summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/xe/xe_guc.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/xe/xe_guc.c')
-rw-r--r--drivers/gpu/drm/xe/xe_guc.c951
1 files changed, 760 insertions, 191 deletions
diff --git a/drivers/gpu/drm/xe/xe_guc.c b/drivers/gpu/drm/xe/xe_guc.c
index 0d2a2dd13f11..bac5471a1a78 100644
--- a/drivers/gpu/drm/xe/xe_guc.c
+++ b/drivers/gpu/drm/xe/xe_guc.c
@@ -12,13 +12,22 @@
#include "abi/guc_actions_abi.h"
#include "abi/guc_errors_abi.h"
#include "regs/xe_gt_regs.h"
+#include "regs/xe_gtt_defs.h"
#include "regs/xe_guc_regs.h"
+#include "regs/xe_irq_regs.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_force_wake.h"
#include "xe_gt.h"
+#include "xe_gt_printk.h"
+#include "xe_gt_sriov_vf.h"
+#include "xe_gt_throttle.h"
#include "xe_guc_ads.h"
+#include "xe_guc_buf.h"
+#include "xe_guc_capture.h"
#include "xe_guc_ct.h"
+#include "xe_guc_db_mgr.h"
+#include "xe_guc_engine_activity.h"
#include "xe_guc_hwconfig.h"
#include "xe_guc_log.h"
#include "xe_guc_pc.h"
@@ -33,14 +42,21 @@
#include "xe_wa.h"
#include "xe_wopcm.h"
-/* GuC addresses above GUC_GGTT_TOP also don't map through the GTT */
-#define GUC_GGTT_TOP 0xFEE00000
static u32 guc_bo_ggtt_addr(struct xe_guc *guc,
struct xe_bo *bo)
{
struct xe_device *xe = guc_to_xe(guc);
- u32 addr = xe_bo_ggtt_addr(bo);
+ u32 addr;
+ /*
+ * For most BOs, the address on the allocating tile is fine. However for
+ * some, e.g. G2G CTB, the address on a specific tile is required as it
+ * might be different for each tile. So, just always ask for the address
+ * on the target GuC.
+ */
+ addr = __xe_bo_ggtt_addr(bo, gt_to_tile(guc_to_gt(guc))->id);
+
+ /* GuC addresses above GUC_GGTT_TOP don't map through the GTT */
xe_assert(xe, addr >= xe_wopcm_size(guc_to_xe(guc)));
xe_assert(xe, addr < GUC_GGTT_TOP);
xe_assert(xe, bo->size <= GUC_GGTT_TOP - addr);
@@ -64,7 +80,7 @@ static u32 guc_ctl_debug_flags(struct xe_guc *guc)
static u32 guc_ctl_feature_flags(struct xe_guc *guc)
{
- u32 flags = 0;
+ u32 flags = GUC_CTL_ENABLE_LITE_RESTORE;
if (!guc_to_xe(guc)->info.skip_guc_pc)
flags |= GUC_CTL_ENABLE_SLPC;
@@ -133,15 +149,38 @@ static u32 guc_ctl_ads_flags(struct xe_guc *guc)
return flags;
}
-#define GUC_VER(maj, min, pat) (((maj) << 16) | ((min) << 8) | (pat))
+static bool needs_wa_dual_queue(struct xe_gt *gt)
+{
+ /*
+ * The DUAL_QUEUE_WA tells the GuC to not allow concurrent submissions
+ * on RCS and CCSes with different address spaces, which on DG2 is
+ * required as a WA for an HW bug.
+ */
+ if (XE_WA(gt, 22011391025))
+ return true;
+
+ /*
+ * On newer platforms, the HW has been updated to not allow parallel
+ * execution of different address spaces, so the RCS/CCS will stall the
+ * context switch if one of the other RCS/CCSes is busy with a different
+ * address space. While functionally correct, having a submission
+ * stalled on the HW limits the GuC ability to shuffle things around and
+ * can cause complications if the non-stalled submission runs for a long
+ * time, because the GuC doesn't know that the stalled submission isn't
+ * actually running and might declare it as hung. Therefore, we enable
+ * the DUAL_QUEUE_WA on all newer platforms on GTs that have CCS engines
+ * to move management back to the GuC.
+ */
+ if (CCS_MASK(gt) && GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270)
+ return true;
+
+ return false;
+}
static u32 guc_ctl_wa_flags(struct xe_guc *guc)
{
struct xe_device *xe = guc_to_xe(guc);
struct xe_gt *gt = guc_to_gt(guc);
- struct xe_uc_fw *uc_fw = &guc->fw;
- struct xe_uc_fw_version *version = &uc_fw->versions.found[XE_UC_FW_VER_RELEASE];
-
u32 flags = 0;
if (XE_WA(gt, 22012773006))
@@ -150,7 +189,7 @@ static u32 guc_ctl_wa_flags(struct xe_guc *guc)
if (XE_WA(gt, 14014475959))
flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
- if (XE_WA(gt, 22011391025))
+ if (needs_wa_dual_queue(gt))
flags |= GUC_WA_DUAL_QUEUE;
/*
@@ -164,20 +203,15 @@ static u32 guc_ctl_wa_flags(struct xe_guc *guc)
if (XE_WA(gt, 22012727170) || XE_WA(gt, 22012727685))
flags |= GUC_WA_CONTEXT_ISOLATION;
- if ((XE_WA(gt, 16015675438) || XE_WA(gt, 18020744125)) &&
+ if (XE_WA(gt, 18020744125) &&
!xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_RENDER))
flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
if (XE_WA(gt, 1509372804))
flags |= GUC_WA_RENDER_RST_RC6_EXIT;
- if (XE_WA(gt, 14018913170)) {
- if (GUC_VER(version->major, version->minor, version->patch) >= GUC_VER(70, 7, 0))
- flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;
- else
- drm_dbg(&xe->drm, "Skip WA 14018913170: GUC version expected >= 70.7.0, found %u.%u.%u\n",
- version->major, version->minor, version->patch);
- }
+ if (XE_WA(gt, 14018913170))
+ flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;
return flags;
}
@@ -189,15 +223,23 @@ static u32 guc_ctl_devid(struct xe_guc *guc)
return (((u32)xe->info.devid) << 16) | xe->info.revid;
}
-static void guc_init_params(struct xe_guc *guc)
+static void guc_print_params(struct xe_guc *guc)
{
- struct xe_device *xe = guc_to_xe(guc);
+ struct xe_gt *gt = guc_to_gt(guc);
u32 *params = guc->params;
int i;
BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT);
+ for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
+ xe_gt_dbg(gt, "GuC param[%2d] = 0x%08x\n", i, params[i]);
+}
+
+static void guc_init_params(struct xe_guc *guc)
+{
+ u32 *params = guc->params;
+
params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
params[GUC_CTL_FEATURE] = 0;
params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
@@ -205,18 +247,12 @@ static void guc_init_params(struct xe_guc *guc)
params[GUC_CTL_WA] = 0;
params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
- for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
- drm_dbg(&xe->drm, "GuC param[%2d] = 0x%08x\n", i, params[i]);
+ guc_print_params(guc);
}
static void guc_init_params_post_hwconfig(struct xe_guc *guc)
{
- struct xe_device *xe = guc_to_xe(guc);
u32 *params = guc->params;
- int i;
-
- BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
- BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT);
params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
@@ -225,8 +261,7 @@ static void guc_init_params_post_hwconfig(struct xe_guc *guc)
params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
- for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
- drm_dbg(&xe->drm, "GuC param[%2d] = 0x%08x\n", i, params[i]);
+ guc_print_params(guc);
}
/*
@@ -241,19 +276,311 @@ static void guc_write_params(struct xe_guc *guc)
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
- xe_mmio_write32(gt, SOFT_SCRATCH(0), 0);
+ xe_mmio_write32(&gt->mmio, SOFT_SCRATCH(0), 0);
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
- xe_mmio_write32(gt, SOFT_SCRATCH(1 + i), guc->params[i]);
+ xe_mmio_write32(&gt->mmio, SOFT_SCRATCH(1 + i), guc->params[i]);
}
-static void guc_fini(struct drm_device *drm, void *arg)
+static int guc_action_register_g2g_buffer(struct xe_guc *guc, u32 type, u32 dst_tile, u32 dst_dev,
+ u32 desc_addr, u32 buff_addr, u32 size)
+{
+ struct xe_gt *gt = guc_to_gt(guc);
+ struct xe_device *xe = gt_to_xe(gt);
+ u32 action[] = {
+ XE_GUC_ACTION_REGISTER_G2G,
+ FIELD_PREP(XE_G2G_REGISTER_SIZE, size / SZ_4K - 1) |
+ FIELD_PREP(XE_G2G_REGISTER_TYPE, type) |
+ FIELD_PREP(XE_G2G_REGISTER_TILE, dst_tile) |
+ FIELD_PREP(XE_G2G_REGISTER_DEVICE, dst_dev),
+ desc_addr,
+ buff_addr,
+ };
+
+ xe_assert(xe, (type == XE_G2G_TYPE_IN) || (type == XE_G2G_TYPE_OUT));
+ xe_assert(xe, !(size % SZ_4K));
+
+ return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
+}
+
+static int guc_action_deregister_g2g_buffer(struct xe_guc *guc, u32 type, u32 dst_tile, u32 dst_dev)
+{
+ struct xe_gt *gt = guc_to_gt(guc);
+ struct xe_device *xe = gt_to_xe(gt);
+ u32 action[] = {
+ XE_GUC_ACTION_DEREGISTER_G2G,
+ FIELD_PREP(XE_G2G_DEREGISTER_TYPE, type) |
+ FIELD_PREP(XE_G2G_DEREGISTER_TILE, dst_tile) |
+ FIELD_PREP(XE_G2G_DEREGISTER_DEVICE, dst_dev),
+ };
+
+ xe_assert(xe, (type == XE_G2G_TYPE_IN) || (type == XE_G2G_TYPE_OUT));
+
+ return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
+}
+
+#define G2G_DEV(gt) (((gt)->info.type == XE_GT_TYPE_MAIN) ? 0 : 1)
+
+#define G2G_BUFFER_SIZE (SZ_4K)
+#define G2G_DESC_SIZE (64)
+#define G2G_DESC_AREA_SIZE (SZ_4K)
+
+/*
+ * Generate a unique id for each bi-directional CTB for each pair of
+ * near and far tiles/devices. The id can then be used as an index into
+ * a single allocation that is sub-divided into multiple CTBs.
+ *
+ * For example, with two devices per tile and two tiles, the table should
+ * look like:
+ * Far <tile>.<dev>
+ * 0.0 0.1 1.0 1.1
+ * N 0.0 --/-- 00/01 02/03 04/05
+ * e 0.1 01/00 --/-- 06/07 08/09
+ * a 1.0 03/02 07/06 --/-- 10/11
+ * r 1.1 05/04 09/08 11/10 --/--
+ *
+ * Where each entry is Rx/Tx channel id.
+ *
+ * So GuC #3 (tile 1, dev 1) talking to GuC #2 (tile 1, dev 0) would
+ * be reading from channel #11 and writing to channel #10. Whereas,
+ * GuC #2 talking to GuC #3 would be read on #10 and write to #11.
+ */
+static unsigned int g2g_slot(u32 near_tile, u32 near_dev, u32 far_tile, u32 far_dev,
+ u32 type, u32 max_inst, bool have_dev)
+{
+ u32 near = near_tile, far = far_tile;
+ u32 idx = 0, x, y, direction;
+ int i;
+
+ if (have_dev) {
+ near = (near << 1) | near_dev;
+ far = (far << 1) | far_dev;
+ }
+
+ /* No need to send to one's self */
+ if (far == near)
+ return -1;
+
+ if (far > near) {
+ /* Top right table half */
+ x = far;
+ y = near;
+
+ /* T/R is 'forwards' direction */
+ direction = type;
+ } else {
+ /* Bottom left table half */
+ x = near;
+ y = far;
+
+ /* B/L is 'backwards' direction */
+ direction = (1 - type);
+ }
+
+ /* Count the rows prior to the target */
+ for (i = y; i > 0; i--)
+ idx += max_inst - i;
+
+ /* Count this row up to the target */
+ idx += (x - 1 - y);
+
+ /* Slots are in Rx/Tx pairs */
+ idx *= 2;
+
+ /* Pick Rx/Tx direction */
+ idx += direction;
+
+ return idx;
+}
+
+static int guc_g2g_register(struct xe_guc *near_guc, struct xe_gt *far_gt, u32 type, bool have_dev)
+{
+ struct xe_gt *near_gt = guc_to_gt(near_guc);
+ struct xe_device *xe = gt_to_xe(near_gt);
+ struct xe_bo *g2g_bo;
+ u32 near_tile = gt_to_tile(near_gt)->id;
+ u32 near_dev = G2G_DEV(near_gt);
+ u32 far_tile = gt_to_tile(far_gt)->id;
+ u32 far_dev = G2G_DEV(far_gt);
+ u32 max = xe->info.gt_count;
+ u32 base, desc, buf;
+ int slot;
+
+ /* G2G is not allowed between different cards */
+ xe_assert(xe, xe == gt_to_xe(far_gt));
+
+ g2g_bo = near_guc->g2g.bo;
+ xe_assert(xe, g2g_bo);
+
+ slot = g2g_slot(near_tile, near_dev, far_tile, far_dev, type, max, have_dev);
+ xe_assert(xe, slot >= 0);
+
+ base = guc_bo_ggtt_addr(near_guc, g2g_bo);
+ desc = base + slot * G2G_DESC_SIZE;
+ buf = base + G2G_DESC_AREA_SIZE + slot * G2G_BUFFER_SIZE;
+
+ xe_assert(xe, (desc - base + G2G_DESC_SIZE) <= G2G_DESC_AREA_SIZE);
+ xe_assert(xe, (buf - base + G2G_BUFFER_SIZE) <= g2g_bo->size);
+
+ return guc_action_register_g2g_buffer(near_guc, type, far_tile, far_dev,
+ desc, buf, G2G_BUFFER_SIZE);
+}
+
+static void guc_g2g_deregister(struct xe_guc *guc, u32 far_tile, u32 far_dev, u32 type)
+{
+ guc_action_deregister_g2g_buffer(guc, type, far_tile, far_dev);
+}
+
+static u32 guc_g2g_size(struct xe_guc *guc)
+{
+ struct xe_gt *gt = guc_to_gt(guc);
+ struct xe_device *xe = gt_to_xe(gt);
+ unsigned int count = xe->info.gt_count;
+ u32 num_channels = (count * (count - 1)) / 2;
+
+ xe_assert(xe, num_channels * XE_G2G_TYPE_LIMIT * G2G_DESC_SIZE <= G2G_DESC_AREA_SIZE);
+
+ return num_channels * XE_G2G_TYPE_LIMIT * G2G_BUFFER_SIZE + G2G_DESC_AREA_SIZE;
+}
+
+static bool xe_guc_g2g_wanted(struct xe_device *xe)
+{
+ /* Can't do GuC to GuC communication if there is only one GuC */
+ if (xe->info.gt_count <= 1)
+ return false;
+
+ /* No current user */
+ return false;
+}
+
+static int guc_g2g_alloc(struct xe_guc *guc)
+{
+ struct xe_gt *gt = guc_to_gt(guc);
+ struct xe_device *xe = gt_to_xe(gt);
+ struct xe_tile *tile = gt_to_tile(gt);
+ struct xe_bo *bo;
+ u32 g2g_size;
+
+ if (guc->g2g.bo)
+ return 0;
+
+ if (gt->info.id != 0) {
+ struct xe_gt *root_gt = xe_device_get_gt(xe, 0);
+ struct xe_guc *root_guc = &root_gt->uc.guc;
+ struct xe_bo *bo;
+
+ bo = xe_bo_get(root_guc->g2g.bo);
+ if (!bo)
+ return -ENODEV;
+
+ guc->g2g.bo = bo;
+ guc->g2g.owned = false;
+ return 0;
+ }
+
+ g2g_size = guc_g2g_size(guc);
+ bo = xe_managed_bo_create_pin_map(xe, tile, g2g_size,
+ XE_BO_FLAG_VRAM_IF_DGFX(tile) |
+ XE_BO_FLAG_GGTT |
+ XE_BO_FLAG_GGTT_ALL |
+ XE_BO_FLAG_GGTT_INVALIDATE |
+ XE_BO_FLAG_PINNED_NORESTORE);
+ if (IS_ERR(bo))
+ return PTR_ERR(bo);
+
+ xe_map_memset(xe, &bo->vmap, 0, 0, g2g_size);
+ guc->g2g.bo = bo;
+ guc->g2g.owned = true;
+
+ return 0;
+}
+
+static void guc_g2g_fini(struct xe_guc *guc)
+{
+ if (!guc->g2g.bo)
+ return;
+
+ /* Unpinning the owned object is handled by generic shutdown */
+ if (!guc->g2g.owned)
+ xe_bo_put(guc->g2g.bo);
+
+ guc->g2g.bo = NULL;
+}
+
+static int guc_g2g_start(struct xe_guc *guc)
+{
+ struct xe_gt *far_gt, *gt = guc_to_gt(guc);
+ struct xe_device *xe = gt_to_xe(gt);
+ unsigned int i, j;
+ int t, err;
+ bool have_dev;
+
+ if (!guc->g2g.bo) {
+ int ret;
+
+ ret = guc_g2g_alloc(guc);
+ if (ret)
+ return ret;
+ }
+
+ /* GuC interface will need extending if more GT device types are ever created. */
+ xe_gt_assert(gt, (gt->info.type == XE_GT_TYPE_MAIN) || (gt->info.type == XE_GT_TYPE_MEDIA));
+
+ /* Channel numbering depends on whether there are multiple GTs per tile */
+ have_dev = xe->info.gt_count > xe->info.tile_count;
+
+ for_each_gt(far_gt, xe, i) {
+ u32 far_tile, far_dev;
+
+ if (far_gt->info.id == gt->info.id)
+ continue;
+
+ far_tile = gt_to_tile(far_gt)->id;
+ far_dev = G2G_DEV(far_gt);
+
+ for (t = 0; t < XE_G2G_TYPE_LIMIT; t++) {
+ err = guc_g2g_register(guc, far_gt, t, have_dev);
+ if (err) {
+ while (--t >= 0)
+ guc_g2g_deregister(guc, far_tile, far_dev, t);
+ goto err_deregister;
+ }
+ }
+ }
+
+ return 0;
+
+err_deregister:
+ for_each_gt(far_gt, xe, j) {
+ u32 tile, dev;
+
+ if (far_gt->info.id == gt->info.id)
+ continue;
+
+ if (j >= i)
+ break;
+
+ tile = gt_to_tile(far_gt)->id;
+ dev = G2G_DEV(far_gt);
+
+ for (t = 0; t < XE_G2G_TYPE_LIMIT; t++)
+ guc_g2g_deregister(guc, tile, dev, t);
+ }
+
+ return err;
+}
+
+static void guc_fini_hw(void *arg)
{
struct xe_guc *guc = arg;
+ struct xe_gt *gt = guc_to_gt(guc);
+ unsigned int fw_ref;
- xe_force_wake_get(gt_to_fw(guc_to_gt(guc)), XE_FORCEWAKE_ALL);
+ fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
xe_uc_fini_hw(&guc_to_gt(guc)->uc);
- xe_force_wake_put(gt_to_fw(guc_to_gt(guc)), XE_FORCEWAKE_ALL);
+ xe_force_wake_put(gt_to_fw(gt), fw_ref);
+
+ guc_g2g_fini(guc);
}
/**
@@ -300,6 +627,23 @@ static int xe_guc_realloc_post_hwconfig(struct xe_guc *guc)
return 0;
}
+static int vf_guc_init(struct xe_guc *guc)
+{
+ int err;
+
+ xe_guc_comm_init_early(guc);
+
+ err = xe_guc_ct_init(&guc->ct);
+ if (err)
+ return err;
+
+ err = xe_guc_relay_init(&guc->relay);
+ if (err)
+ return err;
+
+ return 0;
+}
+
int xe_guc_init(struct xe_guc *guc)
{
struct xe_device *xe = guc_to_xe(guc);
@@ -314,10 +658,21 @@ int xe_guc_init(struct xe_guc *guc)
if (!xe_uc_fw_is_enabled(&guc->fw))
return 0;
+ if (IS_SRIOV_VF(xe)) {
+ ret = vf_guc_init(guc);
+ if (ret)
+ goto out;
+ return 0;
+ }
+
ret = xe_guc_log_init(&guc->log);
if (ret)
goto out;
+ ret = xe_guc_capture_init(guc);
+ if (ret)
+ goto out;
+
ret = xe_guc_ads_init(&guc->ads);
if (ret)
goto out;
@@ -330,7 +685,9 @@ int xe_guc_init(struct xe_guc *guc)
if (ret)
goto out;
- ret = drmm_add_action_or_reset(&gt_to_xe(gt)->drm, guc_fini, guc);
+ xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
+
+ ret = devm_add_action_or_reset(xe->drm.dev, guc_fini_hw, guc);
if (ret)
goto out;
@@ -338,15 +695,26 @@ int xe_guc_init(struct xe_guc *guc)
xe_guc_comm_init_early(guc);
- xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
-
return 0;
out:
- drm_err(&xe->drm, "GuC init failed with %d", ret);
+ xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret));
return ret;
}
+static int vf_guc_init_post_hwconfig(struct xe_guc *guc)
+{
+ int err;
+
+ err = xe_guc_submit_init(guc, xe_gt_sriov_vf_guc_ids(guc_to_gt(guc)));
+ if (err)
+ return err;
+
+ /* XXX xe_guc_db_mgr_init not needed for now */
+
+ return 0;
+}
+
/**
* xe_guc_init_post_hwconfig - initialize GuC post hwconfig load
* @guc: The GuC object
@@ -357,22 +725,50 @@ int xe_guc_init_post_hwconfig(struct xe_guc *guc)
{
int ret;
+ if (IS_SRIOV_VF(guc_to_xe(guc)))
+ return vf_guc_init_post_hwconfig(guc);
+
ret = xe_guc_realloc_post_hwconfig(guc);
if (ret)
return ret;
guc_init_params_post_hwconfig(guc);
+ ret = xe_guc_submit_init(guc, ~0);
+ if (ret)
+ return ret;
+
+ ret = xe_guc_db_mgr_init(&guc->dbm, ~0);
+ if (ret)
+ return ret;
+
ret = xe_guc_pc_init(&guc->pc);
if (ret)
return ret;
+ ret = xe_guc_engine_activity_init(guc);
+ if (ret)
+ return ret;
+
+ ret = xe_guc_buf_cache_init(&guc->buf);
+ if (ret)
+ return ret;
+
return xe_guc_ads_init_post_hwconfig(&guc->ads);
}
int xe_guc_post_load_init(struct xe_guc *guc)
{
+ int ret;
+
xe_guc_ads_populate_post_load(&guc->ads);
+
+ if (xe_guc_g2g_wanted(guc_to_xe(guc))) {
+ ret = guc_g2g_start(guc);
+ if (ret)
+ return ret;
+ }
+
guc->submission_state.enabled = true;
return 0;
@@ -380,27 +776,28 @@ int xe_guc_post_load_init(struct xe_guc *guc)
int xe_guc_reset(struct xe_guc *guc)
{
- struct xe_device *xe = guc_to_xe(guc);
struct xe_gt *gt = guc_to_gt(guc);
+ struct xe_mmio *mmio = &gt->mmio;
u32 guc_status, gdrst;
int ret;
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
- xe_mmio_write32(gt, GDRST, GRDOM_GUC);
+ if (IS_SRIOV_VF(gt_to_xe(gt)))
+ return xe_gt_sriov_vf_bootstrap(gt);
- ret = xe_mmio_wait32(gt, GDRST, GRDOM_GUC, 0, 5000, &gdrst, false);
+ xe_mmio_write32(mmio, GDRST, GRDOM_GUC);
+
+ ret = xe_mmio_wait32(mmio, GDRST, GRDOM_GUC, 0, 5000, &gdrst, false);
if (ret) {
- drm_err(&xe->drm, "GuC reset timed out, GDRST=0x%8x\n",
- gdrst);
+ xe_gt_err(gt, "GuC reset timed out, GDRST=%#x\n", gdrst);
goto err_out;
}
- guc_status = xe_mmio_read32(gt, GUC_STATUS);
+ guc_status = xe_mmio_read32(mmio, GUC_STATUS);
if (!(guc_status & GS_MIA_IN_RESET)) {
- drm_err(&xe->drm,
- "GuC status: 0x%x, MIA core expected to be in reset\n",
- guc_status);
+ xe_gt_err(gt, "GuC status: %#x, MIA core expected to be in reset\n",
+ guc_status);
ret = -EIO;
goto err_out;
}
@@ -415,6 +812,7 @@ err_out:
static void guc_prepare_xfer(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
+ struct xe_mmio *mmio = &gt->mmio;
struct xe_device *xe = guc_to_xe(guc);
u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC |
GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA |
@@ -429,9 +827,12 @@ static void guc_prepare_xfer(struct xe_guc *guc)
shim_flags |= REG_FIELD_PREP(GUC_MOCS_INDEX_MASK, gt->mocs.uc_index);
/* Must program this register before loading the ucode with DMA */
- xe_mmio_write32(gt, GUC_SHIM_CONTROL, shim_flags);
+ xe_mmio_write32(mmio, GUC_SHIM_CONTROL, shim_flags);
+
+ xe_mmio_write32(mmio, GT_PM_CONFIG, GT_DOORBELL_ENABLE);
- xe_mmio_write32(gt, GT_PM_CONFIG, GT_DOORBELL_ENABLE);
+ /* Make sure GuC receives ARAT interrupts */
+ xe_mmio_rmw32(mmio, PMINTRMSK, ARAT_EXPIRED_INTRMSK, 0);
}
/*
@@ -447,7 +848,7 @@ static int guc_xfer_rsa(struct xe_guc *guc)
if (guc->fw.rsa_size > 256) {
u32 rsa_ggtt_addr = xe_bo_ggtt_addr(guc->fw.bo) +
xe_uc_fw_rsa_offset(&guc->fw);
- xe_mmio_write32(gt, UOS_RSA_SCRATCH(0), rsa_ggtt_addr);
+ xe_mmio_write32(&gt->mmio, UOS_RSA_SCRATCH(0), rsa_ggtt_addr);
return 0;
}
@@ -456,72 +857,209 @@ static int guc_xfer_rsa(struct xe_guc *guc)
return -ENOMEM;
for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++)
- xe_mmio_write32(gt, UOS_RSA_SCRATCH(i), rsa[i]);
+ xe_mmio_write32(&gt->mmio, UOS_RSA_SCRATCH(i), rsa[i]);
return 0;
}
-static int guc_wait_ucode(struct xe_guc *guc)
+/*
+ * Check a previously read GuC status register (GUC_STATUS) looking for
+ * known terminal states (either completion or failure) of either the
+ * microkernel status field or the boot ROM status field. Returns +1 for
+ * successful completion, -1 for failure and 0 for any intermediate state.
+ */
+static int guc_load_done(u32 status)
{
- struct xe_device *xe = guc_to_xe(guc);
- u32 status;
- int ret;
+ u32 uk_val = REG_FIELD_GET(GS_UKERNEL_MASK, status);
+ u32 br_val = REG_FIELD_GET(GS_BOOTROM_MASK, status);
+
+ switch (uk_val) {
+ case XE_GUC_LOAD_STATUS_READY:
+ return 1;
+
+ case XE_GUC_LOAD_STATUS_ERROR_DEVID_BUILD_MISMATCH:
+ case XE_GUC_LOAD_STATUS_GUC_PREPROD_BUILD_MISMATCH:
+ case XE_GUC_LOAD_STATUS_ERROR_DEVID_INVALID_GUCTYPE:
+ case XE_GUC_LOAD_STATUS_HWCONFIG_ERROR:
+ case XE_GUC_LOAD_STATUS_DPC_ERROR:
+ case XE_GUC_LOAD_STATUS_EXCEPTION:
+ case XE_GUC_LOAD_STATUS_INIT_DATA_INVALID:
+ case XE_GUC_LOAD_STATUS_MPU_DATA_INVALID:
+ case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
+ return -1;
+ }
+
+ switch (br_val) {
+ case XE_BOOTROM_STATUS_NO_KEY_FOUND:
+ case XE_BOOTROM_STATUS_RSA_FAILED:
+ case XE_BOOTROM_STATUS_PAVPC_FAILED:
+ case XE_BOOTROM_STATUS_WOPCM_FAILED:
+ case XE_BOOTROM_STATUS_LOADLOC_FAILED:
+ case XE_BOOTROM_STATUS_JUMP_FAILED:
+ case XE_BOOTROM_STATUS_RC6CTXCONFIG_FAILED:
+ case XE_BOOTROM_STATUS_MPUMAP_INCORRECT:
+ case XE_BOOTROM_STATUS_EXCEPTION:
+ case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
+ return -1;
+ }
+ return 0;
+}
+
+static s32 guc_pc_get_cur_freq(struct xe_guc_pc *guc_pc)
+{
+ u32 freq;
+ int ret = xe_guc_pc_get_cur_freq(guc_pc, &freq);
+
+ return ret ? ret : freq;
+}
+
+/*
+ * Wait for the GuC to start up.
+ *
+ * Measurements indicate this should take no more than 20ms (assuming the GT
+ * clock is at maximum frequency). However, thermal throttling and other issues
+ * can prevent the clock hitting max and thus making the load take significantly
+ * longer. Allow up to 200ms as a safety margin for real world worst case situations.
+ *
+ * However, bugs anywhere from KMD to GuC to PCODE to fan failure in a CI farm can
+ * lead to even longer times. E.g. if the GT is clamped to minimum frequency then
+ * the load times can be in the seconds range. So the timeout is increased for debug
+ * builds to ensure that problems can be correctly analysed. For release builds, the
+ * timeout is kept short so that users don't wait forever to find out that there is a
+ * problem. In either case, if the load took longer than is reasonable even with some
+ * 'sensible' throttling, then flag a warning because something is not right.
+ *
+ * Note that there is a limit on how long an individual usleep_range() can wait for,
+ * hence longer waits require wrapping a shorter wait in a loop.
+ *
+ * Note that the only reason an end user should hit the shorter timeout is in case of
+ * extreme thermal throttling. And a system that is that hot during boot is probably
+ * dead anyway!
+ */
+#if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
+#define GUC_LOAD_RETRY_LIMIT 20
+#else
+#define GUC_LOAD_RETRY_LIMIT 3
+#endif
+#define GUC_LOAD_TIME_WARN_MS 200
+
+static void guc_wait_ucode(struct xe_guc *guc)
+{
+ struct xe_gt *gt = guc_to_gt(guc);
+ struct xe_mmio *mmio = &gt->mmio;
+ struct xe_guc_pc *guc_pc = &gt->uc.guc.pc;
+ ktime_t before, after, delta;
+ int load_done;
+ u32 status = 0;
+ int count = 0;
+ u64 delta_ms;
+ u32 before_freq;
+
+ before_freq = xe_guc_pc_get_act_freq(guc_pc);
+ before = ktime_get();
/*
- * Wait for the GuC to start up.
- * NB: Docs recommend not using the interrupt for completion.
- * Measurements indicate this should take no more than 20ms
- * (assuming the GT clock is at maximum frequency). So, a
- * timeout here indicates that the GuC has failed and is unusable.
- * (Higher levels of the driver may decide to reset the GuC and
- * attempt the ucode load again if this happens.)
- *
- * FIXME: There is a known (but exceedingly unlikely) race condition
- * where the asynchronous frequency management code could reduce
- * the GT clock while a GuC reload is in progress (during a full
- * GT reset). A fix is in progress but there are complex locking
- * issues to be resolved. In the meantime bump the timeout to
- * 200ms. Even at slowest clock, this should be sufficient. And
- * in the working case, a larger timeout makes no difference.
+ * Note, can't use any kind of timing information from the call to xe_mmio_wait.
+ * It could return a thousand intermediate stages at random times. Instead, must
+ * manually track the total time taken and locally implement the timeout.
*/
- ret = xe_mmio_wait32(guc_to_gt(guc), GUC_STATUS, GS_UKERNEL_MASK,
- FIELD_PREP(GS_UKERNEL_MASK, XE_GUC_LOAD_STATUS_READY),
- 200000, &status, false);
+ do {
+ u32 last_status = status & (GS_UKERNEL_MASK | GS_BOOTROM_MASK);
+ int ret;
- if (ret) {
- struct drm_device *drm = &xe->drm;
-
- drm_info(drm, "GuC load failed: status = 0x%08X\n", status);
- drm_info(drm, "GuC load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n",
- REG_FIELD_GET(GS_MIA_IN_RESET, status),
- REG_FIELD_GET(GS_BOOTROM_MASK, status),
- REG_FIELD_GET(GS_UKERNEL_MASK, status),
- REG_FIELD_GET(GS_MIA_MASK, status),
- REG_FIELD_GET(GS_AUTH_STATUS_MASK, status));
-
- if ((status & GS_BOOTROM_MASK) == GS_BOOTROM_RSA_FAILED) {
- drm_info(drm, "GuC firmware signature verification failed\n");
- ret = -ENOEXEC;
+ /*
+ * Wait for any change (intermediate or terminal) in the status register.
+ * Note, the return value is a don't care. The only failure code is timeout
+ * but the timeouts need to be accumulated over all the intermediate partial
+ * timeouts rather than allowing a huge timeout each time. So basically, need
+ * to treat a timeout no different to a value change.
+ */
+ ret = xe_mmio_wait32_not(mmio, GUC_STATUS, GS_UKERNEL_MASK | GS_BOOTROM_MASK,
+ last_status, 1000 * 1000, &status, false);
+ if (ret < 0)
+ count++;
+ after = ktime_get();
+ delta = ktime_sub(after, before);
+ delta_ms = ktime_to_ms(delta);
+
+ load_done = guc_load_done(status);
+ if (load_done != 0)
+ break;
+
+ if (delta_ms >= (GUC_LOAD_RETRY_LIMIT * 1000))
+ break;
+
+ xe_gt_dbg(gt, "load still in progress, timeouts = %d, freq = %dMHz (req %dMHz), status = 0x%08X [0x%02X/%02X]\n",
+ count, xe_guc_pc_get_act_freq(guc_pc),
+ guc_pc_get_cur_freq(guc_pc), status,
+ REG_FIELD_GET(GS_BOOTROM_MASK, status),
+ REG_FIELD_GET(GS_UKERNEL_MASK, status));
+ } while (1);
+
+ if (load_done != 1) {
+ u32 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, status);
+ u32 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, status);
+
+ xe_gt_err(gt, "load failed: status = 0x%08X, time = %lldms, freq = %dMHz (req %dMHz), done = %d\n",
+ status, delta_ms, xe_guc_pc_get_act_freq(guc_pc),
+ guc_pc_get_cur_freq(guc_pc), load_done);
+ xe_gt_err(gt, "load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n",
+ REG_FIELD_GET(GS_MIA_IN_RESET, status),
+ bootrom, ukernel,
+ REG_FIELD_GET(GS_MIA_MASK, status),
+ REG_FIELD_GET(GS_AUTH_STATUS_MASK, status));
+
+ switch (bootrom) {
+ case XE_BOOTROM_STATUS_NO_KEY_FOUND:
+ xe_gt_err(gt, "invalid key requested, header = 0x%08X\n",
+ xe_mmio_read32(mmio, GUC_HEADER_INFO));
+ break;
+
+ case XE_BOOTROM_STATUS_RSA_FAILED:
+ xe_gt_err(gt, "firmware signature verification failed\n");
+ break;
+
+ case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
+ xe_gt_err(gt, "firmware production part check failure\n");
+ break;
}
- if (REG_FIELD_GET(GS_UKERNEL_MASK, status) ==
- XE_GUC_LOAD_STATUS_EXCEPTION) {
- drm_info(drm, "GuC firmware exception. EIP: %#x\n",
- xe_mmio_read32(guc_to_gt(guc),
- SOFT_SCRATCH(13)));
- ret = -ENXIO;
+ switch (ukernel) {
+ case XE_GUC_LOAD_STATUS_EXCEPTION:
+ xe_gt_err(gt, "firmware exception. EIP: %#x\n",
+ xe_mmio_read32(mmio, SOFT_SCRATCH(13)));
+ break;
+
+ case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
+ xe_gt_err(gt, "illegal register in save/restore workaround list\n");
+ break;
+
+ case XE_GUC_LOAD_STATUS_HWCONFIG_START:
+ xe_gt_err(gt, "still extracting hwconfig table.\n");
+ break;
}
+
+ xe_device_declare_wedged(gt_to_xe(gt));
+ } else if (delta_ms > GUC_LOAD_TIME_WARN_MS) {
+ xe_gt_warn(gt, "excessive init time: %lldms! [status = 0x%08X, timeouts = %d]\n",
+ delta_ms, status, count);
+ xe_gt_warn(gt, "excessive init time: [freq = %dMHz (req = %dMHz), before = %dMHz, perf_limit_reasons = 0x%08X]\n",
+ xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
+ before_freq, xe_gt_throttle_get_limit_reasons(gt));
} else {
- drm_dbg(&xe->drm, "GuC successfully loaded");
+ xe_gt_dbg(gt, "init took %lldms, freq = %dMHz (req = %dMHz), before = %dMHz, status = 0x%08X, timeouts = %d\n",
+ delta_ms, xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
+ before_freq, status, count);
}
-
- return ret;
}
static int __xe_guc_upload(struct xe_guc *guc)
{
int ret;
+ /* Raise GT freq to speed up HuC/GuC load */
+ xe_guc_pc_raise_unslice(&guc->pc);
+
guc_write_params(guc);
guc_prepare_xfer(guc);
@@ -545,9 +1083,7 @@ static int __xe_guc_upload(struct xe_guc *guc)
goto out;
/* Wait for authentication */
- ret = guc_wait_ucode(guc);
- if (ret)
- goto out;
+ guc_wait_ucode(guc);
xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_RUNNING);
return 0;
@@ -557,6 +1093,38 @@ out:
return 0 /* FIXME: ret, don't want to stop load currently */;
}
+static int vf_guc_min_load_for_hwconfig(struct xe_guc *guc)
+{
+ struct xe_gt *gt = guc_to_gt(guc);
+ int ret;
+
+ ret = xe_gt_sriov_vf_bootstrap(gt);
+ if (ret)
+ return ret;
+
+ ret = xe_gt_sriov_vf_query_config(gt);
+ if (ret)
+ return ret;
+
+ ret = xe_guc_hwconfig_init(guc);
+ if (ret)
+ return ret;
+
+ ret = xe_guc_enable_communication(guc);
+ if (ret)
+ return ret;
+
+ ret = xe_gt_sriov_vf_connect(gt);
+ if (ret)
+ return ret;
+
+ ret = xe_gt_sriov_vf_query_runtime(gt);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
/**
* xe_guc_min_load_for_hwconfig - load minimal GuC and read hwconfig table
* @guc: The GuC object
@@ -572,9 +1140,11 @@ int xe_guc_min_load_for_hwconfig(struct xe_guc *guc)
{
int ret;
+ if (IS_SRIOV_VF(guc_to_xe(guc)))
+ return vf_guc_min_load_for_hwconfig(guc);
+
xe_guc_ads_populate_minimal(&guc->ads);
- /* Raise GT freq to speed up HuC/GuC load */
xe_guc_pc_init_early(&guc->pc);
ret = __xe_guc_upload(guc);
@@ -604,20 +1174,21 @@ static void guc_handle_mmio_msg(struct xe_guc *guc)
struct xe_gt *gt = guc_to_gt(guc);
u32 msg;
+ if (IS_SRIOV_VF(guc_to_xe(guc)))
+ return;
+
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
- msg = xe_mmio_read32(gt, SOFT_SCRATCH(15));
+ msg = xe_mmio_read32(&gt->mmio, SOFT_SCRATCH(15));
msg &= XE_GUC_RECV_MSG_EXCEPTION |
XE_GUC_RECV_MSG_CRASH_DUMP_POSTED;
- xe_mmio_write32(gt, SOFT_SCRATCH(15), 0);
+ xe_mmio_write32(&gt->mmio, SOFT_SCRATCH(15), 0);
if (msg & XE_GUC_RECV_MSG_CRASH_DUMP_POSTED)
- drm_err(&guc_to_xe(guc)->drm,
- "Received early GuC crash dump notification!\n");
+ xe_gt_err(gt, "Received early GuC crash dump notification!\n");
if (msg & XE_GUC_RECV_MSG_EXCEPTION)
- drm_err(&guc_to_xe(guc)->drm,
- "Received early GuC exception notification!\n");
+ xe_gt_err(gt, "Received early GuC exception notification!\n");
}
static void guc_enable_irq(struct xe_guc *guc)
@@ -628,14 +1199,14 @@ static void guc_enable_irq(struct xe_guc *guc)
REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
/* Primary GuC and media GuC share a single enable bit */
- xe_mmio_write32(gt, GUC_SG_INTR_ENABLE,
+ xe_mmio_write32(&gt->mmio, GUC_SG_INTR_ENABLE,
REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST));
/*
* There are separate mask bits for primary and media GuCs, so use
* a RMW operation to avoid clobbering the other GuC's setting.
*/
- xe_mmio_rmw32(gt, GUC_SG_INTR_MASK, events, 0);
+ xe_mmio_rmw32(&gt->mmio, GUC_SG_INTR_MASK, events, 0);
}
int xe_guc_enable_communication(struct xe_guc *guc)
@@ -643,20 +1214,17 @@ int xe_guc_enable_communication(struct xe_guc *guc)
struct xe_device *xe = guc_to_xe(guc);
int err;
- guc_enable_irq(guc);
-
if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) {
struct xe_gt *gt = guc_to_gt(guc);
struct xe_tile *tile = gt_to_tile(gt);
- err = xe_memirq_init_guc(&tile->sriov.vf.memirq, guc);
+ err = xe_memirq_init_guc(&tile->memirq, guc);
if (err)
return err;
+ } else {
+ guc_enable_irq(guc);
}
- xe_mmio_rmw32(guc_to_gt(guc), PMINTRMSK,
- ARAT_EXPIRED_INTRMSK, 0);
-
err = xe_guc_ct_enable(&guc->ct);
if (err)
return err;
@@ -668,15 +1236,15 @@ int xe_guc_enable_communication(struct xe_guc *guc)
int xe_guc_suspend(struct xe_guc *guc)
{
- int ret;
+ struct xe_gt *gt = guc_to_gt(guc);
u32 action[] = {
XE_GUC_ACTION_CLIENT_SOFT_RESET,
};
+ int ret;
ret = xe_guc_mmio_send(guc, action, ARRAY_SIZE(action));
if (ret) {
- drm_err(&guc_to_xe(guc)->drm,
- "GuC suspend: CLIENT_SOFT_RESET fail: %d!\n", ret);
+ xe_gt_err(gt, "GuC suspend failed: %pe\n", ERR_PTR(ret));
return ret;
}
@@ -694,7 +1262,7 @@ void xe_guc_notify(struct xe_guc *guc)
* additional payload data to the GuC but this capability is not
* used by the firmware yet. Use default value in the meantime.
*/
- xe_mmio_write32(gt, guc->notify_reg, default_notify_data);
+ xe_mmio_write32(&gt->mmio, guc->notify_reg, default_notify_data);
}
int xe_guc_auth_huc(struct xe_guc *guc, u32 rsa_addr)
@@ -712,6 +1280,7 @@ int xe_guc_mmio_send_recv(struct xe_guc *guc, const u32 *request,
{
struct xe_device *xe = guc_to_xe(guc);
struct xe_gt *gt = guc_to_gt(guc);
+ struct xe_mmio *mmio = &gt->mmio;
u32 header, reply;
struct xe_reg reply_reg = xe_gt_is_media_type(gt) ?
MED_VF_SW_FLAG(0) : VF_SW_FLAG(0);
@@ -721,7 +1290,6 @@ int xe_guc_mmio_send_recv(struct xe_guc *guc, const u32 *request,
BUILD_BUG_ON(VF_SW_FLAG_COUNT != MED_VF_SW_FLAG_COUNT);
- xe_assert(xe, !xe_guc_ct_enabled(&guc->ct));
xe_assert(xe, len);
xe_assert(xe, len <= VF_SW_FLAG_COUNT);
xe_assert(xe, len <= MED_VF_SW_FLAG_COUNT);
@@ -734,29 +1302,29 @@ retry:
/* Not in critical data-path, just do if else for GT type */
if (xe_gt_is_media_type(gt)) {
for (i = 0; i < len; ++i)
- xe_mmio_write32(gt, MED_VF_SW_FLAG(i),
+ xe_mmio_write32(mmio, MED_VF_SW_FLAG(i),
request[i]);
- xe_mmio_read32(gt, MED_VF_SW_FLAG(LAST_INDEX));
+ xe_mmio_read32(mmio, MED_VF_SW_FLAG(LAST_INDEX));
} else {
for (i = 0; i < len; ++i)
- xe_mmio_write32(gt, VF_SW_FLAG(i),
+ xe_mmio_write32(mmio, VF_SW_FLAG(i),
request[i]);
- xe_mmio_read32(gt, VF_SW_FLAG(LAST_INDEX));
+ xe_mmio_read32(mmio, VF_SW_FLAG(LAST_INDEX));
}
xe_guc_notify(guc);
- ret = xe_mmio_wait32(gt, reply_reg, GUC_HXG_MSG_0_ORIGIN,
+ ret = xe_mmio_wait32(mmio, reply_reg, GUC_HXG_MSG_0_ORIGIN,
FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_GUC),
50000, &reply, false);
if (ret) {
timeout:
- drm_err(&xe->drm, "mmio request %#x: no reply %#x\n",
- request[0], reply);
+ xe_gt_err(gt, "GuC mmio request %#x: no reply %#x\n",
+ request[0], reply);
return ret;
}
- header = xe_mmio_read32(gt, reply_reg);
+ header = xe_mmio_read32(mmio, reply_reg);
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
/*
@@ -772,7 +1340,7 @@ timeout:
BUILD_BUG_ON(FIELD_MAX(GUC_HXG_MSG_0_TYPE) != GUC_HXG_TYPE_RESPONSE_SUCCESS);
BUILD_BUG_ON((GUC_HXG_TYPE_RESPONSE_SUCCESS ^ GUC_HXG_TYPE_RESPONSE_FAILURE) != 1);
- ret = xe_mmio_wait32(gt, reply_reg, resp_mask, resp_mask,
+ ret = xe_mmio_wait32(mmio, reply_reg, resp_mask, resp_mask,
1000000, &header, false);
if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
@@ -790,8 +1358,8 @@ timeout:
GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
- drm_dbg(&xe->drm, "mmio request %#x: retrying, reason %#x\n",
- request[0], reason);
+ xe_gt_dbg(gt, "GuC mmio request %#x: retrying, reason %#x\n",
+ request[0], reason);
goto retry;
}
@@ -800,16 +1368,16 @@ timeout:
u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
- drm_err(&xe->drm, "mmio request %#x: failure %#x/%#x\n",
- request[0], error, hint);
+ xe_gt_err(gt, "GuC mmio request %#x: failure %#x hint %#x\n",
+ request[0], error, hint);
return -ENXIO;
}
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
GUC_HXG_TYPE_RESPONSE_SUCCESS) {
proto:
- drm_err(&xe->drm, "mmio request %#x: unexpected reply %#x\n",
- request[0], header);
+ xe_gt_err(gt, "GuC mmio request %#x: unexpected reply %#x\n",
+ request[0], header);
return -EPROTO;
}
@@ -819,13 +1387,14 @@ proto:
for (i = 1; i < VF_SW_FLAG_COUNT; i++) {
reply_reg.addr += sizeof(u32);
- response_buf[i] = xe_mmio_read32(gt, reply_reg);
+ response_buf[i] = xe_mmio_read32(mmio, reply_reg);
}
}
/* Use data from the GuC response as our return value */
return FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
}
+ALLOW_ERROR_INJECTION(xe_guc_mmio_send_recv, ERRNO);
int xe_guc_mmio_send(struct xe_guc *guc, const u32 *request, u32 len)
{
@@ -875,15 +1444,26 @@ int xe_guc_self_cfg64(struct xe_guc *guc, u16 key, u64 val)
return guc_self_cfg(guc, key, 2, val);
}
+static void xe_guc_sw_0_irq_handler(struct xe_guc *guc)
+{
+ struct xe_gt *gt = guc_to_gt(guc);
+
+ if (IS_SRIOV_VF(gt_to_xe(gt)))
+ xe_gt_sriov_vf_migrated_event_handler(gt);
+}
+
void xe_guc_irq_handler(struct xe_guc *guc, const u16 iir)
{
if (iir & GUC_INTR_GUC2HOST)
xe_guc_ct_irq_handler(&guc->ct);
+
+ if (iir & GUC_INTR_SW_INT_0)
+ xe_guc_sw_0_irq_handler(guc);
}
void xe_guc_sanitize(struct xe_guc *guc)
{
- xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
+ xe_uc_fw_sanitize(&guc->fw);
xe_guc_ct_disable(&guc->ct);
guc->submission_state.enabled = false;
}
@@ -900,92 +1480,81 @@ void xe_guc_reset_wait(struct xe_guc *guc)
void xe_guc_stop_prepare(struct xe_guc *guc)
{
- XE_WARN_ON(xe_guc_pc_stop(&guc->pc));
+ if (!IS_SRIOV_VF(guc_to_xe(guc))) {
+ int err;
+
+ err = xe_guc_pc_stop(&guc->pc);
+ xe_gt_WARN(guc_to_gt(guc), err, "Failed to stop GuC PC: %pe\n",
+ ERR_PTR(err));
+ }
}
-int xe_guc_stop(struct xe_guc *guc)
+void xe_guc_stop(struct xe_guc *guc)
{
- int ret;
-
xe_guc_ct_stop(&guc->ct);
- ret = xe_guc_submit_stop(guc);
- if (ret)
- return ret;
-
- return 0;
+ xe_guc_submit_stop(guc);
}
int xe_guc_start(struct xe_guc *guc)
{
- int ret;
-
- ret = xe_guc_pc_start(&guc->pc);
- XE_WARN_ON(ret);
-
return xe_guc_submit_start(guc);
}
void xe_guc_print_info(struct xe_guc *guc, struct drm_printer *p)
{
struct xe_gt *gt = guc_to_gt(guc);
+ unsigned int fw_ref;
u32 status;
- int err;
int i;
xe_uc_fw_print(&guc->fw, p);
- err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
- if (err)
- return;
+ if (!IS_SRIOV_VF(gt_to_xe(gt))) {
+ fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
+ if (!fw_ref)
+ return;
+
+ status = xe_mmio_read32(&gt->mmio, GUC_STATUS);
+
+ drm_printf(p, "\nGuC status 0x%08x:\n", status);
+ drm_printf(p, "\tBootrom status = 0x%x\n",
+ REG_FIELD_GET(GS_BOOTROM_MASK, status));
+ drm_printf(p, "\tuKernel status = 0x%x\n",
+ REG_FIELD_GET(GS_UKERNEL_MASK, status));
+ drm_printf(p, "\tMIA Core status = 0x%x\n",
+ REG_FIELD_GET(GS_MIA_MASK, status));
+ drm_printf(p, "\tLog level = %d\n",
+ xe_guc_log_get_level(&guc->log));
+
+ drm_puts(p, "\nScratch registers:\n");
+ for (i = 0; i < SOFT_SCRATCH_COUNT; i++) {
+ drm_printf(p, "\t%2d: \t0x%x\n",
+ i, xe_mmio_read32(&gt->mmio, SOFT_SCRATCH(i)));
+ }
- status = xe_mmio_read32(gt, GUC_STATUS);
-
- drm_printf(p, "\nGuC status 0x%08x:\n", status);
- drm_printf(p, "\tBootrom status = 0x%x\n",
- REG_FIELD_GET(GS_BOOTROM_MASK, status));
- drm_printf(p, "\tuKernel status = 0x%x\n",
- REG_FIELD_GET(GS_UKERNEL_MASK, status));
- drm_printf(p, "\tMIA Core status = 0x%x\n",
- REG_FIELD_GET(GS_MIA_MASK, status));
- drm_printf(p, "\tLog level = %d\n",
- xe_guc_log_get_level(&guc->log));
-
- drm_puts(p, "\nScratch registers:\n");
- for (i = 0; i < SOFT_SCRATCH_COUNT; i++) {
- drm_printf(p, "\t%2d: \t0x%x\n",
- i, xe_mmio_read32(gt, SOFT_SCRATCH(i)));
+ xe_force_wake_put(gt_to_fw(gt), fw_ref);
}
- xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
-
+ drm_puts(p, "\n");
xe_guc_ct_print(&guc->ct, p, false);
+
+ drm_puts(p, "\n");
xe_guc_submit_print(guc, p);
}
/**
- * xe_guc_in_reset() - Detect if GuC MIA is in reset.
- * @guc: The GuC object
+ * xe_guc_declare_wedged() - Declare GuC wedged
+ * @guc: the GuC object
*
- * This function detects runtime resume from d3cold by leveraging
- * GUC_STATUS, GUC doesn't get reset during d3hot,
- * it strictly to be called from RPM resume handler.
- *
- * Return: true if failed to get forcewake or GuC MIA is in Reset,
- * otherwise false.
+ * Wedge the GuC which stops all submission, saves desired debug state, and
+ * cleans up anything which could timeout.
*/
-bool xe_guc_in_reset(struct xe_guc *guc)
+void xe_guc_declare_wedged(struct xe_guc *guc)
{
- struct xe_gt *gt = guc_to_gt(guc);
- u32 status;
- int err;
+ xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode);
- err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
- if (err)
- return true;
-
- status = xe_mmio_read32(gt, GUC_STATUS);
- xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
-
- return status & GS_MIA_IN_RESET;
+ xe_guc_reset_prepare(guc);
+ xe_guc_ct_stop(&guc->ct);
+ xe_guc_submit_wedge(guc);
}