summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h')
-rw-r--r--drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h555
1 files changed, 0 insertions, 555 deletions
diff --git a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h
deleted file mode 100644
index 6f54c410c2f9..000000000000
--- a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h
+++ /dev/null
@@ -1,555 +0,0 @@
-/*
- * Copyright 2015 Advanced Micro Devices, Inc.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
- * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
- * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
- * OTHER DEALINGS IN THE SOFTWARE.
- *
- */
-#include <asm/div64.h>
-
-#define SHIFT_AMOUNT 16 /* We multiply all original integers with 2^SHIFT_AMOUNT to get the fInt representation */
-
-#define PRECISION 5 /* Change this value to change the number of decimal places in the final output - 5 is a good default */
-
-#define SHIFTED_2 (2 << SHIFT_AMOUNT)
-#define MAX (1 << (SHIFT_AMOUNT - 1)) - 1 /* 32767 - Might change in the future */
-
-/* -------------------------------------------------------------------------------
- * NEW TYPE - fINT
- * -------------------------------------------------------------------------------
- * A variable of type fInt can be accessed in 3 ways using the dot (.) operator
- * fInt A;
- * A.full => The full number as it is. Generally not easy to read
- * A.partial.real => Only the integer portion
- * A.partial.decimal => Only the fractional portion
- */
-typedef union _fInt {
- int full;
- struct _partial {
- unsigned int decimal: SHIFT_AMOUNT; /*Needs to always be unsigned*/
- int real: 32 - SHIFT_AMOUNT;
- } partial;
-} fInt;
-
-/* -------------------------------------------------------------------------------
- * Function Declarations
- * -------------------------------------------------------------------------------
- */
-static fInt ConvertToFraction(int); /* Use this to convert an INT to a FINT */
-static fInt Convert_ULONG_ToFraction(uint32_t); /* Use this to convert an uint32_t to a FINT */
-static fInt GetScaledFraction(int, int); /* Use this to convert an INT to a FINT after scaling it by a factor */
-static int ConvertBackToInteger(fInt); /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */
-
-static fInt fNegate(fInt); /* Returns -1 * input fInt value */
-static fInt fAdd (fInt, fInt); /* Returns the sum of two fInt numbers */
-static fInt fSubtract (fInt A, fInt B); /* Returns A-B - Sometimes easier than Adding negative numbers */
-static fInt fMultiply (fInt, fInt); /* Returns the product of two fInt numbers */
-static fInt fDivide (fInt A, fInt B); /* Returns A/B */
-static fInt fGetSquare(fInt); /* Returns the square of a fInt number */
-static fInt fSqrt(fInt); /* Returns the Square Root of a fInt number */
-
-static int uAbs(int); /* Returns the Absolute value of the Int */
-static int uPow(int base, int exponent); /* Returns base^exponent an INT */
-
-static void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */
-static bool Equal(fInt, fInt); /* Returns true if two fInts are equal to each other */
-static bool GreaterThan(fInt A, fInt B); /* Returns true if A > B */
-
-static fInt fExponential(fInt exponent); /* Can be used to calculate e^exponent */
-static fInt fNaturalLog(fInt value); /* Can be used to calculate ln(value) */
-
-/* Fuse decoding functions
- * -------------------------------------------------------------------------------------
- */
-static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength);
-static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength);
-static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength);
-
-/* Internal Support Functions - Use these ONLY for testing or adding to internal functions
- * -------------------------------------------------------------------------------------
- * Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons.
- */
-static fInt Divide (int, int); /* Divide two INTs and return result as FINT */
-static fInt fNegate(fInt);
-
-static int uGetScaledDecimal (fInt); /* Internal function */
-static int GetReal (fInt A); /* Internal function */
-
-/* -------------------------------------------------------------------------------------
- * TROUBLESHOOTING INFORMATION
- * -------------------------------------------------------------------------------------
- * 1) ConvertToFraction - InputOutOfRangeException: Only accepts numbers smaller than MAX (default: 32767)
- * 2) fAdd - OutputOutOfRangeException: Output bigger than MAX (default: 32767)
- * 3) fMultiply - OutputOutOfRangeException:
- * 4) fGetSquare - OutputOutOfRangeException:
- * 5) fDivide - DivideByZeroException
- * 6) fSqrt - NegativeSquareRootException: Input cannot be a negative number
- */
-
-/* -------------------------------------------------------------------------------------
- * START OF CODE
- * -------------------------------------------------------------------------------------
- */
-static fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/
-{
- uint32_t i;
- bool bNegated = false;
-
- fInt fPositiveOne = ConvertToFraction(1);
- fInt fZERO = ConvertToFraction(0);
-
- fInt lower_bound = Divide(78, 10000);
- fInt solution = fPositiveOne; /*Starting off with baseline of 1 */
- fInt error_term;
-
- static const uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
- static const uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
-
- if (GreaterThan(fZERO, exponent)) {
- exponent = fNegate(exponent);
- bNegated = true;
- }
-
- while (GreaterThan(exponent, lower_bound)) {
- for (i = 0; i < 11; i++) {
- if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) {
- exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000));
- solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000));
- }
- }
- }
-
- error_term = fAdd(fPositiveOne, exponent);
-
- solution = fMultiply(solution, error_term);
-
- if (bNegated)
- solution = fDivide(fPositiveOne, solution);
-
- return solution;
-}
-
-static fInt fNaturalLog(fInt value)
-{
- uint32_t i;
- fInt upper_bound = Divide(8, 1000);
- fInt fNegativeOne = ConvertToFraction(-1);
- fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */
- fInt error_term;
-
- static const uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
- static const uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
-
- while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) {
- for (i = 0; i < 10; i++) {
- if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) {
- value = fDivide(value, GetScaledFraction(k_array[i], 10000));
- solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000));
- }
- }
- }
-
- error_term = fAdd(fNegativeOne, value);
-
- return fAdd(solution, error_term);
-}
-
-static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength)
-{
- fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
- fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
-
- fInt f_decoded_value;
-
- f_decoded_value = fDivide(f_fuse_value, f_bit_max_value);
- f_decoded_value = fMultiply(f_decoded_value, f_range);
- f_decoded_value = fAdd(f_decoded_value, f_min);
-
- return f_decoded_value;
-}
-
-
-static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength)
-{
- fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
- fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
-
- fInt f_CONSTANT_NEG13 = ConvertToFraction(-13);
- fInt f_CONSTANT1 = ConvertToFraction(1);
-
- fInt f_decoded_value;
-
- f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1);
- f_decoded_value = fNaturalLog(f_decoded_value);
- f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13));
- f_decoded_value = fAdd(f_decoded_value, f_average);
-
- return f_decoded_value;
-}
-
-static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength)
-{
- fInt fLeakage;
- fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
-
- fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse));
- fLeakage = fDivide(fLeakage, f_bit_max_value);
- fLeakage = fExponential(fLeakage);
- fLeakage = fMultiply(fLeakage, f_min);
-
- return fLeakage;
-}
-
-static fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */
-{
- fInt temp;
-
- if (X <= MAX)
- temp.full = (X << SHIFT_AMOUNT);
- else
- temp.full = 0;
-
- return temp;
-}
-
-static fInt fNegate(fInt X)
-{
- fInt CONSTANT_NEGONE = ConvertToFraction(-1);
- return fMultiply(X, CONSTANT_NEGONE);
-}
-
-static fInt Convert_ULONG_ToFraction(uint32_t X)
-{
- fInt temp;
-
- if (X <= MAX)
- temp.full = (X << SHIFT_AMOUNT);
- else
- temp.full = 0;
-
- return temp;
-}
-
-static fInt GetScaledFraction(int X, int factor)
-{
- int times_shifted, factor_shifted;
- bool bNEGATED;
- fInt fValue;
-
- times_shifted = 0;
- factor_shifted = 0;
- bNEGATED = false;
-
- if (X < 0) {
- X = -1*X;
- bNEGATED = true;
- }
-
- if (factor < 0) {
- factor = -1*factor;
- bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */
- }
-
- if ((X > MAX) || factor > MAX) {
- if ((X/factor) <= MAX) {
- while (X > MAX) {
- X = X >> 1;
- times_shifted++;
- }
-
- while (factor > MAX) {
- factor = factor >> 1;
- factor_shifted++;
- }
- } else {
- fValue.full = 0;
- return fValue;
- }
- }
-
- if (factor == 1)
- return ConvertToFraction(X);
-
- fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor));
-
- fValue.full = fValue.full << times_shifted;
- fValue.full = fValue.full >> factor_shifted;
-
- return fValue;
-}
-
-/* Addition using two fInts */
-static fInt fAdd (fInt X, fInt Y)
-{
- fInt Sum;
-
- Sum.full = X.full + Y.full;
-
- return Sum;
-}
-
-/* Addition using two fInts */
-static fInt fSubtract (fInt X, fInt Y)
-{
- fInt Difference;
-
- Difference.full = X.full - Y.full;
-
- return Difference;
-}
-
-static bool Equal(fInt A, fInt B)
-{
- if (A.full == B.full)
- return true;
- else
- return false;
-}
-
-static bool GreaterThan(fInt A, fInt B)
-{
- if (A.full > B.full)
- return true;
- else
- return false;
-}
-
-static fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
-{
- fInt Product;
- int64_t tempProduct;
-
- /*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/
- /* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION
- bool X_LessThanOne, Y_LessThanOne;
-
- X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0);
- Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0);
-
- if (X_LessThanOne && Y_LessThanOne) {
- Product.full = X.full * Y.full;
- return Product
- }*/
-
- tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */
- tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */
- Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */
-
- return Product;
-}
-
-static fInt fDivide (fInt X, fInt Y)
-{
- fInt fZERO, fQuotient;
- int64_t longlongX, longlongY;
-
- fZERO = ConvertToFraction(0);
-
- if (Equal(Y, fZERO))
- return fZERO;
-
- longlongX = (int64_t)X.full;
- longlongY = (int64_t)Y.full;
-
- longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */
-
- div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */
-
- fQuotient.full = (int)longlongX;
- return fQuotient;
-}
-
-static int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/
-{
- fInt fullNumber, scaledDecimal, scaledReal;
-
- scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */
-
- scaledDecimal.full = uGetScaledDecimal(A);
-
- fullNumber = fAdd(scaledDecimal, scaledReal);
-
- return fullNumber.full;
-}
-
-static fInt fGetSquare(fInt A)
-{
- return fMultiply(A, A);
-}
-
-/* x_new = x_old - (x_old^2 - C) / (2 * x_old) */
-static fInt fSqrt(fInt num)
-{
- fInt F_divide_Fprime, Fprime;
- fInt test;
- fInt twoShifted;
- int seed, counter, error;
- fInt x_new, x_old, C, y;
-
- fInt fZERO = ConvertToFraction(0);
-
- /* (0 > num) is the same as (num < 0), i.e., num is negative */
-
- if (GreaterThan(fZERO, num) || Equal(fZERO, num))
- return fZERO;
-
- C = num;
-
- if (num.partial.real > 3000)
- seed = 60;
- else if (num.partial.real > 1000)
- seed = 30;
- else if (num.partial.real > 100)
- seed = 10;
- else
- seed = 2;
-
- counter = 0;
-
- if (Equal(num, fZERO)) /*Square Root of Zero is zero */
- return fZERO;
-
- twoShifted = ConvertToFraction(2);
- x_new = ConvertToFraction(seed);
-
- do {
- counter++;
-
- x_old.full = x_new.full;
-
- test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */
- y = fSubtract(test, C); /*y = f(x) = x^2 - C; */
-
- Fprime = fMultiply(twoShifted, x_old);
- F_divide_Fprime = fDivide(y, Fprime);
-
- x_new = fSubtract(x_old, F_divide_Fprime);
-
- error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old);
-
- if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/
- return x_new;
-
- } while (uAbs(error) > 0);
-
- return x_new;
-}
-
-static void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
-{
- fInt *pRoots = &Roots[0];
- fInt temp, root_first, root_second;
- fInt f_CONSTANT10, f_CONSTANT100;
-
- f_CONSTANT100 = ConvertToFraction(100);
- f_CONSTANT10 = ConvertToFraction(10);
-
- while (GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) {
- A = fDivide(A, f_CONSTANT10);
- B = fDivide(B, f_CONSTANT10);
- C = fDivide(C, f_CONSTANT10);
- }
-
- temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */
- temp = fMultiply(temp, C); /* root = 4*A*C */
- temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */
- temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */
-
- root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */
- root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */
-
- root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
- root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
-
- root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
- root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
-
- *(pRoots + 0) = root_first;
- *(pRoots + 1) = root_second;
-}
-
-/* -----------------------------------------------------------------------------
- * SUPPORT FUNCTIONS
- * -----------------------------------------------------------------------------
- */
-
-/* Conversion Functions */
-static int GetReal (fInt A)
-{
- return (A.full >> SHIFT_AMOUNT);
-}
-
-static fInt Divide (int X, int Y)
-{
- fInt A, B, Quotient;
-
- A.full = X << SHIFT_AMOUNT;
- B.full = Y << SHIFT_AMOUNT;
-
- Quotient = fDivide(A, B);
-
- return Quotient;
-}
-
-static int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */
-{
- int dec[PRECISION];
- int i, scaledDecimal = 0, tmp = A.partial.decimal;
-
- for (i = 0; i < PRECISION; i++) {
- dec[i] = tmp / (1 << SHIFT_AMOUNT);
- tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]);
- tmp *= 10;
- scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 - i);
- }
-
- return scaledDecimal;
-}
-
-static int uPow(int base, int power)
-{
- if (power == 0)
- return 1;
- else
- return (base)*uPow(base, power - 1);
-}
-
-static int uAbs(int X)
-{
- if (X < 0)
- return (X * -1);
- else
- return X;
-}
-
-static fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term)
-{
- fInt solution;
-
- solution = fDivide(A, fStepSize);
- solution.partial.decimal = 0; /*All fractional digits changes to 0 */
-
- if (error_term)
- solution.partial.real += 1; /*Error term of 1 added */
-
- solution = fMultiply(solution, fStepSize);
- solution = fAdd(solution, fStepSize);
-
- return solution;
-}
-