7 @@
* (based on a specific RTL build)
* Below is the static map between perf generic/arc specific event_id and
* h/w condition names.
- * At the time of probe, we loop thru each index and find it's name to
+ * At the time of probe, we loop thru each index and find its name to
* complete the mapping of perf event_id to h/w index as latter is needed
* to program the counter really
*/
diff --git a/arch/arc/kernel/setup.c b/arch/arc/kernel/setup.c
index d08a5092c2b4..7b6a9beba9db 100644
--- a/arch/arc/kernel/setup.c
+++ b/arch/arc/kernel/setup.c
@@ -390,7 +390,7 @@ static void arc_chk_core_config(struct cpuinfo_arc *info)
#ifdef CONFIG_ARC_HAS_DCCM
/*
* DCCM can be arbit placed in hardware.
- * Make sure it's placement/sz matches what Linux is built with
+ * Make sure its placement/sz matches what Linux is built with
*/
if ((unsigned int)__arc_dccm_base != info->dccm.base)
panic("Linux built with incorrect DCCM Base address\n");
diff --git a/arch/arc/kernel/signal.c b/arch/arc/kernel/signal.c
index 8f6f4a542964..fefa705a8638 100644
--- a/arch/arc/kernel/signal.c
+++ b/arch/arc/kernel/signal.c
@@ -8,15 +8,16 @@
*
* vineetg: Nov 2009 (Everything needed for TIF_RESTORE_SIGMASK)
* -do_signal() supports TIF_RESTORE_SIGMASK
- * -do_signal() no loner needs oldset, required by OLD sys_sigsuspend
- * -sys_rt_sigsuspend() now comes from generic code, so discard arch implemen
+ * -do_signal() no longer needs oldset, required by OLD sys_sigsuspend
+ * -sys_rt_sigsuspend() now comes from generic code, so discard arch
+ * implementation
* -sys_sigsuspend() no longer needs to fudge ptregs, hence that arg removed
* -sys_sigsuspend() no longer loops for do_signal(), sets TIF_xxx and leaves
* the job to do_signal()
*
* vineetg: July 2009
* -Modified Code to support the uClibc provided userland sigreturn stub
- * to avoid kernel synthesing it on user stack at runtime, costing TLB
+ * to avoid kernel synthesizing it on user stack at runtime, costing TLB
* probes and Cache line flushes.
*
* vineetg: July 2009
diff --git a/arch/arc/kernel/traps.c b/arch/arc/kernel/traps.c
index 9b9570b79362..a19751e824fb 100644
--- a/arch/arc/kernel/traps.c
+++ b/arch/arc/kernel/traps.c
@@ -89,7 +89,7 @@ int do_misaligned_access(unsigned long address, struct pt_regs *regs,
/*
* Entry point for miscll errors such as Nested Exceptions
- * -Duplicate TLB entry is handled seperately though
+ * -Duplicate TLB entry is handled separately though
*/
void do_machine_check_fault(unsigned long address, struct pt_regs *regs)
{
diff --git a/arch/arc/kernel/vmlinux.lds.S b/arch/arc/kernel/vmlinux.lds.S
index 549c3f407918..61a1b2b96e1d 100644
--- a/arch/arc/kernel/vmlinux.lds.S
+++ b/arch/arc/kernel/vmlinux.lds.S
@@ -41,8 +41,8 @@ SECTIONS
#endif
/*
- * The reason for having a seperate subsection .init.ramfs is to
- * prevent objump from including it in kernel dumps
+ * The reason for having a separate subsection .init.ramfs is to
+ * prevent objdump from including it in kernel dumps
*
* Reason for having .init.ramfs above .init is to make sure that the
* binary blob is tucked away to one side, reducing the displacement
diff --git a/arch/arc/mm/dma.c b/arch/arc/mm/dma.c
index 197707bc7658..6b85e94f3275 100644
--- a/arch/arc/mm/dma.c
+++ b/arch/arc/mm/dma.c
@@ -90,8 +90,7 @@ void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
/*
* Plug in direct dma map ops.
*/
-void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
- bool coherent)
+void arch_setup_dma_ops(struct device *dev, bool coherent)
{
/*
* IOC hardware snoops all DMA traffic keeping the caches consistent
diff --git a/arch/arc/mm/mmap.c b/arch/arc/mm/mmap.c
index 3c1c7ae73292..69a915297155 100644
--- a/arch/arc/mm/mmap.c
+++ b/arch/arc/mm/mmap.c
@@ -27,7 +27,7 @@ arch_get_unmapped_area(struct file *filp, unsigned long addr,
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
- struct vm_unmapped_area_info info;
+ struct vm_unmapped_area_info info = {};
/*
* We enforce the MAP_FIXED case.
@@ -51,11 +51,9 @@ arch_get_unmapped_area(struct file *filp, unsigned long addr,
return addr;
}
- info.flags = 0;
info.length = len;
info.low_limit = mm->mmap_base;
info.high_limit = TASK_SIZE;
- info.align_mask = 0;
info.align_offset = pgoff << PAGE_SHIFT;
return vm_unmapped_area(&info);
}
diff --git a/arch/arc/mm/tlb.c b/arch/arc/mm/tlb.c
index ad702b49aeb3..cae4a7aae0ed 100644
--- a/arch/arc/mm/tlb.c
+++ b/arch/arc/mm/tlb.c
@@ -212,7 +212,7 @@ void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
unsigned long flags;
/* If range @start to @end is more than 32 TLB entries deep,
- * its better to move to a new ASID rather than searching for
+ * it's better to move to a new ASID rather than searching for
* individual entries and then shooting them down
*
* The calc above is rough, doesn't account for unaligned parts,
@@ -408,7 +408,7 @@ static void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *p
* -More importantly it makes this handler inconsistent with fast-path
* TLB Refill handler which always deals with "current"
*
- * Lets see the use cases when current->mm != vma->mm and we land here
+ * Let's see the use cases when current->mm != vma->mm and we land here
* 1. execve->copy_strings()->__get_user_pages->handle_mm_fault
* Here VM wants to pre-install a TLB entry for user stack while
* current->mm still points to pre-execve mm (hence the condition).
diff --git a/arch/arc/mm/tlbex.S b/arch/arc/mm/tlbex.S
index e054780a8fe0..dc65e87a531f 100644
--- a/arch/arc/mm/tlbex.S
+++ b/arch/arc/mm/tlbex.S
@@ -5,19 +5,19 @@
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
*
* Vineetg: April 2011 :
- * -MMU v1: moved out legacy code into a seperate file
+ * -MMU v1: moved out legacy code into a separate file
* -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
* helps avoid a shift when preparing PD0 from PTE
*
* Vineetg: July 2009
- * -For MMU V2, we need not do heuristics at the time of commiting a D-TLB
- * entry, so that it doesn't knock out it's I-TLB entry
+ * -For MMU V2, we need not do heuristics at the time of committing a D-TLB
+ * entry, so that it doesn't knock out its I-TLB entry
* -Some more fine tuning:
* bmsk instead of add, asl.cc instead of branch, delay slot utilise etc
*
* Vineetg: July 2009
* -Practically rewrote the I/D TLB Miss handlers
- * Now 40 and 135 instructions a peice as compared to 131 and 449 resp.
+ * Now 40 and 135 instructions apiece as compared to 131 and 449 resp.
* Hence Leaner by 1.5 K
* Used Conditional arithmetic to replace excessive branching
* Also used short instructions wherever possible
diff --git a/arch/arc/net/Makefile b/arch/arc/net/Makefile
new file mode 100644
index 000000000000..ea5790952e9a
--- /dev/null
+++ b/arch/arc/net/Makefile
@@ -0,0 +1,6 @@
+# SPDX-License-Identifier: GPL-2.0-only
+
+ifeq ($(CONFIG_ISA_ARCV2),y)
+ obj-$(CONFIG_BPF_JIT) += bpf_jit_core.o
+ obj-$(CONFIG_BPF_JIT) += bpf_jit_arcv2.o
+endif
diff --git a/arch/arc/net/bpf_jit.h b/arch/arc/net/bpf_jit.h
new file mode 100644
index 000000000000..495f3023e4c1
--- /dev/null
+++ b/arch/arc/net/bpf_jit.h
@@ -0,0 +1,164 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * The interface that a back-end should provide to bpf_jit_core.c.
+ *
+ * Copyright (c) 2024 Synopsys Inc.
+ * Author: Shahab Vahedi <shahab@synopsys.com>
+ */
+
+#ifndef _ARC_BPF_JIT_H
+#define _ARC_BPF_JIT_H
+
+#include <linux/bpf.h>
+#include <linux/filter.h>
+
+/* Print debug info and assert. */
+//#define ARC_BPF_JIT_DEBUG
+
+/* Determine the address type of the target. */
+#ifdef CONFIG_ISA_ARCV2
+#define ARC_ADDR u32
+#endif
+
+/*
+ * For the translation of some BPF instructions, a temporary register
+ * might be needed for some interim data.
+ */
+#define JIT_REG_TMP MAX_BPF_JIT_REG
+
+/*
+ * Buffer access: If buffer "b" is not NULL, advance by "n" bytes.
+ *
+ * This macro must be used in any place that potentially requires a
+ * "buf + len". This way, we make sure that the "buf" argument for
+ * the underlying "arc_*(buf, ...)" ends up as NULL instead of something
+ * like "0+4" or "0+8", etc. Those "arc_*()" functions check their "buf"
+ * value to decide if instructions should be emitted or not.
+ */
+#define BUF(b, n) (((b) != NULL) ? ((b) + (n)) : (b))
+
+/************** Functions that the back-end must provide **************/
+/* Extension for 32-bit operations. */
+u8 zext(u8 *buf, u8 rd);
+/***** Moves *****/
+u8 mov_r32(u8 *buf, u8 rd, u8 rs, u8 sign_ext);
+u8 mov_r32_i32(u8 *buf, u8 reg, s32 imm);
+u8 mov_r64(u8 *buf, u8 rd, u8 rs, u8 sign_ext);
+u8 mov_r64_i32(u8 *buf, u8 reg, s32 imm);
+u8 mov_r64_i64(u8 *buf, u8 reg, u32 lo, u32 hi);
+/***** Loads and stores *****/
+u8 load_r(u8 *buf, u8 rd, u8 rs, s16 off, u8 size, bool sign_ext);
+u8 store_r(u8 *buf, u8 rd, u8 rs, s16 off, u8 size);
+u8 store_i(u8 *buf, s32 imm, u8 rd, s16 off, u8 size);
+/***** Addition *****/
+u8 add_r32(u8 *buf, u8 rd, u8 rs);
+u8 add_r32_i32(u8 *buf, u8 rd, s32 imm);
+u8 add_r64(u8 *buf, u8 rd, u8 rs);
+u8 add_r64_i32(u8 *buf, u8 rd, s32 imm);
+/***** Subtraction *****/
+u8 sub_r32(u8 *buf, u8 rd, u8 rs);
+u8 sub_r32_i32(u8 *buf, u8 rd, s32 imm);
+u8 sub_r64(u8 *buf, u8 rd, u8 rs);
+u8 sub_r64_i32(u8 *buf, u8 rd, s32 imm);
+/***** Multiplication *****/
+u8 mul_r32(u8 *buf, u8 rd, u8 rs);
+u8 mul_r32_i32(u8 *buf, u8 rd, s32 imm);
+u8 mul_r64(u8 *buf, u8 rd, u8 rs);
+u8 mul_r64_i32(u8 *buf, u8 rd, s32 imm);
+/***** Division *****/
+u8 div_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext);
+u8 div_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext);
+/***** Remainder *****/
+u8 mod_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext);
+u8 mod_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext);
+/***** Bitwise AND *****/
+u8 and_r32(u8 *buf, u8 rd, u8 rs);
+u8 and_r32_i32(u8 *buf, u8 rd, s32 imm);
+u8 and_r64(u8 *buf, u8 rd, u8 rs);
+u8 and_r64_i32(u8 *buf, u8 rd, s32 imm);
+/***** Bitwise OR *****/
+u8 or_r32(u8 *buf, u8 rd, u8 rs);
+u8 or_r32_i32(u8 *buf, u8 rd, s32 imm);
+u8 or_r64(u8 *buf, u8 rd, u8 rs);
+u8 or_r64_i32(u8 *buf, u8 rd, s32 imm);
+/***** Bitwise XOR *****/
+u8 xor_r32(u8 *buf, u8 rd, u8 rs);
+u8 xor_r32_i32(u8 *buf, u8 rd, s32 imm);
+u8 xor_r64(u8 *buf, u8 rd, u8 rs);
+u8 xor_r64_i32(u8 *buf, u8 rd, s32 imm);
+/***** Bitwise Negate *****/
+u8 neg_r32(u8 *buf, u8 r);
+u8 neg_r64(u8 *buf, u8 r);
+/***** Bitwise left shift *****/
+u8 lsh_r32(u8 *buf, u8 rd, u8 rs);
+u8 lsh_r32_i32(u8 *buf, u8 rd, u8 imm);
+u8 lsh_r64(u8 *buf, u8 rd, u8 rs);
+u8 lsh_r64_i32(u8 *buf, u8 rd, s32 imm);
+/***** Bitwise right shift (logical) *****/
+u8 rsh_r32(u8 *buf, u8 rd, u8 rs);
+u8 rsh_r32_i32(u8 *buf, u8 rd, u8 imm);
+u8 rsh_r64(u8 *buf, u8 rd, u8 rs);
+u8 rsh_r64_i32(u8 *buf, u8 rd, s32 imm);
+/***** Bitwise right shift (arithmetic) *****/
+u8 arsh_r32(u8 *buf, u8 rd, u8 rs);
+u8 arsh_r32_i32(u8 *buf, u8 rd, u8 imm);
+u8 arsh_r64(u8 *buf, u8 rd, u8 rs);
+u8 arsh_r64_i32(u8 *buf, u8 rd, s32 imm);
+/***** Frame related *****/
+u32 mask_for_used_regs(u8 bpf_reg, bool is_call);
+u8 arc_prologue(u8 *buf, u32 usage, u16 frame_size);
+u8 arc_epilogue(u8 *buf, u32 usage, u16 frame_size);
+/***** Jumps *****/
+/*
+ * Different sorts of conditions (ARC enum as opposed to BPF_*).
+ *
+ * Do not change the order of enums here. ARC_CC_SLE+1 is used
+ * to determine the number of JCCs.
+ */
+enum ARC_CC {
+ ARC_CC_UGT = 0, /* unsigned > */
+ ARC_CC_UGE, /* unsigned >= */
+ ARC_CC_ULT, /* unsigned < */
+ ARC_CC_ULE, /* unsigned <= */
+ ARC_CC_SGT, /* signed > */
+ ARC_CC_SGE, /* signed >= */
+ ARC_CC_SLT, /* signed < */
+ ARC_CC_SLE, /* signed <= */
+ ARC_CC_AL, /* always */
+ ARC_CC_EQ, /* == */
+ ARC_CC_NE, /* != */
+ ARC_CC_SET, /* test */
+ ARC_CC_LAST
+};
+
+/*
+ * A few notes:
+ *
+ * - check_jmp_*() are prerequisites before calling the gen_jmp_*().
+ * They return "true" if the jump is possible and "false" otherwise.
+ *
+ * - The notion of "*_off" is to emphasize that these parameters are
+ * merely offsets in the JIT stream and not absolute addresses. One
+ * can look at them as addresses if the JIT code would start from
+ * address 0x0000_0000. Nonetheless, since the buffer address for the
+ * JIT is on a word-aligned address, this works and actually makes
+ * things simpler (offsets are in the range of u32 which is more than
+ * enough).
+ */
+bool check_jmp_32(u32 curr_off, u32 targ_off, u8 cond);
+bool check_jmp_64(u32 curr_off, u32 targ_off, u8 cond);
+u8 gen_jmp_32(u8 *buf, u8 rd, u8 rs, u8 cond, u32 c_off, u32 t_off);
+u8 gen_jmp_64(u8 *buf, u8 rd, u8 rs, u8 cond, u32 c_off, u32 t_off);
+/***** Miscellaneous *****/
+u8 gen_func_call(u8 *buf, ARC_ADDR func_addr, bool external_func);
+u8 arc_to_bpf_return(u8 *buf);
+/*
+ * - Perform byte swaps on "rd" based on the "size".
+ * - If "force" is set, do it unconditionally. Otherwise, consider the
+ * desired "endian"ness and the host endianness.
+ * - For data "size"s up to 32 bits, perform a zero-extension if asked
+ * by the "do_zext" boolean.
+ */
+u8 gen_swap(u8 *buf, u8 rd, u8 size, u8 endian, bool force, bool do_zext);
+
+#endif /* _ARC_BPF_JIT_H */
diff --git a/arch/arc/net/bpf_jit_arcv2.c b/arch/arc/net/bpf_jit_arcv2.c
new file mode 100644
index 000000000000..4458e409ca0a
--- /dev/null
+++ b/arch/arc/net/bpf_jit_arcv2.c
@@ -0,0 +1,3007 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * The ARCv2 backend of Just-In-Time compiler for eBPF bytecode.
+ *
+ * Copyright (c) 2024 Synopsys Inc.
+ * Author: Shahab Vahedi <shahab@synopsys.com>
+ */
+#include <linux/bug.h>
+#include "bpf_jit.h"
+
+/* ARC core registers. */
+enum {
+ ARC_R_0, ARC_R_1, ARC_R_2, ARC_R_3, ARC_R_4, ARC_R_5,
+ ARC_R_6, ARC_R_7, ARC_R_8, ARC_R_9, ARC_R_10, ARC_R_11,
+ ARC_R_12, ARC_R_13, ARC_R_14, ARC_R_15, ARC_R_16, ARC_R_17,
+ ARC_R_18, ARC_R_19, ARC_R_20, ARC_R_21, ARC_R_22, ARC_R_23,
+ ARC_R_24, ARC_R_25, ARC_R_26, ARC_R_FP, ARC_R_SP, ARC_R_ILINK,
+ ARC_R_30, ARC_R_BLINK,
+ /*
+ * Having ARC_R_IMM encoded as source register means there is an
+ * immediate that must be interpreted from the next 4 bytes. If
+ * encoded as the destination register though, it implies that the
+ * output of the operation is not assigned to any register. The
+ * latter is helpful if we only care about updating the CPU status
+ * flags.
+ */
+ ARC_R_IMM = 62
+};
+
+/*
+ * Remarks about the rationale behind the chosen mapping:
+ *
+ * - BPF_REG_{1,2,3,4} are the argument registers and must be mapped to
+ * argument registers in ARCv2 ABI: r0-r7. The r7 registers is the last
+ * argument register in the ABI. Therefore BPF_REG_5, as the fifth
+ * argument, must be pushed onto the stack. This is a must for calling
+ * in-kernel functions.
+ *
+ * - In ARCv2 ABI, the return value is in r0 for 32-bit results and (r1,r0)
+ * for 64-bit results. However, because they're already used for BPF_REG_1,
+ * the next available scratch registers, r8 and r9, are the best candidates
+ * for BPF_REG_0. After a "call" to a(n) (in-kernel) function, the result
+ * is "mov"ed to these registers. At a BPF_EXIT, their value is "mov"ed to
+ * (r1,r0).
+ * It is worth mentioning that scratch registers are the best choice for
+ * BPF_REG_0, because it is very popular in BPF instruction encoding.
+ *
+ * - JIT_REG_TMP is an artifact needed to translate some BPF instructions.
+ * Its life span is one single BPF instruction. Since during the
+ * analyze_reg_usage(), it is not known if temporary registers are used,
+ * it is mapped to ARC's scratch registers: r10 and r11. Therefore, they
+ * don't matter in analysing phase and don't need saving. This temporary
+ * register is added as yet another index in the bpf2arc array, so it will
+ * unfold like the rest of registers during the code generation process.
+ *
+ * - Mapping of callee-saved BPF registers, BPF_REG_{6,7,8,9}, starts from
+ * (r15,r14) register pair. The (r13,r12) is not a good choice, because
+ * in ARCv2 ABI, r12 is not a callee-saved register and this can cause
+ * problem when calling an in-kernel function. Theoretically, the mapping
+ * could start from (r14,r13), but it is not a conventional ARCv2 register
+ * pair. To have a future proof design, I opted for this arrangement.
+ * If/when we decide to add ARCv2 instructions that do use register pairs,
+ * the mapping, hopefully, doesn't need to be revisited.
+ */
+static const u8 bpf2arc[][2] = {
+ /* Return value from in-kernel function, and exit value from eBPF */
+ [BPF_REG_0] = {ARC_R_8, ARC_R_9},
+ /* Arguments from eBPF program to in-kernel function */
+ [BPF_REG_1] = {ARC_R_0, ARC_R_1},
+ [BPF_REG_2] = {ARC_R_2, ARC_R_3},
+ [BPF_REG_3] = {ARC_R_4, ARC_R_5},
+ [BPF_REG_4] = {ARC_R_6, ARC_R_7},
+ /* Remaining arguments, to be passed on the stack per 32-bit ABI */
+ [BPF_REG_5] = {ARC_R_22, ARC_R_23},
+ /* Callee-saved registers that in-kernel function will preserve */
+ [BPF_REG_6] = {ARC_R_14, ARC_R_15},
+ [BPF_REG_7] = {ARC_R_16, ARC_R_17},
+ [BPF_REG_8] = {ARC_R_18, ARC_R_19},
+ [BPF_REG_9] = {ARC_R_20, ARC_R_21},
+ /* Read-only frame pointer to access the eBPF stack. 32-bit only. */
+ [BPF_REG_FP] = {ARC_R_FP, },
+ /* Register for blinding constants */
+ [BPF_REG_AX] = {ARC_R_24, ARC_R_25},
+ /* Temporary registers for internal use */
+ [JIT_REG_TMP] = {ARC_R_10, ARC_R_11}
+};
+
+#define ARC_CALLEE_SAVED_REG_FIRST ARC_R_13
+#define ARC_CALLEE_SAVED_REG_LAST ARC_R_25
+
+#define REG_LO(r) (bpf2arc[(r)][0])
+#define REG_HI(r) (bpf2arc[(r)][1])
+
+/*
+ * To comply with ARCv2 ABI, BPF's arg5 must be put on stack. After which,
+ * the stack needs to be restored by ARG5_SIZE.
+ */
+#define ARG5_SIZE 8
+
+/* Instruction lengths in bytes. */
+enum {
+ INSN_len_normal = 4, /* Normal instructions length. */
+ INSN_len_imm = 4 /* Length of an extra 32-bit immediate. */
+};
+
+/* ZZ defines the size of operation in encodings that it is used. */
+enum {
+ ZZ_1_byte = 1,
+ ZZ_2_byte = 2,
+ ZZ_4_byte = 0,
+ ZZ_8_byte = 3
+};
+
+/*
+ * AA is mostly about address write back mode. It determines if the
+ * address in question should be updated before usage or after:
+ * addr += offset; data = *addr;
+ * data = *addr; addr += offset;
+ *
+ * In "scaling" mode, the effective address will become the sum
+ * of "address" + "index"*"size". The "size" is specified by the
+ * "ZZ" field. There is no write back when AA is set for scaling:
+ * data = *(addr + offset<<zz)
+ */
+enum {
+ AA_none = 0,
+ AA_pre = 1, /* in assembly known as "a/aw". */
+ AA_post = 2, /* in assembly known as "ab". */
+ AA_scale = 3 /* in assembly known as "as". */
+};
+
+/* X flag determines the mode of extension. */
+enum {
+ X_zero = 0,
+ X_sign = 1
+};
+
+/* Condition codes. */
+enum {
+ CC_always = 0, /* condition is true all the time */
+ CC_equal = 1, /* if status32.z flag is set */
+ CC_unequal = 2, /* if status32.z flag is clear */
+ CC_positive = 3, /* if status32.n flag is clear */
+ CC_negative = 4, /* if status32.n flag is set */
+ CC_less_u = 5, /* less than (unsigned) */
+ CC_less_eq_u = 14, /* less than or equal (unsigned) */
+ CC_great_eq_u = 6, /* greater than or equal (unsigned) */
+ CC_great_u = 13, /* greater than (unsigned) */
+ CC_less_s = 11, /* less than (signed) */
+ CC_less_eq_s = 12, /* less than or equal (signed) */
+ CC_great_eq_s = 10, /* greater than or equal (signed) */
+ CC_great_s = 9 /* greater than (signed) */
+};
+
+#define IN_U6_RANGE(x) ((x) <= (0x40 - 1) && (x) >= 0)
+#define IN_S9_RANGE(x) ((x) <= (0x100 - 1) && (x) >= -0x100)
+#define IN_S12_RANGE(x) ((x) <= (0x800 - 1) && (x) >= -0x800)
+#define IN_S21_RANGE(x) ((x) <= (0x100000 - 1) && (x) >= -0x100000)
+#define IN_S25_RANGE(x) ((x) <= (0x1000000 - 1) && (x) >= -0x1000000)
+
+/* Operands in most of the encodings. */
+#define OP_A(x) ((x) & 0x03f)
+#define OP_B(x) ((((x) & 0x07) << 24) | (((x) & 0x38) << 9))
+#define OP_C(x) (((x) & 0x03f) << 6)
+#define OP_IMM (OP_C(ARC_R_IMM))
+#define COND(x) (OP_A((x) & 31))
+#define FLAG(x) (((x) & 1) << 15)
+
+/*
+ * The 4-byte encoding of "mov b,c":
+ *
+ * 0010_0bbb 0000_1010 0BBB_cccc cc00_0000
+ *
+ * b: BBBbbb destination register
+ * c: cccccc source register
+ */
+#define OPC_MOV 0x200a0000
+
+/*
+ * The 4-byte encoding of "mov b,s12" (used for moving small immediates):
+ *
+ * 0010_0bbb 1000_1010 0BBB_ssss ssSS_SSSS
+ *
+ * b: BBBbbb destination register
+ * s: SSSSSSssssss source immediate (signed)
+ */
+#define OPC_MOVI 0x208a0000
+#define MOVI_S12(x) ((((x) & 0xfc0) >> 6) | (((x) & 0x3f) << 6))
+
+/*
+ * The 4-byte encoding of "mov[.qq] b,u6", used for conditional
+ * moving of even smaller immediates:
+ *
+ * 0010_0bbb 1100_1010 0BBB_cccc cciq_qqqq
+ *
+ * qq: qqqqq condition code
+ * i: If set, c is considered a 6-bit immediate, else a reg.
+ *
+ * b: BBBbbb destination register
+ * c: cccccc source
+ */
+#define OPC_MOV_CC 0x20ca0000
+#define MOV_CC_I BIT(5)
+#define OPC_MOVU_CC (OPC_MOV_CC | MOV_CC_I)
+
+/*
+ * The 4-byte encoding of "sexb b,c" (8-bit sign extension):
+ *
+ * 0010_0bbb 0010_1111 0BBB_cccc cc00_0101
+ *
+ * b: BBBbbb destination register
+ * c: cccccc source register
+ */
+#define OPC_SEXB 0x202f0005
+
+/*
+ * The 4-byte encoding of "sexh b,c" (16-bit sign extension):
+ *
+ * 0010_0bbb 0010_1111 0BBB_cccc cc00_0110
+ *
+ * b: BBBbbb destination register
+ * c: cccccc source register
+ */
+#define OPC_SEXH 0x202f0006
+
+/*
+ * The 4-byte encoding of "ld[zz][.x][.aa] c,[b,s9]":
+ *
+ * 0001_0bbb ssss_ssss SBBB_0aaz zxcc_cccc
+ *
+ * zz: size mode
+ * aa: address write back mode
+ * x: extension mode
+ *
+ * s9: S_ssss_ssss 9-bit signed number
+ * b: BBBbbb source reg for address
+ * c: cccccc destination register
+ */
+#define OPC_LOAD 0x10000000
+#define LOAD_X(x) ((x) << 6)
+#define LOAD_ZZ(x) ((x) << 7)
+#define LOAD_AA(x) ((x) << 9)
+#define LOAD_S9(x) ((((x) & 0x0ff) << 16) | (((x) & 0x100) << 7))
+#define LOAD_C(x) ((x) & 0x03f)
+/* Unsigned and signed loads. */
+#define OPC_LDU (OPC_LOAD | LOAD_X(X_zero))
+#define OPC_LDS (OPC_LOAD | LOAD_X(X_sign))
+/* 32-bit load. */
+#define OPC_LD32 (OPC_LDU | LOAD_ZZ(ZZ_4_byte))
+/* "pop reg" is merely a "ld.ab reg,[sp,4]". */
+#define OPC_POP \
+ (OPC_LD32 | LOAD_AA(AA_post) | LOAD_S9(4) | OP_B(ARC_R_SP))
+
+/*
+ * The 4-byte encoding of "st[zz][.aa] c,[b,s9]":
+ *
+ * 0001_1bbb ssss_ssss SBBB_cccc cc0a_azz0
+ *
+ * zz: zz size mode
+ * aa: aa address write back mode
+ *
+ * s9: S_ssss_ssss 9-bit signed number
+ * b: BBBbbb source reg for address
+ * c: cccccc source reg to be stored
+ */
+#define OPC_STORE 0x18000000
+#define STORE_ZZ(x) ((x) << 1)
+#define STORE_AA(x) ((x) << 3)
+#define STORE_S9(x) ((((x) & 0x0ff) << 16) | (((x) & 0x100) << 7))
+/* 32-bit store. */
+#define OPC_ST32 (OPC_STORE | STORE_ZZ(ZZ_4_byte))
+/* "push reg" is merely a "st.aw reg,[sp,-4]". */
+#define OPC_PUSH \
+ (OPC_ST32 | STORE_AA(AA_pre) | STORE_S9(-4) | OP_B(ARC_R_SP))
+
+/*
+ * The 4-byte encoding of "add a,b,c":
+ *
+ * 0010_0bbb 0i00_0000 fBBB_cccc ccaa_aaaa
+ *
+ * f: indicates if flags (carry, etc.) should be updated
+ * i: If set, c is considered a 6-bit immediate, else a reg.
+ *
+ * a: aaaaaa result
+ * b: BBBbbb the 1st input operand
+ * c: cccccc the 2nd input operand
+ */
+#define OPC_ADD 0x20000000
+/* Addition with updating the pertinent flags in "status32" register. */
+#define OPC_ADDF (OPC_ADD | FLAG(1))
+#define ADDI BIT(22)
+#define ADDI_U6(x) OP_C(x)
+#define OPC_ADDI (OPC_ADD | ADDI)
+#define OPC_ADDIF (OPC_ADDI | FLAG(1))
+#define OPC_ADD_I (OPC_ADD | OP_IMM)
+
+/*
+ * The 4-byte encoding of "adc a,b,c" (addition with carry):
+ *
+ * 0010_0bbb 0i00_0001 0BBB_cccc ccaa_aaaa
+ *
+ * i: if set, c is considered a 6-bit immediate, else a reg.
+ *
+ * a: aaaaaa result
+ * b: BBBbbb the 1st input operand
+ * c: cccccc the 2nd input operand
+ */
+#define OPC_ADC 0x20010000
+#define ADCI BIT(22)
+#define ADCI_U6(x) OP_C(x)
+#define OPC_ADCI (OPC_ADC | ADCI)
+
+/*
+ * The 4-byte encoding of "sub a,b,c":
+ *
+ * 0010_0bbb 0i00_0010 fBBB_cccc ccaa_aaaa
+ *
+ * f: indicates if flags (carry, etc.) should be updated
+ * i: if set, c is considered a 6-bit immediate, else a reg.
+ *
+ * a: aaaaaa result
+ * b: BBBbbb the 1st input operand
+ * c: cccccc the 2nd input operand
+ */
+#define OPC_SUB 0x20020000
+/* Subtraction with updating the pertinent flags in "status32" register. */
+#define OPC_SUBF (OPC_SUB | FLAG(1))
+#define SUBI BIT(22)
+#define SUBI_U6(x) OP_C(x)
+#define OPC_SUBI (OPC_SUB | SUBI)
+#define OPC_SUB_I (OPC_SUB | OP_IMM)
+
+/*
+ * The 4-byte encoding of "sbc a,b,c" (subtraction with carry):
+ *
+ * 0010_0bbb 0000_0011 fBBB_cccc ccaa_aaaa
+ *
+ * f: indicates if flags (carry, etc.) should be updated
+ *
+ * a: aaaaaa result
+ * b: BBBbbb the 1st input operand
+ * c: cccccc the 2nd input operand
+ */
+#define OPC_SBC 0x20030000
+
+/*
+ * The 4-byte encoding of "cmp[.qq] b,c":
+ *
+ * 0010_0bbb 1100_1100 1BBB_cccc cc0q_qqqq
+ *
+ * qq: qqqqq condition code
+ *
+ * b: BBBbbb the 1st operand
+ * c: cccccc the 2nd operand
+ */
+#define OPC_CMP 0x20cc8000
+
+/*
+ * The 4-byte encoding of "neg a,b":
+ *
+ * 0010_0bbb 0100_1110 0BBB_0000 00aa_aaaa
+ *
+ * a: aaaaaa result
+ * b: BBBbbb input
+ */
+#define OPC_NEG 0x204e0000
+
+/*
+ * The 4-byte encoding of "mpy a,b,c".
+ * mpy is the signed 32-bit multiplication with the lower 32-bit
+ * of the product as the result.
+ *
+ * 0010_0bbb 0001_1010 0BBB_cccc ccaa_aaaa
+ *
+ * a: aaaaaa result
+ * b: BBBbbb the 1st input operand
+ * c: cccccc the 2nd input operand
+ */
+#define OPC_MPY 0x201a0000
+#define OPC_MPYI (OPC_MPY | OP_IMM)
+
+/*
+ * The 4-byte encoding of "mpydu a,b,c".
+ * mpydu is the unsigned 32-bit multiplication with the lower 32-bit of
+ * the product in register "a" and the higher 32-bit in register "a+1".
+ *
+ * 0010_1bbb 0001_1001 0BBB_cccc ccaa_aaaa
+ *
+ * a: aaaaaa 64-bit result in registers (R_a+1,R_a)
+ * b: BBBbbb the 1st input operand
+ * c: cccccc the 2nd input operand
+ */
+#define OPC_MPYDU 0x28190000
+#define OPC_MPYDUI (OPC_MPYDU | OP_IMM)
+
+/*
+ * The 4-byte encoding of "divu a,b,c" (unsigned division):
+ *
+ * 0010_1bbb 0000_0101 0BBB_cccc ccaa_aaaa
+ *
+ * a: aaaaaa result (quotient)
+ * b: BBBbbb the 1st input operand
+ * c: cccccc the 2nd input operand (divisor)
+ */
+#define OPC_DIVU 0x28050000
+#define OPC_DIVUI (OPC_DIVU | OP_IMM)
+
+/*
+ * The 4-byte encoding of "div a,b,c" (signed division):
+ *
+ * 0010_1bbb 0000_0100 0BBB_cccc ccaa_aaaa
+ *
+ * a: aaaaaa result (quotient)
+ * b: BBBbbb the 1st input operand
+ * c: cccccc the 2nd input operand (divisor)
+ */
+#define OPC_DIVS 0x28040000
+#define OPC_DIVSI (OPC_DIVS | OP_IMM)
+
+/*
+ * The 4-byte encoding of "remu a,b,c" (unsigned remainder):
+ *
+ * 0010_1bbb 0000_1001 0BBB_cccc ccaa_aaaa
+ *
+ * a: aaaaaa result (remainder)
+ * b: BBBbbb the 1st input operand
+ * c: cccccc the 2nd input operand (divisor)
+ */
+#define OPC_REMU 0x28090000
+#define OPC_REMUI (OPC_REMU | OP_IMM)
+
+/*
+ * The 4-byte encoding of "rem a,b,c" (signed remainder):
+ *
+ * 0010_1bbb 0000_1000 0BBB_cccc ccaa_aaaa
+ *
+ * a: aaaaaa result (remainder)
+ * b: BBBbbb the 1st input operand
+ * c: cccccc the 2nd input operand (divisor)
+ */
+#define OPC_REMS 0x28080000
+#define OPC_REMSI (OPC_REMS | OP_IMM)
+
+/*
+ * The 4-byte encoding of "and a,b,c":
+ *
+ * 0010_0bbb 0000_0100 fBBB_cccc ccaa_aaaa
+ *
+ * f: indicates if zero and negative flags should be updated
+ *
+ * a: aaaaaa result
+ * b: BBBbbb the 1st input operand
+ * c: cccccc the 2nd input operand
+ */
+#define OPC_AND 0x20040000
+#define OPC_ANDI (OPC_AND | OP_IMM)
+
+/*
+ * The 4-byte encoding of "tst[.qq] b,c".
+ * Checks if the two input operands have any bit set at the same
+ * position.
+ *
+ * 0010_0bbb 1100_1011 1BBB_cccc cc0q_qqqq
+ *
+ * qq: qqqqq condition code
+ *
+ * b: BBBbbb the 1st input operand
+ * c: cccccc the 2nd input operand
+ */
+#define OPC_TST 0x20cb8000
+
+/*
+ * The 4-byte encoding of "or a,b,c":
+ *
+ * 0010_0bbb 0000_0101 0BBB_cccc ccaa_aaaa
+ *
+ * a: aaaaaa result
+ * b: BBBbbb the 1st input operand
+ * c: cccccc the 2nd input operand
+ */
+#define OPC_OR 0x20050000
+#define OPC_ORI (OPC_OR | OP_IMM)
+
+/*
+ * The 4-byte encoding of "xor a,b,c":
+ *
+ * 0010_0bbb 0000_0111 0BBB_cccc ccaa_aaaa
+ *
+ * a: aaaaaa result
+ * b: BBBbbb the 1st input operand
+ * c: cccccc the 2nd input operand
+ */
+#define OPC_XOR 0x20070000
+#define OPC_XORI (OPC_XOR | OP_IMM)
+
+/*
+ * The 4-byte encoding of "not b,c":
+ *
+ * 0010_0bbb 0010_1111 0BBB_cccc cc00_1010
+ *
+ * b: BBBbbb result
+ * c: cccccc input
+ */
+#define OPC_NOT 0x202f000a
+
+/*
+ * The 4-byte encoding of "btst b,u6":
+ *
+ * 0010_0bbb 0101_0001 1BBB_uuuu uu00_0000
+ *
+ * b: BBBbbb input number to check
+ * u6: uuuuuu 6-bit unsigned number specifying bit position to check
+ */
+#define OPC_BTSTU6 0x20518000
+#define BTST_U6(x) (OP_C((x) & 63))
+
+/*
+ * The 4-byte encoding of "asl[.qq] b,b,c" (arithmetic shift left):
+ *
+ * 0010_1bbb 0i00_0000 0BBB_cccc ccaa_aaaa
+ *
+ * i: if set, c is considered a 5-bit immediate, else a reg.
+ *
+ * b: BBBbbb result and the first operand (number to be shifted)
+ * c: cccccc amount to be shifted
+ */
+#define OPC_ASL 0x28000000
+#define ASL_I BIT(22)
+#define ASLI_U6(x) OP_C((x) & 31)
+#define OPC_ASLI (OPC_ASL | ASL_I)
+
+/*
+ * The 4-byte encoding of "asr a,b,c" (arithmetic shift right):
+ *
+ * 0010_1bbb 0i00_0010 0BBB_cccc ccaa_aaaa
+ *
+ * i: if set, c is considered a 6-bit immediate, else a reg.
+ *
+ * a: aaaaaa result
+ * b: BBBbbb first input: number to be shifted
+ * c: cccccc second input: amount to be shifted
+ */
+#define OPC_ASR 0x28020000
+#define ASR_I ASL_I
+#define ASRI_U6(x) ASLI_U6(x)
+#define OPC_ASRI (OPC_ASR | ASR_I)
+
+/*
+ * The 4-byte encoding of "lsr a,b,c" (logical shift right):
+ *
+ * 0010_1bbb 0i00_0001 0BBB_cccc ccaa_aaaa
+ *
+ * i: if set, c is considered a 6-bit immediate, else a reg.
+ *
+ * a: aaaaaa result
+ * b: BBBbbb first input: number to be shifted
+ * c: cccccc second input: amount to be shifted
+ */
+#define OPC_LSR 0x28010000
+#define LSR_I ASL_I
+#define LSRI_U6(x) ASLI_U6(x)
+#define OPC_LSRI (OPC_LSR | LSR_I)
+
+/*
+ * The 4-byte encoding of "swape b,c":
+ *
+ * 0010_1bbb 0010_1111 0bbb_cccc cc00_1001
+ *
+ * b: BBBbbb destination register
+ * c: cccccc source register
+ */
+#define OPC_SWAPE 0x282f0009
+
+/*
+ * Encoding for jump to an address in register:
+ * j reg_c
+ *
+ * 0010_0000 1110_0000 0000_cccc cc00_0000
+ *
+ * c: cccccc register holding the destination address
+ */
+#define OPC_JMP 0x20e00000
+/* Jump to "branch-and-link" register, which effectively is a "return". */
+#define OPC_J_BLINK (OPC_JMP | OP_C(ARC_R_BLINK))
+
+/*
+ * Encoding for jump-and-link to an address in register:
+ * jl reg_c
+ *
+ * 0010_0000 0010_0010 0000_cccc cc00_0000
+ *
+ * c: cccccc register holding the destination address
+ */
+#define OPC_JL 0x20220000
+
+/*
+ * Encoding for (conditional) branch to an offset from the current location
+ * that is word aligned: (PC & 0xffff_fffc) + s21
+ * B[qq] s21
+ *
+ * 0000_0sss ssss_sss0 SSSS_SSSS SS0q_qqqq
+ *
+ * qq: qqqqq condition code
+ * s21: SSSS SSSS_SSss ssss_ssss The displacement (21-bit signed)
+ *
+ * The displacement is supposed to be 16-bit (2-byte) aligned. Therefore,
+ * it should be a multiple of 2. Hence, there is an implied '0' bit at its
+ * LSB: S_SSSS SSSS_Ssss ssss_sss0
+ */
+#define OPC_BCC 0x00000000
+#define BCC_S21(d) ((((d) & 0x7fe) << 16) | (((d) & 0x1ff800) >> 5))
+
+/*
+ * Encoding for unconditional branch to an offset from the current location
+ * that is word aligned: (PC & 0xffff_fffc) + s25
+ * B s25
+ *
+ * 0000_0sss ssss_sss1 SSSS_SSSS SS00_TTTT
+ *
+ * s25: TTTT SSSS SSSS_SSss ssss_ssss The displacement (25-bit signed)
+ *
+ * The displacement is supposed to be 16-bit (2-byte) aligned. Therefore,
+ * it should be a multiple of 2. Hence, there is an implied '0' bit at its
+ * LSB: T TTTS_SSSS SSSS_Ssss ssss_sss0
+ */
+#define OPC_B 0x00010000
+#define B_S25(d) ((((d) & 0x1e00000) >> 21) | BCC_S21(d))
+
+static inline void emit_2_bytes(u8 *buf, u16 bytes)
+{
+ *((u16 *)buf) = bytes;
+}
+
+static inline void emit_4_bytes(u8 *buf, u32 bytes)
+{
+ emit_2_bytes(buf, bytes >> 16);
+ emit_2_bytes(buf + 2, bytes & 0xffff);
+}
+
+static inline u8 bpf_to_arc_size(u8 size)
+{
+ switch (size) {
+ case BPF_B:
+ return ZZ_1_byte;
+ case BPF_H:
+ return ZZ_2_byte;
+ case BPF_W:
+ return ZZ_4_byte;
+ case BPF_DW:
+ return ZZ_8_byte;
+ default:
+ return ZZ_4_byte;
+ }
+}
+
+/************** Encoders (Deal with ARC regs) ************/
+
+/* Move an immediate to register with a 4-byte instruction. */
+static u8 arc_movi_r(u8 *buf, u8 reg, s16 imm)
+{
+ const u32 insn = OPC_MOVI | OP_B(reg) | MOVI_S12(imm);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* rd <- rs */
+static u8 arc_mov_r(u8 *buf, u8 rd, u8 rs)
+{
+ const u32 insn = OPC_MOV | OP_B(rd) | OP_C(rs);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* The emitted code may have different sizes based on "imm". */
+static u8 arc_mov_i(u8 *buf, u8 rd, s32 imm)
+{
+ const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM;
+
+ if (IN_S12_RANGE(imm))
+ return arc_movi_r(buf, rd, imm);
+
+ if (buf) {
+ emit_4_bytes(buf, insn);
+ emit_4_bytes(buf + INSN_len_normal, imm);
+ }
+ return INSN_len_normal + INSN_len_imm;
+}
+
+/* The emitted code will always have the same size (8). */
+static u8 arc_mov_i_fixed(u8 *buf, u8 rd, s32 imm)
+{
+ const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM;
+
+ if (buf) {
+ emit_4_bytes(buf, insn);
+ emit_4_bytes(buf + INSN_len_normal, imm);
+ }
+ return INSN_len_normal + INSN_len_imm;
+}
+
+/* Conditional move. */
+static u8 arc_mov_cc_r(u8 *buf, u8 cc, u8 rd, u8 rs)
+{
+ const u32 insn = OPC_MOV_CC | OP_B(rd) | OP_C(rs) | COND(cc);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* Conditional move of a small immediate to rd. */
+static u8 arc_movu_cc_r(u8 *buf, u8 cc, u8 rd, u8 imm)
+{
+ const u32 insn = OPC_MOVU_CC | OP_B(rd) | OP_C(imm) | COND(cc);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* Sign extension from a byte. */
+static u8 arc_sexb_r(u8 *buf, u8 rd, u8 rs)
+{
+ const u32 insn = OPC_SEXB | OP_B(rd) | OP_C(rs);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* Sign extension from two bytes. */
+static u8 arc_sexh_r(u8 *buf, u8 rd, u8 rs)
+{
+ const u32 insn = OPC_SEXH | OP_B(rd) | OP_C(rs);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* st reg, [reg_mem, off] */
+static u8 arc_st_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
+{
+ const u32 insn = OPC_STORE | STORE_ZZ(zz) | OP_C(reg) |
+ OP_B(reg_mem) | STORE_S9(off);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* st.aw reg, [sp, -4] */
+static u8 arc_push_r(u8 *buf, u8 reg)
+{
+ const u32 insn = OPC_PUSH | OP_C(reg);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* ld reg, [reg_mem, off] (unsigned) */
+static u8 arc_ld_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
+{
+ const u32 insn = OPC_LDU | LOAD_ZZ(zz) | LOAD_C(reg) |
+ OP_B(reg_mem) | LOAD_S9(off);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* ld.x reg, [reg_mem, off] (sign extend) */
+static u8 arc_ldx_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
+{
+ const u32 insn = OPC_LDS | LOAD_ZZ(zz) | LOAD_C(reg) |
+ OP_B(reg_mem) | LOAD_S9(off);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* ld.ab reg,[sp,4] */
+static u8 arc_pop_r(u8 *buf, u8 reg)
+{
+ const u32 insn = OPC_POP | LOAD_C(reg);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* add Ra,Ra,Rc */
+static u8 arc_add_r(u8 *buf, u8 ra, u8 rc)
+{
+ const u32 insn = OPC_ADD | OP_A(ra) | OP_B(ra) | OP_C(rc);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* add.f Ra,Ra,Rc */
+static u8 arc_addf_r(u8 *buf, u8 ra, u8 rc)
+{
+ const u32 insn = OPC_ADDF | OP_A(ra) | OP_B(ra) | OP_C(rc);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* add.f Ra,Ra,u6 */
+static u8 arc_addif_r(u8 *buf, u8 ra, u8 u6)
+{
+ const u32 insn = OPC_ADDIF | OP_A(ra) | OP_B(ra) | ADDI_U6(u6);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* add Ra,Ra,u6 */
+static u8 arc_addi_r(u8 *buf, u8 ra, u8 u6)
+{
+ const u32 insn = OPC_ADDI | OP_A(ra) | OP_B(ra) | ADDI_U6(u6);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* add Ra,Rb,imm */
+static u8 arc_add_i(u8 *buf, u8 ra, u8 rb, s32 imm)
+{
+ const u32 insn = OPC_ADD_I | OP_A(ra) | OP_B(rb);
+
+ if (buf) {
+ emit_4_bytes(buf, insn);
+ emit_4_bytes(buf + INSN_len_normal, imm);
+ }
+ return INSN_len_normal + INSN_len_imm;
+}
+
+/* adc Ra,Ra,Rc */
+static u8 arc_adc_r(u8 *buf, u8 ra, u8 rc)
+{
+ const u32 insn = OPC_ADC | OP_A(ra) | OP_B(ra) | OP_C(rc);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* adc Ra,Ra,u6 */
+static u8 arc_adci_r(u8 *buf, u8 ra, u8 u6)
+{
+ const u32 insn = OPC_ADCI | OP_A(ra) | OP_B(ra) | ADCI_U6(u6);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* sub Ra,Ra,Rc */
+static u8 arc_sub_r(u8 *buf, u8 ra, u8 rc)
+{
+ const u32 insn = OPC_SUB | OP_A(ra) | OP_B(ra) | OP_C(rc);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* sub.f Ra,Ra,Rc */
+static u8 arc_subf_r(u8 *buf, u8 ra, u8 rc)
+{
+ const u32 insn = OPC_SUBF | OP_A(ra) | OP_B(ra) | OP_C(rc);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* sub Ra,Ra,u6 */
+static u8 arc_subi_r(u8 *buf, u8 ra, u8 u6)
+{
+ const u32 insn = OPC_SUBI | OP_A(ra) | OP_B(ra) | SUBI_U6(u6);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* sub Ra,Ra,imm */
+static u8 arc_sub_i(u8 *buf, u8 ra, s32 imm)
+{
+ const u32 insn = OPC_SUB_I | OP_A(ra) | OP_B(ra);
+
+ if (buf) {
+ emit_4_bytes(buf, insn);
+ emit_4_bytes(buf + INSN_len_normal, imm);
+ }
+ return INSN_len_normal + INSN_len_imm;
+}
+
+/* sbc Ra,Ra,Rc */
+static u8 arc_sbc_r(u8 *buf, u8 ra, u8 rc)
+{
+ const u32 insn = OPC_SBC | OP_A(ra) | OP_B(ra) | OP_C(rc);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* cmp Rb,Rc */
+static u8 arc_cmp_r(u8 *buf, u8 rb, u8 rc)
+{
+ const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/*
+ * cmp.z Rb,Rc
+ *
+ * This "cmp.z" variant of compare instruction is used on lower
+ * 32-bits of register pairs after "cmp"ing their upper parts. If the
+ * upper parts are equal (z), then this one will proceed to check the
+ * rest.
+ */
+static u8 arc_cmpz_r(u8 *buf, u8 rb, u8 rc)
+{
+ const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc) | CC_equal;
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* neg Ra,Rb */
+static u8 arc_neg_r(u8 *buf, u8 ra, u8 rb)
+{
+ const u32 insn = OPC_NEG | OP_A(ra) | OP_B(rb);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* mpy Ra,Rb,Rc */
+static u8 arc_mpy_r(u8 *buf, u8 ra, u8 rb, u8 rc)
+{
+ const u32 insn = OPC_MPY | OP_A(ra) | OP_B(rb) | OP_C(rc);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* mpy Ra,Rb,imm */
+static u8 arc_mpy_i(u8 *buf, u8 ra, u8 rb, s32 imm)
+{
+ const u32 insn = OPC_MPYI | OP_A(ra) | OP_B(rb);
+
+ if (buf) {
+ emit_4_bytes(buf, insn);
+ emit_4_bytes(buf + INSN_len_normal, imm);
+ }
+ return INSN_len_normal + INSN_len_imm;
+}
+
+/* mpydu Ra,Ra,Rc */
+static u8 arc_mpydu_r(u8 *buf, u8 ra, u8 rc)
+{
+ const u32 insn = OPC_MPYDU | OP_A(ra) | OP_B(ra) | OP_C(rc);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* mpydu Ra,Ra,imm */
+static u8 arc_mpydu_i(u8 *buf, u8 ra, s32 imm)
+{
+ const u32 insn = OPC_MPYDUI | OP_A(ra) | OP_B(ra);
+
+ if (buf) {
+ emit_4_bytes(buf, insn);
+ emit_4_bytes(buf + INSN_len_normal, imm);
+ }
+ return INSN_len_normal + INSN_len_imm;
+}
+
+/* divu Rd,Rd,Rs */
+static u8 arc_divu_r(u8 *buf, u8 rd, u8 rs)
+{
+ const u32 insn = OPC_DIVU | OP_A(rd) | OP_B(rd) | OP_C(rs);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* divu Rd,Rd,imm */
+static u8 arc_divu_i(u8 *buf, u8 rd, s32 imm)
+{
+ const u32 insn = OPC_DIVUI | OP_A(rd) | OP_B(rd);
+
+ if (buf) {
+ emit_4_bytes(buf, insn);
+ emit_4_bytes(buf + INSN_len_normal, imm);
+ }
+ return INSN_len_normal + INSN_len_imm;
+}
+
+/* div Rd,Rd,Rs */
+static u8 arc_divs_r(u8 *buf, u8 rd, u8 rs)
+{
+ const u32 insn = OPC_DIVS | OP_A(rd) | OP_B(rd) | OP_C(rs);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* div Rd,Rd,imm */
+static u8 arc_divs_i(u8 *buf, u8 rd, s32 imm)
+{
+ const u32 insn = OPC_DIVSI | OP_A(rd) | OP_B(rd);
+
+ if (buf) {
+ emit_4_bytes(buf, insn);
+ emit_4_bytes(buf + INSN_len_normal, imm);
+ }
+ return INSN_len_normal + INSN_len_imm;
+}
+
+/* remu Rd,Rd,Rs */
+static u8 arc_remu_r(u8 *buf, u8 rd, u8 rs)
+{
+ const u32 insn = OPC_REMU | OP_A(rd) | OP_B(rd) | OP_C(rs);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* remu Rd,Rd,imm */
+static u8 arc_remu_i(u8 *buf, u8 rd, s32 imm)
+{
+ const u32 insn = OPC_REMUI | OP_A(rd) | OP_B(rd);
+
+ if (buf) {
+ emit_4_bytes(buf, insn);
+ emit_4_bytes(buf + INSN_len_normal, imm);
+ }
+ return INSN_len_normal + INSN_len_imm;
+}
+
+/* rem Rd,Rd,Rs */
+static u8 arc_rems_r(u8 *buf, u8 rd, u8 rs)
+{
+ const u32 insn = OPC_REMS | OP_A(rd) | OP_B(rd) | OP_C(rs);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* rem Rd,Rd,imm */
+static u8 arc_rems_i(u8 *buf, u8 rd, s32 imm)
+{
+ const u32 insn = OPC_REMSI | OP_A(rd) | OP_B(rd);
+
+ if (buf) {
+ emit_4_bytes(buf, insn);
+ emit_4_bytes(buf + INSN_len_normal, imm);
+ }
+ return INSN_len_normal + INSN_len_imm;
+}
+
+/* and Rd,Rd,Rs */
+static u8 arc_and_r(u8 *buf, u8 rd, u8 rs)
+{
+ const u32 insn = OPC_AND | OP_A(rd) | OP_B(rd) | OP_C(rs);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/* and Rd,Rd,limm */
+static u8 arc_and_i(u8 *buf, u8 rd, s32 imm)
+{
+ const u32 insn = OPC_ANDI | OP_A(rd) | OP_B(rd);
+
+ if (buf) {
+ emit_4_bytes(buf, insn);
+ emit_4_bytes(buf + INSN_len_normal, imm);
+ }
+ return INSN_len_normal + INSN_len_imm;
+}
+
+/* tst Rd,Rs */
+static u8 arc_tst_r(u8 *buf, u8 rd, u8 rs)
+{
+ const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/*
+ * This particular version, "tst.z ...", is meant to be used after a
+ * "tst" on the low 32-bit of register pairs. If that "tst" is not
+ * zero, then we don't need to test the upper 32-bits lest it sets
+ * the zero flag.
+ */
+static u8 arc_tstz_r(u8 *buf, u8 rd, u8 rs)
+{
+ const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs) | CC_equal;
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+static u8 arc_or_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
+{
+ const u32 insn = OPC_OR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+static u8 arc_or_i(u8 *buf, u8 rd, s32 imm)
+{
+ const u32 insn = OPC_ORI | OP_A(rd) | OP_B(rd);
+
+ if (buf) {
+ emit_4_bytes(buf, insn);
+ emit_4_bytes(buf + INSN_len_normal, imm);
+ }
+ return INSN_len_normal + INSN_len_imm;
+}
+
+static u8 arc_xor_r(u8 *buf, u8 rd, u8 rs)
+{
+ const u32 insn = OPC_XOR | OP_A(rd) | OP_B(rd) | OP_C(rs);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+static u8 arc_xor_i(u8 *buf, u8 rd, s32 imm)
+{
+ const u32 insn = OPC_XORI | OP_A(rd) | OP_B(rd);
+
+ if (buf) {
+ emit_4_bytes(buf, insn);
+ emit_4_bytes(buf + INSN_len_normal, imm);
+ }
+ return INSN_len_normal + INSN_len_imm;
+}
+
+static u8 arc_not_r(u8 *buf, u8 rd, u8 rs)
+{
+ const u32 insn = OPC_NOT | OP_B(rd) | OP_C(rs);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+static u8 arc_btst_i(u8 *buf, u8 rs, u8 imm)
+{
+ const u32 insn = OPC_BTSTU6 | OP_B(rs) | BTST_U6(imm);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+static u8 arc_asl_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
+{
+ const u32 insn = OPC_ASL | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+static u8 arc_asli_r(u8 *buf, u8 rd, u8 rs, u8 imm)
+{
+ const u32 insn = OPC_ASLI | OP_A(rd) | OP_B(rs) | ASLI_U6(imm);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+static u8 arc_asr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
+{
+ const u32 insn = OPC_ASR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+static u8 arc_asri_r(u8 *buf, u8 rd, u8 rs, u8 imm)
+{
+ const u32 insn = OPC_ASRI | OP_A(rd) | OP_B(rs) | ASRI_U6(imm);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+static u8 arc_lsr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
+{
+ const u32 insn = OPC_LSR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+static u8 arc_lsri_r(u8 *buf, u8 rd, u8 rs, u8 imm)
+{
+ const u32 insn = OPC_LSRI | OP_A(rd) | OP_B(rs) | LSRI_U6(imm);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+static u8 arc_swape_r(u8 *buf, u8 r)
+{
+ const u32 insn = OPC_SWAPE | OP_B(r) | OP_C(r);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+static u8 arc_jmp_return(u8 *buf)
+{
+ if (buf)
+ emit_4_bytes(buf, OPC_J_BLINK);
+ return INSN_len_normal;
+}
+
+static u8 arc_jl(u8 *buf, u8 reg)
+{
+ const u32 insn = OPC_JL | OP_C(reg);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/*
+ * Conditional jump to an address that is max 21 bits away (signed).
+ *
+ * b<cc> s21
+ */
+static u8 arc_bcc(u8 *buf, u8 cc, int offset)
+{
+ const u32 insn = OPC_BCC | BCC_S21(offset) | COND(cc);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/*
+ * Unconditional jump to an address that is max 25 bits away (signed).
+ *
+ * b s25
+ */
+static u8 arc_b(u8 *buf, s32 offset)
+{
+ const u32 insn = OPC_B | B_S25(offset);
+
+ if (buf)
+ emit_4_bytes(buf, insn);
+ return INSN_len_normal;
+}
+
+/************* Packers (Deal with BPF_REGs) **************/
+
+u8 zext(u8 *buf, u8 rd)
+{
+ if (rd != BPF_REG_FP)
+ return arc_movi_r(buf, REG_HI(rd), 0);
+ else
+ return 0;
+}
+
+u8 mov_r32(u8 *buf, u8 rd, u8 rs, u8 sign_ext)
+{
+ u8 len = 0;
+
+ if (sign_ext) {
+ if (sign_ext == 8)
+ len = arc_sexb_r(buf, REG_LO(rd), REG_LO(rs));
+ else if (sign_ext == 16)
+ len = arc_sexh_r(buf, REG_LO(rd), REG_LO(rs));
+ else if (sign_ext == 32 && rd != rs)
+ len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
+
+ return len;
+ }
+
+ /* Unsigned move. */
+
+ if (rd != rs)
+ len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
+
+ return len;
+}
+
+u8 mov_r32_i32(u8 *buf, u8 reg, s32 imm)
+{
+ return arc_mov_i(buf, REG_LO(reg), imm);
+}
+
+u8 mov_r64(u8 *buf, u8 rd, u8 rs, u8 sign_ext)
+{
+ u8 len = 0;
+
+ if (sign_ext) {
+ /* First handle the low 32-bit part. */
+ len = mov_r32(buf, rd, rs, sign_ext);
+
+ /* Now propagate the sign bit of LO to HI. */
+ if (sign_ext == 8 || sign_ext == 16 || sign_ext == 32) {
+ len += arc_asri_r(BUF(buf, len),
+ REG_HI(rd), REG_LO(rd), 31);
+ }
+
+ return len;
+ }
+
+ /* Unsigned move. */
+
+ if (rd == rs)
+ return 0;
+
+ len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
+
+ if (rs != BPF_REG_FP)
+ len += arc_mov_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
+ /* BPF_REG_FP is mapped to 32-bit "fp" register. */
+ else
+ len += arc_movi_r(BUF(buf, len), REG_HI(rd), 0);
+
+ return len;
+}
+
+/* Sign extend the 32-bit immediate into 64-bit register pair. */
+u8 mov_r64_i32(u8 *buf, u8 reg, s32 imm)
+{
+ u8 len = 0;
+
+ len = arc_mov_i(buf, REG_LO(reg), imm);
+
+ /* BPF_REG_FP is mapped to 32-bit "fp" register. */
+ if (reg != BPF_REG_FP) {
+ if (imm >= 0)
+ len += arc_movi_r(BUF(buf, len), REG_HI(reg), 0);
+ else
+ len += arc_movi_r(BUF(buf, len), REG_HI(reg), -1);
+ }
+
+ return len;
+}
+
+/*
+ * This is merely used for translation of "LD R, IMM64" instructions
+ * of the BPF. These sort of instructions are sometimes used for
+ * relocations. If during the normal pass, the relocation value is
+ * not known, the BPF instruction may look something like:
+ *
+ * LD R <- 0x0000_0001_0000_0001
+ *
+ * Which will nicely translate to two 4-byte ARC instructions:
+ *
+ * mov R_lo, 1 # imm is small enough to be s12
+ * mov R_hi, 1 # same
+ *
+ * However, during the extra pass, the IMM64 will have changed
+ * to the resolved address and looks something like:
+ *
+ * LD R <- 0x0000_0000_1234_5678
+ *
+ * Now, the translated code will require 12 bytes:
+ *
+ * mov R_lo, 0x12345678 # this is an 8-byte instruction
+ * mov R_hi, 0 # still 4 bytes
+ *
+ * Which in practice will result in overwriting the following
+ * instruction. To avoid such cases, we will always emit codes
+ * with fixed sizes.
+ */
+u8 mov_r64_i64(u8 *buf, u8 reg, u32 lo, u32 hi)
+{
+ u8 len;
+
+ len = arc_mov_i_fixed(buf, REG_LO(reg), lo);
+ len += arc_mov_i_fixed(BUF(buf, len), REG_HI(reg), hi);
+
+ return len;
+}
+
+/*
+ * If the "off"set is too big (doesn't encode as S9) for:
+ *
+ * {ld,st} r, [rm, off]
+ *
+ * Then emit:
+ *
+ * add r10, REG_LO(rm), off
+ *
+ * and make sure that r10 becomes the effective address:
+ *
+ * {ld,st} r, [r10, 0]
+ */
+static u8 adjust_mem_access(u8 *buf, s16 *off, u8 size,
+ u8 rm, u8 *arc_reg_mem)
+{
+ u8 len = 0;
+ *arc_reg_mem = REG_LO(rm);
+
+ if (!IN_S9_RANGE(*off) ||
+ (size == BPF_DW && !IN_S9_RANGE(*off + 4))) {
+ len += arc_add_i(BUF(buf, len),
+ REG_LO(JIT_REG_TMP), REG_LO(rm), (u32)(*off));
+ *arc_reg_mem = REG_LO(JIT_REG_TMP);
+ *off = 0;
+ }
+
+ return len;
+}
+
+/* store rs, [rd, off] */
+u8 store_r(u8 *buf, u8 rs, u8 rd, s16 off, u8 size)
+{
+ u8 len, arc_reg_mem;
+
+ len = adjust_mem_access(buf, &off, size, rd, &arc_reg_mem);
+
+ if (size == BPF_DW) {
+ len += arc_st_r(BUF(buf, len), REG_LO(rs), arc_reg_mem,
+ off, ZZ_4_byte);
+ len += arc_st_r(BUF(buf, len), REG_HI(rs), arc_reg_mem,
+ off + 4, ZZ_4_byte);
+ } else {
+ u8 zz = bpf_to_arc_size(size);
+
+ len += arc_st_r(BUF(buf, len), REG_LO(rs), arc_reg_mem,
+ off, zz);
+ }
+
+ return len;
+}
+
+/*
+ * For {8,16,32}-bit stores:
+ * mov r21, imm
+ * st r21, [...]
+ * For 64-bit stores:
+ * mov r21, imm
+ * st r21, [...]
+ * mov r21, {0,-1}
+ * st r21, [...+4]
+ */
+u8 store_i(u8 *buf, s32 imm, u8 rd, s16 off, u8 size)
+{
+ u8 len, arc_reg_mem;
+ /* REG_LO(JIT_REG_TMP) might be used by "adjust_mem_access()". */
+ const u8 arc_rs = REG_HI(JIT_REG_TMP);
+
+ len = adjust_mem_access(buf, &off, size, rd, &arc_reg_mem);
+
+ if (size == BPF_DW) {
+ len += arc_mov_i(BUF(buf, len), arc_rs, imm);
+ len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem,
+ off, ZZ_4_byte);
+ imm = (imm >= 0 ? 0 : -1);
+ len += arc_mov_i(BUF(buf, len), arc_rs, imm);
+ len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem,
+ off + 4, ZZ_4_byte);
+ } else {
+ u8 zz = bpf_to_arc_size(size);
+
+ len += arc_mov_i(BUF(buf, len), arc_rs, imm);
+ len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem, off, zz);
+ }
+
+ return len;
+}
+
+/*
+ * For the calling convention of a little endian machine, the LO part
+ * must be on top of the stack.
+ */
+static u8 push_r64(u8 *buf, u8 reg)
+{
+ u8 len = 0;
+
+#ifdef __LITTLE_ENDIAN
+ /* BPF_REG_FP is mapped to 32-bit "fp" register. */
+ if (reg != BPF_REG_FP)
+ len += arc_push_r(BUF(buf, len), REG_HI(reg));
+ len += arc_push_r(BUF(buf, len), REG_LO(reg));
+#else
+ len += arc_push_r(BUF(buf, len), REG_LO(reg));
+ if (reg != BPF_REG_FP)
+ len += arc_push_r(BUF(buf, len), REG_HI(reg));
+#endif
+
+ return len;
+}
+
+/* load rd, [rs, off] */
+u8 load_r(u8 *buf, u8 rd, u8 rs, s16 off, u8 size, bool sign_ext)
+{
+ u8 len, arc_reg_mem;
+
+ len = adjust_mem_access(buf, &off, size, rs, &arc_reg_mem);
+
+ if (size == BPF_B || size == BPF_H || size == BPF_W) {
+ const u8 zz = bpf_to_arc_size(size);
+
+ /* Use LD.X only if the data size is less than 32-bit. */
+ if (sign_ext && (zz == ZZ_1_byte || zz == ZZ_2_byte)) {
+ len += arc_ldx_r(BUF(buf, len), REG_LO(rd),
+ arc_reg_mem, off, zz);
+ } else {
+ len += arc_ld_r(BUF(buf, len), REG_LO(rd),
+ arc_reg_mem, off, zz);
+ }
+
+ if (sign_ext) {
+ /* Propagate the sign bit to the higher reg. */
+ len += arc_asri_r(BUF(buf, len),
+ REG_HI(rd), REG_LO(rd), 31);
+ } else {
+ len += arc_movi_r(BUF(buf, len), REG_HI(rd), 0);
+ }
+ } else if (size == BPF_DW) {
+ /*
+ * We are about to issue 2 consecutive loads:
+ *
+ * ld rx, [rb, off+0]
+ * ld ry, [rb, off+4]
+ *
+ * If "rx" and "rb" are the same registers, then the order
+ * should change to guarantee that "rb" remains intact
+ * during these 2 operations:
+ *
+ * ld ry, [rb, off+4]
+ * ld rx, [rb, off+0]
+ */
+ if (REG_LO(rd) != arc_reg_mem) {
+ len += arc_ld_r(BUF(buf, len), REG_LO(rd), arc_reg_mem,
+ off, ZZ_4_byte);
+ len += arc_ld_r(BUF(buf, len), REG_HI(rd), arc_reg_mem,
+ off + 4, ZZ_4_byte);
+ } else {
+ len += arc_ld_r(BUF(buf, len), REG_HI(rd), arc_reg_mem,
+ off + 4, ZZ_4_byte);
+ len += arc_ld_r(BUF(buf, len), REG_LO(rd), arc_reg_mem,
+ off, ZZ_4_byte);
+ }
+ }
+
+ return len;
+}
+
+u8 add_r32(u8 *buf, u8 rd, u8 rs)
+{
+ return arc_add_r(buf, REG_LO(rd), REG_LO(rs));
+}
+
+u8 add_r32_i32(u8 *buf, u8 rd, s32 imm)
+{
+ if (IN_U6_RANGE(imm))
+ return arc_addi_r(buf, REG_LO(rd), imm);
+ else
+ return arc_add_i(buf, REG_LO(rd), REG_LO(rd), imm);
+}
+
+u8 add_r64(u8 *buf, u8 rd, u8 rs)
+{
+ u8 len;
+
+ len = arc_addf_r(buf, REG_LO(rd), REG_LO(rs));
+ len += arc_adc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
+ return len;
+}
+
+u8 add_r64_i32(u8 *buf, u8 rd, s32 imm)
+{
+ u8 len;
+
+ if (IN_U6_RANGE(imm)) {
+ len = arc_addif_r(buf, REG_LO(rd), imm);
+ len += arc_adci_r(BUF(buf, len), REG_HI(rd), 0);
+ } else {
+ len = mov_r64_i32(buf, JIT_REG_TMP, imm);
+ len += add_r64(BUF(buf, len), rd, JIT_REG_TMP);
+ }
+ return len;
+}
+
+u8 sub_r32(u8 *buf, u8 rd, u8 rs)
+{
+ return arc_sub_r(buf, REG_LO(rd), REG_LO(rs));
+}
+
+u8 sub_r32_i32(u8 *buf, u8 rd, s32 imm)
+{
+ if (IN_U6_RANGE(imm))
+ return arc_subi_r(buf, REG_LO(rd), imm);
+ else
+ return arc_sub_i(buf, REG_LO(rd), imm);
+}
+
+u8 sub_r64(u8 *buf, u8 rd, u8 rs)
+{
+ u8 len;
+
+ len = arc_subf_r(buf, REG_LO(rd), REG_LO(rs));
+ len += arc_sbc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
+ return len;
+}
+
+u8 sub_r64_i32(u8 *buf, u8 rd, s32 imm)
+{
+ u8 len;
+
+ len = mov_r64_i32(buf, JIT_REG_TMP, imm);
+ len += sub_r64(BUF(buf, len), rd, JIT_REG_TMP);
+ return len;
+}
+
+static u8 cmp_r32(u8 *buf, u8 rd, u8 rs)
+{
+ return arc_cmp_r(buf, REG_LO(rd), REG_LO(rs));
+}
+
+u8 neg_r32(u8 *buf, u8 r)
+{
+ return arc_neg_r(buf, REG_LO(r), REG_LO(r));
+}
+
+/* In a two's complement system, -r is (~r + 1). */
+u8 neg_r64(u8 *buf, u8 r)
+{
+ u8 len;
+
+ len = arc_not_r(buf, REG_LO(r), REG_LO(r));
+ len += arc_not_r(BUF(buf, len), REG_HI(r), REG_HI(r));
+ len += add_r64_i32(BUF(buf, len), r, 1);
+ return len;
+}
+
+u8 mul_r32(u8 *buf, u8 rd, u8 rs)
+{
+ return arc_mpy_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
+}
+
+u8 mul_r32_i32(u8 *buf, u8 rd, s32 imm)
+{
+ return arc_mpy_i(buf, REG_LO(rd), REG_LO(rd), imm);
+}
+
+/*
+ * MUL B, C
+ * --------
+ * mpy t0, B_hi, C_lo
+ * mpy t1, B_lo, C_hi
+ * mpydu B_lo, B_lo, C_lo
+ * add B_hi, B_hi, t0
+ * add B_hi, B_hi, t1
+ */
+u8 mul_r64(u8 *buf, u8 rd, u8 rs)
+{
+ const u8 t0 = REG_LO(JIT_REG_TMP);
+ const u8 t1 = REG_HI(JIT_REG_TMP);
+ const u8 C_lo = REG_LO(rs);
+ const u8 C_hi = REG_HI(rs);
+ const u8 B_lo = REG_LO(rd);
+ const u8 B_hi = REG_HI(rd);
+ u8 len;
+
+ len = arc_mpy_r(buf, t0, B_hi, C_lo);
+ len += arc_mpy_r(BUF(buf, len), t1, B_lo, C_hi);
+ len += arc_mpydu_r(BUF(buf, len), B_lo, C_lo);
+ len += arc_add_r(BUF(buf, len), B_hi, t0);
+ len += arc_add_r(BUF(buf, len), B_hi, t1);
+
+ return len;
+}
+
+/*
+ * MUL B, imm
+ * ----------
+ *
+ * To get a 64-bit result from a signed 64x32 multiplication:
+ *
+ * B_hi B_lo *
+ * sign imm
+ * -----------------------------
+ * HI(B_lo*imm) LO(B_lo*imm) +
+ * B_hi*imm +
+ * B_lo*sign
+ * -----------------------------
+ * res_hi res_lo
+ *
+ * mpy t1, B_lo, sign(imm)
+ * mpy t0, B_hi, imm
+ * mpydu B_lo, B_lo, imm
+ * add B_hi, B_hi, t0
+ * add B_hi, B_hi, t1
+ *
+ * Note: We can't use signed double multiplication, "mpyd", instead of an
+ * unsigned version, "mpydu", and then get rid of the sign adjustments
+ * calculated in "t1". The signed multiplication, "mpyd", will consider
+ * both operands, "B_lo" and "imm", as signed inputs. However, for this
+ * 64x32 multiplication, "B_lo" must be treated as an unsigned number.
+ */
+u8 mul_r64_i32(u8 *buf, u8 rd, s32 imm)
+{
+ const u8 t0 = REG_LO(JIT_REG_TMP);
+ const u8 t1 = REG_HI(JIT_REG_TMP);
+ const u8 B_lo = REG_LO(rd);
+ const u8 B_hi = REG_HI(rd);
+ u8 len = 0;
+
+ if (imm == 1)
+ return 0;
+
+ /* Is the sign-extension of the immediate "-1"? */
+ if (imm < 0)
+ len += arc_neg_r(BUF(buf, len), t1, B_lo);
+
+ len += arc_mpy_i(BUF(buf, len), t0, B_hi, imm);
+ len += arc_mpydu_i(BUF(buf, len), B_lo, imm);
+ len += arc_add_r(BUF(buf, len), B_hi, t0);
+
+ /* Add the "sign*B_lo" part, if necessary. */
+ if (imm < 0)
+ len += arc_add_r(BUF(buf, len), B_hi, t1);
+
+ return len;
+}
+
+u8 div_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext)
+{
+ if (sign_ext)
+ return arc_divs_r(buf, REG_LO(rd), REG_LO(rs));
+ else
+ return arc_divu_r(buf, REG_LO(rd), REG_LO(rs));
+}
+
+u8 div_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext)
+{
+ if (imm == 0)
+ return 0;
+
+ if (sign_ext)
+ return arc_divs_i(buf, REG_LO(rd), imm);
+ else
+ return arc_divu_i(buf, REG_LO(rd), imm);
+}
+
+u8 mod_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext)
+{
+ if (sign_ext)
+ return arc_rems_r(buf, REG_LO(rd), REG_LO(rs));
+ else
+ return arc_remu_r(buf, REG_LO(rd), REG_LO(rs));
+}
+
+u8 mod_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext)
+{
+ if (imm == 0)
+ return 0;
+
+ if (sign_ext)
+ return arc_rems_i(buf, REG_LO(rd), imm);
+ else
+ return arc_remu_i(buf, REG_LO(rd), imm);
+}
+
+u8 and_r32(u8 *buf, u8 rd, u8 rs)
+{
+ return arc_and_r(buf, REG_LO(rd), REG_LO(rs));
+}
+
+u8 and_r32_i32(u8 *buf, u8 rd, s32 imm)
+{
+ return arc_and_i(buf, REG_LO(rd), imm);
+}
+
+u8 and_r64(u8 *buf, u8 rd, u8 rs)
+{
+ u8 len;
+
+ len = arc_and_r(buf, REG_LO(rd), REG_LO(rs));
+ len += arc_and_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
+ return len;
+}
+
+u8 and_r64_i32(u8 *buf, u8 rd, s32 imm)
+{
+ u8 len;
+
+ len = mov_r64_i32(buf, JIT_REG_TMP, imm);
+ len += and_r64(BUF(buf, len), rd, JIT_REG_TMP);
+ return len;
+}
+
+static u8 tst_r32(u8 *buf, u8 rd, u8 rs)
+{
+ return arc_tst_r(buf, REG_LO(rd), REG_LO(rs));
+}
+
+u8 or_r32(u8 *buf, u8 rd, u8 rs)
+{
+ return arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
+}
+
+u8 or_r32_i32(u8 *buf, u8 rd, s32 imm)
+{
+ return arc_or_i(buf, REG_LO(rd), imm);
+}
+
+u8 or_r64(u8 *buf, u8 rd, u8 rs)
+{
+ u8 len;
+
+ len = arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
+ len += arc_or_r(BUF(buf, len), REG_HI(rd), REG_HI(rd), REG_HI(rs));
+ return len;
+}
+
+u8 or_r64_i32(u8 *buf, u8 rd, s32 imm)
+{
+ u8 len;
+
+ len = mov_r64_i32(buf, JIT_REG_TMP, imm);
+ len += or_r64(BUF(buf, len), rd, JIT_REG_TMP);
+ return len;
+}
+
+u8 xor_r32(u8 *buf, u8 rd, u8 rs)
+{
+ return arc_xor_r(buf, REG_LO(rd), REG_LO(rs));
+}
+
+u8 xor_r32_i32(u8 *buf, u8 rd, s32 imm)
+{
+ return arc_xor_i(buf, REG_LO(rd), imm);
+}
+
+u8 xor_r64(u8 *buf, u8 rd, u8 rs)
+{
+ u8 len;
+
+ len = arc_xor_r(buf, REG_LO(rd), REG_LO(rs));
+ len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
+ return len;
+}
+
+u8 xor_r64_i32(u8 *buf, u8 rd, s32 imm)
+{
+ u8 len;
+
+ len = mov_r64_i32(buf, JIT_REG_TMP, imm);
+ len += xor_r64(BUF(buf, len), rd, JIT_REG_TMP);
+ return len;
+}
+
+/* "asl a,b,c" --> "a = (b << (c & 31))". */
+u8 lsh_r32(u8 *buf, u8 rd, u8 rs)
+{
+ return arc_asl_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
+}
+
+u8 lsh_r32_i32(u8 *buf, u8 rd, u8 imm)
+{
+ return arc_asli_r(buf, REG_LO(rd), REG_LO(rd), imm);
+}
+
+/*
+ * algorithm
+ * ---------
+ * if (n <= 32)
+ * to_hi = lo >> (32-n) # (32-n) is the negate of "n" in a 5-bit width.
+ * lo <<= n
+ * hi <<= n
+ * hi |= to_hi
+ * else
+ * hi = lo << (n-32)
+ * lo = 0
+ *
+ * assembly translation for "LSH B, C"
+ * (heavily influenced by ARC gcc)
+ * -----------------------------------
+ * not t0, C_lo # The first 3 lines are almost the same as:
+ * lsr t1, B_lo, 1 # neg t0, C_lo
+ * lsr t1, t1, t0 # lsr t1, B_lo, t0 --> t1 is "to_hi"
+ * mov t0, C_lo* # with one important difference. In "neg"
+ * asl B_lo, B_lo, t0 # version, when C_lo=0, t1 becomes B_lo while
+ * asl B_hi, B_hi, t0 # it should be 0. The "not" approach instead,
+ * or B_hi, B_hi, t1 # "shift"s t1 once and 31 times, practically
+ * btst t0, 5 # setting it to 0 when C_lo=0.
+ * mov.ne B_hi, B_lo**
+ * mov.ne B_lo, 0
+ *
+ * *The "mov t0, C_lo" is necessary to cover the cases that C is the same
+ * register as B.
+ *
+ * **ARC performs a shift in this manner: B <<= (C & 31)
+ * For 32<=n<64, "n-32" and "n&31" are the same. Therefore, "B << n" and
+ * "B << (n-32)" yield the same results. e.g. the results of "B << 35" and
+ * "B << 3" are the same.
+ *
+ * The behaviour is undefined for n >= 64.
+ */
+u8 lsh_r64(u8 *buf, u8 rd, u8 rs)
+{
+ const u8 t0 = REG_LO(JIT_REG_TMP);
+ const u8 t1 = REG_HI(JIT_REG_TMP);
+ const u8 C_lo = REG_LO(rs);
+ const u8 B_lo = REG_LO(rd);
+ const u8 B_hi = REG_HI(rd);
+ u8 len;
+
+ len = arc_not_r(buf, t0, C_lo);
+ len += arc_lsri_r(BUF(buf, len), t1, B_lo, 1);
+ len += arc_lsr_r(BUF(buf, len), t1, t1, t0);
+ len += arc_mov_r(BUF(buf, len), t0, C_lo);
+ len += arc_asl_r(BUF(buf, len), B_lo, B_lo, t0);
+ len += arc_asl_r(BUF(buf, len), B_hi, B_hi, t0);
+ len += arc_or_r(BUF(buf, len), B_hi, B_hi, t1);
+ len += arc_btst_i(BUF(buf, len), t0, 5);
+ len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_hi, B_lo);
+ len += arc_movu_cc_r(BUF(buf, len), CC_unequal, B_lo, 0);
+
+ return len;
+}
+
+/*
+ * if (n < 32)
+ * to_hi = B_lo >> 32-n # extract upper n bits
+ * lo <<= n
+ * hi <<=n
+ * hi |= to_hi
+ * else if (n < 64)
+ * hi = lo << n-32
+ * lo = 0
+ */
+u8 lsh_r64_i32(u8 *buf, u8 rd, s32 imm)
+{
+ const u8 t0 = REG_LO(JIT_REG_TMP);
+ const u8 B_lo = REG_LO(rd);
+ const u8 B_hi = REG_HI(rd);
+ const u8 n = (u8)imm;
+ u8 len = 0;
+
+ if (n == 0) {
+ return 0;
+ } else if (n <= 31) {
+ len = arc_lsri_r(buf, t0, B_lo, 32 - n);
+ len += arc_asli_r(BUF(buf, len), B_lo, B_lo, n);
+ len += arc_asli_r(BUF(buf, len), B_hi, B_hi, n);
+ len += arc_or_r(BUF(buf, len), B_hi, B_hi, t0);
+ } else if (n <= 63) {
+ len = arc_asli_r(buf, B_hi, B_lo, n - 32);
+ len += arc_movi_r(BUF(buf, len), B_lo, 0);
+ }
+ /* n >= 64 is undefined behaviour. */
+
+ return len;
+}
+
+/* "lsr a,b,c" --> "a = (b >> (c & 31))". */
+u8 rsh_r32(u8 *buf, u8 rd, u8 rs)
+{
+ return arc_lsr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
+}
+
+u8 rsh_r32_i32(u8 *buf, u8 rd, u8 imm)
+{
+ return arc_lsri_r(buf, REG_LO(rd), REG_LO(rd), imm);
+}
+
+/*
+ * For better commentary, see lsh_r64().
+ *
+ * algorithm
+ * ---------
+ * if (n <= 32)
+ * to_lo = hi << (32-n)
+ * hi >>= n
+ * lo >>= n
+ * lo |= to_lo
+ * else
+ * lo = hi >> (n-32)
+ * hi = 0
+ *
+ * RSH B,C
+ * ----------
+ * not t0, C_lo
+ * asl t1, B_hi, 1
+ * asl t1, t1, t0
+ * mov t0, C_lo
+ * lsr B_hi, B_hi, t0
+ * lsr B_lo, B_lo, t0
+ * or B_lo, B_lo, t1
+ * btst t0, 5
+ * mov.ne B_lo, B_hi
+ * mov.ne B_hi, 0
+ */
+u8 rsh_r64(u8 *buf, u8 rd, u8 rs)
+{
+ const u8 t0 = REG_LO(JIT_REG_TMP);
+ const u8 t1 = REG_HI(JIT_REG_TMP);
+ const u8 C_lo = REG_LO(rs);
+ const u8 B_lo = REG_LO(rd);
+ const u8 B_hi = REG_HI(rd);
+ u8 len;
+
+ len = arc_not_r(buf, t0, C_lo);
+ len += arc_asli_r(BUF(buf, len), t1, B_hi, 1);
+ len += arc_asl_r(BUF(buf, len), t1, t1, t0);
+ len += arc_mov_r(BUF(buf, len), t0, C_lo);
+ len += arc_lsr_r(BUF(buf, len), B_hi, B_hi, t0);
+ len += arc_lsr_r(BUF(buf, len), B_lo, B_lo, t0);
+ len += arc_or_r(BUF(buf, len), B_lo, B_lo, t1);
+ len += arc_btst_i(BUF(buf, len), t0, 5);
+ len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_lo, B_hi);
+ len += arc_movu_cc_r(BUF(buf, len), CC_unequal, B_hi, 0);
+
+ return len;
+}
+
+/*
+ * if (n < 32)
+ * to_lo = B_lo << 32-n # extract lower n bits, right-padded with 32-n 0s
+ * lo >>=n
+ * hi >>=n
+ * hi |= to_lo
+ * else if (n < 64)
+ * lo = hi >> n-32
+ * hi = 0
+ */
+u8 rsh_r64_i32(u8 *buf, u8 rd, s32 imm)
+{
+ const u8 t0 = REG_LO(JIT_REG_TMP);
+ const u8 B_lo = REG_LO(rd);
+ const u8 B_hi = REG_HI(rd);
+ const u8 n = (u8)imm;
+ u8 len = 0;
+
+ if (n == 0) {
+ return 0;
+ } else if (n <= 31) {
+ len = arc_asli_r(buf, t0, B_hi, 32 - n);
+ len += arc_lsri_r(BUF(buf, len), B_lo, B_lo, n);
+ len += arc_lsri_r(BUF(buf, len), B_hi, B_hi, n);
+ len += arc_or_r(BUF(buf, len), B_lo, B_lo, t0);
+ } else if (n <= 63) {
+ len = arc_lsri_r(buf, B_lo, B_hi, n - 32);
+ len += arc_movi_r(BUF(buf, len), B_hi, 0);
+ }
+ /* n >= 64 is undefined behaviour. */
+
+ return len;
+}
+
+/* "asr a,b,c" --> "a = (b s>> (c & 31))". */
+u8 arsh_r32(u8 *buf, u8 rd, u8 rs)
+{
+ return arc_asr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
+}
+
+u8 arsh_r32_i32(u8 *buf, u8 rd, u8 imm)
+{
+ return arc_asri_r(buf, REG_LO(rd), REG_LO(rd), imm);
+}
+
+/*
+ * For comparison, see rsh_r64().
+ *
+ * algorithm
+ * ---------
+ * if (n <= 32)
+ * to_lo = hi << (32-n)
+ * hi s>>= n
+ * lo >>= n
+ * lo |= to_lo
+ * else
+ * hi_sign = hi s>>31
+ * lo = hi s>> (n-32)
+ * hi = hi_sign
+ *
+ * ARSH B,C
+ * ----------
+ * not t0, C_lo
+ * asl t1, B_hi, 1
+ * asl t1, t1, t0
+ * mov t0, C_lo
+ * asr B_hi, B_hi, t0
+ * lsr B_lo, B_lo, t0
+ * or B_lo, B_lo, t1
+ * btst t0, 5
+ * asr t0, B_hi, 31 # now, t0 = 0 or -1 based on B_hi's sign
+ * mov.ne B_lo, B_hi
+ * mov.ne B_hi, t0
+ */
+u8 arsh_r64(u8 *buf, u8 rd, u8 rs)
+{
+ const u8 t0 = REG_LO(JIT_REG_TMP);
+ const u8 t1 = REG_HI(JIT_REG_TMP);
+ const u8 C_lo = REG_LO(rs);
+ const u8 B_lo = REG_LO(rd);
+ const u8 B_hi = REG_HI(rd);
+ u8 len;
+
+ len = arc_not_r(buf, t0, C_lo);
+ len += arc_asli_r(BUF(buf, len), t1, B_hi, 1);
+ len += arc_asl_r(BUF(buf, len), t1, t1, t0);
+ len += arc_mov_r(BUF(buf, len), t0, C_lo);
+ len += arc_asr_r(BUF(buf, len), B_hi, B_hi, t0);
+ len += arc_lsr_r(BUF(buf, len), B_lo, B_lo, t0);
+ len += arc_or_r(BUF(buf, len), B_lo, B_lo, t1);
+ len += arc_btst_i(BUF(buf, len), t0, 5);
+ len += arc_asri_r(BUF(buf, len), t0, B_hi, 31);
+ len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_lo, B_hi);
+ len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_hi, t0);
+
+ return len;
+}
+
+/*
+ * if (n < 32)
+ * to_lo = lo << 32-n # extract lower n bits, right-padded with 32-n 0s
+ * lo >>=n
+ * hi s>>=n
+ * hi |= to_lo
+ * else if (n < 64)
+ * lo = hi s>> n-32
+ * hi = (lo[msb] ? -1 : 0)
+ */
+u8 arsh_r64_i32(u8 *buf, u8 rd, s32 imm)
+{
+ const u8 t0 = REG_LO(JIT_REG_TMP);
+ const u8 B_lo = REG_LO(rd);
+ const u8 B_hi = REG_HI(rd);
+ const u8 n = (u8)imm;
+ u8 len = 0;
+
+ if (n == 0) {
+ return 0;
+ } else if (n <= 31) {
+ len = arc_asli_r(buf, t0, B_hi, 32 - n);
+ len += arc_lsri_r(BUF(buf, len), B_lo, B_lo, n);
+ len += arc_asri_r(BUF(buf, len), B_hi, B_hi, n);
+ len += arc_or_r(BUF(buf, len), B_lo, B_lo, t0);
+ } else if (n <= 63) {
+ len = arc_asri_r(buf, B_lo, B_hi, n - 32);
+ len += arc_movi_r(BUF(buf, len), B_hi, -1);
+ len += arc_btst_i(BUF(buf, len), B_lo, 31);
+ len += arc_movu_cc_r(BUF(buf, len), CC_equal, B_hi, 0);
+ }
+ /* n >= 64 is undefined behaviour. */
+
+ return len;
+}
+
+u8 gen_swap(u8 *buf, u8 rd, u8 size, u8 endian, bool force, bool do_zext)
+{
+ u8 len = 0;
+#ifdef __BIG_ENDIAN
+ const u8 host_endian = BPF_FROM_BE;
+#else
+ const u8 host_endian = BPF_FROM_LE;
+#endif
+ if (host_endian != endian || force) {
+ switch (size) {
+ case 16:
+ /*
+ * r = B4B3_B2B1 << 16 --> r = B2B1_0000
+ * then, swape(r) would become the desired 0000_B1B2
+ */
+ len = arc_asli_r(buf, REG_LO(rd), REG_LO(rd), 16);
+ fallthrough;
+ case 32:
+ len += arc_swape_r(BUF(buf, len), REG_LO(rd));
+ if (do_zext)
+ len += zext(BUF(buf, len), rd);
+ break;
+ case 64:
+ /*
+ * swap "hi" and "lo":
+ * hi ^= lo;
+ * lo ^= hi;
+ * hi ^= lo;
+ * and then swap the bytes in "hi" and "lo".
+ */
+ len = arc_xor_r(buf, REG_HI(rd), REG_LO(rd));
+ len += arc_xor_r(BUF(buf, len), REG_LO(rd), REG_HI(rd));
+ len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_LO(rd));
+ len += arc_swape_r(BUF(buf, len), REG_LO(rd));
+ len += arc_swape_r(BUF(buf, len), REG_HI(rd));
+ break;
+ default:
+ /* The caller must have handled this. */
+ break;
+ }
+ } else {
+ /*
+ * If the same endianness, there's not much to do other
+ * than zeroing out the upper bytes based on the "size".
+ */
+ switch (size) {
+ case 16:
+ len = arc_and_i(buf, REG_LO(rd), 0xffff);
+ fallthrough;
+ case 32:
+ if (do_zext)
+ len += zext(BUF(buf, len), rd);
+ break;
+ case 64:
+ break;
+ default:
+ /* The caller must have handled this. */
+ break;
+ }
+ }
+
+ return len;
+}
+
+/*
+ * To create a frame, all that is needed is:
+ *
+ * push fp
+ * mov fp, sp
+ * sub sp, <frame_size>
+ *
+ * "push fp" is taken care of separately while saving the clobbered registers.
+ * All that remains is copying SP value to FP and shrinking SP's address space
+ * for any possible function call to come.
+ */
+static inline u8 frame_create(u8 *buf, u16 size)
+{
+ u8 len;
+
+ len = arc_mov_r(buf, ARC_R_FP, ARC_R_SP);
+ if (IN_U6_RANGE(size))
+ len += arc_subi_r(BUF(buf, len), ARC_R_SP, size);
+ else
+ len += arc_sub_i(BUF(buf, len), ARC_R_SP, size);
+ return len;
+}
+
+/*
+ * mov sp, fp
+ *
+ * The value of SP upon entering was copied to FP.
+ */
+static inline u8 frame_restore(u8 *buf)
+{
+ return arc_mov_r(buf, ARC_R_SP, ARC_R_FP);
+}
+
+/*
+ * Going from a JITed code to the native caller:
+ *
+ * mov ARC_ABI_RET_lo, BPF_REG_0_lo # r0 <- r8
+ * mov ARC_ABI_RET_hi, BPF_REG_0_hi # r1 <- r9
+ */
+static u8 bpf_to_arc_return(u8 *buf)
+{
+ u8 len;
+
+ len = arc_mov_r(buf, ARC_R_0, REG_LO(BPF_REG_0));
+ len += arc_mov_r(BUF(buf, len), ARC_R_1, REG_HI(BPF_REG_0));
+ return len;
+}
+
+/*
+ * Coming back from an external (in-kernel) function to the JITed code:
+ *
+ * mov ARC_ABI_RET_lo, BPF_REG_0_lo # r8 <- r0
+ * mov ARC_ABI_RET_hi, BPF_REG_0_hi # r9 <- r1
+ */
+u8 arc_to_bpf_return(u8 *buf)
+{
+ u8 len;
+
+ len = arc_mov_r(buf, REG_LO(BPF_REG_0), ARC_R_0);
+ len += arc_mov_r(BUF(buf, len), REG_HI(BPF_REG_0), ARC_R_1);
+ return len;
+}
+
+/*
+ * This translation leads to:
+ *
+ * mov r10, addr # always an 8-byte instruction
+ * jl [r10]
+ *
+ * The length of the "mov" must be fixed (8), otherwise it may diverge
+ * during the normal and extra passes:
+ *
+ * normal pass extra pass
+ *
+ * 180: mov r10,0 | 180: mov r10,0x700578d8
+ * 184: jl [r10] | 188: jl [r10]
+ * 188: add.f r16,r16,0x1 | 18c: adc r17,r17,0
+ * 18c: adc r17,r17,0 |
+ *
+ * In the above example, the change from "r10 <- 0" to "r10 <- 0x700578d8"
+ * has led to an increase in the length of the "mov" instruction.
+ * Inadvertently, that caused the loss of the "add.f" instruction.
+ */
+static u8 jump_and_link(u8 *buf, u32 addr)
+{
+ u8 len;
+
+ len = arc_mov_i_fixed(buf, REG_LO(JIT_REG_TMP), addr);
+ len += arc_jl(BUF(buf, len), REG_LO(JIT_REG_TMP));
+ return len;
+}
+
+/*
+ * This function determines which ARC registers must be saved and restored.
+ * It does so by looking into:
+ *
+ * "bpf_reg": The clobbered (destination) BPF register
+ * "is_call": Indicator if the current instruction is a call
+ *
+ * When a register of interest is clobbered, its corresponding bit position
+ * in return value, "usage", is set to true.
+ */
+u32 mask_for_used_regs(u8 bpf_reg, bool is_call)
+{
+ u32 usage = 0;
+
+ /* BPF registers that must be saved. */
+ if (bpf_reg >= BPF_REG_6 && bpf_reg <= BPF_REG_9) {
+ usage |= BIT(REG_LO(bpf_reg));
+ usage |= BIT(REG_HI(bpf_reg));
+ /*
+ * Using the frame pointer register implies that it should
+ * be saved and reinitialised with the current frame data.
+ */
+ } else if (bpf_reg == BPF_REG_FP) {
+ usage |= BIT(REG_LO(BPF_REG_FP));
+ /* Could there be some ARC registers that must to be saved? */
+ } else {
+ if (REG_LO(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST &&
+ REG_LO(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST)
+ usage |= BIT(REG_LO(bpf_reg));
+
+ if (REG_HI(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST &&
+ REG_HI(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST)
+ usage |= BIT(REG_HI(bpf_reg));
+ }
+
+ /* A "call" indicates that ARC's "blink" reg must be saved. */
+ usage |= is_call ? BIT(ARC_R_BLINK) : 0;
+
+ return usage;
+}
+
+/*
+ * push blink # if blink is marked as clobbered
+ * push r[0-n] # if r[i] is marked as clobbered
+ * push fp # if fp is marked as clobbered
+ * mov fp, sp # if frame_size > 0 (clobbers fp)
+ * sub sp, <frame_size> # same as above
+ */
+u8 arc_prologue(u8 *buf, u32 usage, u16 frame_size)
+{
+ u8 len = 0;
+ u32 gp_regs = 0;
+
+ /* Deal with blink first. */
+ if (usage & BIT(ARC_R_BLINK))
+ len += arc_push_r(BUF(buf, len), ARC_R_BLINK);
+
+ gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP));
+ while (gp_regs) {
+ u8 reg = __builtin_ffs(gp_regs) - 1;
+
+ len += arc_push_r(BUF(buf, len), reg);
+ gp_regs &= ~BIT(reg);
+ }
+
+ /* Deal with fp last. */
+ if ((usage & BIT(ARC_R_FP)) || frame_size > 0)
+ len += arc_push_r(BUF(buf, len), ARC_R_FP);
+
+ if (frame_size > 0)
+ len += frame_create(BUF(buf, len), frame_size);
+
+#ifdef ARC_BPF_JIT_DEBUG
+ if ((usage & BIT(ARC_R_FP)) && frame_size == 0) {
+ pr_err("FP is being saved while there is no frame.");
+ BUG();
+ }
+#endif
+
+ return len;
+}
+
+/*
+ * mov sp, fp # if frame_size > 0
+ * pop fp # if fp is marked as clobbered
+ * pop r[n-0] # if r[i] is marked as clobbered
+ * pop blink # if blink is marked as clobbered
+ * mov r0, r8 # always: ABI_return <- BPF_return
+ * mov r1, r9 # continuation of above
+ * j [blink] # always
+ *
+ * "fp being marked as clobbered" and "frame_size > 0" are the two sides of
+ * the same coin.
+ */
+u8 arc_epilogue(u8 *buf, u32 usage, u16 frame_size)
+{
+ u32 len = 0;
+ u32 gp_regs = 0;
+
+#ifdef ARC_BPF_JIT_DEBUG
+ if ((usage & BIT(ARC_R_FP)) && frame_size == 0) {
+ pr_err("FP is being saved while there is no frame.");
+ BUG();
+ }
+#endif
+
+ if (frame_size > 0)
+ len += frame_restore(BUF(buf, len));
+
+ /* Deal with fp first. */
+ if ((usage & BIT(ARC_R_FP)) || frame_size > 0)
+ len += arc_pop_r(BUF(buf, len), ARC_R_FP);
+
+ gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP));
+ while (gp_regs) {
+ /* "usage" is 32-bit, each bit indicating an ARC register. */
+ u8 reg = 31 - __builtin_clz(gp_regs);
+
+ len += arc_pop_r(BUF(buf, len), reg);
+ gp_regs &= ~BIT(reg);
+ }
+
+ /* Deal with blink last. */
+ if (usage & BIT(ARC_R_BLINK))
+ len += arc_pop_r(BUF(buf, len), ARC_R_BLINK);
+
+ /* Wrap up the return value and jump back to the caller. */
+ len += bpf_to_arc_return(BUF(buf, len));
+ len += arc_jmp_return(BUF(buf, len));
+
+ return len;
+}
+
+/*
+ * For details on the algorithm, see the comments of "gen_jcc_64()".
+ *
+ * This data structure is holding information for jump translations.
+ *
+ * jit_off: How many bytes into the current JIT address, "b"ranch insn. occurs
+ * cond: The condition that the ARC branch instruction must use
+ *
+ * e.g.:
+ *
+ * BPF_JGE R1, R0, @target
+ * ------------------------
+ * |
+ * v
+ * 0x1000: cmp r3, r1 # 0x1000 is the JIT address for "BPF_JGE ..." insn
+ * 0x1004: bhi @target # first jump (branch higher)
+ * 0x1008: blo @end # second jump acting as a skip (end is 0x1014)
+ * 0x100C: cmp r2, r0 # the lower 32 bits are evaluated
+ * 0x1010: bhs @target # third jump (branch higher or same)
+ * 0x1014: ...
+ *
+ * The jit_off(set) of the "bhi" is 4 bytes.
+ * The cond(ition) for the "bhi" is "CC_great_u".
+ *
+ * The jit_off(set) is necessary for calculating the exact displacement
+ * to the "target" address:
+ *
+ * jit_address + jit_off(set) - @target
+ * 0x1000 + 4 - @target
+ */
+#define JCC64_NR_OF_JMPS 3 /* Number of jumps in jcc64 template. */
+#define JCC64_INSNS_TO_END 3 /* Number of insn. inclusive the 2nd jmp to end. */
+#define JCC64_SKIP_JMP 1 /* Index of the "skip" jump to "end". */
+static const struct {
+ /*
+ * "jit_off" is common between all "jmp[]" and is coupled with
+ * "cond" of each "jmp[]" instance. e.g.:
+ *
+ * arcv2_64_jccs.jit_off[1]
+ * arcv2_64_jccs.jmp[ARC_CC_UGT].cond[1]
+ *
+ * Are indicating that the second jump in JITed code of "UGT"
+ * is at offset "jit_off[1]" while its condition is "cond[1]".
+ */
+ u8 jit_off[JCC64_NR_OF_JMPS];
+
+ struct {
+ u8 cond[JCC64_NR_OF_JMPS];
+ } jmp[ARC_CC_SLE + 1];
+} arcv2_64_jccs = {
+ .jit_off = {
+ INSN_len_normal * 1,
+ INSN_len_normal * 2,
+ INSN_len_normal * 4
+ },
+ /*
+ * cmp rd_hi, rs_hi
+ * bhi @target # 1: u>
+ * blo @end # 2: u<
+ * cmp rd_lo, rs_lo
+ * bhi @target # 3: u>
+ * end:
+ */
+ .jmp[ARC_CC_UGT] = {
+ .cond = {CC_great_u, CC_less_u, CC_great_u}
+ },
+ /*
+ * cmp rd_hi, rs_hi
+ * bhi @target # 1: u>
+ * blo @end # 2: u<
+ * cmp rd_lo, rs_lo
+ * bhs @target # 3: u>=
+ * end:
+ */
+ .jmp[ARC_CC_UGE] = {
+ .cond = {CC_great_u, CC_less_u, CC_great_eq_u}
+ },
+ /*
+ * cmp rd_hi, rs_hi
+ * blo @target # 1: u<
+ * bhi @end # 2: u>
+ * cmp rd_lo, rs_lo
+ * blo @target # 3: u<
+ * end:
+ */
+ .jmp[ARC_CC_ULT] = {
+ .cond = {CC_less_u, CC_great_u, CC_less_u}
+ },
+ /*
+ * cmp rd_hi, rs_hi
+ * blo @target # 1: u<
+ * bhi @end # 2: u>
+ * cmp rd_lo, rs_lo
+ * bls @target # 3: u<=
+ * end:
+ */
+ .jmp[ARC_CC_ULE] = {
+ .cond = {CC_less_u, CC_great_u, CC_less_eq_u}
+ },
+ /*
+ * cmp rd_hi, rs_hi
+ * bgt @target # 1: s>
+ * blt @end # 2: s<
+ * cmp rd_lo, rs_lo
+ * bhi @target # 3: u>
+ * end:
+ */
+ .jmp[ARC_CC_SGT] = {
+ .cond = {CC_great_s, CC_less_s, CC_great_u}
+ },
+ /*
+ * cmp rd_hi, rs_hi
+ * bgt @target # 1: s>
+ * blt @end # 2: s<
+ * cmp rd_lo, rs_lo
+ * bhs @target # 3: u>=
+ * end:
+ */
+ .jmp[ARC_CC_SGE] = {
+ .cond = {CC_great_s, CC_less_s, CC_great_eq_u}
+ },
+ /*
+ * cmp rd_hi, rs_hi
+ * blt @target # 1: s<
+ * bgt @end # 2: s>
+ * cmp rd_lo, rs_lo
+ * blo @target # 3: u<
+ * end:
+ */
+ .jmp[ARC_CC_SLT] = {
+ .cond = {CC_less_s, CC_great_s, CC_less_u}
+ },
+ /*
+ * cmp rd_hi, rs_hi
+ * blt @target # 1: s<
+ * bgt @end # 2: s>
+ * cmp rd_lo, rs_lo
+ * bls @target # 3: u<=
+ * end:
+ */
+ .jmp[ARC_CC_SLE] = {
+ .cond = {CC_less_s, CC_great_s, CC_less_eq_u}
+ }
+};
+
+/*
+ * The displacement (offset) for ARC's "b"ranch instruction is the distance
+ * from the aligned version of _current_ instruction (PCL) to the target
+ * instruction:
+ *
+ * DISP = TARGET - PCL # PCL is the word aligned PC
+ */
+static inline s32 get_displacement(u32 curr_off, u32 targ_off)
+{
+ return (s32)(targ_off - (curr_off & ~3L));
+}
+
+/*
+ * "disp"lacement should be:
+ *
+ * 1. 16-bit aligned.
+ * 2. fit in S25, because no "condition code" is supposed to be encoded.
+ */
+static inline bool is_valid_far_disp(s32 disp)
+{
+ return (!(disp & 1) && IN_S25_RANGE(disp));
+}
+
+/*
+ * "disp"lacement should be:
+ *
+ * 1. 16-bit aligned.
+ * 2. fit in S21, because "condition code" is supposed to be encoded too.
+ */
+static inline bool is_valid_near_disp(s32 disp)
+{
+ return (!(disp & 1) && IN_S21_RANGE(disp));
+}
+
+/*
+ * cmp rd_hi, rs_hi
+ * cmp.z rd_lo, rs_lo
+ * b{eq,ne} @target
+ * | |
+ * | `--> "eq" param is false (JNE)
+ * `-----> "eq" param is true (JEQ)
+ */
+static int gen_j_eq_64(u8 *buf, u8 rd, u8 rs, bool eq,
+ u32 curr_off, u32 targ_off)
+{
+ s32 disp;
+ u8 len = 0;
+
+ len += arc_cmp_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
+ len += arc_cmpz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
+ disp = get_displacement(curr_off + len, targ_off);
+ len += arc_bcc(BUF(buf, len), eq ? CC_equal : CC_unequal, disp);
+
+ return len;
+}
+
+/*
+ * tst rd_hi, rs_hi
+ * tst.z rd_lo, rs_lo
+ * bne @target
+ */
+static u8 gen_jset_64(u8 *buf, u8 rd, u8 rs, u32 curr_off, u32 targ_off)
+{
+ u8 len = 0;
+ s32 disp;
+
+ len += arc_tst_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
+ len += arc_tstz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
+ disp = get_displacement(curr_off + len, targ_off);
+ len += arc_bcc(BUF(buf, len), CC_unequal, disp);
+
+ return len;
+}
+
+/*
+ * Verify if all the jumps for a JITed jcc64 operation are valid,
+ * by consulting the data stored at "arcv2_64_jccs".
+ */
+static bool check_jcc_64(u32 curr_off, u32 targ_off, u8 cond)
+{
+ size_t i;
+
+ if (cond >= ARC_CC_LAST)
+ return false;
+
+ for (i = 0; i < JCC64_NR_OF_JMPS; i++) {
+ u32 from, to;
+
+ from = curr_off + arcv2_64_jccs.jit_off[i];
+ /* for the 2nd jump, we jump to the end of block. */
+ if (i != JCC64_SKIP_JMP)
+ to = targ_off;
+ else
+ to = from + (JCC64_INSNS_TO_END * INSN_len_normal);
+ /* There is a "cc" in the instruction, so a "near" jump. */
+ if (!is_valid_near_disp(get_displacement(from, to)))
+ return false;
+ }
+
+ return true;
+}
+
+/* Can the jump from "curr_off" to "targ_off" actually happen? */
+bool check_jmp_64(u32 curr_off, u32 targ_off, u8 cond)
+{
+ s32 disp;
+
+ switch (cond) {
+ case ARC_CC_UGT:
+ case ARC_CC_UGE:
+ case ARC_CC_ULT:
+ case ARC_CC_ULE:
+ case ARC_CC_SGT:
+ case ARC_CC_SGE:
+ case ARC_CC_SLT:
+ case ARC_CC_SLE:
+ return check_jcc_64(curr_off, targ_off, cond);
+ case ARC_CC_EQ:
+ case ARC_CC_NE:
+ case ARC_CC_SET:
+ /*
+ * The "jump" for the JITed BPF_J{SET,EQ,NE} is actually the
+ * 3rd instruction. See comments of "gen_j{set,_eq}_64()".
+ */
+ curr_off += 2 * INSN_len_normal;
+ disp = get_displacement(curr_off, targ_off);
+ /* There is a "cc" field in the issued instruction. */
+ return is_valid_near_disp(disp);
+ case ARC_CC_AL:
+ disp = get_displacement(curr_off, targ_off);
+ return is_valid_far_disp(disp);
+ default:
+ return false;
+ }
+}
+
+/*
+ * The template for the 64-bit jumps with the following BPF conditions
+ *
+ * u< u<= u> u>= s< s<= s> s>=
+ *
+ * Looks like below:
+ *
+ * cmp rd_hi, rs_hi
+ * b<c1> @target
+ * b<c2> @end
+ * cmp rd_lo, rs_lo # if execution reaches here, r{d,s}_hi are equal
+ * b<c3> @target
+ * end:
+ *
+ * "c1" is the condition that JIT is handling minus the equality part.
+ * For instance if we have to translate an "unsigned greater or equal",
+ * then "c1" will be "unsigned greater". We won't know about equality
+ * until all 64-bits of data (higeher and lower registers) are processed.
+ *
+ * "c2" is the counter logic of "c1". For instance, if "c1" is originated
+ * from "s>", then "c2" would be "s<". Notice that equality doesn't play
+ * a role here either, because the lower 32 bits are not processed yet.
+ *
+ * "c3" is the unsigned version of "c1", no matter if the BPF condition
+ * was signed or unsigned. An unsigned version is necessary, because the
+ * MSB of the lower 32 bits does not reflect a sign in the whole 64-bit
+ * scheme. Otherwise, 64-bit comparisons like
+ * (0x0000_0000,0x8000_0000) s>= (0x0000_0000,0x0000_0000)
+ * would yield an incorrect result. Finally, if there is an equality
+ * check in the BPF condition, it will be reflected in "c3".
+ *
+ * You can find all the instances of this template where the
+ * "arcv2_64_jccs" is getting initialised.
+ */
+static u8 gen_jcc_64(u8 *buf, u8 rd, u8 rs, u8 cond,
+ u32 curr_off, u32 targ_off)
+{
+ s32 disp;
+ u32 end_off;
+ const u8 *cc = arcv2_64_jccs.jmp[cond].cond;
+ u8 len = 0;
+
+ /* cmp rd_hi, rs_hi */
+ len += arc_cmp_r(buf, REG_HI(rd), REG_HI(rs));
+
+ /* b<c1> @target */
+ disp = get_displacement(curr_off + len, targ_off);
+ len += arc_bcc(BUF(buf, len), cc[0], disp);
+
+ /* b<c2> @end */
+ end_off = curr_off + len + (JCC64_INSNS_TO_END * INSN_len_normal);
+ disp = get_displacement(curr_off + len, end_off);
+ len += arc_bcc(BUF(buf, len), cc[1], disp);
+
+ /* cmp rd_lo, rs_lo */
+ len += arc_cmp_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
+
+ /* b<c3> @target */
+ disp = get_displacement(curr_off + len, targ_off);
+ len += arc_bcc(BUF(buf, len), cc[2], disp);
+
+ return len;
+}
+
+/*
+ * This function only applies the necessary logic to make the proper
+ * translations. All the sanity checks must have already been done
+ * by calling the check_jmp_64().
+ */
+u8 gen_jmp_64(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off)
+{
+ u8 len = 0;
+ bool eq = false;
+ s32 disp;
+
+ switch (cond) {
+ case ARC_CC_AL:
+ disp = get_displacement(curr_off, targ_off);
+ len = arc_b(buf, disp);
+ break;
+ case ARC_CC_UGT:
+ case ARC_CC_UGE:
+ case ARC_CC_ULT:
+ case ARC_CC_ULE:
+ case ARC_CC_SGT:
+ case ARC_CC_SGE:
+ case ARC_CC_SLT:
+ case ARC_CC_SLE:
+ len = gen_jcc_64(buf, rd, rs, cond, curr_off, targ_off);
+ break;
+ case ARC_CC_EQ:
+ eq = true;
+ fallthrough;
+ case ARC_CC_NE:
+ len = gen_j_eq_64(buf, rd, rs, eq, curr_off, targ_off);
+ break;
+ case ARC_CC_SET:
+ len = gen_jset_64(buf, rd, rs, curr_off, targ_off);
+ break;
+ default:
+#ifdef ARC_BPF_JIT_DEBUG
+ pr_err("64-bit jump condition is not known.");
+ BUG();
+#endif
+ }
+ return len;
+}
+
+/*
+ * The condition codes to use when generating JIT instructions
+ * for 32-bit jumps.
+ *
+ * The "ARC_CC_AL" index is not really used by the code, but it
+ * is here for the sake of completeness.
+ *
+ * The "ARC_CC_SET" becomes "CC_unequal" because of the "tst"
+ * instruction that precedes the conditional branch.
+ */
+static const u8 arcv2_32_jmps[ARC_CC_LAST] = {
+ [ARC_CC_UGT] = CC_great_u,
+ [ARC_CC_UGE] = CC_great_eq_u,
+ [ARC_CC_ULT] = CC_less_u,
+ [ARC_CC_ULE] = CC_less_eq_u,
+ [ARC_CC_SGT] = CC_great_s,
+ [ARC_CC_SGE] = CC_great_eq_s,
+ [ARC_CC_SLT] = CC_less_s,
+ [ARC_CC_SLE] = CC_less_eq_s,
+ [ARC_CC_AL] = CC_always,
+ [ARC_CC_EQ] = CC_equal,
+ [ARC_CC_NE] = CC_unequal,
+ [ARC_CC_SET] = CC_unequal
+};
+
+/* Can the jump from "curr_off" to "targ_off" actually happen? */
+bool check_jmp_32(u32 curr_off, u32 targ_off, u8 cond)
+{
+ u8 addendum;
+ s32 disp;
+
+ if (cond >= ARC_CC_LAST)
+ return false;
+
+ /*
+ * The unconditional jump happens immediately, while the rest
+ * are either preceded by a "cmp" or "tst" instruction.
+ */
+ addendum = (cond == ARC_CC_AL) ? 0 : INSN_len_normal;
+ disp = get_displacement(curr_off + addendum, targ_off);
+
+ if (ARC_CC_AL)
+ return is_valid_far_disp(disp);
+ else
+ return is_valid_near_disp(disp);
+}
+
+/*
+ * The JITed code for 32-bit (conditional) branches:
+ *
+ * ARC_CC_AL @target
+ * b @jit_targ_addr
+ *
+ * ARC_CC_SET rd, rs, @target
+ * tst rd, rs
+ * bnz @jit_targ_addr
+ *
+ * ARC_CC_xx rd, rs, @target
+ * cmp rd, rs
+ * b<cc> @jit_targ_addr # cc = arcv2_32_jmps[xx]
+ */
+u8 gen_jmp_32(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off)
+{
+ s32 disp;
+ u8 len = 0;
+
+ /*
+ * Although this must have already been checked by "check_jmp_32()",
+ * we're not going to risk accessing "arcv2_32_jmps" array without
+ * the boundary check.
+ */
+ if (cond >= ARC_CC_LAST) {
+#ifdef ARC_BPF_JIT_DEBUG
+ pr_err("32-bit jump condition is not known.");
+ BUG();
+#endif
+ return 0;
+ }
+
+ /* If there is a "condition", issue the "cmp" or "tst" first. */
+ if (cond != ARC_CC_AL) {
+ if (cond == ARC_CC_SET)
+ len = tst_r32(buf, rd, rs);
+ else
+ len = cmp_r32(buf, rd, rs);
+ /*
+ * The issued instruction affects the "disp"lacement as
+ * it alters the "curr_off" by its "len"gth. The "curr_off"
+ * should always point to the jump instruction.
+ */
+ disp = get_displacement(curr_off + len, targ_off);
+ len += arc_bcc(BUF(buf, len), arcv2_32_jmps[cond], disp);
+ } else {
+ /* The straight forward unconditional jump. */
+ disp = get_displacement(curr_off, targ_off);
+ len = arc_b(buf, disp);
+ }
+
+ return len;
+}
+
+/*
+ * Generate code for functions calls. There can be two types of calls:
+ *
+ * - Calling another BPF function
+ * - Calling an in-kernel function which is compiled by ARC gcc
+ *
+ * In the later case, we must comply to ARCv2 ABI and handle arguments
+ * and return values accordingly.
+ */
+u8 gen_func_call(u8 *buf, ARC_ADDR func_addr, bool external_func)
+{
+ u8 len = 0;
+
+ /*
+ * In case of an in-kernel function call, always push the 5th
+ * argument onto the stack, because that's where the ABI dictates
+ * it should be found. If the callee doesn't really use it, no harm
+ * is done. The stack is readjusted either way after the call.
+ */
+ if (external_func)
+ len += push_r64(BUF(buf, len), BPF_REG_5);
+
+ len += jump_and_link(BUF(buf, len), func_addr);
+
+ if (external_func)
+ len += arc_add_i(BUF(buf, len), ARC_R_SP, ARC_R_SP, ARG5_SIZE);
+
+ return len;
+}
diff --git a/arch/arc/net/bpf_jit_core.c b/arch/arc/net/bpf_jit_core.c
new file mode 100644
index 000000000000..e3628922c24a
--- /dev/null
+++ b/arch/arc/net/bpf_jit_core.c
@@ -0,0 +1,1425 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * The back-end-agnostic part of Just-In-Time compiler for eBPF bytecode.
+ *
+ * Copyright (c) 2024 Synopsys Inc.
+ * Author: Shahab Vahedi <shahab@synopsys.com>
+ */
+#include <linux/bug.h>
+#include "bpf_jit.h"
+
+/*
+ * Check for the return value. A pattern used often in this file.
+ * There must be a "ret" variable of type "int" in the scope.
+ */
+#define CHECK_RET(cmd) \
+ do { \
+ ret = (cmd); \
+ if (ret < 0) \
+ return ret; \
+ } while (0)
+
+#ifdef ARC_BPF_JIT_DEBUG
+/* Dumps bytes in /var/log/messages at KERN_INFO level (4). */
+static void dump_bytes(const u8 *buf, u32 len, const char *header)
+{
+ u8 line[64];
+ size_t i, j;
+
+ pr_info("-----------------[ %s ]-----------------\n", header);
+
+ for (i = 0, j = 0; i < len; i++) {
+ /* Last input byte? */
+ if (i == len - 1) {
+ j += scnprintf(line + j, 64 - j, "0x%02x", buf[i]);
+ pr_info("%s\n", line);
+ break;
+ }
+ /* End of line? */
+ else if (i % 8 == 7) {
+ j += scnprintf(line + j, 64 - j, "0x%02x", buf[i]);
+ pr_info("%s\n", line);
+ j = 0;
+ } else {
+ j += scnprintf(line + j, 64 - j, "0x%02x, ", buf[i]);
+ }
+ }
+}
+#endif /* ARC_BPF_JIT_DEBUG */
+
+/********************* JIT context ***********************/
+
+/*
+ * buf: Translated instructions end up here.
+ * len: The length of whole block in bytes.
+ * index: The offset at which the _next_ instruction may be put.
+ */
+struct jit_buffer {
+ u8 *buf;
+ u32 len;
+ u32 index;
+};
+
+/*
+ * This is a subset of "struct jit_context" that its information is deemed
+ * necessary for the next extra pass to come.
+ *
+ * bpf_header: Needed to finally lock the region.
+ * bpf2insn: Used to find the translation for instructions of interest.
+ *
+ * Things like "jit.buf" and "jit.len" can be retrieved respectively from
+ * "prog->bpf_func" and "prog->jited_len".
+ */
+struct arc_jit_data {
+ struct bpf_binary_header *bpf_header;
+ u32 *bpf2insn;
+};
+
+/*
+ * The JIT pertinent context that is used by different functions.
+ *
+ * prog: The current eBPF program being handled.
+ * orig_prog: The original eBPF program before any possible change.
+ * jit: The JIT buffer and its length.
+ * bpf_header: The JITed program header. "jit.buf" points inside it.
+ * emit: If set, opcodes are written to memory; else, a dry-run.
+ * do_zext: If true, 32-bit sub-regs must be zero extended.
+ * bpf2insn: Maps BPF insn indices to their counterparts in jit.buf.
+ * bpf2insn_valid: Indicates if "bpf2ins" is populated with the mappings.
+ * jit_data: A piece of memory to transfer data to the next pass.
+ * arc_regs_clobbered: Each bit status determines if that arc reg is clobbered.
+ * save_blink: Whether ARC's "blink" register needs to be saved.
+ * frame_size: Derived from "prog->aux->stack_depth".
+ * epilogue_offset: Used by early "return"s in the code to jump here.
+ * need_extra_pass: A forecast if an "extra_pass" will occur.
+ * is_extra_pass: Indicates if the current pass is an extra pass.
+ * user_bpf_prog: True, if VM opcodes come from a real program.
+ * blinded: True if "constant blinding" step returned a new "prog".
+ * success: Indicates if the whole JIT went OK.
+ */
+struct jit_context {
+ struct bpf_prog *prog;
+ struct bpf_prog *orig_prog;
+ struct jit_buffer jit;
+ struct bpf_binary_header *bpf_header;
+ bool emit;
+ bool do_zext;
+ u32 *bpf2insn;
+ bool bpf2insn_valid;
+ struct arc_jit_data *jit_data;
+ u32 arc_regs_clobbered;
+ bool save_blink;
+ u16 frame_size;
+ u32 epilogue_offset;
+ bool need_extra_pass;
+ bool is_extra_pass;
+ bool user_bpf_prog;
+ bool blinded;
+ bool success;
+};
+
+/*
+ * If we're in ARC_BPF_JIT_DEBUG mode and the debug level is right, dump the
+ * input BPF stream. "bpf_jit_dump()" is not fully suited for this purpose.
+ */
+static void vm_dump(const struct bpf_prog *prog)
+{
+#ifdef ARC_BPF_JIT_DEBUG
+ if (bpf_jit_enable > 1)
+ dump_bytes((u8 *)prog->insns, 8 * prog->len, " VM ");
+#endif
+}
+
+/*
+ * If the right level of debug is set, dump the bytes. There are 2 variants
+ * of this function:
+ *
+ * 1. Use the standard bpf_jit_dump() which is meant only for JITed code.
+ * 2. Use the dump_bytes() to match its "vm_dump()" instance.
+ */
+static void jit_dump(const struct jit_context *ctx)
+{
+#ifdef ARC_BPF_JIT_DEBUG
+ u8 header[8];
+#endif
+ const int pass = ctx->is_extra_pass ? 2 : 1;
+
+ if (bpf_jit_enable <= 1 || !ctx->prog->jited)
+ return;
+
+#ifdef ARC_BPF_JIT_DEBUG
+ scnprintf(header, sizeof(header), "JIT:%d", pass);
+ dump_bytes(ctx->jit.buf, ctx->jit.len, header);
+ pr_info("\n");
+#else
+ bpf_jit_dump(ctx->prog->len, ctx->jit.len, pass, ctx->jit.buf);
+#endif
+}
+
+/* Initialise the context so there's no garbage. */
+static int jit_ctx_init(struct jit_context *ctx, struct bpf_prog *prog)
+{
+ memset(ctx, 0, sizeof(*ctx));
+
+ ctx->orig_prog = prog;
+
+ /* If constant blinding was requested but failed, scram. */
+ ctx->prog = bpf_jit_blind_constants(prog);
+ if (IS_ERR(ctx->prog))
+ return PTR_ERR(ctx->prog);
+ ctx->blinded = (ctx->prog != ctx->orig_prog);
+
+ /* If the verifier doesn't zero-extend, then we have to do it. */
+ ctx->do_zext = !ctx->prog->aux->verifier_zext;
+
+ ctx->is_extra_pass = ctx->prog->jited;
+ ctx->user_bpf_prog = ctx->prog->is_func;
+
+ return 0;
+}
+
+/*
+ * Only after the first iteration of normal pass (the dry-run),
+ * there are valid offsets in ctx->bpf2insn array.
+ */
+static inline bool offsets_available(const struct jit_context *ctx)
+{
+ return ctx->bpf2insn_valid;
+}
+
+/*
+ * "*mem" should be freed when there is no "extra pass" to come,
+ * or the compilation terminated abruptly. A few of such memory
+ * allocations are: ctx->jit_data and ctx->bpf2insn.
+ */
+static inline void maybe_free(struct jit_context *ctx, void **mem)
+{
+ if (*mem) {
+ if (!ctx->success || !ctx->need_extra_pass) {
+ kfree(*mem);
+ *mem = NULL;
+ }
+ }
+}
+
+/*
+ * Free memories based on the status of the context.
+ *
+ * A note about "bpf_header": On successful runs, "bpf_header" is
+ * not freed, because "jit.buf", a sub-array of it, is returned as
+ * the "bpf_func". However, "bpf_header" is lost and nothing points
+ * to it. This should not cause a leakage, because apparently
+ * "bpf_header" can be revived by "bpf_jit_binary_hdr()". This is
+ * how "bpf_jit_free()" in "kernel/bpf/core.c" releases the memory.
+ */
+static void jit_ctx_cleanup(struct jit_context *ctx)
+{
+ if (ctx->blinded) {
+ /* if all went well, release the orig_prog. */
+ if (ctx->success)
+ bpf_jit_prog_release_other(ctx->prog, ctx->orig_prog);
+ else
+ bpf_jit_prog_release_other(ctx->orig_prog, ctx->prog);
+ }
+
+ maybe_free(ctx, (void **)&ctx->bpf2insn);
+ maybe_free(ctx, (void **)&ctx->jit_data);
+
+ if (!ctx->bpf2insn)
+ ctx->bpf2insn_valid = false;
+
+ /* Freeing "bpf_header" is enough. "jit.buf" is a sub-array of it. */
+ if (!ctx->success && ctx->bpf_header) {
+ bpf_jit_binary_free(ctx->bpf_header);
+ ctx->bpf_header = NULL;
+ ctx->jit.buf = NULL;
+ ctx->jit.index = 0;
+ ctx->jit.len = 0;
+ }
+
+ ctx->emit = false;
+ ctx->do_zext = false;
+}
+
+/*
+ * Analyse the register usage and record the frame size.
+ * The register usage is determined by consulting the back-end.
+ */
+static void analyze_reg_usage(struct jit_context *ctx)
+{
+ size_t i;
+ u32 usage = 0;
+ const struct bpf_insn *insn = ctx->prog->insnsi;
+
+ for (i = 0; i < ctx->prog->len; i++) {
+ u8 bpf_reg;
+ bool call;
+
+ bpf_reg = insn[i].dst_reg;
+ call = (insn[i].code == (BPF_JMP | BPF_CALL)) ? true : false;
+ usage |= mask_for_used_regs(bpf_reg, call);
+ }
+
+ ctx->arc_regs_clobbered = usage;
+ ctx->frame_size = ctx->prog->aux->stack_depth;
+}
+
+/* Verify that no instruction will be emitted when there is no buffer. */
+static inline int jit_buffer_check(const struct jit_context *ctx)
+{
+ if (ctx->emit) {
+ if (!ctx->jit.buf) {
+ pr_err("bpf-jit: inconsistence state; no "
+ "buffer to emit instructions.\n");
+ return -EINVAL;
+ } else if (ctx->jit.index > ctx->jit.len) {
+ pr_err("bpf-jit: estimated JIT length is less "
+ "than the emitted instructions.\n");
+ return -EFAULT;
+ }
+ }
+ return 0;
+}
+
+/* On a dry-run (emit=false), "jit.len" is growing gradually. */
+static inline void jit_buffer_update(struct jit_context *ctx, u32 n)
+{
+ if (!ctx->emit)
+ ctx->jit.len += n;
+ else
+ ctx->jit.index += n;
+}
+
+/* Based on "emit", determine the address where instructions are emitted. */
+static inline u8 *effective_jit_buf(const struct jit_context *ctx)
+{
+ return ctx->emit ? (ctx->jit.buf + ctx->jit.index) : NULL;
+}
+
+/* Prologue based on context variables set by "analyze_reg_usage()". */
+static int handle_prologue(struct jit_context *ctx)
+{
+ int ret;
+ u8 *buf = effective_jit_buf(ctx);
+ u32 len = 0;
+
+ CHECK_RET(jit_buffer_check(ctx));
+
+ len = arc_prologue(buf, ctx->arc_regs_clobbered, ctx->frame_size);
+ jit_buffer_update(ctx, len);
+
+ return 0;
+}
+
+/* The counter part for "handle_prologue()". */
+static int handle_epilogue(struct jit_context *ctx)
+{
+ int ret;
+ u8 *buf = effective_jit_buf(ctx);
+ u32 len = 0;
+
+ CHECK_RET(jit_buffer_check(ctx));
+
+ len = arc_epilogue(buf, ctx->arc_regs_clobbered, ctx->frame_size);
+ jit_buffer_update(ctx, len);
+
+ return 0;
+}
+
+/* Tell which number of the BPF instruction we are dealing with. */
+static inline s32 get_index_for_insn(const struct jit_context *ctx,
+ const struct bpf_insn *insn)
+{
+ return (insn - ctx->prog->insnsi);
+}
+
+/*
+ * In most of the cases, the "offset" is read from "insn->off". However,
+ * if it is an unconditional BPF_JMP32, then it comes from "insn->imm".
+ *
+ * (Courtesy of "cpu=v4" support)
+ */
+static inline s32 get_offset(const struct bpf_insn *insn)
+{
+ if ((BPF_CLASS(insn->code) == BPF_JMP32) &&
+ (BPF_OP(insn->code) == BPF_JA))
+ return insn->imm;
+ else
+ return insn->off;
+}
+
+/*
+ * Determine to which number of the BPF instruction we're jumping to.
+ *
+ * The "offset" is interpreted as the "number" of BPF instructions
+ * from the _next_ BPF instruction. e.g.:
+ *
+ * 4 means 4 instructions after the next insn
+ * 0 means 0 instructions after the next insn -> fallthrough.
+ * -1 means 1 instruction before the next insn -> jmp to current insn.
+ *
+ * Another way to look at this, "offset" is the number of instructions
+ * that exist between the current instruction and the target instruction.
+ *
+ * It is worth noting that a "mov r,i64", which is 16-byte long, is
+ * treated as two instructions long, therefore "offset" needn't be
+ * treated specially for those. Everything is uniform.
+ */
+static inline s32 get_target_index_for_insn(const struct jit_context *ctx,
+ const struct bpf_insn *insn)
+{
+ return (get_index_for_insn(ctx, insn) + 1) + get_offset(insn);
+}
+
+/* Is there an immediate operand encoded in the "insn"? */
+static inline bool has_imm(const struct bpf_insn *insn)
+{
+ return BPF_SRC(insn->code) == BPF_K;
+}
+
+/* Is the last BPF instruction? */
+static inline bool is_last_insn(const struct bpf_prog *prog, u32 idx)
+{
+ return idx == (prog->len - 1);
+}
+
+/*
+ * Invocation of this function, conditionally signals the need for
+ * an extra pass. The conditions that must be met are:
+ *
+ * 1. The current pass itself shouldn't be an extra pass.
+ * 2. The stream of bytes being JITed must come from a user program.
+ */
+static inline void set_need_for_extra_pass(struct jit_context *ctx)
+{
+ if (!ctx->is_extra_pass)
+ ctx->need_extra_pass = ctx->user_bpf_prog;
+}
+
+/*
+ * Check if the "size" is valid and then transfer the control to
+ * the back-end for the swap.
+ */
+static int handle_swap(u8 *buf, u8 rd, u8 size, u8 endian,
+ bool force, bool do_zext, u8 *len)
+{
+ /* Sanity check on the size. */
+ switch (size) {
+ case 16:
+ case 32:
+ case 64:
+ break;
+ default:
+ pr_err("bpf-jit: invalid size for swap.\n");
+ return -EINVAL;
+ }
+
+ *len = gen_swap(buf, rd, size, endian, force, do_zext);
+
+ return 0;
+}
+
+/* Checks if the (instruction) index is in valid range. */
+static inline bool check_insn_idx_valid(const struct jit_context *ctx,
+ const s32 idx)
+{
+ return (idx >= 0 && idx < ctx->prog->len);
+}
+
+/*
+ * Decouple the back-end from BPF by converting BPF conditions
+ * to internal enum. ARC_CC_* start from 0 and are used as index
+ * to an array. BPF_J* usage must end after this conversion.
+ */
+static int bpf_cond_to_arc(const u8 op, u8 *arc_cc)
+{
+ switch (op) {
+ case BPF_JA:
+ *arc_cc = ARC_CC_AL;
+ break;
+ case BPF_JEQ:
+ *arc_cc = ARC_CC_EQ;
+ break;
+ case BPF_JGT:
+ *arc_cc = ARC_CC_UGT;
+ break;
+ case BPF_JGE:
+ *arc_cc = ARC_CC_UGE;
+ break;
+ case BPF_JSET:
+ *arc_cc = ARC_CC_SET;
+ break;
+ case BPF_JNE:
+ *arc_cc = ARC_CC_NE;
+ break;
+ case BPF_JSGT:
+ *arc_cc = ARC_CC_SGT;
+ break;
+ case BPF_JSGE:
+ *arc_cc = ARC_CC_SGE;
+ break;
+ case BPF_JLT:
+ *arc_cc = ARC_CC_ULT;
+ break;
+ case BPF_JLE:
+ *arc_cc = ARC_CC_ULE;
+ break;
+ case BPF_JSLT:
+ *arc_cc = ARC_CC_SLT;
+ break;
+ case BPF_JSLE:
+ *arc_cc = ARC_CC_SLE;
+ break;
+ default:
+ pr_err("bpf-jit: can't handle condition 0x%02X\n", op);
+ return -EINVAL;
+ }
+ return 0;
+}
+
+/*
+ * Check a few things for a supposedly "jump" instruction:
+ *
+ * 0. "insn" is a "jump" instruction, but not the "call/exit" variant.
+ * 1. The current "insn" index is in valid range.
+ * 2. The index of target instruction is in valid range.
+ */
+static int check_bpf_jump(const struct jit_context *ctx,
+ const struct bpf_insn *insn)
+{
+ const u8 class = BPF_CLASS(insn->code);
+ const u8 op = BPF_OP(insn->code);
+
+ /* Must be a jmp(32) instruction that is not a "call/exit". */
+ if ((class != BPF_JMP && class != BPF_JMP32) ||
+ (op == BPF_CALL || op == BPF_EXIT)) {
+ pr_err("bpf-jit: not a jump instruction.\n");
+ return -EINVAL;
+ }
+
+ if (!check_insn_idx_valid(ctx, get_index_for_insn(ctx, insn))) {
+ pr_err("bpf-jit: the bpf jump insn is not in prog.\n");
+ return -EINVAL;
+ }
+
+ if (!check_insn_idx_valid(ctx, get_target_index_for_insn(ctx, insn))) {
+ pr_err("bpf-jit: bpf jump label is out of range.\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/*
+ * Based on input "insn", consult "ctx->bpf2insn" to get the
+ * related index (offset) of the translation in JIT stream.
+ */
+static u32 get_curr_jit_off(const struct jit_context *ctx,
+ const struct bpf_insn *insn)
+{
+ const s32 idx = get_index_for_insn(ctx, insn);
+#ifdef ARC_BPF_JIT_DEBUG
+ BUG_ON(!offsets_available(ctx) || !check_insn_idx_valid(ctx, idx));
+#endif
+ return ctx->bpf2insn[idx];
+}
+
+/*
+ * The input "insn" must be a jump instruction.
+ *
+ * Based on input "insn", consult "ctx->bpf2insn" to get the
+ * related JIT index (offset) of "target instruction" that
+ * "insn" would jump to.
+ */
+static u32 get_targ_jit_off(const struct jit_context *ctx,
+ const struct bpf_insn *insn)
+{
+ const s32 tidx = get_target_index_for_insn(ctx, insn);
+#ifdef ARC_BPF_JIT_DEBUG
+ BUG_ON(!offsets_available(ctx) || !check_insn_idx_valid(ctx, tidx));
+#endif
+ return ctx->bpf2insn[tidx];
+}
+
+/*
+ * This function will return 0 for a feasible jump.
+ *
+ * Consult the back-end to check if it finds it feasible to emit
+ * the necessary instructions based on "cond" and the displacement
+ * between the "from_off" and the "to_off".
+ */
+static int feasible_jit_jump(u32 from_off, u32 to_off, u8 cond, bool j32)
+{
+ int ret = 0;
+
+ if (j32) {
+ if (!check_jmp_32(from_off, to_off, cond))
+ ret = -EFAULT;
+ } else {
+ if (!check_jmp_64(from_off, to_off, cond))
+ ret = -EFAULT;
+ }
+
+ if (ret != 0)
+ pr_err("bpf-jit: the JIT displacement is not OK.\n");
+
+ return ret;
+}
+
+/*
+ * This jump handler performs the following steps:
+ *
+ * 1. Compute ARC's internal condition code from BPF's
+ * 2. Determine the bitness of the operation (32 vs. 64)
+ * 3. Sanity check on BPF stream
+ * 4. Sanity check on what is supposed to be JIT's displacement
+ * 5. And finally, emit the necessary instructions
+ *
+ * The last two steps are performed through the back-end.
+ * The value of steps 1 and 2 are necessary inputs for the back-end.
+ */
+static int handle_jumps(const struct jit_context *ctx,
+ const struct bpf_insn *insn,
+ u8 *len)
+{
+ u8 cond;
+ int ret = 0;
+ u8 *buf = effective_jit_buf(ctx);
+ const bool j32 = (BPF_CLASS(insn->code) == BPF_JMP32) ? true : false;
+ const u8 rd = insn->dst_reg;
+ u8 rs = insn->src_reg;
+ u32 curr_off = 0, targ_off = 0;
+
+ *len = 0;
+
+ /* Map the BPF condition to internal enum. */
+ CHECK_RET(bpf_cond_to_arc(BPF_OP(insn->code), &cond));
+
+ /* Sanity check on the BPF byte stream. */
+ CHECK_RET(check_bpf_jump(ctx, insn));
+
+ /*
+ * Move the immediate into a temporary register _now_ for 2 reasons:
+ *
+ * 1. "gen_jmp_{32,64}()" deal with operands in registers.
+ *
+ * 2. The "len" parameter will grow so that the current jit offset
+ * (curr_off) will have increased to a point where the necessary
+ * instructions can be inserted by "gen_jmp_{32,64}()".
+ */
+ if (has_imm(insn) && cond != ARC_CC_AL) {
+ if (j32) {
+ *len += mov_r32_i32(BUF(buf, *len), JIT_REG_TMP,
+ insn->imm);
+ } else {
+ *len += mov_r64_i32(BUF(buf, *len), JIT_REG_TMP,
+ insn->imm);
+ }
+ rs = JIT_REG_TMP;
+ }
+
+ /* If the offsets are known, check if the branch can occur. */
+ if (offsets_available(ctx)) {
+ curr_off = get_curr_jit_off(ctx, insn) + *len;
+ targ_off = get_targ_jit_off(ctx, insn);
+
+ /* Sanity check on the back-end side. */
+ CHECK_RET(feasible_jit_jump(curr_off, targ_off, cond, j32));
+ }
+
+ if (j32) {
+ *len += gen_jmp_32(BUF(buf, *len), rd, rs, cond,
+ curr_off, targ_off);
+ } else {
+ *len += gen_jmp_64(BUF(buf, *len), rd, rs, cond,
+ curr_off, targ_off);
+ }
+
+ return ret;
+}
+
+/* Jump to translated epilogue address. */
+static int handle_jmp_epilogue(struct jit_context *ctx,
+ const struct bpf_insn *insn, u8 *len)
+{
+ u8 *buf = effective_jit_buf(ctx);
+ u32 curr_off = 0, epi_off = 0;
+
+ /* Check the offset only if the data is available. */
+ if (offsets_available(ctx)) {
+ curr_off = get_curr_jit_off(ctx, insn);
+ epi_off = ctx->epilogue_offset;
+
+ if (!check_jmp_64(curr_off, epi_off, ARC_CC_AL)) {
+ pr_err("bpf-jit: epilogue offset is not valid.\n");
+ return -EINVAL;
+ }
+ }
+
+ /* Jump to "epilogue offset" (rd and rs don't matter). */
+ *len = gen_jmp_64(buf, 0, 0, ARC_CC_AL, curr_off, epi_off);
+
+ return 0;
+}
+
+/* Try to get the resolved address and generate the instructions. */
+static int handle_call(struct jit_context *ctx,
+ const struct bpf_insn *insn,
+ u8 *len)
+{
+ int ret;
+ bool in_kernel_func, fixed = false;
+ u64 addr = 0;
+ u8 *buf = effective_jit_buf(ctx);
+
+ ret = bpf_jit_get_func_addr(ctx->prog, insn, ctx->is_extra_pass,
+ &addr, &fixed);
+ if (ret < 0) {
+ pr_err("bpf-jit: can't get the address for call.\n");
+ return ret;
+ }
+ in_kernel_func = (fixed ? true : false);
+
+ /* No valuable address retrieved (yet). */
+ if (!fixed && !addr)
+ set_need_for_extra_pass(ctx);
+
+ *len = gen_func_call(buf, (ARC_ADDR)addr, in_kernel_func);
+
+ if (insn->src_reg != BPF_PSEUDO_CALL) {
+ /* Assigning ABI's return reg to JIT's return reg. */
+ *len += arc_to_bpf_return(BUF(buf, *len));
+ }
+
+ return 0;
+}
+
+/*
+ * Try to generate instructions for loading a 64-bit immediate.
+ * These sort of instructions are usually associated with the 64-bit
+ * relocations: R_BPF_64_64. Therefore, signal the need for an extra
+ * pass if the circumstances are right.
+ */
+static int handle_ld_imm64(struct jit_context *ctx,
+ const struct bpf_insn *insn,
+ u8 *len)
+{
+ const s32 idx = get_index_for_insn(ctx, insn);
+ u8 *buf = effective_jit_buf(ctx);
+
+ /* We're about to consume 2 VM instructions. */
+ if (is_last_insn(ctx->prog, idx)) {
+ pr_err("bpf-jit: need more data for 64-bit immediate.\n");
+ return -EINVAL;
+ }
+
+ *len = mov_r64_i64(buf, insn->dst_reg, insn->imm, (insn + 1)->imm);
+
+ if (bpf_pseudo_func(insn))
+ set_need_for_extra_pass(ctx);
+
+ return 0;
+}
+
+/*
+ * Handles one eBPF instruction at a time. To make this function faster,
+ * it does not call "jit_buffer_check()". Else, it would call it for every
+ * instruction. As a result, it should not be invoked directly. Only
+ * "handle_body()", that has already executed the "check", may call this
+ * function.
+ *
+ * If the "ret" value is negative, something has went wrong. Else,
+ * it mostly holds the value 0 and rarely 1. Number 1 signals
+ * the loop in "handle_body()" to skip the next instruction, because
+ * it has been consumed as part of a 64-bit immediate value.
+ */
+static int handle_insn(struct jit_context *ctx, u32 idx)
+{
+ const struct bpf_insn *insn = &ctx->prog->insnsi[idx];
+ const u8 code = insn->code;
+ const u8 dst = insn->dst_reg;
+ const u8 src = insn->src_reg;
+ const s16 off = insn->off;
+ const s32 imm = insn->imm;
+ u8 *buf = effective_jit_buf(ctx);
+ u8 len = 0;
+ int ret = 0;
+
+ switch (code) {
+ /* dst += src (32-bit) */
+ case BPF_ALU | BPF_ADD | BPF_X:
+ len = add_r32(buf, dst, src);
+ break;
+ /* dst += imm (32-bit) */
+ case BPF_ALU | BPF_ADD | BPF_K:
+ len = add_r32_i32(buf, dst, imm);
+ break;
+ /* dst -= src (32-bit) */
+ case BPF_ALU | BPF_SUB | BPF_X:
+ len = sub_r32(buf, dst, src);
+ break;
+ /* dst -= imm (32-bit) */
+ case BPF_ALU | BPF_SUB | BPF_K:
+ len = sub_r32_i32(buf, dst, imm);
+ break;
+ /* dst = -dst (32-bit) */
+ case BPF_ALU | BPF_NEG:
+ len = neg_r32(buf, dst);
+ break;
+ /* dst *= src (32-bit) */
+ case BPF_ALU | BPF_MUL | BPF_X:
+ len = mul_r32(buf, dst, src);
+ break;
+ /* dst *= imm (32-bit) */
+ case BPF_ALU | BPF_MUL | BPF_K:
+ len = mul_r32_i32(buf, dst, imm);
+ break;
+ /* dst /= src (32-bit) */
+ case BPF_ALU | BPF_DIV | BPF_X:
+ len = div_r32(buf, dst, src, off == 1);
+ break;
+ /* dst /= imm (32-bit) */
+ case BPF_ALU | BPF_DIV | BPF_K:
+ len = div_r32_i32(buf, dst, imm, off == 1);
+ break;
+ /* dst %= src (32-bit) */
+ case BPF_ALU | BPF_MOD | BPF_X:
+ len = mod_r32(buf, dst, src, off == 1);
+ break;
+ /* dst %= imm (32-bit) */
+ case BPF_ALU | BPF_MOD | BPF_K:
+ len = mod_r32_i32(buf, dst, imm, off == 1);
+ break;
+ /* dst &= src (32-bit) */
+ case BPF_ALU | BPF_AND | BPF_X:
+ len = and_r32(buf, dst, src);
+ break;
+ /* dst &= imm (32-bit) */
+ case BPF_ALU | BPF_AND | BPF_K:
+ len = and_r32_i32(buf, dst, imm);
+ break;
+ /* dst |= src (32-bit) */
+ case BPF_ALU | BPF_OR | BPF_X:
+ len = or_r32(buf, dst, src);
+ break;
+ /* dst |= imm (32-bit) */
+ case BPF_ALU | BPF_OR | BPF_K:
+ len = or_r32_i32(buf, dst, imm);
+ break;
+ /* dst ^= src (32-bit) */
+ case BPF_ALU | BPF_XOR | BPF_X:
+ len = xor_r32(buf, dst, src);
+ break;
+ /* dst ^= imm (32-bit) */
+ case BPF_ALU | BPF_XOR | BPF_K:
+ len = xor_r32_i32(buf, dst, imm);
+ break;
+ /* dst <<= src (32-bit) */
+ case BPF_ALU | BPF_LSH | BPF_X:
+ len = lsh_r32(buf, dst, src);
+ break;
+ /* dst <<= imm (32-bit) */
+ case BPF_ALU | BPF_LSH | BPF_K:
+ len = lsh_r32_i32(buf, dst, imm);
+ break;
+ /* dst >>= src (32-bit) [unsigned] */
+ case BPF_ALU | BPF_RSH | BPF_X:
+ len = rsh_r32(buf, dst, src);
+ break;
+ /* dst >>= imm (32-bit) [unsigned] */
+ case BPF_ALU | BPF_RSH | BPF_K:
+ len = rsh_r32_i32(buf, dst, imm);
+ break;
+ /* dst >>= src (32-bit) [signed] */
+ case BPF_ALU | BPF_ARSH | BPF_X:
+ len = arsh_r32(buf, dst, src);
+ break;
+ /* dst >>= imm (32-bit) [signed] */
+ case BPF_ALU | BPF_ARSH | BPF_K:
+ len = arsh_r32_i32(buf, dst, imm);
+ break;
+ /* dst = src (32-bit) */
+ case BPF_ALU | BPF_MOV | BPF_X:
+ len = mov_r32(buf, dst, src, (u8)off);
+ break;
+ /* dst = imm32 (32-bit) */
+ case BPF_ALU | BPF_MOV | BPF_K:
+ len = mov_r32_i32(buf, dst, imm);
+ break;
+ /* dst = swap(dst) */
+ case BPF_ALU | BPF_END | BPF_FROM_LE:
+ case BPF_ALU | BPF_END | BPF_FROM_BE:
+ case BPF_ALU64 | BPF_END | BPF_FROM_LE: {
+ CHECK_RET(handle_swap(buf, dst, imm, BPF_SRC(code),
+ BPF_CLASS(code) == BPF_ALU64,
+ ctx->do_zext, &len));
+ break;
+ }
+ /* dst += src (64-bit) */
+ case BPF_ALU64 | BPF_ADD | BPF_X:
+ len = add_r64(buf, dst, src);
+ break;
+ /* dst += imm32 (64-bit) */
+ case BPF_ALU64 | BPF_ADD | BPF_K:
+ len = add_r64_i32(buf, dst, imm);
+ break;
+ /* dst -= src (64-bit) */
+ case BPF_ALU64 | BPF_SUB | BPF_X:
+ len = sub_r64(buf, dst, src);
+ break;
+ /* dst -= imm32 (64-bit) */
+ case BPF_ALU64 | BPF_SUB | BPF_K:
+ len = sub_r64_i32(buf, dst, imm);
+ break;
+ /* dst = -dst (64-bit) */
+ case BPF_ALU64 | BPF_NEG:
+ len = neg_r64(buf, dst);
+ break;
+ /* dst *= src (64-bit) */
+ case BPF_ALU64 | BPF_MUL | BPF_X:
+ len = mul_r64(buf, dst, src);
+ break;
+ /* dst *= imm32 (64-bit) */
+ case BPF_ALU64 | BPF_MUL | BPF_K:
+ len = mul_r64_i32(buf, dst, imm);
+ break;
+ /* dst &= src (64-bit) */
+ case BPF_ALU64 | BPF_AND | BPF_X:
+ len = and_r64(buf, dst, src);
+ break;
+ /* dst &= imm32 (64-bit) */
+ case BPF_ALU64 | BPF_AND | BPF_K:
+ len = and_r64_i32(buf, dst, imm);
+ break;
+ /* dst |= src (64-bit) */
+ case BPF_ALU64 | BPF_OR | BPF_X:
+ len = or_r64(buf, dst, src);
+ break;
+ /* dst |= imm32 (64-bit) */
+ case BPF_ALU64 | BPF_OR | BPF_K:
+ len = or_r64_i32(buf, dst, imm);
+ break;
+ /* dst ^= src (64-bit) */
+ case BPF_ALU64 | BPF_XOR | BPF_X:
+ len = xor_r64(buf, dst, src);
+ break;
+ /* dst ^= imm32 (64-bit) */
+ case BPF_ALU64 | BPF_XOR | BPF_K:
+ len = xor_r64_i32(buf, dst, imm);
+ break;
+ /* dst <<= src (64-bit) */
+ case BPF_ALU64 | BPF_LSH | BPF_X:
+ len = lsh_r64(buf, dst, src);
+ break;
+ /* dst <<= imm32 (64-bit) */
+ case BPF_ALU64 | BPF_LSH | BPF_K:
+ len = lsh_r64_i32(buf, dst, imm);
+ break;
+ /* dst >>= src (64-bit) [unsigned] */
+ case BPF_ALU64 | BPF_RSH | BPF_X:
+ len = rsh_r64(buf, dst, src);
+ break;
+ /* dst >>= imm32 (64-bit) [unsigned] */
+ case BPF_ALU64 | BPF_RSH | BPF_K:
+ len = rsh_r64_i32(buf, dst, imm);
+ break;
+ /* dst >>= src (64-bit) [signed] */
+ case BPF_ALU64 | BPF_ARSH | BPF_X:
+ len = arsh_r64(buf, dst, src);
+ break;
+ /* dst >>= imm32 (64-bit) [signed] */
+ case BPF_ALU64 | BPF_ARSH | BPF_K:
+ len = arsh_r64_i32(buf, dst, imm);
+ break;
+ /* dst = src (64-bit) */
+ case BPF_ALU64 | BPF_MOV | BPF_X:
+ len = mov_r64(buf, dst, src, (u8)off);
+ break;
+ /* dst = imm32 (sign extend to 64-bit) */
+ case BPF_ALU64 | BPF_MOV | BPF_K:
+ len = mov_r64_i32(buf, dst, imm);
+ break;
+ /* dst = imm64 */
+ case BPF_LD | BPF_DW | BPF_IMM:
+ CHECK_RET(handle_ld_imm64(ctx, insn, &len));
+ /* Tell the loop to skip the next instruction. */
+ ret = 1;
+ break;
+ /* dst = *(size *)(src + off) */
+ case BPF_LDX | BPF_MEM | BPF_W:
+ case BPF_LDX | BPF_MEM | BPF_H:
+ case BPF_LDX | BPF_MEM | BPF_B:
+ case BPF_LDX | BPF_MEM | BPF_DW:
+ len = load_r(buf, dst, src, off, BPF_SIZE(code), false);
+ break;
+ case BPF_LDX | BPF_MEMSX | BPF_W:
+ case BPF_LDX | BPF_MEMSX | BPF_H:
+ case BPF_LDX | BPF_MEMSX | BPF_B:
+ len = load_r(buf, dst, src, off, BPF_SIZE(code), true);
+ break;
+ /* *(size *)(dst + off) = src */
+ case BPF_STX | BPF_MEM | BPF_W:
+ case BPF_STX | BPF_MEM | BPF_H:
+ case BPF_STX | BPF_MEM | BPF_B:
+ case BPF_STX | BPF_MEM | BPF_DW:
+ len = store_r(buf, src, dst, off, BPF_SIZE(code));
+ break;
+ case BPF_ST | BPF_MEM | BPF_W:
+ case BPF_ST | BPF_MEM | BPF_H:
+ case BPF_ST | BPF_MEM | BPF_B:
+ case BPF_ST | BPF_MEM | BPF_DW:
+ len = store_i(buf, imm, dst, off, BPF_SIZE(code));
+ break;
+ case BPF_JMP | BPF_JA:
+ case BPF_JMP | BPF_JEQ | BPF_X:
+ case BPF_JMP | BPF_JEQ | BPF_K:
+ case BPF_JMP | BPF_JNE | BPF_X:
+ case BPF_JMP | BPF_JNE | BPF_K:
+ case BPF_JMP | BPF_JSET | BPF_X:
+ case BPF_JMP | BPF_JSET | BPF_K:
+ case BPF_JMP | BPF_JGT | BPF_X:
+ case BPF_JMP | BPF_JGT | BPF_K:
+ case BPF_JMP | BPF_JGE | BPF_X:
+ case BPF_JMP | BPF_JGE | BPF_K:
+ case BPF_JMP | BPF_JSGT | BPF_X:
+ case BPF_JMP | BPF_JSGT | BPF_K:
+ case BPF_JMP | BPF_JSGE | BPF_X:
+ case BPF_JMP | BPF_JSGE | BPF_K:
+ case BPF_JMP | BPF_JLT | BPF_X:
+ case BPF_JMP | BPF_JLT | BPF_K:
+ case BPF_JMP | BPF_JLE | BPF_X:
+ case BPF_JMP | BPF_JLE | BPF_K:
+ case BPF_JMP | BPF_JSLT | BPF_X:
+ case BPF_JMP | BPF_JSLT | BPF_K:
+ case BPF_JMP | BPF_JSLE | BPF_X:
+ case BPF_JMP | BPF_JSLE | BPF_K:
+ case BPF_JMP32 | BPF_JA:
+ case BPF_JMP32 | BPF_JEQ | BPF_X:
+ case BPF_JMP32 | BPF_JEQ | BPF_K:
+ case BPF_JMP32 | BPF_JNE | BPF_X:
+ case BPF_JMP32 | BPF_JNE | BPF_K:
+ case BPF_JMP32 | BPF_JSET | BPF_X:
+ case BPF_JMP32 | BPF_JSET | BPF_K:
+ case BPF_JMP32 | BPF_JGT | BPF_X:
+ case BPF_JMP32 | BPF_JGT | BPF_K:
+ case BPF_JMP32 | BPF_JGE | BPF_X:
+ case BPF_JMP32 | BPF_JGE | BPF_K:
+ case BPF_JMP32 | BPF_JSGT | BPF_X:
+ case BPF_JMP32 | BPF_JSGT | BPF_K:
+ case BPF_JMP32 | BPF_JSGE | BPF_X:
+ case BPF_JMP32 | BPF_JSGE | BPF_K:
+ case BPF_JMP32 | BPF_JLT | BPF_X:
+ case BPF_JMP32 | BPF_JLT | BPF_K:
+ case BPF_JMP32 | BPF_JLE | BPF_X:
+ case BPF_JMP32 | BPF_JLE | BPF_K:
+ case BPF_JMP32 | BPF_JSLT | BPF_X:
+ case BPF_JMP32 | BPF_JSLT | BPF_K:
+ case BPF_JMP32 | BPF_JSLE | BPF_X:
+ case BPF_JMP32 | BPF_JSLE | BPF_K:
+ CHECK_RET(handle_jumps(ctx, insn, &len));
+ break;
+ case BPF_JMP | BPF_CALL:
+ CHECK_RET(handle_call(ctx, insn, &len));
+ break;
+
+ case BPF_JMP | BPF_EXIT:
+ /* If this is the last instruction, epilogue will follow. */
+ if (is_last_insn(ctx->prog, idx))
+ break;
+ CHECK_RET(handle_jmp_epilogue(ctx, insn, &len));
+ break;
+ default:
+ pr_err("bpf-jit: can't handle instruction code 0x%02X\n", code);
+ return -EOPNOTSUPP;
+ }
+
+ if (BPF_CLASS(code) == BPF_ALU) {
+ /*
+ * Skip the "swap" instructions. Even 64-bit swaps are of type
+ * BPF_ALU (and not BPF_ALU64). Therefore, for the swaps, one
+ * has to look at the "size" of the operations rather than the
+ * ALU type. "gen_swap()" specifically takes care of that.
+ */
+ if (BPF_OP(code) != BPF_END && ctx->do_zext)
+ len += zext(BUF(buf, len), dst);
+ }
+
+ jit_buffer_update(ctx, len);
+
+ return ret;
+}
+
+static int handle_body(struct jit_context *ctx)
+{
+ int ret;
+ bool populate_bpf2insn = false;
+ const struct bpf_prog *prog = ctx->prog;
+
+ CHECK_RET(jit_buffer_check(ctx));
+
+ /*
+ * Record the mapping for the instructions during the dry-run.
+ * Doing it this way allows us to have the mapping ready for
+ * the jump instructions during the real compilation phase.
+ */
+ if (!ctx->emit)
+ populate_bpf2insn = true;
+
+ for (u32 i = 0; i < prog->len; i++) {
+ /* During the dry-run, jit.len grows gradually per BPF insn. */
+ if (populate_bpf2insn)
+ ctx->bpf2insn[i] = ctx->jit.len;
+
+ CHECK_RET(handle_insn(ctx, i));
+ if (ret > 0) {
+ /* "ret" is 1 if two (64-bit) chunks were consumed. */
+ ctx->bpf2insn[i + 1] = ctx->bpf2insn[i];
+ i++;
+ }
+ }
+
+ /* If bpf2insn had to be populated, then it is done at this point. */
+ if (populate_bpf2insn)
+ ctx->bpf2insn_valid = true;
+
+ return 0;
+}
+
+/*
+ * Initialize the memory with "unimp_s" which is the mnemonic for
+ * "unimplemented" instruction and always raises an exception.
+ *
+ * The instruction is 2 bytes. If "size" is odd, there is not much
+ * that can be done about the last byte in "area". Because, the
+ * CPU always fetches instructions in two bytes. Therefore, the
+ * byte beyond the last one is going to accompany it during a
+ * possible fetch. In the most likely case of a little endian
+ * system, that beyond-byte will become the major opcode and
+ * we have no control over its initialisation.
+ */
+static void fill_ill_insn(void *area, unsigned int size)
+{
+ const u16 unimp_s = 0x79e0;
+
+ if (size & 1) {
+ *((u8 *)area + (size - 1)) = 0xff;
+ size -= 1;
+ }
+
+ memset16(area, unimp_s, size >> 1);
+}
+
+/* Piece of memory that can be allocated at the beginning of jit_prepare(). */
+static int jit_prepare_early_mem_alloc(struct jit_context *ctx)
+{
+ ctx->bpf2insn = kcalloc(ctx->prog->len, sizeof(ctx->jit.len),
+ GFP_KERNEL);
+
+ if (!ctx->bpf2insn) {
+ pr_err("bpf-jit: could not allocate memory for "
+ "mapping of the instructions.\n");
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+/*
+ * Memory allocations that rely on parameters known at the end of
+ * jit_prepare().
+ */
+static int jit_prepare_final_mem_alloc(struct jit_context *ctx)
+{
+ const size_t alignment = sizeof(u32);
+
+ ctx->bpf_header = bpf_jit_binary_alloc(ctx->jit.len, &ctx->jit.buf,
+ alignment, fill_ill_insn);
+ if (!ctx->bpf_header) {
+ pr_err("bpf-jit: could not allocate memory for translation.\n");
+ return -ENOMEM;
+ }
+
+ if (ctx->need_extra_pass) {
+ ctx->jit_data = kzalloc(sizeof(*ctx->jit_data), GFP_KERNEL);
+ if (!ctx->jit_data)
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+/*
+ * The first phase of the translation without actually emitting any
+ * instruction. It helps in getting a forecast on some aspects, such
+ * as the length of the whole program or where the epilogue starts.
+ *
+ * Whenever the necessary parameters are known, memories are allocated.
+ */
+static int jit_prepare(struct jit_context *ctx)
+{
+ int ret;
+
+ /* Dry run. */
+ ctx->emit = false;
+
+ CHECK_RET(jit_prepare_early_mem_alloc(ctx));
+
+ /* Get the length of prologue section after some register analysis. */
+ analyze_reg_usage(ctx);
+ CHECK_RET(handle_prologue(ctx));
+
+ CHECK_RET(handle_body(ctx));
+
+ /* Record at which offset epilogue begins. */
+ ctx->epilogue_offset = ctx->jit.len;
+
+ /* Process the epilogue section now. */
+ CHECK_RET(handle_epilogue(ctx));
+
+ CHECK_RET(jit_prepare_final_mem_alloc(ctx));
+
+ return 0;
+}
+
+/*
+ * jit_compile() is the real compilation phase. jit_prepare() is
+ * invoked before jit_compile() as a dry-run to make sure everything
+ * will go OK and allocate the necessary memory.
+ *
+ * In the end, jit_compile() checks if it has produced the same number
+ * of instructions as jit_prepare() would.
+ */
+static int jit_compile(struct jit_context *ctx)
+{
+ int ret;
+
+ /* Let there be code. */
+ ctx->emit = true;
+
+ CHECK_RET(handle_prologue(ctx));
+
+ CHECK_RET(handle_body(ctx));
+
+ CHECK_RET(handle_epilogue(ctx));
+
+ if (ctx->jit.index != ctx->jit.len) {
+ pr_err("bpf-jit: divergence between the phases; "
+ "%u vs. %u (bytes).\n",
+ ctx->jit.len, ctx->jit.index);
+ return -EFAULT;
+ }
+
+ return 0;
+}
+
+/*
+ * Calling this function implies a successful JIT. A successful
+ * translation is signaled by setting the right parameters:
+ *
+ * prog->jited=1, prog->jited_len=..., prog->bpf_func=...
+ */
+static int jit_finalize(struct jit_context *ctx)
+{
+ struct bpf_prog *prog = ctx->prog;
+
+ /* We're going to need this information for the "do_extra_pass()". */
+ if (ctx->need_extra_pass) {
+ ctx->jit_data->bpf_header = ctx->bpf_header;
+ ctx->jit_data->bpf2insn = ctx->bpf2insn;
+ prog->aux->jit_data = (void *)ctx->jit_data;
+ } else {
+ /*
+ * If things seem finalised, then mark the JITed memory
+ * as R-X and flush it.
+ */
+ if (bpf_jit_binary_lock_ro(ctx->bpf_header)) {
+ pr_err("bpf-jit: Could not lock the JIT memory.\n");
+ return -EFAULT;
+ }
+ flush_icache_range((unsigned long)ctx->bpf_header,
+ (unsigned long)
+ BUF(ctx->jit.buf, ctx->jit.len));
+ prog->aux->jit_data = NULL;
+ bpf_prog_fill_jited_linfo(prog, ctx->bpf2insn);
+ }
+
+ ctx->success = true;
+ prog->bpf_func = (void *)ctx->jit.buf;
+ prog->jited_len = ctx->jit.len;
+ prog->jited = 1;
+
+ jit_ctx_cleanup(ctx);
+ jit_dump(ctx);
+
+ return 0;
+}
+
+/*
+ * A lenient verification for the existence of JIT context in "prog".
+ * Apparently the JIT internals, namely jit_subprogs() in bpf/verifier.c,
+ * may request for a second compilation although nothing needs to be done.
+ */
+static inline int check_jit_context(const struct bpf_prog *prog)
+{
+ if (!prog->aux->jit_data) {
+ pr_notice("bpf-jit: no jit data for the extra pass.\n");
+ return 1;
+ } else {
+ return 0;
+ }
+}
+
+/* Reuse the previous pass's data. */
+static int jit_resume_context(struct jit_context *ctx)
+{
+ struct arc_jit_data *jdata =
+ (struct arc_jit_data *)ctx->prog->aux->jit_data;
+
+ if (!jdata) {
+ pr_err("bpf-jit: no jit data for the extra pass.\n");
+ return -EINVAL;
+ }
+
+ ctx->jit.buf = (u8 *)ctx->prog->bpf_func;
+ ctx->jit.len = ctx->prog->jited_len;
+ ctx->bpf_header = jdata->bpf_header;
+ ctx->bpf2insn = (u32 *)jdata->bpf2insn;
+ ctx->bpf2insn_valid = ctx->bpf2insn ? true : false;
+ ctx->jit_data = jdata;
+
+ return 0;
+}
+
+/*
+ * Patch in the new addresses. The instructions of interest are:
+ *
+ * - call
+ * - ld r64, imm64
+ *
+ * For "call"s, it resolves the addresses one more time through the
+ * handle_call().
+ *
+ * For 64-bit immediate loads, it just retranslates them, because the BPF
+ * core in kernel might have changed the value since the normal pass.
+ */
+static int jit_patch_relocations(struct jit_context *ctx)
+{
+ const u8 bpf_opc_call = BPF_JMP | BPF_CALL;
+ const u8 bpf_opc_ldi64 = BPF_LD | BPF_DW | BPF_IMM;
+ const struct bpf_prog *prog = ctx->prog;
+ int ret;
+
+ ctx->emit = true;
+ for (u32 i = 0; i < prog->len; i++) {
+ const struct bpf_insn *insn = &prog->insnsi[i];
+ u8 dummy;
+ /*
+ * Adjust "ctx.jit.index", so "gen_*()" functions below
+ * can use it for their output addresses.
+ */
+ ctx->jit.index = ctx->bpf2insn[i];
+
+ if (insn->code == bpf_opc_call) {
+ CHECK_RET(handle_call(ctx, insn, &dummy));
+ } else if (insn->code == bpf_opc_ldi64) {
+ CHECK_RET(handle_ld_imm64(ctx, insn, &dummy));
+ /* Skip the next instruction. */
+ ++i;
+ }
+ }
+ return 0;
+}
+
+/*
+ * A normal pass that involves a "dry-run" phase, jit_prepare(),
+ * to get the necessary data for the real compilation phase,
+ * jit_compile().
+ */
+static struct bpf_prog *do_normal_pass(struct bpf_prog *prog)
+{
+ struct jit_context ctx;
+
+ /* Bail out if JIT is disabled. */
+ if (!prog->jit_requested)
+ return prog;
+
+ if (jit_ctx_init(&ctx, prog)) {
+ jit_ctx_cleanup(&ctx);
+ return prog;
+ }
+
+ /* Get the lengths and allocate buffer. */
+ if (jit_prepare(&ctx)) {
+ jit_ctx_cleanup(&ctx);
+ return prog;
+ }
+
+ if (jit_compile(&ctx)) {
+ jit_ctx_cleanup(&ctx);
+ return prog;
+ }
+
+ if (jit_finalize(&ctx)) {
+ jit_ctx_cleanup(&ctx);
+ return prog;
+ }
+
+ return ctx.prog;
+}
+
+/*
+ * If there are multi-function BPF programs that call each other,
+ * their translated addresses are not known all at once. Therefore,
+ * an extra pass is needed to consult the bpf_jit_get_func_addr()
+ * again to get the newly translated addresses in order to resolve
+ * the "call"s.
+ */
+static struct bpf_prog *do_extra_pass(struct bpf_prog *prog)
+{
+ struct jit_context ctx;
+
+ /* Skip if there's no context to resume from. */
+ if (check_jit_context(prog))
+ return prog;
+
+ if (jit_ctx_init(&ctx, prog)) {
+ jit_ctx_cleanup(&ctx);
+ return prog;
+ }
+
+ if (jit_resume_context(&ctx)) {
+ jit_ctx_cleanup(&ctx);
+ return prog;
+ }
+
+ if (jit_patch_relocations(&ctx)) {
+ jit_ctx_cleanup(&ctx);
+ return prog;
+ }
+
+ if (jit_finalize(&ctx)) {
+ jit_ctx_cleanup(&ctx);
+ return prog;
+ }
+
+ return ctx.prog;
+}
+
+/*
+ * This function may be invoked twice for the same stream of BPF
+ * instructions. The "extra pass" happens, when there are
+ * (re)locations involved that their addresses are not known
+ * during the first run.
+ */
+struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
+{
+ vm_dump(prog);
+
+ /* Was this program already translated? */
+ if (!prog->jited)
+ return do_normal_pass(prog);
+ else
+ return do_extra_pass(prog);
+
+ return prog;
+}