diff options
Diffstat (limited to 'drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h')
-rw-r--r-- | drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h | 555 |
1 files changed, 0 insertions, 555 deletions
diff --git a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h deleted file mode 100644 index 6f54c410c2f9..000000000000 --- a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h +++ /dev/null @@ -1,555 +0,0 @@ -/* - * Copyright 2015 Advanced Micro Devices, Inc. - * - * Permission is hereby granted, free of charge, to any person obtaining a - * copy of this software and associated documentation files (the "Software"), - * to deal in the Software without restriction, including without limitation - * the rights to use, copy, modify, merge, publish, distribute, sublicense, - * and/or sell copies of the Software, and to permit persons to whom the - * Software is furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in - * all copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL - * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR - * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, - * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR - * OTHER DEALINGS IN THE SOFTWARE. - * - */ -#include <asm/div64.h> - -#define SHIFT_AMOUNT 16 /* We multiply all original integers with 2^SHIFT_AMOUNT to get the fInt representation */ - -#define PRECISION 5 /* Change this value to change the number of decimal places in the final output - 5 is a good default */ - -#define SHIFTED_2 (2 << SHIFT_AMOUNT) -#define MAX (1 << (SHIFT_AMOUNT - 1)) - 1 /* 32767 - Might change in the future */ - -/* ------------------------------------------------------------------------------- - * NEW TYPE - fINT - * ------------------------------------------------------------------------------- - * A variable of type fInt can be accessed in 3 ways using the dot (.) operator - * fInt A; - * A.full => The full number as it is. Generally not easy to read - * A.partial.real => Only the integer portion - * A.partial.decimal => Only the fractional portion - */ -typedef union _fInt { - int full; - struct _partial { - unsigned int decimal: SHIFT_AMOUNT; /*Needs to always be unsigned*/ - int real: 32 - SHIFT_AMOUNT; - } partial; -} fInt; - -/* ------------------------------------------------------------------------------- - * Function Declarations - * ------------------------------------------------------------------------------- - */ -static fInt ConvertToFraction(int); /* Use this to convert an INT to a FINT */ -static fInt Convert_ULONG_ToFraction(uint32_t); /* Use this to convert an uint32_t to a FINT */ -static fInt GetScaledFraction(int, int); /* Use this to convert an INT to a FINT after scaling it by a factor */ -static int ConvertBackToInteger(fInt); /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */ - -static fInt fNegate(fInt); /* Returns -1 * input fInt value */ -static fInt fAdd (fInt, fInt); /* Returns the sum of two fInt numbers */ -static fInt fSubtract (fInt A, fInt B); /* Returns A-B - Sometimes easier than Adding negative numbers */ -static fInt fMultiply (fInt, fInt); /* Returns the product of two fInt numbers */ -static fInt fDivide (fInt A, fInt B); /* Returns A/B */ -static fInt fGetSquare(fInt); /* Returns the square of a fInt number */ -static fInt fSqrt(fInt); /* Returns the Square Root of a fInt number */ - -static int uAbs(int); /* Returns the Absolute value of the Int */ -static int uPow(int base, int exponent); /* Returns base^exponent an INT */ - -static void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */ -static bool Equal(fInt, fInt); /* Returns true if two fInts are equal to each other */ -static bool GreaterThan(fInt A, fInt B); /* Returns true if A > B */ - -static fInt fExponential(fInt exponent); /* Can be used to calculate e^exponent */ -static fInt fNaturalLog(fInt value); /* Can be used to calculate ln(value) */ - -/* Fuse decoding functions - * ------------------------------------------------------------------------------------- - */ -static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength); -static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength); -static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength); - -/* Internal Support Functions - Use these ONLY for testing or adding to internal functions - * ------------------------------------------------------------------------------------- - * Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons. - */ -static fInt Divide (int, int); /* Divide two INTs and return result as FINT */ -static fInt fNegate(fInt); - -static int uGetScaledDecimal (fInt); /* Internal function */ -static int GetReal (fInt A); /* Internal function */ - -/* ------------------------------------------------------------------------------------- - * TROUBLESHOOTING INFORMATION - * ------------------------------------------------------------------------------------- - * 1) ConvertToFraction - InputOutOfRangeException: Only accepts numbers smaller than MAX (default: 32767) - * 2) fAdd - OutputOutOfRangeException: Output bigger than MAX (default: 32767) - * 3) fMultiply - OutputOutOfRangeException: - * 4) fGetSquare - OutputOutOfRangeException: - * 5) fDivide - DivideByZeroException - * 6) fSqrt - NegativeSquareRootException: Input cannot be a negative number - */ - -/* ------------------------------------------------------------------------------------- - * START OF CODE - * ------------------------------------------------------------------------------------- - */ -static fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/ -{ - uint32_t i; - bool bNegated = false; - - fInt fPositiveOne = ConvertToFraction(1); - fInt fZERO = ConvertToFraction(0); - - fInt lower_bound = Divide(78, 10000); - fInt solution = fPositiveOne; /*Starting off with baseline of 1 */ - fInt error_term; - - static const uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78}; - static const uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078}; - - if (GreaterThan(fZERO, exponent)) { - exponent = fNegate(exponent); - bNegated = true; - } - - while (GreaterThan(exponent, lower_bound)) { - for (i = 0; i < 11; i++) { - if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) { - exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000)); - solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000)); - } - } - } - - error_term = fAdd(fPositiveOne, exponent); - - solution = fMultiply(solution, error_term); - - if (bNegated) - solution = fDivide(fPositiveOne, solution); - - return solution; -} - -static fInt fNaturalLog(fInt value) -{ - uint32_t i; - fInt upper_bound = Divide(8, 1000); - fInt fNegativeOne = ConvertToFraction(-1); - fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */ - fInt error_term; - - static const uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078}; - static const uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78}; - - while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) { - for (i = 0; i < 10; i++) { - if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) { - value = fDivide(value, GetScaledFraction(k_array[i], 10000)); - solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000)); - } - } - } - - error_term = fAdd(fNegativeOne, value); - - return fAdd(solution, error_term); -} - -static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength) -{ - fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value); - fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); - - fInt f_decoded_value; - - f_decoded_value = fDivide(f_fuse_value, f_bit_max_value); - f_decoded_value = fMultiply(f_decoded_value, f_range); - f_decoded_value = fAdd(f_decoded_value, f_min); - - return f_decoded_value; -} - - -static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength) -{ - fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value); - fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); - - fInt f_CONSTANT_NEG13 = ConvertToFraction(-13); - fInt f_CONSTANT1 = ConvertToFraction(1); - - fInt f_decoded_value; - - f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1); - f_decoded_value = fNaturalLog(f_decoded_value); - f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13)); - f_decoded_value = fAdd(f_decoded_value, f_average); - - return f_decoded_value; -} - -static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength) -{ - fInt fLeakage; - fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); - - fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse)); - fLeakage = fDivide(fLeakage, f_bit_max_value); - fLeakage = fExponential(fLeakage); - fLeakage = fMultiply(fLeakage, f_min); - - return fLeakage; -} - -static fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */ -{ - fInt temp; - - if (X <= MAX) - temp.full = (X << SHIFT_AMOUNT); - else - temp.full = 0; - - return temp; -} - -static fInt fNegate(fInt X) -{ - fInt CONSTANT_NEGONE = ConvertToFraction(-1); - return fMultiply(X, CONSTANT_NEGONE); -} - -static fInt Convert_ULONG_ToFraction(uint32_t X) -{ - fInt temp; - - if (X <= MAX) - temp.full = (X << SHIFT_AMOUNT); - else - temp.full = 0; - - return temp; -} - -static fInt GetScaledFraction(int X, int factor) -{ - int times_shifted, factor_shifted; - bool bNEGATED; - fInt fValue; - - times_shifted = 0; - factor_shifted = 0; - bNEGATED = false; - - if (X < 0) { - X = -1*X; - bNEGATED = true; - } - - if (factor < 0) { - factor = -1*factor; - bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */ - } - - if ((X > MAX) || factor > MAX) { - if ((X/factor) <= MAX) { - while (X > MAX) { - X = X >> 1; - times_shifted++; - } - - while (factor > MAX) { - factor = factor >> 1; - factor_shifted++; - } - } else { - fValue.full = 0; - return fValue; - } - } - - if (factor == 1) - return ConvertToFraction(X); - - fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor)); - - fValue.full = fValue.full << times_shifted; - fValue.full = fValue.full >> factor_shifted; - - return fValue; -} - -/* Addition using two fInts */ -static fInt fAdd (fInt X, fInt Y) -{ - fInt Sum; - - Sum.full = X.full + Y.full; - - return Sum; -} - -/* Addition using two fInts */ -static fInt fSubtract (fInt X, fInt Y) -{ - fInt Difference; - - Difference.full = X.full - Y.full; - - return Difference; -} - -static bool Equal(fInt A, fInt B) -{ - if (A.full == B.full) - return true; - else - return false; -} - -static bool GreaterThan(fInt A, fInt B) -{ - if (A.full > B.full) - return true; - else - return false; -} - -static fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */ -{ - fInt Product; - int64_t tempProduct; - - /*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/ - /* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION - bool X_LessThanOne, Y_LessThanOne; - - X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0); - Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0); - - if (X_LessThanOne && Y_LessThanOne) { - Product.full = X.full * Y.full; - return Product - }*/ - - tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */ - tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */ - Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */ - - return Product; -} - -static fInt fDivide (fInt X, fInt Y) -{ - fInt fZERO, fQuotient; - int64_t longlongX, longlongY; - - fZERO = ConvertToFraction(0); - - if (Equal(Y, fZERO)) - return fZERO; - - longlongX = (int64_t)X.full; - longlongY = (int64_t)Y.full; - - longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */ - - div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */ - - fQuotient.full = (int)longlongX; - return fQuotient; -} - -static int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/ -{ - fInt fullNumber, scaledDecimal, scaledReal; - - scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */ - - scaledDecimal.full = uGetScaledDecimal(A); - - fullNumber = fAdd(scaledDecimal, scaledReal); - - return fullNumber.full; -} - -static fInt fGetSquare(fInt A) -{ - return fMultiply(A, A); -} - -/* x_new = x_old - (x_old^2 - C) / (2 * x_old) */ -static fInt fSqrt(fInt num) -{ - fInt F_divide_Fprime, Fprime; - fInt test; - fInt twoShifted; - int seed, counter, error; - fInt x_new, x_old, C, y; - - fInt fZERO = ConvertToFraction(0); - - /* (0 > num) is the same as (num < 0), i.e., num is negative */ - - if (GreaterThan(fZERO, num) || Equal(fZERO, num)) - return fZERO; - - C = num; - - if (num.partial.real > 3000) - seed = 60; - else if (num.partial.real > 1000) - seed = 30; - else if (num.partial.real > 100) - seed = 10; - else - seed = 2; - - counter = 0; - - if (Equal(num, fZERO)) /*Square Root of Zero is zero */ - return fZERO; - - twoShifted = ConvertToFraction(2); - x_new = ConvertToFraction(seed); - - do { - counter++; - - x_old.full = x_new.full; - - test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */ - y = fSubtract(test, C); /*y = f(x) = x^2 - C; */ - - Fprime = fMultiply(twoShifted, x_old); - F_divide_Fprime = fDivide(y, Fprime); - - x_new = fSubtract(x_old, F_divide_Fprime); - - error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old); - - if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/ - return x_new; - - } while (uAbs(error) > 0); - - return x_new; -} - -static void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[]) -{ - fInt *pRoots = &Roots[0]; - fInt temp, root_first, root_second; - fInt f_CONSTANT10, f_CONSTANT100; - - f_CONSTANT100 = ConvertToFraction(100); - f_CONSTANT10 = ConvertToFraction(10); - - while (GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) { - A = fDivide(A, f_CONSTANT10); - B = fDivide(B, f_CONSTANT10); - C = fDivide(C, f_CONSTANT10); - } - - temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */ - temp = fMultiply(temp, C); /* root = 4*A*C */ - temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */ - temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */ - - root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */ - root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */ - - root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */ - root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */ - - root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */ - root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */ - - *(pRoots + 0) = root_first; - *(pRoots + 1) = root_second; -} - -/* ----------------------------------------------------------------------------- - * SUPPORT FUNCTIONS - * ----------------------------------------------------------------------------- - */ - -/* Conversion Functions */ -static int GetReal (fInt A) -{ - return (A.full >> SHIFT_AMOUNT); -} - -static fInt Divide (int X, int Y) -{ - fInt A, B, Quotient; - - A.full = X << SHIFT_AMOUNT; - B.full = Y << SHIFT_AMOUNT; - - Quotient = fDivide(A, B); - - return Quotient; -} - -static int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */ -{ - int dec[PRECISION]; - int i, scaledDecimal = 0, tmp = A.partial.decimal; - - for (i = 0; i < PRECISION; i++) { - dec[i] = tmp / (1 << SHIFT_AMOUNT); - tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]); - tmp *= 10; - scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 - i); - } - - return scaledDecimal; -} - -static int uPow(int base, int power) -{ - if (power == 0) - return 1; - else - return (base)*uPow(base, power - 1); -} - -static int uAbs(int X) -{ - if (X < 0) - return (X * -1); - else - return X; -} - -static fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term) -{ - fInt solution; - - solution = fDivide(A, fStepSize); - solution.partial.decimal = 0; /*All fractional digits changes to 0 */ - - if (error_term) - solution.partial.real += 1; /*Error term of 1 added */ - - solution = fMultiply(solution, fStepSize); - solution = fAdd(solution, fStepSize); - - return solution; -} - |