summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/mmu/mmu.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kvm/mmu/mmu.c')
-rw-r--r--arch/x86/kvm/mmu/mmu.c198
1 files changed, 154 insertions, 44 deletions
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c
index 63bb77ee1bb1..6e838cb6c9e1 100644
--- a/arch/x86/kvm/mmu/mmu.c
+++ b/arch/x86/kvm/mmu/mmu.c
@@ -110,6 +110,7 @@ static bool __ro_after_init tdp_mmu_allowed;
#ifdef CONFIG_X86_64
bool __read_mostly tdp_mmu_enabled = true;
module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444);
+EXPORT_SYMBOL_GPL(tdp_mmu_enabled);
#endif
static int max_huge_page_level __read_mostly;
@@ -1456,15 +1457,15 @@ void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
* enabled but it chooses between clearing the Dirty bit and Writeable
* bit based on the context.
*/
- if (kvm_x86_ops.cpu_dirty_log_size)
+ if (kvm->arch.cpu_dirty_log_size)
kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
else
kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}
-int kvm_cpu_dirty_log_size(void)
+int kvm_cpu_dirty_log_size(struct kvm *kvm)
{
- return kvm_x86_ops.cpu_dirty_log_size;
+ return kvm->arch.cpu_dirty_log_size;
}
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
@@ -1982,14 +1983,35 @@ static bool sp_has_gptes(struct kvm_mmu_page *sp)
return true;
}
+static __ro_after_init HLIST_HEAD(empty_page_hash);
+
+static struct hlist_head *kvm_get_mmu_page_hash(struct kvm *kvm, gfn_t gfn)
+{
+ /*
+ * Ensure the load of the hash table pointer itself is ordered before
+ * loads to walk the table. The pointer is set at runtime outside of
+ * mmu_lock when the TDP MMU is enabled, i.e. when the hash table of
+ * shadow pages becomes necessary only when KVM needs to shadow L1's
+ * TDP for an L2 guest. Pairs with the smp_store_release() in
+ * kvm_mmu_alloc_page_hash().
+ */
+ struct hlist_head *page_hash = smp_load_acquire(&kvm->arch.mmu_page_hash);
+
+ lockdep_assert_held(&kvm->mmu_lock);
+
+ if (!page_hash)
+ return &empty_page_hash;
+
+ return &page_hash[kvm_page_table_hashfn(gfn)];
+}
+
#define for_each_valid_sp(_kvm, _sp, _list) \
hlist_for_each_entry(_sp, _list, hash_link) \
if (is_obsolete_sp((_kvm), (_sp))) { \
} else
#define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \
- for_each_valid_sp(_kvm, _sp, \
- &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
+ for_each_valid_sp(_kvm, _sp, kvm_get_mmu_page_hash(_kvm, _gfn)) \
if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
@@ -2357,6 +2379,12 @@ static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
struct kvm_mmu_page *sp;
bool created = false;
+ /*
+ * No need for memory barriers, unlike in kvm_get_mmu_page_hash(), as
+ * mmu_page_hash must be set prior to creating the first shadow root,
+ * i.e. reaching this point is fully serialized by slots_arch_lock.
+ */
+ BUG_ON(!kvm->arch.mmu_page_hash);
sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
@@ -3019,7 +3047,8 @@ static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
}
if (is_shadow_present_pte(*sptep)) {
- if (prefetch)
+ if (prefetch && is_last_spte(*sptep, level) &&
+ pfn == spte_to_pfn(*sptep))
return RET_PF_SPURIOUS;
/*
@@ -3033,7 +3062,7 @@ static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
child = spte_to_child_sp(pte);
drop_parent_pte(vcpu->kvm, child, sptep);
flush = true;
- } else if (pfn != spte_to_pfn(*sptep)) {
+ } else if (WARN_ON_ONCE(pfn != spte_to_pfn(*sptep))) {
drop_spte(vcpu->kvm, sptep);
flush = true;
} else
@@ -3880,6 +3909,28 @@ out_unlock:
return r;
}
+static int kvm_mmu_alloc_page_hash(struct kvm *kvm)
+{
+ struct hlist_head *h;
+
+ if (kvm->arch.mmu_page_hash)
+ return 0;
+
+ h = kvcalloc(KVM_NUM_MMU_PAGES, sizeof(*h), GFP_KERNEL_ACCOUNT);
+ if (!h)
+ return -ENOMEM;
+
+ /*
+ * Ensure the hash table pointer is set only after all stores to zero
+ * the memory are retired. Pairs with the smp_load_acquire() in
+ * kvm_get_mmu_page_hash(). Note, mmu_lock must be held for write to
+ * add (or remove) shadow pages, and so readers are guaranteed to see
+ * an empty list for their current mmu_lock critical section.
+ */
+ smp_store_release(&kvm->arch.mmu_page_hash, h);
+ return 0;
+}
+
static int mmu_first_shadow_root_alloc(struct kvm *kvm)
{
struct kvm_memslots *slots;
@@ -3899,9 +3950,13 @@ static int mmu_first_shadow_root_alloc(struct kvm *kvm)
if (kvm_shadow_root_allocated(kvm))
goto out_unlock;
+ r = kvm_mmu_alloc_page_hash(kvm);
+ if (r)
+ goto out_unlock;
+
/*
- * Check if anything actually needs to be allocated, e.g. all metadata
- * will be allocated upfront if TDP is disabled.
+ * Check if memslot metadata actually needs to be allocated, e.g. all
+ * metadata will be allocated upfront if TDP is disabled.
*/
if (kvm_memslots_have_rmaps(kvm) &&
kvm_page_track_write_tracking_enabled(kvm))
@@ -4835,19 +4890,6 @@ out_unlock:
}
#endif
-bool kvm_mmu_may_ignore_guest_pat(void)
-{
- /*
- * When EPT is enabled (shadow_memtype_mask is non-zero), and the VM
- * has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is to
- * honor the memtype from the guest's PAT so that guest accesses to
- * memory that is DMA'd aren't cached against the guest's wishes. As a
- * result, KVM _may_ ignore guest PAT, whereas without non-coherent DMA,
- * KVM _always_ ignores guest PAT (when EPT is enabled).
- */
- return shadow_memtype_mask;
-}
-
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
{
#ifdef CONFIG_X86_64
@@ -4858,8 +4900,7 @@ int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
return direct_page_fault(vcpu, fault);
}
-static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code,
- u8 *level)
+int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, u8 *level)
{
int r;
@@ -4873,6 +4914,10 @@ static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code,
do {
if (signal_pending(current))
return -EINTR;
+
+ if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu))
+ return -EIO;
+
cond_resched();
r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level);
} while (r == RET_PF_RETRY);
@@ -4897,18 +4942,23 @@ static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code,
return -EIO;
}
}
+EXPORT_SYMBOL_GPL(kvm_tdp_map_page);
long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
struct kvm_pre_fault_memory *range)
{
u64 error_code = PFERR_GUEST_FINAL_MASK;
u8 level = PG_LEVEL_4K;
+ u64 direct_bits;
u64 end;
int r;
if (!vcpu->kvm->arch.pre_fault_allowed)
return -EOPNOTSUPP;
+ if (kvm_is_gfn_alias(vcpu->kvm, gpa_to_gfn(range->gpa)))
+ return -EINVAL;
+
/*
* reload is efficient when called repeatedly, so we can do it on
* every iteration.
@@ -4917,15 +4967,18 @@ long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
if (r)
return r;
+ direct_bits = 0;
if (kvm_arch_has_private_mem(vcpu->kvm) &&
kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa)))
error_code |= PFERR_PRIVATE_ACCESS;
+ else
+ direct_bits = gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm));
/*
* Shadow paging uses GVA for kvm page fault, so restrict to
* two-dimensional paging.
*/
- r = kvm_tdp_map_page(vcpu, range->gpa, error_code, &level);
+ r = kvm_tdp_map_page(vcpu, range->gpa | direct_bits, error_code, &level);
if (r < 0)
return r;
@@ -5589,12 +5642,19 @@ void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
+ int maxpa;
+
+ if (vcpu->kvm->arch.vm_type == KVM_X86_TDX_VM)
+ maxpa = cpuid_query_maxguestphyaddr(vcpu);
+ else
+ maxpa = cpuid_maxphyaddr(vcpu);
+
/* tdp_root_level is architecture forced level, use it if nonzero */
if (tdp_root_level)
return tdp_root_level;
/* Use 5-level TDP if and only if it's useful/necessary. */
- if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
+ if (max_tdp_level == 5 && maxpa <= 48)
return 4;
return max_tdp_level;
@@ -5913,6 +5973,7 @@ int kvm_mmu_load(struct kvm_vcpu *vcpu)
out:
return r;
}
+EXPORT_SYMBOL_GPL(kvm_mmu_load);
void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
@@ -5974,6 +6035,7 @@ void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
}
+EXPORT_SYMBOL_GPL(kvm_mmu_free_obsolete_roots);
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
int *bytes)
@@ -6673,15 +6735,22 @@ static void kvm_mmu_zap_all_fast(struct kvm *kvm)
kvm_tdp_mmu_zap_invalidated_roots(kvm, true);
}
-void kvm_mmu_init_vm(struct kvm *kvm)
+int kvm_mmu_init_vm(struct kvm *kvm)
{
+ int r;
+
kvm->arch.shadow_mmio_value = shadow_mmio_value;
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages);
spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
- if (tdp_mmu_enabled)
+ if (tdp_mmu_enabled) {
kvm_mmu_init_tdp_mmu(kvm);
+ } else {
+ r = kvm_mmu_alloc_page_hash(kvm);
+ if (r)
+ return r;
+ }
kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache;
kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO;
@@ -6690,6 +6759,7 @@ void kvm_mmu_init_vm(struct kvm *kvm)
kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache;
kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO;
+ return 0;
}
static void mmu_free_vm_memory_caches(struct kvm *kvm)
@@ -6701,6 +6771,8 @@ static void mmu_free_vm_memory_caches(struct kvm *kvm)
void kvm_mmu_uninit_vm(struct kvm *kvm)
{
+ kvfree(kvm->arch.mmu_page_hash);
+
if (tdp_mmu_enabled)
kvm_mmu_uninit_tdp_mmu(kvm);
@@ -7238,6 +7310,7 @@ static void kvm_mmu_zap_memslot(struct kvm *kvm,
.start = slot->base_gfn,
.end = slot->base_gfn + slot->npages,
.may_block = true,
+ .attr_filter = KVM_FILTER_PRIVATE | KVM_FILTER_SHARED,
};
bool flush;
@@ -7669,9 +7742,30 @@ void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
}
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
+static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
+ int level)
+{
+ return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG;
+}
+
+static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
+ int level)
+{
+ lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG;
+}
+
+static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
+ int level)
+{
+ lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG;
+}
+
bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
struct kvm_gfn_range *range)
{
+ struct kvm_memory_slot *slot = range->slot;
+ int level;
+
/*
* Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only
* supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM
@@ -7686,6 +7780,38 @@ bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
return false;
+ if (WARN_ON_ONCE(range->end <= range->start))
+ return false;
+
+ /*
+ * If the head and tail pages of the range currently allow a hugepage,
+ * i.e. reside fully in the slot and don't have mixed attributes, then
+ * add each corresponding hugepage range to the ongoing invalidation,
+ * e.g. to prevent KVM from creating a hugepage in response to a fault
+ * for a gfn whose attributes aren't changing. Note, only the range
+ * of gfns whose attributes are being modified needs to be explicitly
+ * unmapped, as that will unmap any existing hugepages.
+ */
+ for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
+ gfn_t start = gfn_round_for_level(range->start, level);
+ gfn_t end = gfn_round_for_level(range->end - 1, level);
+ gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
+
+ if ((start != range->start || start + nr_pages > range->end) &&
+ start >= slot->base_gfn &&
+ start + nr_pages <= slot->base_gfn + slot->npages &&
+ !hugepage_test_mixed(slot, start, level))
+ kvm_mmu_invalidate_range_add(kvm, start, start + nr_pages);
+
+ if (end == start)
+ continue;
+
+ if ((end + nr_pages) > range->end &&
+ (end + nr_pages) <= (slot->base_gfn + slot->npages) &&
+ !hugepage_test_mixed(slot, end, level))
+ kvm_mmu_invalidate_range_add(kvm, end, end + nr_pages);
+ }
+
/* Unmap the old attribute page. */
if (range->arg.attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE)
range->attr_filter = KVM_FILTER_SHARED;
@@ -7695,23 +7821,7 @@ bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
return kvm_unmap_gfn_range(kvm, range);
}
-static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
- int level)
-{
- return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG;
-}
-
-static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
- int level)
-{
- lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG;
-}
-static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
- int level)
-{
- lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG;
-}
static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot,
gfn_t gfn, int level, unsigned long attrs)