diff options
Diffstat (limited to 'arch/riscv/kvm/tlb.c')
| -rw-r--r-- | arch/riscv/kvm/tlb.c | 30 |
1 files changed, 30 insertions, 0 deletions
diff --git a/arch/riscv/kvm/tlb.c b/arch/riscv/kvm/tlb.c index 3c5a70a2b927..ff1aeac4eb8e 100644 --- a/arch/riscv/kvm/tlb.c +++ b/arch/riscv/kvm/tlb.c @@ -158,6 +158,36 @@ void kvm_riscv_local_hfence_vvma_all(unsigned long vmid) csr_write(CSR_HGATP, hgatp); } +void kvm_riscv_local_tlb_sanitize(struct kvm_vcpu *vcpu) +{ + unsigned long vmid; + + if (!kvm_riscv_gstage_vmid_bits() || + vcpu->arch.last_exit_cpu == vcpu->cpu) + return; + + /* + * On RISC-V platforms with hardware VMID support, we share same + * VMID for all VCPUs of a particular Guest/VM. This means we might + * have stale G-stage TLB entries on the current Host CPU due to + * some other VCPU of the same Guest which ran previously on the + * current Host CPU. + * + * To cleanup stale TLB entries, we simply flush all G-stage TLB + * entries by VMID whenever underlying Host CPU changes for a VCPU. + */ + + vmid = READ_ONCE(vcpu->kvm->arch.vmid.vmid); + kvm_riscv_local_hfence_gvma_vmid_all(vmid); + + /* + * Flush VS-stage TLB entries for implementation where VS-stage + * TLB does not cahce guest physical address and VMID. + */ + if (static_branch_unlikely(&kvm_riscv_vsstage_tlb_no_gpa)) + kvm_riscv_local_hfence_vvma_all(vmid); +} + void kvm_riscv_fence_i_process(struct kvm_vcpu *vcpu) { kvm_riscv_vcpu_pmu_incr_fw(vcpu, SBI_PMU_FW_FENCE_I_RCVD); |
