summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/nand')
-rw-r--r--drivers/mtd/nand/Kconfig8
-rw-r--r--drivers/mtd/nand/Makefile1
-rw-r--r--drivers/mtd/nand/core.c131
-rw-r--r--drivers/mtd/nand/ecc-mxic.c14
-rw-r--r--drivers/mtd/nand/ecc-realtek.c464
-rw-r--r--drivers/mtd/nand/ecc.c2
-rw-r--r--drivers/mtd/nand/onenand/onenand_omap2.c1
-rw-r--r--drivers/mtd/nand/qpic_common.c6
-rw-r--r--drivers/mtd/nand/raw/Kconfig34
-rw-r--r--drivers/mtd/nand/raw/Makefile3
-rw-r--r--drivers/mtd/nand/raw/atmel/nand-controller.c17
-rw-r--r--drivers/mtd/nand/raw/atmel/pmecc.c1
-rw-r--r--drivers/mtd/nand/raw/fsmc_nand.c6
-rw-r--r--drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c14
-rw-r--r--drivers/mtd/nand/raw/loongson-nand-controller.c1024
-rw-r--r--drivers/mtd/nand/raw/loongson1-nand-controller.c836
-rw-r--r--drivers/mtd/nand/raw/nand_base.c131
-rw-r--r--drivers/mtd/nand/raw/nandsim.c7
-rw-r--r--drivers/mtd/nand/raw/omap2.c27
-rw-r--r--drivers/mtd/nand/raw/pl35x-nand-controller.c3
-rw-r--r--drivers/mtd/nand/raw/rockchip-nand-controller.c1
-rw-r--r--drivers/mtd/nand/raw/s3c2410.c1230
-rw-r--r--drivers/mtd/nand/raw/stm32_fmc2_nand.c1
-rw-r--r--drivers/mtd/nand/raw/sunxi_nand.c1
-rw-r--r--drivers/mtd/nand/spi/Makefile2
-rw-r--r--drivers/mtd/nand/spi/core.c75
-rw-r--r--drivers/mtd/nand/spi/fmsh.c74
-rw-r--r--drivers/mtd/nand/spi/gigadevice.c107
28 files changed, 1935 insertions, 2286 deletions
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index 5b0c2c95f10c..4a17271076bc 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -61,6 +61,14 @@ config MTD_NAND_ECC_MEDIATEK
help
This enables support for the hardware ECC engine from Mediatek.
+config MTD_NAND_ECC_REALTEK
+ tristate "Realtek RTL93xx hardware ECC engine"
+ depends on HAS_IOMEM
+ depends on MACH_REALTEK_RTL || COMPILE_TEST
+ select MTD_NAND_ECC
+ help
+ This enables support for the hardware ECC engine from Realtek.
+
endmenu
endmenu
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 44913ff1bf12..2e0e56267718 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -3,6 +3,7 @@
nandcore-objs := core.o bbt.o
obj-$(CONFIG_MTD_NAND_CORE) += nandcore.o
obj-$(CONFIG_MTD_NAND_ECC_MEDIATEK) += ecc-mtk.o
+obj-$(CONFIG_MTD_NAND_ECC_REALTEK) += ecc-realtek.o
obj-$(CONFIG_SPI_QPIC_SNAND) += qpic_common.o
obj-$(CONFIG_MTD_NAND_QCOM) += qpic_common.o
obj-y += onenand/
diff --git a/drivers/mtd/nand/core.c b/drivers/mtd/nand/core.c
index 7737b1a4a177..3e76d127715f 100644
--- a/drivers/mtd/nand/core.c
+++ b/drivers/mtd/nand/core.c
@@ -13,6 +13,137 @@
#include <linux/mtd/nand.h>
/**
+ * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
+ * @buf: buffer to test
+ * @len: buffer length
+ * @bitflips_threshold: maximum number of bitflips
+ *
+ * Check if a buffer contains only 0xff, which means the underlying region
+ * has been erased and is ready to be programmed.
+ * The bitflips_threshold specify the maximum number of bitflips before
+ * considering the region is not erased.
+ * Note: The logic of this function has been extracted from the memweight
+ * implementation, except that nand_check_erased_buf function exit before
+ * testing the whole buffer if the number of bitflips exceed the
+ * bitflips_threshold value.
+ *
+ * Returns a positive number of bitflips less than or equal to
+ * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
+ * threshold.
+ */
+static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
+{
+ const unsigned char *bitmap = buf;
+ int bitflips = 0;
+ int weight;
+
+ for (; len && ((uintptr_t)bitmap) % sizeof(long);
+ len--, bitmap++) {
+ weight = hweight8(*bitmap);
+ bitflips += BITS_PER_BYTE - weight;
+ if (unlikely(bitflips > bitflips_threshold))
+ return -EBADMSG;
+ }
+
+ for (; len >= sizeof(long);
+ len -= sizeof(long), bitmap += sizeof(long)) {
+ unsigned long d = *((unsigned long *)bitmap);
+ if (d == ~0UL)
+ continue;
+ weight = hweight_long(d);
+ bitflips += BITS_PER_LONG - weight;
+ if (unlikely(bitflips > bitflips_threshold))
+ return -EBADMSG;
+ }
+
+ for (; len > 0; len--, bitmap++) {
+ weight = hweight8(*bitmap);
+ bitflips += BITS_PER_BYTE - weight;
+ if (unlikely(bitflips > bitflips_threshold))
+ return -EBADMSG;
+ }
+
+ return bitflips;
+}
+
+/**
+ * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
+ * 0xff data
+ * @data: data buffer to test
+ * @datalen: data length
+ * @ecc: ECC buffer
+ * @ecclen: ECC length
+ * @extraoob: extra OOB buffer
+ * @extraooblen: extra OOB length
+ * @bitflips_threshold: maximum number of bitflips
+ *
+ * Check if a data buffer and its associated ECC and OOB data contains only
+ * 0xff pattern, which means the underlying region has been erased and is
+ * ready to be programmed.
+ * The bitflips_threshold specify the maximum number of bitflips before
+ * considering the region as not erased.
+ *
+ * Note:
+ * 1/ ECC algorithms are working on pre-defined block sizes which are usually
+ * different from the NAND page size. When fixing bitflips, ECC engines will
+ * report the number of errors per chunk, and the NAND core infrastructure
+ * expect you to return the maximum number of bitflips for the whole page.
+ * This is why you should always use this function on a single chunk and
+ * not on the whole page. After checking each chunk you should update your
+ * max_bitflips value accordingly.
+ * 2/ When checking for bitflips in erased pages you should not only check
+ * the payload data but also their associated ECC data, because a user might
+ * have programmed almost all bits to 1 but a few. In this case, we
+ * shouldn't consider the chunk as erased, and checking ECC bytes prevent
+ * this case.
+ * 3/ The extraoob argument is optional, and should be used if some of your OOB
+ * data are protected by the ECC engine.
+ * It could also be used if you support subpages and want to attach some
+ * extra OOB data to an ECC chunk.
+ *
+ * Returns a positive number of bitflips less than or equal to
+ * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
+ * threshold. In case of success, the passed buffers are filled with 0xff.
+ */
+int nand_check_erased_ecc_chunk(void *data, int datalen,
+ void *ecc, int ecclen,
+ void *extraoob, int extraooblen,
+ int bitflips_threshold)
+{
+ int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
+
+ data_bitflips = nand_check_erased_buf(data, datalen,
+ bitflips_threshold);
+ if (data_bitflips < 0)
+ return data_bitflips;
+
+ bitflips_threshold -= data_bitflips;
+
+ ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
+ if (ecc_bitflips < 0)
+ return ecc_bitflips;
+
+ bitflips_threshold -= ecc_bitflips;
+
+ extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
+ bitflips_threshold);
+ if (extraoob_bitflips < 0)
+ return extraoob_bitflips;
+
+ if (data_bitflips)
+ memset(data, 0xff, datalen);
+
+ if (ecc_bitflips)
+ memset(ecc, 0xff, ecclen);
+
+ if (extraoob_bitflips)
+ memset(extraoob, 0xff, extraooblen);
+
+ return data_bitflips + ecc_bitflips + extraoob_bitflips;
+}
+EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
+
+/**
* nanddev_isbad() - Check if a block is bad
* @nand: NAND device
* @pos: position pointing to the block we want to check
diff --git a/drivers/mtd/nand/ecc-mxic.c b/drivers/mtd/nand/ecc-mxic.c
index 1bf9a5a64b87..60cdcb4175ef 100644
--- a/drivers/mtd/nand/ecc-mxic.c
+++ b/drivers/mtd/nand/ecc-mxic.c
@@ -322,14 +322,14 @@ static int mxic_ecc_init_ctx(struct nand_device *nand, struct device *dev)
sg_init_table(ctx->sg, 2);
/* Configuration dump and sanity checks */
- dev_err(dev, "DPE version number: %d\n",
+ dev_dbg(dev, "DPE version number: %d\n",
readl(mxic->regs + DP_VER) >> DP_VER_OFFSET);
- dev_err(dev, "Chunk size: %d\n", readl(mxic->regs + CHUNK_SIZE));
- dev_err(dev, "Main size: %d\n", readl(mxic->regs + MAIN_SIZE));
- dev_err(dev, "Spare size: %d\n", SPARE_SZ(spare_reg));
- dev_err(dev, "Rsv size: %ld\n", RSV_SZ(spare_reg));
- dev_err(dev, "Parity size: %d\n", ctx->parity_sz);
- dev_err(dev, "Meta size: %d\n", ctx->meta_sz);
+ dev_dbg(dev, "Chunk size: %d\n", readl(mxic->regs + CHUNK_SIZE));
+ dev_dbg(dev, "Main size: %d\n", readl(mxic->regs + MAIN_SIZE));
+ dev_dbg(dev, "Spare size: %d\n", SPARE_SZ(spare_reg));
+ dev_dbg(dev, "Rsv size: %ld\n", RSV_SZ(spare_reg));
+ dev_dbg(dev, "Parity size: %d\n", ctx->parity_sz);
+ dev_dbg(dev, "Meta size: %d\n", ctx->meta_sz);
if ((ctx->meta_sz + ctx->parity_sz + RSV_SZ(spare_reg)) !=
SPARE_SZ(spare_reg)) {
diff --git a/drivers/mtd/nand/ecc-realtek.c b/drivers/mtd/nand/ecc-realtek.c
new file mode 100644
index 000000000000..7d718934c909
--- /dev/null
+++ b/drivers/mtd/nand/ecc-realtek.c
@@ -0,0 +1,464 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Support for Realtek hardware ECC engine in RTL93xx SoCs
+ */
+
+#include <linux/bitfield.h>
+#include <linux/dma-mapping.h>
+#include <linux/mtd/nand.h>
+#include <linux/mutex.h>
+#include <linux/platform_device.h>
+#include <linux/regmap.h>
+
+/*
+ * The Realtek ECC engine has two operation modes.
+ *
+ * - BCH6 : Generate 10 ECC bytes from 512 data bytes plus 6 free bytes
+ * - BCH12 : Generate 20 ECC bytes from 512 data bytes plus 6 free bytes
+ *
+ * It can run for arbitrary NAND flash chips with different block and OOB sizes. Currently there
+ * are only two known devices in the wild that have NAND flash and make use of this ECC engine
+ * (Linksys LGS328C & LGS352C). To keep compatibility with vendor firmware, new modes can only
+ * be added when new data layouts have been analyzed. For now allow BCH6 on flash with 2048 byte
+ * blocks and 64 bytes oob.
+ *
+ * This driver aligns with kernel ECC naming conventions. Neverthless a short notice on the
+ * Realtek naming conventions for the different structures in the OOB area.
+ *
+ * - BBI : Bad block indicator. The first two bytes of OOB. Protected by ECC!
+ * - tag : 6 User/free bytes. First tag "contains" 2 bytes BBI. Protected by ECC!
+ * - syndrome : ECC/parity bytes
+ *
+ * Altogether this gives currently the following block layout.
+ *
+ * +------+------+------+------+-----+------+------+------+------+-----+-----+-----+-----+
+ * | 512 | 512 | 512 | 512 | 2 | 4 | 6 | 6 | 6 | 10 | 10 | 10 | 10 |
+ * +------+------+------+------+-----+------+------+------+------+-----+-----+-----+-----+
+ * | data | data | data | data | BBI | free | free | free | free | ECC | ECC | ECC | ECC |
+ * +------+------+------+------+-----+------+------+------+------+-----+-----+-----+-----+
+ */
+
+#define RTL_ECC_ALLOWED_PAGE_SIZE 2048
+#define RTL_ECC_ALLOWED_OOB_SIZE 64
+#define RTL_ECC_ALLOWED_STRENGTH 6
+
+#define RTL_ECC_BLOCK_SIZE 512
+#define RTL_ECC_FREE_SIZE 6
+#define RTL_ECC_PARITY_SIZE_BCH6 10
+#define RTL_ECC_PARITY_SIZE_BCH12 20
+
+/*
+ * The engine is fed with two DMA regions. One for data (always 512 bytes) and one for free bytes
+ * and parity (either 16 bytes for BCH6 or 26 bytes for BCH12). Start and length of each must be
+ * aligned to a multiple of 4.
+ */
+
+#define RTL_ECC_DMA_FREE_PARITY_SIZE ALIGN(RTL_ECC_FREE_SIZE + RTL_ECC_PARITY_SIZE_BCH12, 4)
+#define RTL_ECC_DMA_SIZE (RTL_ECC_BLOCK_SIZE + RTL_ECC_DMA_FREE_PARITY_SIZE)
+
+#define RTL_ECC_CFG 0x00
+#define RTL_ECC_BCH6 0
+#define RTL_ECC_BCH12 BIT(28)
+#define RTL_ECC_DMA_PRECISE BIT(12)
+#define RTL_ECC_BURST_128 GENMASK(1, 0)
+#define RTL_ECC_DMA_TRIGGER 0x08
+#define RTL_ECC_OP_DECODE 0
+#define RTL_ECC_OP_ENCODE BIT(0)
+#define RTL_ECC_DMA_START 0x0c
+#define RTL_ECC_DMA_TAG 0x10
+#define RTL_ECC_STATUS 0x14
+#define RTL_ECC_CORR_COUNT GENMASK(19, 12)
+#define RTL_ECC_RESULT BIT(8)
+#define RTL_ECC_ALL_ONE BIT(4)
+#define RTL_ECC_OP_STATUS BIT(0)
+
+struct rtl_ecc_engine {
+ struct device *dev;
+ struct nand_ecc_engine engine;
+ struct mutex lock;
+ char *buf;
+ dma_addr_t buf_dma;
+ struct regmap *regmap;
+};
+
+struct rtl_ecc_ctx {
+ struct rtl_ecc_engine * rtlc;
+ struct nand_ecc_req_tweak_ctx req_ctx;
+ int steps;
+ int bch_mode;
+ int strength;
+ int parity_size;
+};
+
+static const struct regmap_config rtl_ecc_regmap_config = {
+ .reg_bits = 32,
+ .val_bits = 32,
+ .reg_stride = 4,
+};
+
+static inline void *nand_to_ctx(struct nand_device *nand)
+{
+ return nand->ecc.ctx.priv;
+}
+
+static inline struct rtl_ecc_engine *nand_to_rtlc(struct nand_device *nand)
+{
+ struct nand_ecc_engine *eng = nand->ecc.engine;
+
+ return container_of(eng, struct rtl_ecc_engine, engine);
+}
+
+static int rtl_ecc_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ struct rtl_ecc_ctx *ctx = nand_to_ctx(nand);
+
+ if (section < 0 || section >= ctx->steps)
+ return -ERANGE;
+
+ oobregion->offset = ctx->steps * RTL_ECC_FREE_SIZE + section * ctx->parity_size;
+ oobregion->length = ctx->parity_size;
+
+ return 0;
+}
+
+static int rtl_ecc_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ struct rtl_ecc_ctx *ctx = nand_to_ctx(nand);
+ int bbm;
+
+ if (section < 0 || section >= ctx->steps)
+ return -ERANGE;
+
+ /* reserve 2 BBM bytes in first block */
+ bbm = section ? 0 : 2;
+ oobregion->offset = section * RTL_ECC_FREE_SIZE + bbm;
+ oobregion->length = RTL_ECC_FREE_SIZE - bbm;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops rtl_ecc_ooblayout_ops = {
+ .ecc = rtl_ecc_ooblayout_ecc,
+ .free = rtl_ecc_ooblayout_free,
+};
+
+static void rtl_ecc_kick_engine(struct rtl_ecc_ctx *ctx, int operation)
+{
+ struct rtl_ecc_engine *rtlc = ctx->rtlc;
+
+ regmap_write(rtlc->regmap, RTL_ECC_CFG,
+ ctx->bch_mode | RTL_ECC_BURST_128 | RTL_ECC_DMA_PRECISE);
+
+ regmap_write(rtlc->regmap, RTL_ECC_DMA_START, rtlc->buf_dma);
+ regmap_write(rtlc->regmap, RTL_ECC_DMA_TAG, rtlc->buf_dma + RTL_ECC_BLOCK_SIZE);
+ regmap_write(rtlc->regmap, RTL_ECC_DMA_TRIGGER, operation);
+}
+
+static int rtl_ecc_wait_for_engine(struct rtl_ecc_ctx *ctx)
+{
+ struct rtl_ecc_engine *rtlc = ctx->rtlc;
+ int ret, status, bitflips;
+ bool all_one;
+
+ /*
+ * The ECC engine needs 6-8 us to encode/decode a BCH6 syndrome for 512 bytes of data
+ * and 6 free bytes. In case the NAND area has been erased and all data and oob is
+ * set to 0xff, decoding takes 30us (reason unknown). Although the engine can trigger
+ * interrupts when finished, use active polling for now. 12 us maximum wait time has
+ * proven to be a good tradeoff between performance and overhead.
+ */
+
+ ret = regmap_read_poll_timeout(rtlc->regmap, RTL_ECC_STATUS, status,
+ !(status & RTL_ECC_OP_STATUS), 12, 1000000);
+ if (ret)
+ return ret;
+
+ ret = FIELD_GET(RTL_ECC_RESULT, status);
+ all_one = FIELD_GET(RTL_ECC_ALL_ONE, status);
+ bitflips = FIELD_GET(RTL_ECC_CORR_COUNT, status);
+
+ /* For erased blocks (all bits one) error status can be ignored */
+ if (all_one)
+ ret = 0;
+
+ return ret ? -EBADMSG : bitflips;
+}
+
+static int rtl_ecc_run_engine(struct rtl_ecc_ctx *ctx, char *data, char *free,
+ char *parity, int operation)
+{
+ struct rtl_ecc_engine *rtlc = ctx->rtlc;
+ char *buf_parity = rtlc->buf + RTL_ECC_BLOCK_SIZE + RTL_ECC_FREE_SIZE;
+ char *buf_free = rtlc->buf + RTL_ECC_BLOCK_SIZE;
+ char *buf_data = rtlc->buf;
+ int ret;
+
+ mutex_lock(&rtlc->lock);
+
+ memcpy(buf_data, data, RTL_ECC_BLOCK_SIZE);
+ memcpy(buf_free, free, RTL_ECC_FREE_SIZE);
+ memcpy(buf_parity, parity, ctx->parity_size);
+
+ dma_sync_single_for_device(rtlc->dev, rtlc->buf_dma, RTL_ECC_DMA_SIZE, DMA_TO_DEVICE);
+ rtl_ecc_kick_engine(ctx, operation);
+ ret = rtl_ecc_wait_for_engine(ctx);
+ dma_sync_single_for_cpu(rtlc->dev, rtlc->buf_dma, RTL_ECC_DMA_SIZE, DMA_FROM_DEVICE);
+
+ if (ret >= 0) {
+ memcpy(data, buf_data, RTL_ECC_BLOCK_SIZE);
+ memcpy(free, buf_free, RTL_ECC_FREE_SIZE);
+ memcpy(parity, buf_parity, ctx->parity_size);
+ }
+
+ mutex_unlock(&rtlc->lock);
+
+ return ret;
+}
+
+static int rtl_ecc_prepare_io_req(struct nand_device *nand, struct nand_page_io_req *req)
+{
+ struct rtl_ecc_engine *rtlc = nand_to_rtlc(nand);
+ struct rtl_ecc_ctx *ctx = nand_to_ctx(nand);
+ char *data, *free, *parity;
+ int ret = 0;
+
+ if (req->mode == MTD_OPS_RAW)
+ return 0;
+
+ nand_ecc_tweak_req(&ctx->req_ctx, req);
+
+ if (req->type == NAND_PAGE_READ)
+ return 0;
+
+ free = req->oobbuf.in;
+ data = req->databuf.in;
+ parity = req->oobbuf.in + ctx->steps * RTL_ECC_FREE_SIZE;
+
+ for (int i = 0; i < ctx->steps; i++) {
+ ret |= rtl_ecc_run_engine(ctx, data, free, parity, RTL_ECC_OP_ENCODE);
+
+ free += RTL_ECC_FREE_SIZE;
+ data += RTL_ECC_BLOCK_SIZE;
+ parity += ctx->parity_size;
+ }
+
+ if (unlikely(ret))
+ dev_dbg(rtlc->dev, "ECC calculation failed\n");
+
+ return ret ? -EBADMSG : 0;
+}
+
+static int rtl_ecc_finish_io_req(struct nand_device *nand, struct nand_page_io_req *req)
+{
+ struct rtl_ecc_engine *rtlc = nand_to_rtlc(nand);
+ struct rtl_ecc_ctx *ctx = nand_to_ctx(nand);
+ struct mtd_info *mtd = nanddev_to_mtd(nand);
+ char *data, *free, *parity;
+ bool failure = false;
+ int bitflips = 0;
+
+ if (req->mode == MTD_OPS_RAW)
+ return 0;
+
+ if (req->type == NAND_PAGE_WRITE) {
+ nand_ecc_restore_req(&ctx->req_ctx, req);
+ return 0;
+ }
+
+ free = req->oobbuf.in;
+ data = req->databuf.in;
+ parity = req->oobbuf.in + ctx->steps * RTL_ECC_FREE_SIZE;
+
+ for (int i = 0 ; i < ctx->steps; i++) {
+ int ret = rtl_ecc_run_engine(ctx, data, free, parity, RTL_ECC_OP_DECODE);
+
+ if (unlikely(ret < 0))
+ /* ECC totally fails for bitflips in erased blocks */
+ ret = nand_check_erased_ecc_chunk(data, RTL_ECC_BLOCK_SIZE,
+ parity, ctx->parity_size,
+ free, RTL_ECC_FREE_SIZE,
+ ctx->strength);
+ if (unlikely(ret < 0)) {
+ failure = true;
+ mtd->ecc_stats.failed++;
+ } else {
+ mtd->ecc_stats.corrected += ret;
+ bitflips = max_t(unsigned int, bitflips, ret);
+ }
+
+ free += RTL_ECC_FREE_SIZE;
+ data += RTL_ECC_BLOCK_SIZE;
+ parity += ctx->parity_size;
+ }
+
+ nand_ecc_restore_req(&ctx->req_ctx, req);
+
+ if (unlikely(failure))
+ dev_dbg(rtlc->dev, "ECC correction failed\n");
+ else if (unlikely(bitflips > 2))
+ dev_dbg(rtlc->dev, "%d bitflips detected\n", bitflips);
+
+ return failure ? -EBADMSG : bitflips;
+}
+
+static int rtl_ecc_check_support(struct nand_device *nand)
+{
+ struct mtd_info *mtd = nanddev_to_mtd(nand);
+ struct device *dev = nand->ecc.engine->dev;
+
+ if (mtd->oobsize != RTL_ECC_ALLOWED_OOB_SIZE ||
+ mtd->writesize != RTL_ECC_ALLOWED_PAGE_SIZE) {
+ dev_err(dev, "only flash geometry data=%d, oob=%d supported\n",
+ RTL_ECC_ALLOWED_PAGE_SIZE, RTL_ECC_ALLOWED_OOB_SIZE);
+ return -EINVAL;
+ }
+
+ if (nand->ecc.user_conf.algo != NAND_ECC_ALGO_BCH ||
+ nand->ecc.user_conf.strength != RTL_ECC_ALLOWED_STRENGTH ||
+ nand->ecc.user_conf.placement != NAND_ECC_PLACEMENT_OOB ||
+ nand->ecc.user_conf.step_size != RTL_ECC_BLOCK_SIZE) {
+ dev_err(dev, "only algo=bch, strength=%d, placement=oob, step=%d supported\n",
+ RTL_ECC_ALLOWED_STRENGTH, RTL_ECC_BLOCK_SIZE);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int rtl_ecc_init_ctx(struct nand_device *nand)
+{
+ struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
+ struct rtl_ecc_engine *rtlc = nand_to_rtlc(nand);
+ struct mtd_info *mtd = nanddev_to_mtd(nand);
+ int strength = nand->ecc.user_conf.strength;
+ struct device *dev = nand->ecc.engine->dev;
+ struct rtl_ecc_ctx *ctx;
+ int ret;
+
+ ret = rtl_ecc_check_support(nand);
+ if (ret)
+ return ret;
+
+ ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
+ if (!ctx)
+ return -ENOMEM;
+
+ nand->ecc.ctx.priv = ctx;
+ mtd_set_ooblayout(mtd, &rtl_ecc_ooblayout_ops);
+
+ conf->algo = NAND_ECC_ALGO_BCH;
+ conf->strength = strength;
+ conf->step_size = RTL_ECC_BLOCK_SIZE;
+ conf->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
+
+ ctx->rtlc = rtlc;
+ ctx->steps = mtd->writesize / RTL_ECC_BLOCK_SIZE;
+ ctx->strength = strength;
+ ctx->bch_mode = strength == 6 ? RTL_ECC_BCH6 : RTL_ECC_BCH12;
+ ctx->parity_size = strength == 6 ? RTL_ECC_PARITY_SIZE_BCH6 : RTL_ECC_PARITY_SIZE_BCH12;
+
+ ret = nand_ecc_init_req_tweaking(&ctx->req_ctx, nand);
+ if (ret)
+ return ret;
+
+ dev_dbg(dev, "using bch%d with geometry data=%dx%d, free=%dx6, parity=%dx%d",
+ conf->strength, ctx->steps, conf->step_size,
+ ctx->steps, ctx->steps, ctx->parity_size);
+
+ return 0;
+}
+
+static void rtl_ecc_cleanup_ctx(struct nand_device *nand)
+{
+ struct rtl_ecc_ctx *ctx = nand_to_ctx(nand);
+
+ if (ctx)
+ nand_ecc_cleanup_req_tweaking(&ctx->req_ctx);
+}
+
+static struct nand_ecc_engine_ops rtl_ecc_engine_ops = {
+ .init_ctx = rtl_ecc_init_ctx,
+ .cleanup_ctx = rtl_ecc_cleanup_ctx,
+ .prepare_io_req = rtl_ecc_prepare_io_req,
+ .finish_io_req = rtl_ecc_finish_io_req,
+};
+
+static int rtl_ecc_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct rtl_ecc_engine *rtlc;
+ void __iomem *base;
+ int ret;
+
+ rtlc = devm_kzalloc(dev, sizeof(*rtlc), GFP_KERNEL);
+ if (!rtlc)
+ return -ENOMEM;
+
+ base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(base))
+ return PTR_ERR(base);
+
+ ret = devm_mutex_init(dev, &rtlc->lock);
+ if (ret)
+ return ret;
+
+ rtlc->regmap = devm_regmap_init_mmio(dev, base, &rtl_ecc_regmap_config);
+ if (IS_ERR(rtlc->regmap))
+ return PTR_ERR(rtlc->regmap);
+
+ /*
+ * Focus on simplicity and use a preallocated DMA buffer for data exchange with the
+ * engine. For now make it a noncoherent memory model as invalidating/flushing caches
+ * is faster than reading/writing uncached memory on the known architectures.
+ */
+
+ rtlc->buf = dma_alloc_noncoherent(dev, RTL_ECC_DMA_SIZE, &rtlc->buf_dma,
+ DMA_BIDIRECTIONAL, GFP_KERNEL);
+ if (IS_ERR(rtlc->buf))
+ return PTR_ERR(rtlc->buf);
+
+ rtlc->dev = dev;
+ rtlc->engine.dev = dev;
+ rtlc->engine.ops = &rtl_ecc_engine_ops;
+ rtlc->engine.integration = NAND_ECC_ENGINE_INTEGRATION_EXTERNAL;
+
+ nand_ecc_register_on_host_hw_engine(&rtlc->engine);
+
+ platform_set_drvdata(pdev, rtlc);
+
+ return 0;
+}
+
+static void rtl_ecc_remove(struct platform_device *pdev)
+{
+ struct rtl_ecc_engine *rtlc = platform_get_drvdata(pdev);
+
+ nand_ecc_unregister_on_host_hw_engine(&rtlc->engine);
+ dma_free_noncoherent(rtlc->dev, RTL_ECC_DMA_SIZE, rtlc->buf, rtlc->buf_dma,
+ DMA_BIDIRECTIONAL);
+}
+
+static const struct of_device_id rtl_ecc_of_ids[] = {
+ {
+ .compatible = "realtek,rtl9301-ecc",
+ },
+ { /* sentinel */ },
+};
+
+static struct platform_driver rtl_ecc_driver = {
+ .driver = {
+ .name = "rtl-nand-ecc-engine",
+ .of_match_table = rtl_ecc_of_ids,
+ },
+ .probe = rtl_ecc_probe,
+ .remove = rtl_ecc_remove,
+};
+module_platform_driver(rtl_ecc_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Markus Stockhausen <markus.stockhausen@gmx.de>");
+MODULE_DESCRIPTION("Realtek NAND hardware ECC controller");
diff --git a/drivers/mtd/nand/ecc.c b/drivers/mtd/nand/ecc.c
index 8f996e8d61b8..6ccdff3fc913 100644
--- a/drivers/mtd/nand/ecc.c
+++ b/drivers/mtd/nand/ecc.c
@@ -552,7 +552,7 @@ void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx,
memset(tweak->oobbuf.in, 0xFF, ctx->oob_buffer_size);
}
- /* Copy the data that must be writen in the bounce buffers, if needed */
+ /* Copy the data that must be written in the bounce buffers, if needed */
if (orig->type == NAND_PAGE_WRITE) {
if (ctx->bounce_data)
memcpy((void *)tweak->databuf.out + orig->dataoffs,
diff --git a/drivers/mtd/nand/onenand/onenand_omap2.c b/drivers/mtd/nand/onenand/onenand_omap2.c
index f9a386b69050..0793251ada3b 100644
--- a/drivers/mtd/nand/onenand/onenand_omap2.c
+++ b/drivers/mtd/nand/onenand/onenand_omap2.c
@@ -603,7 +603,6 @@ static struct platform_driver omap2_onenand_driver = {
module_platform_driver(omap2_onenand_driver);
-MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Jarkko Lavinen <jarkko.lavinen@nokia.com>");
MODULE_DESCRIPTION("Glue layer for OneNAND flash on OMAP2 / OMAP3");
diff --git a/drivers/mtd/nand/qpic_common.c b/drivers/mtd/nand/qpic_common.c
index 8e604cc22ca3..db6c46a6fe01 100644
--- a/drivers/mtd/nand/qpic_common.c
+++ b/drivers/mtd/nand/qpic_common.c
@@ -89,10 +89,8 @@ void qcom_clear_bam_transaction(struct qcom_nand_controller *nandc)
memset(&bam_txn->bam_positions, 0, sizeof(bam_txn->bam_positions));
bam_txn->last_data_desc = NULL;
- sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
- QPIC_PER_CW_CMD_SGL);
- sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
- QPIC_PER_CW_DATA_SGL);
+ sg_init_table(bam_txn->cmd_sgl, bam_txn->cmd_sgl_nitems);
+ sg_init_table(bam_txn->data_sgl, bam_txn->data_sgl_nitems);
reinit_completion(&bam_txn->txn_done);
}
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index 4b99d9c422c3..7408f34f0c68 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -77,32 +77,6 @@ config MTD_NAND_NDFC
help
NDFC Nand Flash Controllers are integrated in IBM/AMCC's 4xx SoCs
-config MTD_NAND_S3C2410
- tristate "Samsung S3C NAND controller"
- depends on ARCH_S3C64XX
- help
- This enables the NAND flash controller on the S3C24xx and S3C64xx
- SoCs
-
- No board specific support is done by this driver, each board
- must advertise a platform_device for the driver to attach.
-
-config MTD_NAND_S3C2410_DEBUG
- bool "Samsung S3C NAND controller debug"
- depends on MTD_NAND_S3C2410
- help
- Enable debugging of the S3C NAND driver
-
-config MTD_NAND_S3C2410_CLKSTOP
- bool "Samsung S3C NAND IDLE clock stop"
- depends on MTD_NAND_S3C2410
- default n
- help
- Stop the clock to the NAND controller when there is no chip
- selected to save power. This will mean there is a small delay
- when the is NAND chip selected or released, but will save
- approximately 5mA of power when there is nothing happening.
-
config MTD_NAND_SHARPSL
tristate "Sharp SL Series (C7xx + others) NAND controller"
depends on ARCH_PXA || COMPILE_TEST
@@ -462,12 +436,12 @@ config MTD_NAND_NUVOTON_MA35
Enables support for the NAND controller found on
the Nuvoton MA35 series SoCs.
-config MTD_NAND_LOONGSON1
- tristate "Loongson1 NAND controller"
- depends on LOONGSON1_APB_DMA || COMPILE_TEST
+config MTD_NAND_LOONGSON
+ tristate "Loongson NAND controller"
+ depends on LOONGSON1_APB_DMA || LOONGSON2_APB_DMA || COMPILE_TEST
select REGMAP_MMIO
help
- Enables support for NAND controller on Loongson1 SoCs.
+ Enables support for NAND controller on Loongson family chips.
comment "Misc"
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index 711d043ad4f8..619760138d32 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -9,7 +9,6 @@ obj-$(CONFIG_MTD_NAND_DENALI) += denali.o
obj-$(CONFIG_MTD_NAND_DENALI_PCI) += denali_pci.o
obj-$(CONFIG_MTD_NAND_DENALI_DT) += denali_dt.o
obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o
-obj-$(CONFIG_MTD_NAND_S3C2410) += s3c2410.o
obj-$(CONFIG_MTD_NAND_DAVINCI) += davinci_nand.o
obj-$(CONFIG_MTD_NAND_DISKONCHIP) += diskonchip.o
obj-$(CONFIG_MTD_NAND_FSMC) += fsmc_nand.o
@@ -59,7 +58,7 @@ obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o
obj-$(CONFIG_MTD_NAND_PL35X) += pl35x-nand-controller.o
obj-$(CONFIG_MTD_NAND_RENESAS) += renesas-nand-controller.o
obj-$(CONFIG_MTD_NAND_NUVOTON_MA35) += nuvoton-ma35d1-nand-controller.o
-obj-$(CONFIG_MTD_NAND_LOONGSON1) += loongson1-nand-controller.o
+obj-$(CONFIG_MTD_NAND_LOONGSON) += loongson-nand-controller.o
nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
nand-objs += nand_onfi.o
diff --git a/drivers/mtd/nand/raw/atmel/nand-controller.c b/drivers/mtd/nand/raw/atmel/nand-controller.c
index db94d14a3807..83ba4ebd02d4 100644
--- a/drivers/mtd/nand/raw/atmel/nand-controller.c
+++ b/drivers/mtd/nand/raw/atmel/nand-controller.c
@@ -1240,7 +1240,7 @@ static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
const struct nand_interface_config *conf,
struct atmel_smc_cs_conf *smcconf)
{
- u32 ncycles, totalcycles, timeps, mckperiodps;
+ u32 ncycles, totalcycles, timeps, mckperiodps, pulse;
struct atmel_nand_controller *nc;
int ret;
@@ -1366,11 +1366,16 @@ static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
/*
- * Read pulse timing directly matches tRP:
+ * Read pulse timing would directly match tRP,
+ * but some NAND flash chips (S34ML01G2 and W29N02KVxxAF)
+ * do not work properly in timing mode 3.
+ * The workaround is to extend the SMC NRD pulse to meet tREA
+ * timing.
*
- * NRD_PULSE = tRP
+ * NRD_PULSE = max(tRP, tREA)
*/
- ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
+ pulse = max(conf->timings.sdr.tRP_min, conf->timings.sdr.tREA_max);
+ ncycles = DIV_ROUND_UP(pulse, mckperiodps);
totalcycles += ncycles;
ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
ncycles);
@@ -1858,7 +1863,7 @@ atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
{
- struct device_node *np, *nand_np;
+ struct device_node *np;
struct device *dev = nc->dev;
int ret, reg_cells;
u32 val;
@@ -1885,7 +1890,7 @@ static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
reg_cells += val;
- for_each_child_of_node(np, nand_np) {
+ for_each_child_of_node_scoped(np, nand_np) {
struct atmel_nand *nand;
nand = atmel_nand_create(nc, nand_np, reg_cells);
diff --git a/drivers/mtd/nand/raw/atmel/pmecc.c b/drivers/mtd/nand/raw/atmel/pmecc.c
index 0b402823b619..1d0e93e4edb1 100644
--- a/drivers/mtd/nand/raw/atmel/pmecc.c
+++ b/drivers/mtd/nand/raw/atmel/pmecc.c
@@ -1010,4 +1010,3 @@ module_platform_driver(atmel_pmecc_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
MODULE_DESCRIPTION("PMECC engine driver");
-MODULE_ALIAS("platform:atmel_pmecc");
diff --git a/drivers/mtd/nand/raw/fsmc_nand.c b/drivers/mtd/nand/raw/fsmc_nand.c
index df61db8ce466..b13b2b0c3f30 100644
--- a/drivers/mtd/nand/raw/fsmc_nand.c
+++ b/drivers/mtd/nand/raw/fsmc_nand.c
@@ -876,10 +876,14 @@ static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
if (!of_property_read_u32(np, "bank-width", &val)) {
if (val == 2) {
nand->options |= NAND_BUSWIDTH_16;
- } else if (val != 1) {
+ } else if (val == 1) {
+ nand->options |= NAND_BUSWIDTH_AUTO;
+ } else {
dev_err(&pdev->dev, "invalid bank-width %u\n", val);
return -EINVAL;
}
+ } else {
+ nand->options |= NAND_BUSWIDTH_AUTO;
}
if (of_property_read_bool(np, "nand-skip-bbtscan"))
diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
index f4e68008ea03..a750f5839e34 100644
--- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
@@ -145,6 +145,9 @@ err_clk:
return ret;
}
+#define gpmi_enable_clk(x) __gpmi_enable_clk(x, true)
+#define gpmi_disable_clk(x) __gpmi_enable_clk(x, false)
+
static int gpmi_init(struct gpmi_nand_data *this)
{
struct resources *r = &this->resources;
@@ -2765,6 +2768,11 @@ static int gpmi_nand_probe(struct platform_device *pdev)
pm_runtime_enable(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
pm_runtime_use_autosuspend(&pdev->dev);
+#ifndef CONFIG_PM
+ ret = gpmi_enable_clk(this);
+ if (ret)
+ goto exit_acquire_resources;
+#endif
ret = gpmi_init(this);
if (ret)
@@ -2800,6 +2808,9 @@ static void gpmi_nand_remove(struct platform_device *pdev)
release_resources(this);
pm_runtime_dont_use_autosuspend(&pdev->dev);
pm_runtime_disable(&pdev->dev);
+#ifndef CONFIG_PM
+ gpmi_disable_clk(this);
+#endif
}
static int gpmi_pm_suspend(struct device *dev)
@@ -2846,9 +2857,6 @@ static int gpmi_pm_resume(struct device *dev)
return 0;
}
-#define gpmi_enable_clk(x) __gpmi_enable_clk(x, true)
-#define gpmi_disable_clk(x) __gpmi_enable_clk(x, false)
-
static int gpmi_runtime_suspend(struct device *dev)
{
struct gpmi_nand_data *this = dev_get_drvdata(dev);
diff --git a/drivers/mtd/nand/raw/loongson-nand-controller.c b/drivers/mtd/nand/raw/loongson-nand-controller.c
new file mode 100644
index 000000000000..8490412d5be1
--- /dev/null
+++ b/drivers/mtd/nand/raw/loongson-nand-controller.c
@@ -0,0 +1,1024 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * NAND Controller Driver for Loongson family chips
+ *
+ * Copyright (C) 2015-2025 Keguang Zhang <keguang.zhang@gmail.com>
+ * Copyright (C) 2025 Binbin Zhou <zhoubinbin@loongson.cn>
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/iopoll.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/regmap.h>
+#include <linux/sizes.h>
+
+/* Loongson NAND Controller Registers */
+#define LOONGSON_NAND_CMD 0x0
+#define LOONGSON_NAND_ADDR1 0x4
+#define LOONGSON_NAND_ADDR2 0x8
+#define LOONGSON_NAND_TIMING 0xc
+#define LOONGSON_NAND_IDL 0x10
+#define LOONGSON_NAND_IDH_STATUS 0x14
+#define LOONGSON_NAND_PARAM 0x18
+#define LOONGSON_NAND_OP_NUM 0x1c
+#define LOONGSON_NAND_CS_RDY_MAP 0x20
+
+/* Bitfields of nand command register */
+#define LOONGSON_NAND_CMD_OP_DONE BIT(10)
+#define LOONGSON_NAND_CMD_OP_SPARE BIT(9)
+#define LOONGSON_NAND_CMD_OP_MAIN BIT(8)
+#define LOONGSON_NAND_CMD_STATUS BIT(7)
+#define LOONGSON_NAND_CMD_RESET BIT(6)
+#define LOONGSON_NAND_CMD_READID BIT(5)
+#define LOONGSON_NAND_CMD_BLOCKS_ERASE BIT(4)
+#define LOONGSON_NAND_CMD_ERASE BIT(3)
+#define LOONGSON_NAND_CMD_WRITE BIT(2)
+#define LOONGSON_NAND_CMD_READ BIT(1)
+#define LOONGSON_NAND_CMD_VALID BIT(0)
+
+/* Bitfields of nand cs/rdy map register */
+#define LOONGSON_NAND_MAP_CS1_SEL GENMASK(11, 8)
+#define LOONGSON_NAND_MAP_RDY1_SEL GENMASK(15, 12)
+#define LOONGSON_NAND_MAP_CS2_SEL GENMASK(19, 16)
+#define LOONGSON_NAND_MAP_RDY2_SEL GENMASK(23, 20)
+#define LOONGSON_NAND_MAP_CS3_SEL GENMASK(27, 24)
+#define LOONGSON_NAND_MAP_RDY3_SEL GENMASK(31, 28)
+
+#define LOONGSON_NAND_CS_SEL0 BIT(0)
+#define LOONGSON_NAND_CS_SEL1 BIT(1)
+#define LOONGSON_NAND_CS_SEL2 BIT(2)
+#define LOONGSON_NAND_CS_SEL3 BIT(3)
+#define LOONGSON_NAND_CS_RDY0 BIT(0)
+#define LOONGSON_NAND_CS_RDY1 BIT(1)
+#define LOONGSON_NAND_CS_RDY2 BIT(2)
+#define LOONGSON_NAND_CS_RDY3 BIT(3)
+
+/* Bitfields of nand timing register */
+#define LOONGSON_NAND_WAIT_CYCLE_MASK GENMASK(7, 0)
+#define LOONGSON_NAND_HOLD_CYCLE_MASK GENMASK(15, 8)
+
+/* Bitfields of nand parameter register */
+#define LOONGSON_NAND_CELL_SIZE_MASK GENMASK(11, 8)
+
+#define LOONGSON_NAND_COL_ADDR_CYC 2U
+#define LOONGSON_NAND_MAX_ADDR_CYC 5U
+
+#define LOONGSON_NAND_READ_ID_SLEEP_US 1000
+#define LOONGSON_NAND_READ_ID_TIMEOUT_US 5000
+
+#define BITS_PER_WORD (4 * BITS_PER_BYTE)
+
+/* Loongson-2K1000 NAND DMA routing register */
+#define LS2K1000_NAND_DMA_MASK GENMASK(2, 0)
+#define LS2K1000_DMA0_CONF 0x0
+#define LS2K1000_DMA1_CONF 0x1
+#define LS2K1000_DMA2_CONF 0x2
+#define LS2K1000_DMA3_CONF 0x3
+#define LS2K1000_DMA4_CONF 0x4
+
+struct loongson_nand_host;
+
+struct loongson_nand_op {
+ char addrs[LOONGSON_NAND_MAX_ADDR_CYC];
+ unsigned int naddrs;
+ unsigned int addrs_offset;
+ unsigned int aligned_offset;
+ unsigned int cmd_reg;
+ unsigned int row_start;
+ unsigned int rdy_timeout_ms;
+ unsigned int orig_len;
+ bool is_readid;
+ bool is_erase;
+ bool is_write;
+ bool is_read;
+ bool is_change_column;
+ size_t len;
+ char *buf;
+};
+
+struct loongson_nand_data {
+ unsigned int max_id_cycle;
+ unsigned int id_cycle_field;
+ unsigned int status_field;
+ unsigned int op_scope_field;
+ unsigned int hold_cycle;
+ unsigned int wait_cycle;
+ unsigned int nand_cs;
+ unsigned int dma_bits;
+ int (*dma_config)(struct device *dev);
+ void (*set_addr)(struct loongson_nand_host *host, struct loongson_nand_op *op);
+};
+
+struct loongson_nand_host {
+ struct device *dev;
+ struct nand_chip chip;
+ struct nand_controller controller;
+ const struct loongson_nand_data *data;
+ unsigned int addr_cs_field;
+ void __iomem *reg_base;
+ struct regmap *regmap;
+ /* DMA Engine stuff */
+ dma_addr_t dma_base;
+ struct dma_chan *dma_chan;
+ dma_cookie_t dma_cookie;
+ struct completion dma_complete;
+};
+
+static const struct regmap_config loongson_nand_regmap_config = {
+ .reg_bits = 32,
+ .val_bits = 32,
+ .reg_stride = 4,
+};
+
+static int loongson_nand_op_cmd_mapping(struct nand_chip *chip, struct loongson_nand_op *op,
+ u8 opcode)
+{
+ struct loongson_nand_host *host = nand_get_controller_data(chip);
+
+ op->row_start = chip->page_shift + 1;
+
+ /* The controller abstracts the following NAND operations. */
+ switch (opcode) {
+ case NAND_CMD_STATUS:
+ op->cmd_reg = LOONGSON_NAND_CMD_STATUS;
+ break;
+ case NAND_CMD_RESET:
+ op->cmd_reg = LOONGSON_NAND_CMD_RESET;
+ break;
+ case NAND_CMD_READID:
+ op->is_readid = true;
+ op->cmd_reg = LOONGSON_NAND_CMD_READID;
+ break;
+ case NAND_CMD_ERASE1:
+ op->is_erase = true;
+ op->addrs_offset = LOONGSON_NAND_COL_ADDR_CYC;
+ break;
+ case NAND_CMD_ERASE2:
+ if (!op->is_erase)
+ return -EOPNOTSUPP;
+ /* During erasing, row_start differs from the default value. */
+ op->row_start = chip->page_shift;
+ op->cmd_reg = LOONGSON_NAND_CMD_ERASE;
+ break;
+ case NAND_CMD_SEQIN:
+ op->is_write = true;
+ break;
+ case NAND_CMD_PAGEPROG:
+ if (!op->is_write)
+ return -EOPNOTSUPP;
+ op->cmd_reg = LOONGSON_NAND_CMD_WRITE;
+ break;
+ case NAND_CMD_READ0:
+ op->is_read = true;
+ break;
+ case NAND_CMD_READSTART:
+ if (!op->is_read)
+ return -EOPNOTSUPP;
+ op->cmd_reg = LOONGSON_NAND_CMD_READ;
+ break;
+ case NAND_CMD_RNDOUT:
+ op->is_change_column = true;
+ break;
+ case NAND_CMD_RNDOUTSTART:
+ if (!op->is_change_column)
+ return -EOPNOTSUPP;
+ op->cmd_reg = LOONGSON_NAND_CMD_READ;
+ break;
+ default:
+ dev_dbg(host->dev, "unsupported opcode: %u\n", opcode);
+ return -EOPNOTSUPP;
+ }
+
+ return 0;
+}
+
+static int loongson_nand_parse_instructions(struct nand_chip *chip, const struct nand_subop *subop,
+ struct loongson_nand_op *op)
+{
+ unsigned int op_id;
+ int ret;
+
+ for (op_id = 0; op_id < subop->ninstrs; op_id++) {
+ const struct nand_op_instr *instr = &subop->instrs[op_id];
+ unsigned int offset, naddrs;
+ const u8 *addrs;
+
+ switch (instr->type) {
+ case NAND_OP_CMD_INSTR:
+ ret = loongson_nand_op_cmd_mapping(chip, op, instr->ctx.cmd.opcode);
+ if (ret < 0)
+ return ret;
+
+ break;
+ case NAND_OP_ADDR_INSTR:
+ naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
+ if (naddrs > LOONGSON_NAND_MAX_ADDR_CYC)
+ return -EOPNOTSUPP;
+ op->naddrs = naddrs;
+ offset = nand_subop_get_addr_start_off(subop, op_id);
+ addrs = &instr->ctx.addr.addrs[offset];
+ memcpy(op->addrs + op->addrs_offset, addrs, naddrs);
+ break;
+ case NAND_OP_DATA_IN_INSTR:
+ case NAND_OP_DATA_OUT_INSTR:
+ offset = nand_subop_get_data_start_off(subop, op_id);
+ op->orig_len = nand_subop_get_data_len(subop, op_id);
+ if (instr->type == NAND_OP_DATA_IN_INSTR)
+ op->buf = instr->ctx.data.buf.in + offset;
+ else if (instr->type == NAND_OP_DATA_OUT_INSTR)
+ op->buf = (void *)instr->ctx.data.buf.out + offset;
+
+ break;
+ case NAND_OP_WAITRDY_INSTR:
+ op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
+ break;
+ default:
+ break;
+ }
+ }
+
+ return 0;
+}
+
+static void loongson_nand_set_addr_cs(struct loongson_nand_host *host)
+{
+ struct nand_chip *chip = &host->chip;
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ if (!host->data->nand_cs)
+ return;
+
+ /*
+ * The Manufacturer/Chip ID read operation precedes attach_chip, at which point
+ * information such as NAND chip selection and capacity is unknown. As a
+ * workaround, we use 128MB cellsize (2KB pagesize) as a fallback.
+ */
+ if (!mtd->writesize)
+ host->addr_cs_field = GENMASK(17, 16);
+
+ regmap_update_bits(host->regmap, LOONGSON_NAND_ADDR2, host->addr_cs_field,
+ host->data->nand_cs << __ffs(host->addr_cs_field));
+}
+
+static void ls1b_nand_set_addr(struct loongson_nand_host *host, struct loongson_nand_op *op)
+{
+ struct nand_chip *chip = &host->chip;
+ int i;
+
+ for (i = 0; i < LOONGSON_NAND_MAX_ADDR_CYC; i++) {
+ int shift, mask, val;
+
+ if (i < LOONGSON_NAND_COL_ADDR_CYC) {
+ shift = i * BITS_PER_BYTE;
+ mask = (u32)0xff << shift;
+ mask &= GENMASK(chip->page_shift, 0);
+ val = (u32)op->addrs[i] << shift;
+ regmap_update_bits(host->regmap, LOONGSON_NAND_ADDR1, mask, val);
+ } else if (!op->is_change_column) {
+ shift = op->row_start + (i - LOONGSON_NAND_COL_ADDR_CYC) * BITS_PER_BYTE;
+ mask = (u32)0xff << shift;
+ val = (u32)op->addrs[i] << shift;
+ regmap_update_bits(host->regmap, LOONGSON_NAND_ADDR1, mask, val);
+
+ if (i == 4) {
+ mask = (u32)0xff >> (BITS_PER_WORD - shift);
+ val = (u32)op->addrs[i] >> (BITS_PER_WORD - shift);
+ regmap_update_bits(host->regmap, LOONGSON_NAND_ADDR2, mask, val);
+ }
+ }
+ }
+}
+
+static void ls1c_nand_set_addr(struct loongson_nand_host *host, struct loongson_nand_op *op)
+{
+ int i;
+
+ for (i = 0; i < LOONGSON_NAND_MAX_ADDR_CYC; i++) {
+ int shift, mask, val;
+
+ if (i < LOONGSON_NAND_COL_ADDR_CYC) {
+ shift = i * BITS_PER_BYTE;
+ mask = (u32)0xff << shift;
+ val = (u32)op->addrs[i] << shift;
+ regmap_update_bits(host->regmap, LOONGSON_NAND_ADDR1, mask, val);
+ } else if (!op->is_change_column) {
+ shift = (i - LOONGSON_NAND_COL_ADDR_CYC) * BITS_PER_BYTE;
+ mask = (u32)0xff << shift;
+ val = (u32)op->addrs[i] << shift;
+ regmap_update_bits(host->regmap, LOONGSON_NAND_ADDR2, mask, val);
+ }
+ }
+
+ loongson_nand_set_addr_cs(host);
+}
+
+static void loongson_nand_trigger_op(struct loongson_nand_host *host, struct loongson_nand_op *op)
+{
+ struct nand_chip *chip = &host->chip;
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int col0 = op->addrs[0];
+ short col;
+
+ if (!IS_ALIGNED(col0, chip->buf_align)) {
+ col0 = ALIGN_DOWN(op->addrs[0], chip->buf_align);
+ op->aligned_offset = op->addrs[0] - col0;
+ op->addrs[0] = col0;
+ }
+
+ if (host->data->set_addr)
+ host->data->set_addr(host, op);
+
+ /* set operation length */
+ if (op->is_write || op->is_read || op->is_change_column)
+ op->len = ALIGN(op->orig_len + op->aligned_offset, chip->buf_align);
+ else if (op->is_erase)
+ op->len = 1;
+ else
+ op->len = op->orig_len;
+
+ writel(op->len, host->reg_base + LOONGSON_NAND_OP_NUM);
+
+ /* set operation area and scope */
+ col = op->addrs[1] << BITS_PER_BYTE | op->addrs[0];
+ if (op->orig_len && !op->is_readid) {
+ unsigned int op_scope = 0;
+
+ if (col < mtd->writesize) {
+ op->cmd_reg |= LOONGSON_NAND_CMD_OP_MAIN;
+ op_scope = mtd->writesize;
+ }
+
+ op->cmd_reg |= LOONGSON_NAND_CMD_OP_SPARE;
+ op_scope += mtd->oobsize;
+
+ op_scope <<= __ffs(host->data->op_scope_field);
+ regmap_update_bits(host->regmap, LOONGSON_NAND_PARAM,
+ host->data->op_scope_field, op_scope);
+ }
+
+ /* set command */
+ writel(op->cmd_reg, host->reg_base + LOONGSON_NAND_CMD);
+
+ /* trigger operation */
+ regmap_write_bits(host->regmap, LOONGSON_NAND_CMD, LOONGSON_NAND_CMD_VALID,
+ LOONGSON_NAND_CMD_VALID);
+}
+
+static int loongson_nand_wait_for_op_done(struct loongson_nand_host *host,
+ struct loongson_nand_op *op)
+{
+ unsigned int val;
+ int ret = 0;
+
+ if (op->rdy_timeout_ms) {
+ ret = regmap_read_poll_timeout(host->regmap, LOONGSON_NAND_CMD,
+ val, val & LOONGSON_NAND_CMD_OP_DONE,
+ 0, op->rdy_timeout_ms * MSEC_PER_SEC);
+ if (ret)
+ dev_err(host->dev, "operation failed\n");
+ }
+
+ return ret;
+}
+
+static void loongson_nand_dma_callback(void *data)
+{
+ struct loongson_nand_host *host = (struct loongson_nand_host *)data;
+ struct dma_chan *chan = host->dma_chan;
+ struct device *dev = chan->device->dev;
+ enum dma_status status;
+
+ status = dmaengine_tx_status(chan, host->dma_cookie, NULL);
+ if (likely(status == DMA_COMPLETE)) {
+ dev_dbg(dev, "DMA complete with cookie=%d\n", host->dma_cookie);
+ complete(&host->dma_complete);
+ } else {
+ dev_err(dev, "DMA error with cookie=%d\n", host->dma_cookie);
+ }
+}
+
+static int loongson_nand_dma_transfer(struct loongson_nand_host *host, struct loongson_nand_op *op)
+{
+ struct nand_chip *chip = &host->chip;
+ struct dma_chan *chan = host->dma_chan;
+ struct device *dev = chan->device->dev;
+ struct dma_async_tx_descriptor *desc;
+ enum dma_data_direction data_dir = op->is_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
+ enum dma_transfer_direction xfer_dir = op->is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM;
+ void *buf = op->buf;
+ char *dma_buf = NULL;
+ dma_addr_t dma_addr;
+ int ret;
+
+ if (IS_ALIGNED((uintptr_t)buf, chip->buf_align) &&
+ IS_ALIGNED(op->orig_len, chip->buf_align)) {
+ dma_addr = dma_map_single(dev, buf, op->orig_len, data_dir);
+ if (dma_mapping_error(dev, dma_addr)) {
+ dev_err(dev, "failed to map DMA buffer\n");
+ return -ENXIO;
+ }
+ } else if (!op->is_write) {
+ dma_buf = dma_alloc_coherent(dev, op->len, &dma_addr, GFP_KERNEL);
+ if (!dma_buf)
+ return -ENOMEM;
+ } else {
+ dev_err(dev, "subpage writing not supported\n");
+ return -EOPNOTSUPP;
+ }
+
+ desc = dmaengine_prep_slave_single(chan, dma_addr, op->len, xfer_dir, DMA_PREP_INTERRUPT);
+ if (!desc) {
+ dev_err(dev, "failed to prepare DMA descriptor\n");
+ ret = -ENOMEM;
+ goto err;
+ }
+ desc->callback = loongson_nand_dma_callback;
+ desc->callback_param = host;
+
+ host->dma_cookie = dmaengine_submit(desc);
+ ret = dma_submit_error(host->dma_cookie);
+ if (ret) {
+ dev_err(dev, "failed to submit DMA descriptor\n");
+ goto err;
+ }
+
+ dev_dbg(dev, "issue DMA with cookie=%d\n", host->dma_cookie);
+ dma_async_issue_pending(chan);
+
+ if (!wait_for_completion_timeout(&host->dma_complete, msecs_to_jiffies(1000))) {
+ dmaengine_terminate_sync(chan);
+ reinit_completion(&host->dma_complete);
+ ret = -ETIMEDOUT;
+ goto err;
+ }
+
+ if (dma_buf)
+ memcpy(buf, dma_buf + op->aligned_offset, op->orig_len);
+err:
+ if (dma_buf)
+ dma_free_coherent(dev, op->len, dma_buf, dma_addr);
+ else
+ dma_unmap_single(dev, dma_addr, op->orig_len, data_dir);
+
+ return ret;
+}
+
+static int loongson_nand_data_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
+{
+ struct loongson_nand_host *host = nand_get_controller_data(chip);
+ struct loongson_nand_op op = {};
+ int ret;
+
+ ret = loongson_nand_parse_instructions(chip, subop, &op);
+ if (ret)
+ return ret;
+
+ loongson_nand_trigger_op(host, &op);
+
+ ret = loongson_nand_dma_transfer(host, &op);
+ if (ret)
+ return ret;
+
+ return loongson_nand_wait_for_op_done(host, &op);
+}
+
+static int loongson_nand_misc_type_exec(struct nand_chip *chip, const struct nand_subop *subop,
+ struct loongson_nand_op *op)
+{
+ struct loongson_nand_host *host = nand_get_controller_data(chip);
+ int ret;
+
+ ret = loongson_nand_parse_instructions(chip, subop, op);
+ if (ret)
+ return ret;
+
+ loongson_nand_trigger_op(host, op);
+
+ return loongson_nand_wait_for_op_done(host, op);
+}
+
+static int loongson_nand_zerolen_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
+{
+ struct loongson_nand_op op = {};
+
+ return loongson_nand_misc_type_exec(chip, subop, &op);
+}
+
+static int loongson_nand_read_id_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
+{
+ struct loongson_nand_host *host = nand_get_controller_data(chip);
+ struct loongson_nand_op op = {};
+ int i, ret;
+ union {
+ char ids[6];
+ struct {
+ int idl;
+ u16 idh;
+ };
+ } nand_id;
+
+ ret = loongson_nand_misc_type_exec(chip, subop, &op);
+ if (ret)
+ return ret;
+
+ ret = regmap_read_poll_timeout(host->regmap, LOONGSON_NAND_IDL, nand_id.idl, nand_id.idl,
+ LOONGSON_NAND_READ_ID_SLEEP_US,
+ LOONGSON_NAND_READ_ID_TIMEOUT_US);
+ if (ret)
+ return ret;
+
+ nand_id.idh = readw(host->reg_base + LOONGSON_NAND_IDH_STATUS);
+
+ for (i = 0; i < min(host->data->max_id_cycle, op.orig_len); i++)
+ op.buf[i] = nand_id.ids[host->data->max_id_cycle - 1 - i];
+
+ return ret;
+}
+
+static int loongson_nand_read_status_type_exec(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ struct loongson_nand_host *host = nand_get_controller_data(chip);
+ struct loongson_nand_op op = {};
+ int val, ret;
+
+ ret = loongson_nand_misc_type_exec(chip, subop, &op);
+ if (ret)
+ return ret;
+
+ val = readl(host->reg_base + LOONGSON_NAND_IDH_STATUS);
+ val &= ~host->data->status_field;
+ op.buf[0] = val << ffs(host->data->status_field);
+
+ return ret;
+}
+
+static const struct nand_op_parser loongson_nand_op_parser = NAND_OP_PARSER(
+ NAND_OP_PARSER_PATTERN(
+ loongson_nand_read_id_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, LOONGSON_NAND_MAX_ADDR_CYC),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
+ NAND_OP_PARSER_PATTERN(
+ loongson_nand_read_status_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
+ NAND_OP_PARSER_PATTERN(
+ loongson_nand_zerolen_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+ NAND_OP_PARSER_PATTERN(
+ loongson_nand_zerolen_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, LOONGSON_NAND_MAX_ADDR_CYC),
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+ NAND_OP_PARSER_PATTERN(
+ loongson_nand_data_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, LOONGSON_NAND_MAX_ADDR_CYC),
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)),
+ NAND_OP_PARSER_PATTERN(
+ loongson_nand_data_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, LOONGSON_NAND_MAX_ADDR_CYC),
+ NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0),
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+ );
+
+static int loongson_nand_is_valid_cmd(u8 opcode)
+{
+ if (opcode == NAND_CMD_STATUS || opcode == NAND_CMD_RESET || opcode == NAND_CMD_READID)
+ return 0;
+
+ return -EOPNOTSUPP;
+}
+
+static int loongson_nand_is_valid_cmd_seq(u8 opcode1, u8 opcode2)
+{
+ if (opcode1 == NAND_CMD_RNDOUT && opcode2 == NAND_CMD_RNDOUTSTART)
+ return 0;
+
+ if (opcode1 == NAND_CMD_READ0 && opcode2 == NAND_CMD_READSTART)
+ return 0;
+
+ if (opcode1 == NAND_CMD_ERASE1 && opcode2 == NAND_CMD_ERASE2)
+ return 0;
+
+ if (opcode1 == NAND_CMD_SEQIN && opcode2 == NAND_CMD_PAGEPROG)
+ return 0;
+
+ return -EOPNOTSUPP;
+}
+
+static int loongson_nand_check_op(struct nand_chip *chip, const struct nand_operation *op)
+{
+ const struct nand_op_instr *instr1 = NULL, *instr2 = NULL;
+ int op_id;
+
+ for (op_id = 0; op_id < op->ninstrs; op_id++) {
+ const struct nand_op_instr *instr = &op->instrs[op_id];
+
+ if (instr->type == NAND_OP_CMD_INSTR) {
+ if (!instr1)
+ instr1 = instr;
+ else if (!instr2)
+ instr2 = instr;
+ else
+ break;
+ }
+ }
+
+ if (!instr1)
+ return -EOPNOTSUPP;
+
+ if (!instr2)
+ return loongson_nand_is_valid_cmd(instr1->ctx.cmd.opcode);
+
+ return loongson_nand_is_valid_cmd_seq(instr1->ctx.cmd.opcode, instr2->ctx.cmd.opcode);
+}
+
+static int loongson_nand_exec_op(struct nand_chip *chip, const struct nand_operation *op,
+ bool check_only)
+{
+ if (check_only)
+ return loongson_nand_check_op(chip, op);
+
+ return nand_op_parser_exec_op(chip, &loongson_nand_op_parser, op, check_only);
+}
+
+static int loongson_nand_get_chip_capacity(struct nand_chip *chip)
+{
+ struct loongson_nand_host *host = nand_get_controller_data(chip);
+ u64 chipsize = nanddev_target_size(&chip->base);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ switch (mtd->writesize) {
+ case SZ_512:
+ switch (chipsize) {
+ case SZ_8M:
+ host->addr_cs_field = GENMASK(15, 14);
+ return 0x9;
+ case SZ_16M:
+ host->addr_cs_field = GENMASK(16, 15);
+ return 0xa;
+ case SZ_32M:
+ host->addr_cs_field = GENMASK(17, 16);
+ return 0xb;
+ case SZ_64M:
+ host->addr_cs_field = GENMASK(18, 17);
+ return 0xc;
+ case SZ_128M:
+ host->addr_cs_field = GENMASK(19, 18);
+ return 0xd;
+ }
+ break;
+ case SZ_2K:
+ switch (chipsize) {
+ case SZ_128M:
+ host->addr_cs_field = GENMASK(17, 16);
+ return 0x0;
+ case SZ_256M:
+ host->addr_cs_field = GENMASK(18, 17);
+ return 0x1;
+ case SZ_512M:
+ host->addr_cs_field = GENMASK(19, 18);
+ return 0x2;
+ case SZ_1G:
+ host->addr_cs_field = GENMASK(20, 19);
+ return 0x3;
+ }
+ break;
+ case SZ_4K:
+ if (chipsize == SZ_2G) {
+ host->addr_cs_field = GENMASK(20, 19);
+ return 0x4;
+ }
+ break;
+ case SZ_8K:
+ switch (chipsize) {
+ case SZ_4G:
+ host->addr_cs_field = GENMASK(20, 19);
+ return 0x5;
+ case SZ_8G:
+ host->addr_cs_field = GENMASK(21, 20);
+ return 0x6;
+ case SZ_16G:
+ host->addr_cs_field = GENMASK(22, 21);
+ return 0x7;
+ }
+ break;
+ }
+
+ dev_err(host->dev, "Unsupported chip size: %llu MB with page size %u B\n",
+ chipsize, mtd->writesize);
+ return -EINVAL;
+}
+
+static int loongson_nand_attach_chip(struct nand_chip *chip)
+{
+ struct loongson_nand_host *host = nand_get_controller_data(chip);
+ int cell_size = loongson_nand_get_chip_capacity(chip);
+
+ if (cell_size < 0)
+ return cell_size;
+
+ switch (chip->ecc.engine_type) {
+ case NAND_ECC_ENGINE_TYPE_NONE:
+ break;
+ case NAND_ECC_ENGINE_TYPE_SOFT:
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ /* set cell size */
+ regmap_update_bits(host->regmap, LOONGSON_NAND_PARAM, LOONGSON_NAND_CELL_SIZE_MASK,
+ FIELD_PREP(LOONGSON_NAND_CELL_SIZE_MASK, cell_size));
+
+ regmap_update_bits(host->regmap, LOONGSON_NAND_TIMING, LOONGSON_NAND_HOLD_CYCLE_MASK,
+ FIELD_PREP(LOONGSON_NAND_HOLD_CYCLE_MASK, host->data->hold_cycle));
+
+ regmap_update_bits(host->regmap, LOONGSON_NAND_TIMING, LOONGSON_NAND_WAIT_CYCLE_MASK,
+ FIELD_PREP(LOONGSON_NAND_WAIT_CYCLE_MASK, host->data->wait_cycle));
+
+ chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
+ chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
+
+ return 0;
+}
+
+static const struct nand_controller_ops loongson_nand_controller_ops = {
+ .exec_op = loongson_nand_exec_op,
+ .attach_chip = loongson_nand_attach_chip,
+};
+
+static void loongson_nand_controller_cleanup(struct loongson_nand_host *host)
+{
+ if (host->dma_chan)
+ dma_release_channel(host->dma_chan);
+}
+
+static int ls2k1000_nand_apbdma_config(struct device *dev)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ void __iomem *regs;
+ int val;
+
+ regs = devm_platform_ioremap_resource_byname(pdev, "dma-config");
+ if (IS_ERR(regs))
+ return PTR_ERR(regs);
+
+ val = readl(regs);
+ val |= FIELD_PREP(LS2K1000_NAND_DMA_MASK, LS2K1000_DMA0_CONF);
+ writel(val, regs);
+
+ return 0;
+}
+
+static int loongson_nand_controller_init(struct loongson_nand_host *host)
+{
+ struct device *dev = host->dev;
+ struct dma_chan *chan;
+ struct dma_slave_config cfg = {};
+ int ret, val;
+
+ host->regmap = devm_regmap_init_mmio(dev, host->reg_base, &loongson_nand_regmap_config);
+ if (IS_ERR(host->regmap))
+ return dev_err_probe(dev, PTR_ERR(host->regmap), "failed to init regmap\n");
+
+ if (host->data->id_cycle_field)
+ regmap_update_bits(host->regmap, LOONGSON_NAND_PARAM, host->data->id_cycle_field,
+ host->data->max_id_cycle << __ffs(host->data->id_cycle_field));
+
+ ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(host->data->dma_bits));
+ if (ret)
+ return dev_err_probe(dev, ret, "failed to set DMA mask\n");
+
+ val = FIELD_PREP(LOONGSON_NAND_MAP_CS1_SEL, LOONGSON_NAND_CS_SEL1) |
+ FIELD_PREP(LOONGSON_NAND_MAP_RDY1_SEL, LOONGSON_NAND_CS_RDY1) |
+ FIELD_PREP(LOONGSON_NAND_MAP_CS2_SEL, LOONGSON_NAND_CS_SEL2) |
+ FIELD_PREP(LOONGSON_NAND_MAP_RDY2_SEL, LOONGSON_NAND_CS_RDY2) |
+ FIELD_PREP(LOONGSON_NAND_MAP_CS3_SEL, LOONGSON_NAND_CS_SEL3) |
+ FIELD_PREP(LOONGSON_NAND_MAP_RDY3_SEL, LOONGSON_NAND_CS_RDY3);
+
+ regmap_write(host->regmap, LOONGSON_NAND_CS_RDY_MAP, val);
+
+ if (host->data->dma_config) {
+ ret = host->data->dma_config(dev);
+ if (ret)
+ return dev_err_probe(dev, ret, "failed to config DMA routing\n");
+ }
+
+ chan = dma_request_chan(dev, "rxtx");
+ if (IS_ERR(chan))
+ return dev_err_probe(dev, PTR_ERR(chan), "failed to request DMA channel\n");
+ host->dma_chan = chan;
+
+ cfg.src_addr = host->dma_base;
+ cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+ cfg.dst_addr = host->dma_base;
+ cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+ ret = dmaengine_slave_config(host->dma_chan, &cfg);
+ if (ret)
+ return dev_err_probe(dev, ret, "failed to config DMA channel\n");
+
+ init_completion(&host->dma_complete);
+
+ return 0;
+}
+
+static int loongson_nand_chip_init(struct loongson_nand_host *host)
+{
+ struct device *dev = host->dev;
+ int nchips = of_get_child_count(dev->of_node);
+ struct device_node *chip_np;
+ struct nand_chip *chip = &host->chip;
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int ret;
+
+ if (nchips != 1)
+ return dev_err_probe(dev, -EINVAL, "Currently one NAND chip supported\n");
+
+ chip_np = of_get_next_child(dev->of_node, NULL);
+ if (!chip_np)
+ return dev_err_probe(dev, -ENODEV, "failed to get child node for NAND chip\n");
+
+ nand_set_flash_node(chip, chip_np);
+ of_node_put(chip_np);
+ if (!mtd->name)
+ return dev_err_probe(dev, -EINVAL, "Missing MTD label\n");
+
+ nand_set_controller_data(chip, host);
+ chip->controller = &host->controller;
+ chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA | NAND_BROKEN_XD;
+ chip->buf_align = 16;
+ mtd->dev.parent = dev;
+ mtd->owner = THIS_MODULE;
+
+ ret = nand_scan(chip, 1);
+ if (ret)
+ return dev_err_probe(dev, ret, "failed to scan NAND chip\n");
+
+ ret = mtd_device_register(mtd, NULL, 0);
+ if (ret) {
+ nand_cleanup(chip);
+ return dev_err_probe(dev, ret, "failed to register MTD device\n");
+ }
+
+ return 0;
+}
+
+static int loongson_nand_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ const struct loongson_nand_data *data;
+ struct loongson_nand_host *host;
+ struct resource *res;
+ int ret;
+
+ data = of_device_get_match_data(dev);
+ if (!data)
+ return -ENODEV;
+
+ host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
+ if (!host)
+ return -ENOMEM;
+
+ host->reg_base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(host->reg_base))
+ return PTR_ERR(host->reg_base);
+
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-dma");
+ if (!res)
+ return dev_err_probe(dev, -EINVAL, "Missing 'nand-dma' in reg-names property\n");
+
+ host->dma_base = dma_map_resource(dev, res->start, resource_size(res),
+ DMA_BIDIRECTIONAL, 0);
+ if (dma_mapping_error(dev, host->dma_base))
+ return -ENXIO;
+
+ host->dev = dev;
+ host->data = data;
+ host->controller.ops = &loongson_nand_controller_ops;
+
+ nand_controller_init(&host->controller);
+
+ ret = loongson_nand_controller_init(host);
+ if (ret)
+ goto err;
+
+ ret = loongson_nand_chip_init(host);
+ if (ret)
+ goto err;
+
+ platform_set_drvdata(pdev, host);
+
+ return 0;
+err:
+ loongson_nand_controller_cleanup(host);
+
+ return ret;
+}
+
+static void loongson_nand_remove(struct platform_device *pdev)
+{
+ struct loongson_nand_host *host = platform_get_drvdata(pdev);
+ struct nand_chip *chip = &host->chip;
+ int ret;
+
+ ret = mtd_device_unregister(nand_to_mtd(chip));
+ WARN_ON(ret);
+ nand_cleanup(chip);
+ loongson_nand_controller_cleanup(host);
+}
+
+static const struct loongson_nand_data ls1b_nand_data = {
+ .max_id_cycle = 5,
+ .status_field = GENMASK(15, 8),
+ .hold_cycle = 0x2,
+ .wait_cycle = 0xc,
+ .dma_bits = 32,
+ .set_addr = ls1b_nand_set_addr,
+};
+
+static const struct loongson_nand_data ls1c_nand_data = {
+ .max_id_cycle = 6,
+ .id_cycle_field = GENMASK(14, 12),
+ .status_field = GENMASK(23, 16),
+ .op_scope_field = GENMASK(29, 16),
+ .hold_cycle = 0x2,
+ .wait_cycle = 0xc,
+ .dma_bits = 32,
+ .set_addr = ls1c_nand_set_addr,
+};
+
+static const struct loongson_nand_data ls2k0500_nand_data = {
+ .max_id_cycle = 6,
+ .id_cycle_field = GENMASK(14, 12),
+ .status_field = GENMASK(23, 16),
+ .op_scope_field = GENMASK(29, 16),
+ .hold_cycle = 0x4,
+ .wait_cycle = 0x12,
+ .dma_bits = 64,
+ .set_addr = ls1c_nand_set_addr,
+};
+
+static const struct loongson_nand_data ls2k1000_nand_data = {
+ .max_id_cycle = 6,
+ .id_cycle_field = GENMASK(14, 12),
+ .status_field = GENMASK(23, 16),
+ .op_scope_field = GENMASK(29, 16),
+ .hold_cycle = 0x4,
+ .wait_cycle = 0x12,
+ .nand_cs = 0x2,
+ .dma_bits = 64,
+ .dma_config = ls2k1000_nand_apbdma_config,
+ .set_addr = ls1c_nand_set_addr,
+};
+
+static const struct of_device_id loongson_nand_match[] = {
+ {
+ .compatible = "loongson,ls1b-nand-controller",
+ .data = &ls1b_nand_data,
+ },
+ {
+ .compatible = "loongson,ls1c-nand-controller",
+ .data = &ls1c_nand_data,
+ },
+ {
+ .compatible = "loongson,ls2k0500-nand-controller",
+ .data = &ls2k0500_nand_data,
+ },
+ {
+ .compatible = "loongson,ls2k1000-nand-controller",
+ .data = &ls2k1000_nand_data,
+ },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, loongson_nand_match);
+
+static struct platform_driver loongson_nand_driver = {
+ .probe = loongson_nand_probe,
+ .remove = loongson_nand_remove,
+ .driver = {
+ .name = KBUILD_MODNAME,
+ .of_match_table = loongson_nand_match,
+ },
+};
+
+module_platform_driver(loongson_nand_driver);
+
+MODULE_AUTHOR("Keguang Zhang <keguang.zhang@gmail.com>");
+MODULE_AUTHOR("Binbin Zhou <zhoubinbin@loongson.cn>");
+MODULE_DESCRIPTION("Loongson NAND Controller Driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/nand/raw/loongson1-nand-controller.c b/drivers/mtd/nand/raw/loongson1-nand-controller.c
deleted file mode 100644
index ef8e4f9ce287..000000000000
--- a/drivers/mtd/nand/raw/loongson1-nand-controller.c
+++ /dev/null
@@ -1,836 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * NAND Controller Driver for Loongson-1 SoC
- *
- * Copyright (C) 2015-2025 Keguang Zhang <keguang.zhang@gmail.com>
- */
-
-#include <linux/kernel.h>
-#include <linux/module.h>
-#include <linux/dmaengine.h>
-#include <linux/dma-mapping.h>
-#include <linux/iopoll.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/of.h>
-#include <linux/platform_device.h>
-#include <linux/regmap.h>
-#include <linux/sizes.h>
-
-/* Loongson-1 NAND Controller Registers */
-#define LS1X_NAND_CMD 0x0
-#define LS1X_NAND_ADDR1 0x4
-#define LS1X_NAND_ADDR2 0x8
-#define LS1X_NAND_TIMING 0xc
-#define LS1X_NAND_IDL 0x10
-#define LS1X_NAND_IDH_STATUS 0x14
-#define LS1X_NAND_PARAM 0x18
-#define LS1X_NAND_OP_NUM 0x1c
-
-/* NAND Command Register Bits */
-#define LS1X_NAND_CMD_OP_DONE BIT(10)
-#define LS1X_NAND_CMD_OP_SPARE BIT(9)
-#define LS1X_NAND_CMD_OP_MAIN BIT(8)
-#define LS1X_NAND_CMD_STATUS BIT(7)
-#define LS1X_NAND_CMD_RESET BIT(6)
-#define LS1X_NAND_CMD_READID BIT(5)
-#define LS1X_NAND_CMD_BLOCKS_ERASE BIT(4)
-#define LS1X_NAND_CMD_ERASE BIT(3)
-#define LS1X_NAND_CMD_WRITE BIT(2)
-#define LS1X_NAND_CMD_READ BIT(1)
-#define LS1X_NAND_CMD_VALID BIT(0)
-
-#define LS1X_NAND_WAIT_CYCLE_MASK GENMASK(7, 0)
-#define LS1X_NAND_HOLD_CYCLE_MASK GENMASK(15, 8)
-#define LS1X_NAND_CELL_SIZE_MASK GENMASK(11, 8)
-
-#define LS1X_NAND_COL_ADDR_CYC 2U
-#define LS1X_NAND_MAX_ADDR_CYC 5U
-
-#define BITS_PER_WORD (4 * BITS_PER_BYTE)
-
-struct ls1x_nand_host;
-
-struct ls1x_nand_op {
- char addrs[LS1X_NAND_MAX_ADDR_CYC];
- unsigned int naddrs;
- unsigned int addrs_offset;
- unsigned int aligned_offset;
- unsigned int cmd_reg;
- unsigned int row_start;
- unsigned int rdy_timeout_ms;
- unsigned int orig_len;
- bool is_readid;
- bool is_erase;
- bool is_write;
- bool is_read;
- bool is_change_column;
- size_t len;
- char *buf;
-};
-
-struct ls1x_nand_data {
- unsigned int status_field;
- unsigned int op_scope_field;
- unsigned int hold_cycle;
- unsigned int wait_cycle;
- void (*set_addr)(struct ls1x_nand_host *host, struct ls1x_nand_op *op);
-};
-
-struct ls1x_nand_host {
- struct device *dev;
- struct nand_chip chip;
- struct nand_controller controller;
- const struct ls1x_nand_data *data;
- void __iomem *reg_base;
- struct regmap *regmap;
- /* DMA Engine stuff */
- dma_addr_t dma_base;
- struct dma_chan *dma_chan;
- dma_cookie_t dma_cookie;
- struct completion dma_complete;
-};
-
-static const struct regmap_config ls1x_nand_regmap_config = {
- .reg_bits = 32,
- .val_bits = 32,
- .reg_stride = 4,
-};
-
-static int ls1x_nand_op_cmd_mapping(struct nand_chip *chip, struct ls1x_nand_op *op, u8 opcode)
-{
- struct ls1x_nand_host *host = nand_get_controller_data(chip);
-
- op->row_start = chip->page_shift + 1;
-
- /* The controller abstracts the following NAND operations. */
- switch (opcode) {
- case NAND_CMD_STATUS:
- op->cmd_reg = LS1X_NAND_CMD_STATUS;
- break;
- case NAND_CMD_RESET:
- op->cmd_reg = LS1X_NAND_CMD_RESET;
- break;
- case NAND_CMD_READID:
- op->is_readid = true;
- op->cmd_reg = LS1X_NAND_CMD_READID;
- break;
- case NAND_CMD_ERASE1:
- op->is_erase = true;
- op->addrs_offset = LS1X_NAND_COL_ADDR_CYC;
- break;
- case NAND_CMD_ERASE2:
- if (!op->is_erase)
- return -EOPNOTSUPP;
- /* During erasing, row_start differs from the default value. */
- op->row_start = chip->page_shift;
- op->cmd_reg = LS1X_NAND_CMD_ERASE;
- break;
- case NAND_CMD_SEQIN:
- op->is_write = true;
- break;
- case NAND_CMD_PAGEPROG:
- if (!op->is_write)
- return -EOPNOTSUPP;
- op->cmd_reg = LS1X_NAND_CMD_WRITE;
- break;
- case NAND_CMD_READ0:
- op->is_read = true;
- break;
- case NAND_CMD_READSTART:
- if (!op->is_read)
- return -EOPNOTSUPP;
- op->cmd_reg = LS1X_NAND_CMD_READ;
- break;
- case NAND_CMD_RNDOUT:
- op->is_change_column = true;
- break;
- case NAND_CMD_RNDOUTSTART:
- if (!op->is_change_column)
- return -EOPNOTSUPP;
- op->cmd_reg = LS1X_NAND_CMD_READ;
- break;
- default:
- dev_dbg(host->dev, "unsupported opcode: %u\n", opcode);
- return -EOPNOTSUPP;
- }
-
- return 0;
-}
-
-static int ls1x_nand_parse_instructions(struct nand_chip *chip,
- const struct nand_subop *subop, struct ls1x_nand_op *op)
-{
- unsigned int op_id;
- int ret;
-
- for (op_id = 0; op_id < subop->ninstrs; op_id++) {
- const struct nand_op_instr *instr = &subop->instrs[op_id];
- unsigned int offset, naddrs;
- const u8 *addrs;
-
- switch (instr->type) {
- case NAND_OP_CMD_INSTR:
- ret = ls1x_nand_op_cmd_mapping(chip, op, instr->ctx.cmd.opcode);
- if (ret < 0)
- return ret;
-
- break;
- case NAND_OP_ADDR_INSTR:
- naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
- if (naddrs > LS1X_NAND_MAX_ADDR_CYC)
- return -EOPNOTSUPP;
- op->naddrs = naddrs;
- offset = nand_subop_get_addr_start_off(subop, op_id);
- addrs = &instr->ctx.addr.addrs[offset];
- memcpy(op->addrs + op->addrs_offset, addrs, naddrs);
- break;
- case NAND_OP_DATA_IN_INSTR:
- case NAND_OP_DATA_OUT_INSTR:
- offset = nand_subop_get_data_start_off(subop, op_id);
- op->orig_len = nand_subop_get_data_len(subop, op_id);
- if (instr->type == NAND_OP_DATA_IN_INSTR)
- op->buf = instr->ctx.data.buf.in + offset;
- else if (instr->type == NAND_OP_DATA_OUT_INSTR)
- op->buf = (void *)instr->ctx.data.buf.out + offset;
-
- break;
- case NAND_OP_WAITRDY_INSTR:
- op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
- break;
- default:
- break;
- }
- }
-
- return 0;
-}
-
-static void ls1b_nand_set_addr(struct ls1x_nand_host *host, struct ls1x_nand_op *op)
-{
- struct nand_chip *chip = &host->chip;
- int i;
-
- for (i = 0; i < LS1X_NAND_MAX_ADDR_CYC; i++) {
- int shift, mask, val;
-
- if (i < LS1X_NAND_COL_ADDR_CYC) {
- shift = i * BITS_PER_BYTE;
- mask = (u32)0xff << shift;
- mask &= GENMASK(chip->page_shift, 0);
- val = (u32)op->addrs[i] << shift;
- regmap_update_bits(host->regmap, LS1X_NAND_ADDR1, mask, val);
- } else if (!op->is_change_column) {
- shift = op->row_start + (i - LS1X_NAND_COL_ADDR_CYC) * BITS_PER_BYTE;
- mask = (u32)0xff << shift;
- val = (u32)op->addrs[i] << shift;
- regmap_update_bits(host->regmap, LS1X_NAND_ADDR1, mask, val);
-
- if (i == 4) {
- mask = (u32)0xff >> (BITS_PER_WORD - shift);
- val = (u32)op->addrs[i] >> (BITS_PER_WORD - shift);
- regmap_update_bits(host->regmap, LS1X_NAND_ADDR2, mask, val);
- }
- }
- }
-}
-
-static void ls1c_nand_set_addr(struct ls1x_nand_host *host, struct ls1x_nand_op *op)
-{
- int i;
-
- for (i = 0; i < LS1X_NAND_MAX_ADDR_CYC; i++) {
- int shift, mask, val;
-
- if (i < LS1X_NAND_COL_ADDR_CYC) {
- shift = i * BITS_PER_BYTE;
- mask = (u32)0xff << shift;
- val = (u32)op->addrs[i] << shift;
- regmap_update_bits(host->regmap, LS1X_NAND_ADDR1, mask, val);
- } else if (!op->is_change_column) {
- shift = (i - LS1X_NAND_COL_ADDR_CYC) * BITS_PER_BYTE;
- mask = (u32)0xff << shift;
- val = (u32)op->addrs[i] << shift;
- regmap_update_bits(host->regmap, LS1X_NAND_ADDR2, mask, val);
- }
- }
-}
-
-static void ls1x_nand_trigger_op(struct ls1x_nand_host *host, struct ls1x_nand_op *op)
-{
- struct nand_chip *chip = &host->chip;
- struct mtd_info *mtd = nand_to_mtd(chip);
- int col0 = op->addrs[0];
- short col;
-
- if (!IS_ALIGNED(col0, chip->buf_align)) {
- col0 = ALIGN_DOWN(op->addrs[0], chip->buf_align);
- op->aligned_offset = op->addrs[0] - col0;
- op->addrs[0] = col0;
- }
-
- if (host->data->set_addr)
- host->data->set_addr(host, op);
-
- /* set operation length */
- if (op->is_write || op->is_read || op->is_change_column)
- op->len = ALIGN(op->orig_len + op->aligned_offset, chip->buf_align);
- else if (op->is_erase)
- op->len = 1;
- else
- op->len = op->orig_len;
-
- writel(op->len, host->reg_base + LS1X_NAND_OP_NUM);
-
- /* set operation area and scope */
- col = op->addrs[1] << BITS_PER_BYTE | op->addrs[0];
- if (op->orig_len && !op->is_readid) {
- unsigned int op_scope = 0;
-
- if (col < mtd->writesize) {
- op->cmd_reg |= LS1X_NAND_CMD_OP_MAIN;
- op_scope = mtd->writesize;
- }
-
- op->cmd_reg |= LS1X_NAND_CMD_OP_SPARE;
- op_scope += mtd->oobsize;
-
- op_scope <<= __ffs(host->data->op_scope_field);
- regmap_update_bits(host->regmap, LS1X_NAND_PARAM,
- host->data->op_scope_field, op_scope);
- }
-
- /* set command */
- writel(op->cmd_reg, host->reg_base + LS1X_NAND_CMD);
-
- /* trigger operation */
- regmap_write_bits(host->regmap, LS1X_NAND_CMD, LS1X_NAND_CMD_VALID, LS1X_NAND_CMD_VALID);
-}
-
-static int ls1x_nand_wait_for_op_done(struct ls1x_nand_host *host, struct ls1x_nand_op *op)
-{
- unsigned int val;
- int ret = 0;
-
- if (op->rdy_timeout_ms) {
- ret = regmap_read_poll_timeout(host->regmap, LS1X_NAND_CMD,
- val, val & LS1X_NAND_CMD_OP_DONE,
- 0, op->rdy_timeout_ms * MSEC_PER_SEC);
- if (ret)
- dev_err(host->dev, "operation failed\n");
- }
-
- return ret;
-}
-
-static void ls1x_nand_dma_callback(void *data)
-{
- struct ls1x_nand_host *host = (struct ls1x_nand_host *)data;
- struct dma_chan *chan = host->dma_chan;
- struct device *dev = chan->device->dev;
- enum dma_status status;
-
- status = dmaengine_tx_status(chan, host->dma_cookie, NULL);
- if (likely(status == DMA_COMPLETE)) {
- dev_dbg(dev, "DMA complete with cookie=%d\n", host->dma_cookie);
- complete(&host->dma_complete);
- } else {
- dev_err(dev, "DMA error with cookie=%d\n", host->dma_cookie);
- }
-}
-
-static int ls1x_nand_dma_transfer(struct ls1x_nand_host *host, struct ls1x_nand_op *op)
-{
- struct nand_chip *chip = &host->chip;
- struct dma_chan *chan = host->dma_chan;
- struct device *dev = chan->device->dev;
- struct dma_async_tx_descriptor *desc;
- enum dma_data_direction data_dir = op->is_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
- enum dma_transfer_direction xfer_dir = op->is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM;
- void *buf = op->buf;
- char *dma_buf = NULL;
- dma_addr_t dma_addr;
- int ret;
-
- if (IS_ALIGNED((uintptr_t)buf, chip->buf_align) &&
- IS_ALIGNED(op->orig_len, chip->buf_align)) {
- dma_addr = dma_map_single(dev, buf, op->orig_len, data_dir);
- if (dma_mapping_error(dev, dma_addr)) {
- dev_err(dev, "failed to map DMA buffer\n");
- return -ENXIO;
- }
- } else if (!op->is_write) {
- dma_buf = dma_alloc_coherent(dev, op->len, &dma_addr, GFP_KERNEL);
- if (!dma_buf)
- return -ENOMEM;
- } else {
- dev_err(dev, "subpage writing not supported\n");
- return -EOPNOTSUPP;
- }
-
- desc = dmaengine_prep_slave_single(chan, dma_addr, op->len, xfer_dir, DMA_PREP_INTERRUPT);
- if (!desc) {
- dev_err(dev, "failed to prepare DMA descriptor\n");
- ret = -ENOMEM;
- goto err;
- }
- desc->callback = ls1x_nand_dma_callback;
- desc->callback_param = host;
-
- host->dma_cookie = dmaengine_submit(desc);
- ret = dma_submit_error(host->dma_cookie);
- if (ret) {
- dev_err(dev, "failed to submit DMA descriptor\n");
- goto err;
- }
-
- dev_dbg(dev, "issue DMA with cookie=%d\n", host->dma_cookie);
- dma_async_issue_pending(chan);
-
- if (!wait_for_completion_timeout(&host->dma_complete, msecs_to_jiffies(1000))) {
- dmaengine_terminate_sync(chan);
- reinit_completion(&host->dma_complete);
- ret = -ETIMEDOUT;
- goto err;
- }
-
- if (dma_buf)
- memcpy(buf, dma_buf + op->aligned_offset, op->orig_len);
-err:
- if (dma_buf)
- dma_free_coherent(dev, op->len, dma_buf, dma_addr);
- else
- dma_unmap_single(dev, dma_addr, op->orig_len, data_dir);
-
- return ret;
-}
-
-static int ls1x_nand_data_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
-{
- struct ls1x_nand_host *host = nand_get_controller_data(chip);
- struct ls1x_nand_op op = {};
- int ret;
-
- ret = ls1x_nand_parse_instructions(chip, subop, &op);
- if (ret)
- return ret;
-
- ls1x_nand_trigger_op(host, &op);
-
- ret = ls1x_nand_dma_transfer(host, &op);
- if (ret)
- return ret;
-
- return ls1x_nand_wait_for_op_done(host, &op);
-}
-
-static int ls1x_nand_misc_type_exec(struct nand_chip *chip,
- const struct nand_subop *subop, struct ls1x_nand_op *op)
-{
- struct ls1x_nand_host *host = nand_get_controller_data(chip);
- int ret;
-
- ret = ls1x_nand_parse_instructions(chip, subop, op);
- if (ret)
- return ret;
-
- ls1x_nand_trigger_op(host, op);
-
- return ls1x_nand_wait_for_op_done(host, op);
-}
-
-static int ls1x_nand_zerolen_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
-{
- struct ls1x_nand_op op = {};
-
- return ls1x_nand_misc_type_exec(chip, subop, &op);
-}
-
-static int ls1x_nand_read_id_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
-{
- struct ls1x_nand_host *host = nand_get_controller_data(chip);
- struct ls1x_nand_op op = {};
- int i, ret;
- union {
- char ids[5];
- struct {
- int idl;
- char idh;
- };
- } nand_id;
-
- ret = ls1x_nand_misc_type_exec(chip, subop, &op);
- if (ret)
- return ret;
-
- nand_id.idl = readl(host->reg_base + LS1X_NAND_IDL);
- nand_id.idh = readb(host->reg_base + LS1X_NAND_IDH_STATUS);
-
- for (i = 0; i < min(sizeof(nand_id.ids), op.orig_len); i++)
- op.buf[i] = nand_id.ids[sizeof(nand_id.ids) - 1 - i];
-
- return ret;
-}
-
-static int ls1x_nand_read_status_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
-{
- struct ls1x_nand_host *host = nand_get_controller_data(chip);
- struct ls1x_nand_op op = {};
- int val, ret;
-
- ret = ls1x_nand_misc_type_exec(chip, subop, &op);
- if (ret)
- return ret;
-
- val = readl(host->reg_base + LS1X_NAND_IDH_STATUS);
- val &= ~host->data->status_field;
- op.buf[0] = val << ffs(host->data->status_field);
-
- return ret;
-}
-
-static const struct nand_op_parser ls1x_nand_op_parser = NAND_OP_PARSER(
- NAND_OP_PARSER_PATTERN(
- ls1x_nand_read_id_type_exec,
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_ADDR_ELEM(false, LS1X_NAND_MAX_ADDR_CYC),
- NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
- NAND_OP_PARSER_PATTERN(
- ls1x_nand_read_status_type_exec,
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
- NAND_OP_PARSER_PATTERN(
- ls1x_nand_zerolen_type_exec,
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
- NAND_OP_PARSER_PATTERN(
- ls1x_nand_zerolen_type_exec,
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_ADDR_ELEM(false, LS1X_NAND_MAX_ADDR_CYC),
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
- NAND_OP_PARSER_PATTERN(
- ls1x_nand_data_type_exec,
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_ADDR_ELEM(false, LS1X_NAND_MAX_ADDR_CYC),
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
- NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)),
- NAND_OP_PARSER_PATTERN(
- ls1x_nand_data_type_exec,
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_ADDR_ELEM(false, LS1X_NAND_MAX_ADDR_CYC),
- NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0),
- NAND_OP_PARSER_PAT_CMD_ELEM(false),
- NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
- );
-
-static int ls1x_nand_is_valid_cmd(u8 opcode)
-{
- if (opcode == NAND_CMD_STATUS || opcode == NAND_CMD_RESET || opcode == NAND_CMD_READID)
- return 0;
-
- return -EOPNOTSUPP;
-}
-
-static int ls1x_nand_is_valid_cmd_seq(u8 opcode1, u8 opcode2)
-{
- if (opcode1 == NAND_CMD_RNDOUT && opcode2 == NAND_CMD_RNDOUTSTART)
- return 0;
-
- if (opcode1 == NAND_CMD_READ0 && opcode2 == NAND_CMD_READSTART)
- return 0;
-
- if (opcode1 == NAND_CMD_ERASE1 && opcode2 == NAND_CMD_ERASE2)
- return 0;
-
- if (opcode1 == NAND_CMD_SEQIN && opcode2 == NAND_CMD_PAGEPROG)
- return 0;
-
- return -EOPNOTSUPP;
-}
-
-static int ls1x_nand_check_op(struct nand_chip *chip, const struct nand_operation *op)
-{
- const struct nand_op_instr *instr1 = NULL, *instr2 = NULL;
- int op_id;
-
- for (op_id = 0; op_id < op->ninstrs; op_id++) {
- const struct nand_op_instr *instr = &op->instrs[op_id];
-
- if (instr->type == NAND_OP_CMD_INSTR) {
- if (!instr1)
- instr1 = instr;
- else if (!instr2)
- instr2 = instr;
- else
- break;
- }
- }
-
- if (!instr1)
- return -EOPNOTSUPP;
-
- if (!instr2)
- return ls1x_nand_is_valid_cmd(instr1->ctx.cmd.opcode);
-
- return ls1x_nand_is_valid_cmd_seq(instr1->ctx.cmd.opcode, instr2->ctx.cmd.opcode);
-}
-
-static int ls1x_nand_exec_op(struct nand_chip *chip,
- const struct nand_operation *op, bool check_only)
-{
- if (check_only)
- return ls1x_nand_check_op(chip, op);
-
- return nand_op_parser_exec_op(chip, &ls1x_nand_op_parser, op, check_only);
-}
-
-static int ls1x_nand_attach_chip(struct nand_chip *chip)
-{
- struct ls1x_nand_host *host = nand_get_controller_data(chip);
- u64 chipsize = nanddev_target_size(&chip->base);
- int cell_size = 0;
-
- switch (chipsize) {
- case SZ_128M:
- cell_size = 0x0;
- break;
- case SZ_256M:
- cell_size = 0x1;
- break;
- case SZ_512M:
- cell_size = 0x2;
- break;
- case SZ_1G:
- cell_size = 0x3;
- break;
- case SZ_2G:
- cell_size = 0x4;
- break;
- case SZ_4G:
- cell_size = 0x5;
- break;
- case SZ_8G:
- cell_size = 0x6;
- break;
- case SZ_16G:
- cell_size = 0x7;
- break;
- default:
- dev_err(host->dev, "unsupported chip size: %llu MB\n", chipsize);
- return -EINVAL;
- }
-
- switch (chip->ecc.engine_type) {
- case NAND_ECC_ENGINE_TYPE_NONE:
- break;
- case NAND_ECC_ENGINE_TYPE_SOFT:
- break;
- default:
- return -EINVAL;
- }
-
- /* set cell size */
- regmap_update_bits(host->regmap, LS1X_NAND_PARAM, LS1X_NAND_CELL_SIZE_MASK,
- FIELD_PREP(LS1X_NAND_CELL_SIZE_MASK, cell_size));
-
- regmap_update_bits(host->regmap, LS1X_NAND_TIMING, LS1X_NAND_HOLD_CYCLE_MASK,
- FIELD_PREP(LS1X_NAND_HOLD_CYCLE_MASK, host->data->hold_cycle));
-
- regmap_update_bits(host->regmap, LS1X_NAND_TIMING, LS1X_NAND_WAIT_CYCLE_MASK,
- FIELD_PREP(LS1X_NAND_WAIT_CYCLE_MASK, host->data->wait_cycle));
-
- chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
- chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
-
- return 0;
-}
-
-static const struct nand_controller_ops ls1x_nand_controller_ops = {
- .exec_op = ls1x_nand_exec_op,
- .attach_chip = ls1x_nand_attach_chip,
-};
-
-static void ls1x_nand_controller_cleanup(struct ls1x_nand_host *host)
-{
- if (host->dma_chan)
- dma_release_channel(host->dma_chan);
-}
-
-static int ls1x_nand_controller_init(struct ls1x_nand_host *host)
-{
- struct device *dev = host->dev;
- struct dma_chan *chan;
- struct dma_slave_config cfg = {};
- int ret;
-
- host->regmap = devm_regmap_init_mmio(dev, host->reg_base, &ls1x_nand_regmap_config);
- if (IS_ERR(host->regmap))
- return dev_err_probe(dev, PTR_ERR(host->regmap), "failed to init regmap\n");
-
- chan = dma_request_chan(dev, "rxtx");
- if (IS_ERR(chan))
- return dev_err_probe(dev, PTR_ERR(chan), "failed to request DMA channel\n");
- host->dma_chan = chan;
-
- cfg.src_addr = host->dma_base;
- cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
- cfg.dst_addr = host->dma_base;
- cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
- ret = dmaengine_slave_config(host->dma_chan, &cfg);
- if (ret)
- return dev_err_probe(dev, ret, "failed to config DMA channel\n");
-
- init_completion(&host->dma_complete);
-
- return 0;
-}
-
-static int ls1x_nand_chip_init(struct ls1x_nand_host *host)
-{
- struct device *dev = host->dev;
- int nchips = of_get_child_count(dev->of_node);
- struct device_node *chip_np;
- struct nand_chip *chip = &host->chip;
- struct mtd_info *mtd = nand_to_mtd(chip);
- int ret;
-
- if (nchips != 1)
- return dev_err_probe(dev, -EINVAL, "Currently one NAND chip supported\n");
-
- chip_np = of_get_next_child(dev->of_node, NULL);
- if (!chip_np)
- return dev_err_probe(dev, -ENODEV, "failed to get child node for NAND chip\n");
-
- nand_set_flash_node(chip, chip_np);
- of_node_put(chip_np);
- if (!mtd->name)
- return dev_err_probe(dev, -EINVAL, "Missing MTD label\n");
-
- nand_set_controller_data(chip, host);
- chip->controller = &host->controller;
- chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA | NAND_BROKEN_XD;
- chip->buf_align = 16;
- mtd->dev.parent = dev;
- mtd->owner = THIS_MODULE;
-
- ret = nand_scan(chip, 1);
- if (ret)
- return dev_err_probe(dev, ret, "failed to scan NAND chip\n");
-
- ret = mtd_device_register(mtd, NULL, 0);
- if (ret) {
- nand_cleanup(chip);
- return dev_err_probe(dev, ret, "failed to register MTD device\n");
- }
-
- return 0;
-}
-
-static int ls1x_nand_probe(struct platform_device *pdev)
-{
- struct device *dev = &pdev->dev;
- const struct ls1x_nand_data *data;
- struct ls1x_nand_host *host;
- struct resource *res;
- int ret;
-
- data = of_device_get_match_data(dev);
- if (!data)
- return -ENODEV;
-
- host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
- if (!host)
- return -ENOMEM;
-
- host->reg_base = devm_platform_ioremap_resource(pdev, 0);
- if (IS_ERR(host->reg_base))
- return PTR_ERR(host->reg_base);
-
- res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-dma");
- if (!res)
- return dev_err_probe(dev, -EINVAL, "Missing 'nand-dma' in reg-names property\n");
-
- host->dma_base = dma_map_resource(dev, res->start, resource_size(res),
- DMA_BIDIRECTIONAL, 0);
- if (dma_mapping_error(dev, host->dma_base))
- return -ENXIO;
-
- host->dev = dev;
- host->data = data;
- host->controller.ops = &ls1x_nand_controller_ops;
-
- nand_controller_init(&host->controller);
-
- ret = ls1x_nand_controller_init(host);
- if (ret)
- goto err;
-
- ret = ls1x_nand_chip_init(host);
- if (ret)
- goto err;
-
- platform_set_drvdata(pdev, host);
-
- return 0;
-err:
- ls1x_nand_controller_cleanup(host);
-
- return ret;
-}
-
-static void ls1x_nand_remove(struct platform_device *pdev)
-{
- struct ls1x_nand_host *host = platform_get_drvdata(pdev);
- struct nand_chip *chip = &host->chip;
- int ret;
-
- ret = mtd_device_unregister(nand_to_mtd(chip));
- WARN_ON(ret);
- nand_cleanup(chip);
- ls1x_nand_controller_cleanup(host);
-}
-
-static const struct ls1x_nand_data ls1b_nand_data = {
- .status_field = GENMASK(15, 8),
- .hold_cycle = 0x2,
- .wait_cycle = 0xc,
- .set_addr = ls1b_nand_set_addr,
-};
-
-static const struct ls1x_nand_data ls1c_nand_data = {
- .status_field = GENMASK(23, 16),
- .op_scope_field = GENMASK(29, 16),
- .hold_cycle = 0x2,
- .wait_cycle = 0xc,
- .set_addr = ls1c_nand_set_addr,
-};
-
-static const struct of_device_id ls1x_nand_match[] = {
- {
- .compatible = "loongson,ls1b-nand-controller",
- .data = &ls1b_nand_data,
- },
- {
- .compatible = "loongson,ls1c-nand-controller",
- .data = &ls1c_nand_data,
- },
- { /* sentinel */ }
-};
-MODULE_DEVICE_TABLE(of, ls1x_nand_match);
-
-static struct platform_driver ls1x_nand_driver = {
- .probe = ls1x_nand_probe,
- .remove = ls1x_nand_remove,
- .driver = {
- .name = KBUILD_MODNAME,
- .of_match_table = ls1x_nand_match,
- },
-};
-
-module_platform_driver(ls1x_nand_driver);
-
-MODULE_AUTHOR("Keguang Zhang <keguang.zhang@gmail.com>");
-MODULE_DESCRIPTION("Loongson-1 NAND Controller Driver");
-MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c
index 13e4060bd1b6..c7d9501f646b 100644
--- a/drivers/mtd/nand/raw/nand_base.c
+++ b/drivers/mtd/nand/raw/nand_base.c
@@ -2784,137 +2784,6 @@ int nand_set_features(struct nand_chip *chip, int addr,
}
/**
- * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
- * @buf: buffer to test
- * @len: buffer length
- * @bitflips_threshold: maximum number of bitflips
- *
- * Check if a buffer contains only 0xff, which means the underlying region
- * has been erased and is ready to be programmed.
- * The bitflips_threshold specify the maximum number of bitflips before
- * considering the region is not erased.
- * Note: The logic of this function has been extracted from the memweight
- * implementation, except that nand_check_erased_buf function exit before
- * testing the whole buffer if the number of bitflips exceed the
- * bitflips_threshold value.
- *
- * Returns a positive number of bitflips less than or equal to
- * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
- * threshold.
- */
-static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
-{
- const unsigned char *bitmap = buf;
- int bitflips = 0;
- int weight;
-
- for (; len && ((uintptr_t)bitmap) % sizeof(long);
- len--, bitmap++) {
- weight = hweight8(*bitmap);
- bitflips += BITS_PER_BYTE - weight;
- if (unlikely(bitflips > bitflips_threshold))
- return -EBADMSG;
- }
-
- for (; len >= sizeof(long);
- len -= sizeof(long), bitmap += sizeof(long)) {
- unsigned long d = *((unsigned long *)bitmap);
- if (d == ~0UL)
- continue;
- weight = hweight_long(d);
- bitflips += BITS_PER_LONG - weight;
- if (unlikely(bitflips > bitflips_threshold))
- return -EBADMSG;
- }
-
- for (; len > 0; len--, bitmap++) {
- weight = hweight8(*bitmap);
- bitflips += BITS_PER_BYTE - weight;
- if (unlikely(bitflips > bitflips_threshold))
- return -EBADMSG;
- }
-
- return bitflips;
-}
-
-/**
- * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
- * 0xff data
- * @data: data buffer to test
- * @datalen: data length
- * @ecc: ECC buffer
- * @ecclen: ECC length
- * @extraoob: extra OOB buffer
- * @extraooblen: extra OOB length
- * @bitflips_threshold: maximum number of bitflips
- *
- * Check if a data buffer and its associated ECC and OOB data contains only
- * 0xff pattern, which means the underlying region has been erased and is
- * ready to be programmed.
- * The bitflips_threshold specify the maximum number of bitflips before
- * considering the region as not erased.
- *
- * Note:
- * 1/ ECC algorithms are working on pre-defined block sizes which are usually
- * different from the NAND page size. When fixing bitflips, ECC engines will
- * report the number of errors per chunk, and the NAND core infrastructure
- * expect you to return the maximum number of bitflips for the whole page.
- * This is why you should always use this function on a single chunk and
- * not on the whole page. After checking each chunk you should update your
- * max_bitflips value accordingly.
- * 2/ When checking for bitflips in erased pages you should not only check
- * the payload data but also their associated ECC data, because a user might
- * have programmed almost all bits to 1 but a few. In this case, we
- * shouldn't consider the chunk as erased, and checking ECC bytes prevent
- * this case.
- * 3/ The extraoob argument is optional, and should be used if some of your OOB
- * data are protected by the ECC engine.
- * It could also be used if you support subpages and want to attach some
- * extra OOB data to an ECC chunk.
- *
- * Returns a positive number of bitflips less than or equal to
- * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
- * threshold. In case of success, the passed buffers are filled with 0xff.
- */
-int nand_check_erased_ecc_chunk(void *data, int datalen,
- void *ecc, int ecclen,
- void *extraoob, int extraooblen,
- int bitflips_threshold)
-{
- int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
-
- data_bitflips = nand_check_erased_buf(data, datalen,
- bitflips_threshold);
- if (data_bitflips < 0)
- return data_bitflips;
-
- bitflips_threshold -= data_bitflips;
-
- ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
- if (ecc_bitflips < 0)
- return ecc_bitflips;
-
- bitflips_threshold -= ecc_bitflips;
-
- extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
- bitflips_threshold);
- if (extraoob_bitflips < 0)
- return extraoob_bitflips;
-
- if (data_bitflips)
- memset(data, 0xff, datalen);
-
- if (ecc_bitflips)
- memset(ecc, 0xff, ecclen);
-
- if (extraoob_bitflips)
- memset(extraoob, 0xff, extraooblen);
-
- return data_bitflips + ecc_bitflips + extraoob_bitflips;
-}
-EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
-
-/**
* nand_read_page_raw_notsupp - dummy read raw page function
* @chip: nand chip info structure
* @buf: buffer to store read data
diff --git a/drivers/mtd/nand/raw/nandsim.c b/drivers/mtd/nand/raw/nandsim.c
index df48b7d01d16..84942e7e528f 100644
--- a/drivers/mtd/nand/raw/nandsim.c
+++ b/drivers/mtd/nand/raw/nandsim.c
@@ -552,9 +552,8 @@ static int __init ns_alloc_device(struct nandsim *ns)
err = -EINVAL;
goto err_close_filp;
}
- ns->pages_written =
- vzalloc(array_size(sizeof(unsigned long),
- BITS_TO_LONGS(ns->geom.pgnum)));
+ ns->pages_written = vcalloc(BITS_TO_LONGS(ns->geom.pgnum),
+ sizeof(unsigned long));
if (!ns->pages_written) {
NS_ERR("alloc_device: unable to allocate pages written array\n");
err = -ENOMEM;
@@ -578,7 +577,7 @@ err_close_filp:
return err;
}
- ns->pages = vmalloc(array_size(sizeof(union ns_mem), ns->geom.pgnum));
+ ns->pages = vmalloc_array(ns->geom.pgnum, sizeof(union ns_mem));
if (!ns->pages) {
NS_ERR("alloc_device: unable to allocate page array\n");
return -ENOMEM;
diff --git a/drivers/mtd/nand/raw/omap2.c b/drivers/mtd/nand/raw/omap2.c
index b8af3a3533fc..39e297486721 100644
--- a/drivers/mtd/nand/raw/omap2.c
+++ b/drivers/mtd/nand/raw/omap2.c
@@ -1979,7 +1979,7 @@ static int omap_nand_attach_chip(struct nand_chip *chip)
err = rawnand_sw_bch_init(chip);
if (err) {
dev_err(dev, "Unable to use BCH library\n");
- return err;
+ goto err_put_elm_dev;
}
break;
@@ -2016,7 +2016,7 @@ static int omap_nand_attach_chip(struct nand_chip *chip)
err = rawnand_sw_bch_init(chip);
if (err) {
dev_err(dev, "unable to use BCH library\n");
- return err;
+ goto err_put_elm_dev;
}
break;
@@ -2054,7 +2054,8 @@ static int omap_nand_attach_chip(struct nand_chip *chip)
break;
default:
dev_err(dev, "Invalid or unsupported ECC scheme\n");
- return -EINVAL;
+ err = -EINVAL;
+ goto err_put_elm_dev;
}
if (elm_bch_strength >= 0) {
@@ -2073,7 +2074,7 @@ static int omap_nand_attach_chip(struct nand_chip *chip)
info->nsteps_per_eccpg, chip->ecc.size,
chip->ecc.bytes);
if (err < 0)
- return err;
+ goto err_put_elm_dev;
}
/* Check if NAND device's OOB is enough to store ECC signatures */
@@ -2083,10 +2084,24 @@ static int omap_nand_attach_chip(struct nand_chip *chip)
dev_err(dev,
"Not enough OOB bytes: required = %d, available=%d\n",
min_oobbytes, mtd->oobsize);
- return -EINVAL;
+ err = -EINVAL;
+ goto err_put_elm_dev;
}
return 0;
+
+err_put_elm_dev:
+ put_device(info->elm_dev);
+
+ return err;
+}
+
+static void omap_nand_detach_chip(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct omap_nand_info *info = mtd_to_omap(mtd);
+
+ put_device(info->elm_dev);
}
static void omap_nand_data_in(struct nand_chip *chip, void *buf,
@@ -2187,6 +2202,7 @@ static int omap_nand_exec_op(struct nand_chip *chip,
static const struct nand_controller_ops omap_nand_controller_ops = {
.attach_chip = omap_nand_attach_chip,
+ .detach_chip = omap_nand_detach_chip,
.exec_op = omap_nand_exec_op,
};
@@ -2316,6 +2332,5 @@ static struct platform_driver omap_nand_driver = {
module_platform_driver(omap_nand_driver);
-MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
diff --git a/drivers/mtd/nand/raw/pl35x-nand-controller.c b/drivers/mtd/nand/raw/pl35x-nand-controller.c
index 09440ed4652e..11bd90e3f18c 100644
--- a/drivers/mtd/nand/raw/pl35x-nand-controller.c
+++ b/drivers/mtd/nand/raw/pl35x-nand-controller.c
@@ -1137,7 +1137,7 @@ static int pl35x_nand_probe(struct platform_device *pdev)
struct device *smc_dev = pdev->dev.parent;
struct amba_device *smc_amba = to_amba_device(smc_dev);
struct pl35x_nandc *nfc;
- u32 ret;
+ int ret;
nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
if (!nfc)
@@ -1193,6 +1193,5 @@ static struct platform_driver pl35x_nandc_driver = {
module_platform_driver(pl35x_nandc_driver);
MODULE_AUTHOR("Xilinx, Inc.");
-MODULE_ALIAS("platform:" PL35X_NANDC_DRIVER_NAME);
MODULE_DESCRIPTION("ARM PL35X NAND controller driver");
MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/nand/raw/rockchip-nand-controller.c b/drivers/mtd/nand/raw/rockchip-nand-controller.c
index c5d7cd8a6cab..9444ba02696d 100644
--- a/drivers/mtd/nand/raw/rockchip-nand-controller.c
+++ b/drivers/mtd/nand/raw/rockchip-nand-controller.c
@@ -1505,4 +1505,3 @@ module_platform_driver(rk_nfc_driver);
MODULE_LICENSE("Dual MIT/GPL");
MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>");
MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
-MODULE_ALIAS("platform:rockchip-nand-controller");
diff --git a/drivers/mtd/nand/raw/s3c2410.c b/drivers/mtd/nand/raw/s3c2410.c
deleted file mode 100644
index 229f2e87d56e..000000000000
--- a/drivers/mtd/nand/raw/s3c2410.c
+++ /dev/null
@@ -1,1230 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * Copyright © 2004-2008 Simtec Electronics
- * http://armlinux.simtec.co.uk/
- * Ben Dooks <ben@simtec.co.uk>
- *
- * Samsung S3C2410/S3C2440/S3C2412 NAND driver
-*/
-
-#define pr_fmt(fmt) "nand-s3c2410: " fmt
-
-#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
-#define DEBUG
-#endif
-
-#include <linux/module.h>
-#include <linux/types.h>
-#include <linux/kernel.h>
-#include <linux/string.h>
-#include <linux/io.h>
-#include <linux/ioport.h>
-#include <linux/platform_device.h>
-#include <linux/delay.h>
-#include <linux/err.h>
-#include <linux/slab.h>
-#include <linux/clk.h>
-#include <linux/cpufreq.h>
-#include <linux/of.h>
-
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/mtd/partitions.h>
-
-#include <linux/platform_data/mtd-nand-s3c2410.h>
-
-#define S3C2410_NFREG(x) (x)
-
-#define S3C2410_NFCONF S3C2410_NFREG(0x00)
-#define S3C2410_NFCMD S3C2410_NFREG(0x04)
-#define S3C2410_NFADDR S3C2410_NFREG(0x08)
-#define S3C2410_NFDATA S3C2410_NFREG(0x0C)
-#define S3C2410_NFSTAT S3C2410_NFREG(0x10)
-#define S3C2410_NFECC S3C2410_NFREG(0x14)
-#define S3C2440_NFCONT S3C2410_NFREG(0x04)
-#define S3C2440_NFCMD S3C2410_NFREG(0x08)
-#define S3C2440_NFADDR S3C2410_NFREG(0x0C)
-#define S3C2440_NFDATA S3C2410_NFREG(0x10)
-#define S3C2440_NFSTAT S3C2410_NFREG(0x20)
-#define S3C2440_NFMECC0 S3C2410_NFREG(0x2C)
-#define S3C2412_NFSTAT S3C2410_NFREG(0x28)
-#define S3C2412_NFMECC0 S3C2410_NFREG(0x34)
-#define S3C2410_NFCONF_EN (1<<15)
-#define S3C2410_NFCONF_INITECC (1<<12)
-#define S3C2410_NFCONF_nFCE (1<<11)
-#define S3C2410_NFCONF_TACLS(x) ((x)<<8)
-#define S3C2410_NFCONF_TWRPH0(x) ((x)<<4)
-#define S3C2410_NFCONF_TWRPH1(x) ((x)<<0)
-#define S3C2410_NFSTAT_BUSY (1<<0)
-#define S3C2440_NFCONF_TACLS(x) ((x)<<12)
-#define S3C2440_NFCONF_TWRPH0(x) ((x)<<8)
-#define S3C2440_NFCONF_TWRPH1(x) ((x)<<4)
-#define S3C2440_NFCONT_INITECC (1<<4)
-#define S3C2440_NFCONT_nFCE (1<<1)
-#define S3C2440_NFCONT_ENABLE (1<<0)
-#define S3C2440_NFSTAT_READY (1<<0)
-#define S3C2412_NFCONF_NANDBOOT (1<<31)
-#define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5)
-#define S3C2412_NFCONT_nFCE0 (1<<1)
-#define S3C2412_NFSTAT_READY (1<<0)
-
-/* new oob placement block for use with hardware ecc generation
- */
-static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- if (section)
- return -ERANGE;
-
- oobregion->offset = 0;
- oobregion->length = 3;
-
- return 0;
-}
-
-static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- if (section)
- return -ERANGE;
-
- oobregion->offset = 8;
- oobregion->length = 8;
-
- return 0;
-}
-
-static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
- .ecc = s3c2410_ooblayout_ecc,
- .free = s3c2410_ooblayout_free,
-};
-
-/* controller and mtd information */
-
-struct s3c2410_nand_info;
-
-/**
- * struct s3c2410_nand_mtd - driver MTD structure
- * @chip: The NAND chip information.
- * @set: The platform information supplied for this set of NAND chips.
- * @info: Link back to the hardware information.
-*/
-struct s3c2410_nand_mtd {
- struct nand_chip chip;
- struct s3c2410_nand_set *set;
- struct s3c2410_nand_info *info;
-};
-
-enum s3c_cpu_type {
- TYPE_S3C2410,
- TYPE_S3C2412,
- TYPE_S3C2440,
-};
-
-enum s3c_nand_clk_state {
- CLOCK_DISABLE = 0,
- CLOCK_ENABLE,
- CLOCK_SUSPEND,
-};
-
-/* overview of the s3c2410 nand state */
-
-/**
- * struct s3c2410_nand_info - NAND controller state.
- * @controller: Base controller structure.
- * @mtds: An array of MTD instances on this controller.
- * @platform: The platform data for this board.
- * @device: The platform device we bound to.
- * @clk: The clock resource for this controller.
- * @regs: The area mapped for the hardware registers.
- * @sel_reg: Pointer to the register controlling the NAND selection.
- * @sel_bit: The bit in @sel_reg to select the NAND chip.
- * @mtd_count: The number of MTDs created from this controller.
- * @save_sel: The contents of @sel_reg to be saved over suspend.
- * @clk_rate: The clock rate from @clk.
- * @clk_state: The current clock state.
- * @cpu_type: The exact type of this controller.
- */
-struct s3c2410_nand_info {
- /* mtd info */
- struct nand_controller controller;
- struct s3c2410_nand_mtd *mtds;
- struct s3c2410_platform_nand *platform;
-
- /* device info */
- struct device *device;
- struct clk *clk;
- void __iomem *regs;
- void __iomem *sel_reg;
- int sel_bit;
- int mtd_count;
- unsigned long save_sel;
- unsigned long clk_rate;
- enum s3c_nand_clk_state clk_state;
-
- enum s3c_cpu_type cpu_type;
-};
-
-struct s3c24XX_nand_devtype_data {
- enum s3c_cpu_type type;
-};
-
-static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
- .type = TYPE_S3C2410,
-};
-
-static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
- .type = TYPE_S3C2412,
-};
-
-static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
- .type = TYPE_S3C2440,
-};
-
-/* conversion functions */
-
-static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
-{
- return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
- chip);
-}
-
-static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
-{
- return s3c2410_nand_mtd_toours(mtd)->info;
-}
-
-static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
-{
- return platform_get_drvdata(dev);
-}
-
-static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
-{
- return dev_get_platdata(&dev->dev);
-}
-
-static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
-{
-#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
- return 1;
-#else
- return 0;
-#endif
-}
-
-/**
- * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
- * @info: The controller instance.
- * @new_state: State to which clock should be set.
- */
-static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
- enum s3c_nand_clk_state new_state)
-{
- if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
- return;
-
- if (info->clk_state == CLOCK_ENABLE) {
- if (new_state != CLOCK_ENABLE)
- clk_disable_unprepare(info->clk);
- } else {
- if (new_state == CLOCK_ENABLE)
- clk_prepare_enable(info->clk);
- }
-
- info->clk_state = new_state;
-}
-
-/* timing calculations */
-
-#define NS_IN_KHZ 1000000
-
-/**
- * s3c_nand_calc_rate - calculate timing data.
- * @wanted: The cycle time in nanoseconds.
- * @clk: The clock rate in kHz.
- * @max: The maximum divider value.
- *
- * Calculate the timing value from the given parameters.
- */
-static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
-{
- int result;
-
- result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
-
- pr_debug("result %d from %ld, %d\n", result, clk, wanted);
-
- if (result > max) {
- pr_err("%d ns is too big for current clock rate %ld\n",
- wanted, clk);
- return -1;
- }
-
- if (result < 1)
- result = 1;
-
- return result;
-}
-
-#define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
-
-/* controller setup */
-
-/**
- * s3c2410_nand_setrate - setup controller timing information.
- * @info: The controller instance.
- *
- * Given the information supplied by the platform, calculate and set
- * the necessary timing registers in the hardware to generate the
- * necessary timing cycles to the hardware.
- */
-static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
-{
- struct s3c2410_platform_nand *plat = info->platform;
- int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
- int tacls, twrph0, twrph1;
- unsigned long clkrate = clk_get_rate(info->clk);
- unsigned long set, cfg, mask;
- unsigned long flags;
-
- /* calculate the timing information for the controller */
-
- info->clk_rate = clkrate;
- clkrate /= 1000; /* turn clock into kHz for ease of use */
-
- if (plat != NULL) {
- tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
- twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
- twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
- } else {
- /* default timings */
- tacls = tacls_max;
- twrph0 = 8;
- twrph1 = 8;
- }
-
- if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
- dev_err(info->device, "cannot get suitable timings\n");
- return -EINVAL;
- }
-
- dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
- tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
- twrph1, to_ns(twrph1, clkrate));
-
- switch (info->cpu_type) {
- case TYPE_S3C2410:
- mask = (S3C2410_NFCONF_TACLS(3) |
- S3C2410_NFCONF_TWRPH0(7) |
- S3C2410_NFCONF_TWRPH1(7));
- set = S3C2410_NFCONF_EN;
- set |= S3C2410_NFCONF_TACLS(tacls - 1);
- set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
- set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
- break;
-
- case TYPE_S3C2440:
- case TYPE_S3C2412:
- mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
- S3C2440_NFCONF_TWRPH0(7) |
- S3C2440_NFCONF_TWRPH1(7));
-
- set = S3C2440_NFCONF_TACLS(tacls - 1);
- set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
- set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
- break;
-
- default:
- BUG();
- }
-
- local_irq_save(flags);
-
- cfg = readl(info->regs + S3C2410_NFCONF);
- cfg &= ~mask;
- cfg |= set;
- writel(cfg, info->regs + S3C2410_NFCONF);
-
- local_irq_restore(flags);
-
- dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
-
- return 0;
-}
-
-/**
- * s3c2410_nand_inithw - basic hardware initialisation
- * @info: The hardware state.
- *
- * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
- * to setup the hardware access speeds and set the controller to be enabled.
-*/
-static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
-{
- int ret;
-
- ret = s3c2410_nand_setrate(info);
- if (ret < 0)
- return ret;
-
- switch (info->cpu_type) {
- case TYPE_S3C2410:
- default:
- break;
-
- case TYPE_S3C2440:
- case TYPE_S3C2412:
- /* enable the controller and de-assert nFCE */
-
- writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
- }
-
- return 0;
-}
-
-/**
- * s3c2410_nand_select_chip - select the given nand chip
- * @this: NAND chip object.
- * @chip: The chip number.
- *
- * This is called by the MTD layer to either select a given chip for the
- * @mtd instance, or to indicate that the access has finished and the
- * chip can be de-selected.
- *
- * The routine ensures that the nFCE line is correctly setup, and any
- * platform specific selection code is called to route nFCE to the specific
- * chip.
- */
-static void s3c2410_nand_select_chip(struct nand_chip *this, int chip)
-{
- struct s3c2410_nand_info *info;
- struct s3c2410_nand_mtd *nmtd;
- unsigned long cur;
-
- nmtd = nand_get_controller_data(this);
- info = nmtd->info;
-
- if (chip != -1)
- s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
-
- cur = readl(info->sel_reg);
-
- if (chip == -1) {
- cur |= info->sel_bit;
- } else {
- if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
- dev_err(info->device, "invalid chip %d\n", chip);
- return;
- }
-
- if (info->platform != NULL) {
- if (info->platform->select_chip != NULL)
- (info->platform->select_chip) (nmtd->set, chip);
- }
-
- cur &= ~info->sel_bit;
- }
-
- writel(cur, info->sel_reg);
-
- if (chip == -1)
- s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
-}
-
-/* s3c2410_nand_hwcontrol
- *
- * Issue command and address cycles to the chip
-*/
-
-static void s3c2410_nand_hwcontrol(struct nand_chip *chip, int cmd,
- unsigned int ctrl)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
-
- if (cmd == NAND_CMD_NONE)
- return;
-
- if (ctrl & NAND_CLE)
- writeb(cmd, info->regs + S3C2410_NFCMD);
- else
- writeb(cmd, info->regs + S3C2410_NFADDR);
-}
-
-/* command and control functions */
-
-static void s3c2440_nand_hwcontrol(struct nand_chip *chip, int cmd,
- unsigned int ctrl)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
-
- if (cmd == NAND_CMD_NONE)
- return;
-
- if (ctrl & NAND_CLE)
- writeb(cmd, info->regs + S3C2440_NFCMD);
- else
- writeb(cmd, info->regs + S3C2440_NFADDR);
-}
-
-/* s3c2410_nand_devready()
- *
- * returns 0 if the nand is busy, 1 if it is ready
-*/
-
-static int s3c2410_nand_devready(struct nand_chip *chip)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
- return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
-}
-
-static int s3c2440_nand_devready(struct nand_chip *chip)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
- return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
-}
-
-static int s3c2412_nand_devready(struct nand_chip *chip)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
- return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
-}
-
-/* ECC handling functions */
-
-static int s3c2410_nand_correct_data(struct nand_chip *chip, u_char *dat,
- u_char *read_ecc, u_char *calc_ecc)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
- unsigned int diff0, diff1, diff2;
- unsigned int bit, byte;
-
- pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
-
- diff0 = read_ecc[0] ^ calc_ecc[0];
- diff1 = read_ecc[1] ^ calc_ecc[1];
- diff2 = read_ecc[2] ^ calc_ecc[2];
-
- pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
- __func__, 3, read_ecc, 3, calc_ecc,
- diff0, diff1, diff2);
-
- if (diff0 == 0 && diff1 == 0 && diff2 == 0)
- return 0; /* ECC is ok */
-
- /* sometimes people do not think about using the ECC, so check
- * to see if we have an 0xff,0xff,0xff read ECC and then ignore
- * the error, on the assumption that this is an un-eccd page.
- */
- if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
- && info->platform->ignore_unset_ecc)
- return 0;
-
- /* Can we correct this ECC (ie, one row and column change).
- * Note, this is similar to the 256 error code on smartmedia */
-
- if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
- ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
- ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
- /* calculate the bit position of the error */
-
- bit = ((diff2 >> 3) & 1) |
- ((diff2 >> 4) & 2) |
- ((diff2 >> 5) & 4);
-
- /* calculate the byte position of the error */
-
- byte = ((diff2 << 7) & 0x100) |
- ((diff1 << 0) & 0x80) |
- ((diff1 << 1) & 0x40) |
- ((diff1 << 2) & 0x20) |
- ((diff1 << 3) & 0x10) |
- ((diff0 >> 4) & 0x08) |
- ((diff0 >> 3) & 0x04) |
- ((diff0 >> 2) & 0x02) |
- ((diff0 >> 1) & 0x01);
-
- dev_dbg(info->device, "correcting error bit %d, byte %d\n",
- bit, byte);
-
- dat[byte] ^= (1 << bit);
- return 1;
- }
-
- /* if there is only one bit difference in the ECC, then
- * one of only a row or column parity has changed, which
- * means the error is most probably in the ECC itself */
-
- diff0 |= (diff1 << 8);
- diff0 |= (diff2 << 16);
-
- /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
- if ((diff0 & (diff0 - 1)) == 0)
- return 1;
-
- return -1;
-}
-
-/* ECC functions
- *
- * These allow the s3c2410 and s3c2440 to use the controller's ECC
- * generator block to ECC the data as it passes through]
-*/
-
-static void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode)
-{
- struct s3c2410_nand_info *info;
- unsigned long ctrl;
-
- info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
- ctrl = readl(info->regs + S3C2410_NFCONF);
- ctrl |= S3C2410_NFCONF_INITECC;
- writel(ctrl, info->regs + S3C2410_NFCONF);
-}
-
-static void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode)
-{
- struct s3c2410_nand_info *info;
- unsigned long ctrl;
-
- info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
- ctrl = readl(info->regs + S3C2440_NFCONT);
- writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
- info->regs + S3C2440_NFCONT);
-}
-
-static void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode)
-{
- struct s3c2410_nand_info *info;
- unsigned long ctrl;
-
- info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
- ctrl = readl(info->regs + S3C2440_NFCONT);
- writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
-}
-
-static int s3c2410_nand_calculate_ecc(struct nand_chip *chip,
- const u_char *dat, u_char *ecc_code)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
-
- ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
- ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
- ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
-
- pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
-
- return 0;
-}
-
-static int s3c2412_nand_calculate_ecc(struct nand_chip *chip,
- const u_char *dat, u_char *ecc_code)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
- unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
-
- ecc_code[0] = ecc;
- ecc_code[1] = ecc >> 8;
- ecc_code[2] = ecc >> 16;
-
- pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
-
- return 0;
-}
-
-static int s3c2440_nand_calculate_ecc(struct nand_chip *chip,
- const u_char *dat, u_char *ecc_code)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
- unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
-
- ecc_code[0] = ecc;
- ecc_code[1] = ecc >> 8;
- ecc_code[2] = ecc >> 16;
-
- pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
-
- return 0;
-}
-
-/* over-ride the standard functions for a little more speed. We can
- * use read/write block to move the data buffers to/from the controller
-*/
-
-static void s3c2410_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
-{
- readsb(this->legacy.IO_ADDR_R, buf, len);
-}
-
-static void s3c2440_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
-{
- struct mtd_info *mtd = nand_to_mtd(this);
- struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
-
- readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
-
- /* cleanup if we've got less than a word to do */
- if (len & 3) {
- buf += len & ~3;
-
- for (; len & 3; len--)
- *buf++ = readb(info->regs + S3C2440_NFDATA);
- }
-}
-
-static void s3c2410_nand_write_buf(struct nand_chip *this, const u_char *buf,
- int len)
-{
- writesb(this->legacy.IO_ADDR_W, buf, len);
-}
-
-static void s3c2440_nand_write_buf(struct nand_chip *this, const u_char *buf,
- int len)
-{
- struct mtd_info *mtd = nand_to_mtd(this);
- struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
-
- writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
-
- /* cleanup any fractional write */
- if (len & 3) {
- buf += len & ~3;
-
- for (; len & 3; len--, buf++)
- writeb(*buf, info->regs + S3C2440_NFDATA);
- }
-}
-
-/* device management functions */
-
-static void s3c24xx_nand_remove(struct platform_device *pdev)
-{
- struct s3c2410_nand_info *info = to_nand_info(pdev);
-
- if (info == NULL)
- return;
-
- /* Release all our mtds and their partitions, then go through
- * freeing the resources used
- */
-
- if (info->mtds != NULL) {
- struct s3c2410_nand_mtd *ptr = info->mtds;
- int mtdno;
-
- for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
- pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
- WARN_ON(mtd_device_unregister(nand_to_mtd(&ptr->chip)));
- nand_cleanup(&ptr->chip);
- }
- }
-
- /* free the common resources */
-
- if (!IS_ERR(info->clk))
- s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
-}
-
-static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
- struct s3c2410_nand_mtd *mtd,
- struct s3c2410_nand_set *set)
-{
- if (set) {
- struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
-
- mtdinfo->name = set->name;
-
- return mtd_device_register(mtdinfo, set->partitions,
- set->nr_partitions);
- }
-
- return -ENODEV;
-}
-
-static int s3c2410_nand_setup_interface(struct nand_chip *chip, int csline,
- const struct nand_interface_config *conf)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
- struct s3c2410_platform_nand *pdata = info->platform;
- const struct nand_sdr_timings *timings;
- int tacls;
-
- timings = nand_get_sdr_timings(conf);
- if (IS_ERR(timings))
- return -ENOTSUPP;
-
- tacls = timings->tCLS_min - timings->tWP_min;
- if (tacls < 0)
- tacls = 0;
-
- pdata->tacls = DIV_ROUND_UP(tacls, 1000);
- pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
- pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
-
- return s3c2410_nand_setrate(info);
-}
-
-/**
- * s3c2410_nand_init_chip - initialise a single instance of an chip
- * @info: The base NAND controller the chip is on.
- * @nmtd: The new controller MTD instance to fill in.
- * @set: The information passed from the board specific platform data.
- *
- * Initialise the given @nmtd from the information in @info and @set. This
- * readies the structure for use with the MTD layer functions by ensuring
- * all pointers are setup and the necessary control routines selected.
- */
-static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
- struct s3c2410_nand_mtd *nmtd,
- struct s3c2410_nand_set *set)
-{
- struct device_node *np = info->device->of_node;
- struct nand_chip *chip = &nmtd->chip;
- void __iomem *regs = info->regs;
-
- nand_set_flash_node(chip, set->of_node);
-
- chip->legacy.write_buf = s3c2410_nand_write_buf;
- chip->legacy.read_buf = s3c2410_nand_read_buf;
- chip->legacy.select_chip = s3c2410_nand_select_chip;
- chip->legacy.chip_delay = 50;
- nand_set_controller_data(chip, nmtd);
- chip->options = set->options;
- chip->controller = &info->controller;
-
- /*
- * let's keep behavior unchanged for legacy boards booting via pdata and
- * auto-detect timings only when booting with a device tree.
- */
- if (!np)
- chip->options |= NAND_KEEP_TIMINGS;
-
- switch (info->cpu_type) {
- case TYPE_S3C2410:
- chip->legacy.IO_ADDR_W = regs + S3C2410_NFDATA;
- info->sel_reg = regs + S3C2410_NFCONF;
- info->sel_bit = S3C2410_NFCONF_nFCE;
- chip->legacy.cmd_ctrl = s3c2410_nand_hwcontrol;
- chip->legacy.dev_ready = s3c2410_nand_devready;
- break;
-
- case TYPE_S3C2440:
- chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
- info->sel_reg = regs + S3C2440_NFCONT;
- info->sel_bit = S3C2440_NFCONT_nFCE;
- chip->legacy.cmd_ctrl = s3c2440_nand_hwcontrol;
- chip->legacy.dev_ready = s3c2440_nand_devready;
- chip->legacy.read_buf = s3c2440_nand_read_buf;
- chip->legacy.write_buf = s3c2440_nand_write_buf;
- break;
-
- case TYPE_S3C2412:
- chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
- info->sel_reg = regs + S3C2440_NFCONT;
- info->sel_bit = S3C2412_NFCONT_nFCE0;
- chip->legacy.cmd_ctrl = s3c2440_nand_hwcontrol;
- chip->legacy.dev_ready = s3c2412_nand_devready;
-
- if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
- dev_info(info->device, "System booted from NAND\n");
-
- break;
- }
-
- chip->legacy.IO_ADDR_R = chip->legacy.IO_ADDR_W;
-
- nmtd->info = info;
- nmtd->set = set;
-
- chip->ecc.engine_type = info->platform->engine_type;
-
- /*
- * If you use u-boot BBT creation code, specifying this flag will
- * let the kernel fish out the BBT from the NAND.
- */
- if (set->flash_bbt)
- chip->bbt_options |= NAND_BBT_USE_FLASH;
-}
-
-/**
- * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
- * @chip: The NAND chip
- *
- * This hook is called by the core after the identification of the NAND chip,
- * once the relevant per-chip information is up to date.. This call ensure that
- * we update the internal state accordingly.
- *
- * The internal state is currently limited to the ECC state information.
-*/
-static int s3c2410_nand_attach_chip(struct nand_chip *chip)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
-
- switch (chip->ecc.engine_type) {
-
- case NAND_ECC_ENGINE_TYPE_NONE:
- dev_info(info->device, "ECC disabled\n");
- break;
-
- case NAND_ECC_ENGINE_TYPE_SOFT:
- /*
- * This driver expects Hamming based ECC when engine_type is set
- * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to
- * NAND_ECC_ALGO_HAMMING to avoid adding an extra ecc_algo field
- * to s3c2410_platform_nand.
- */
- chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
- dev_info(info->device, "soft ECC\n");
- break;
-
- case NAND_ECC_ENGINE_TYPE_ON_HOST:
- chip->ecc.calculate = s3c2410_nand_calculate_ecc;
- chip->ecc.correct = s3c2410_nand_correct_data;
- chip->ecc.strength = 1;
-
- switch (info->cpu_type) {
- case TYPE_S3C2410:
- chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
- chip->ecc.calculate = s3c2410_nand_calculate_ecc;
- break;
-
- case TYPE_S3C2412:
- chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
- chip->ecc.calculate = s3c2412_nand_calculate_ecc;
- break;
-
- case TYPE_S3C2440:
- chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
- chip->ecc.calculate = s3c2440_nand_calculate_ecc;
- break;
- }
-
- dev_dbg(info->device, "chip %p => page shift %d\n",
- chip, chip->page_shift);
-
- /* change the behaviour depending on whether we are using
- * the large or small page nand device */
- if (chip->page_shift > 10) {
- chip->ecc.size = 256;
- chip->ecc.bytes = 3;
- } else {
- chip->ecc.size = 512;
- chip->ecc.bytes = 3;
- mtd_set_ooblayout(nand_to_mtd(chip),
- &s3c2410_ooblayout_ops);
- }
-
- dev_info(info->device, "hardware ECC\n");
- break;
-
- default:
- dev_err(info->device, "invalid ECC mode!\n");
- return -EINVAL;
- }
-
- if (chip->bbt_options & NAND_BBT_USE_FLASH)
- chip->options |= NAND_SKIP_BBTSCAN;
-
- return 0;
-}
-
-static const struct nand_controller_ops s3c24xx_nand_controller_ops = {
- .attach_chip = s3c2410_nand_attach_chip,
- .setup_interface = s3c2410_nand_setup_interface,
-};
-
-static const struct of_device_id s3c24xx_nand_dt_ids[] = {
- {
- .compatible = "samsung,s3c2410-nand",
- .data = &s3c2410_nand_devtype_data,
- }, {
- /* also compatible with s3c6400 */
- .compatible = "samsung,s3c2412-nand",
- .data = &s3c2412_nand_devtype_data,
- }, {
- .compatible = "samsung,s3c2440-nand",
- .data = &s3c2440_nand_devtype_data,
- },
- { /* sentinel */ }
-};
-MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
-
-static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
-{
- const struct s3c24XX_nand_devtype_data *devtype_data;
- struct s3c2410_platform_nand *pdata;
- struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
- struct device_node *np = pdev->dev.of_node, *child;
- struct s3c2410_nand_set *sets;
-
- devtype_data = of_device_get_match_data(&pdev->dev);
- if (!devtype_data)
- return -ENODEV;
-
- info->cpu_type = devtype_data->type;
-
- pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
- if (!pdata)
- return -ENOMEM;
-
- pdev->dev.platform_data = pdata;
-
- pdata->nr_sets = of_get_child_count(np);
- if (!pdata->nr_sets)
- return 0;
-
- sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
- GFP_KERNEL);
- if (!sets)
- return -ENOMEM;
-
- pdata->sets = sets;
-
- for_each_available_child_of_node(np, child) {
- sets->name = (char *)child->name;
- sets->of_node = child;
- sets->nr_chips = 1;
-
- of_node_get(child);
-
- sets++;
- }
-
- return 0;
-}
-
-static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
-{
- struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
-
- info->cpu_type = platform_get_device_id(pdev)->driver_data;
-
- return 0;
-}
-
-/* s3c24xx_nand_probe
- *
- * called by device layer when it finds a device matching
- * one our driver can handled. This code checks to see if
- * it can allocate all necessary resources then calls the
- * nand layer to look for devices
-*/
-static int s3c24xx_nand_probe(struct platform_device *pdev)
-{
- struct s3c2410_platform_nand *plat;
- struct s3c2410_nand_info *info;
- struct s3c2410_nand_mtd *nmtd;
- struct s3c2410_nand_set *sets;
- struct resource *res;
- int err = 0;
- int size;
- int nr_sets;
- int setno;
-
- info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
- if (info == NULL) {
- err = -ENOMEM;
- goto exit_error;
- }
-
- platform_set_drvdata(pdev, info);
-
- nand_controller_init(&info->controller);
- info->controller.ops = &s3c24xx_nand_controller_ops;
-
- /* get the clock source and enable it */
-
- info->clk = devm_clk_get(&pdev->dev, "nand");
- if (IS_ERR(info->clk)) {
- dev_err(&pdev->dev, "failed to get clock\n");
- err = -ENOENT;
- goto exit_error;
- }
-
- s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
-
- if (pdev->dev.of_node)
- err = s3c24xx_nand_probe_dt(pdev);
- else
- err = s3c24xx_nand_probe_pdata(pdev);
-
- if (err)
- goto exit_error;
-
- plat = to_nand_plat(pdev);
-
- /* allocate and map the resource */
-
- /* currently we assume we have the one resource */
- res = pdev->resource;
- size = resource_size(res);
-
- info->device = &pdev->dev;
- info->platform = plat;
-
- info->regs = devm_ioremap_resource(&pdev->dev, res);
- if (IS_ERR(info->regs)) {
- err = PTR_ERR(info->regs);
- goto exit_error;
- }
-
- dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
-
- if (!plat->sets || plat->nr_sets < 1) {
- err = -EINVAL;
- goto exit_error;
- }
-
- sets = plat->sets;
- nr_sets = plat->nr_sets;
-
- info->mtd_count = nr_sets;
-
- /* allocate our information */
-
- size = nr_sets * sizeof(*info->mtds);
- info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
- if (info->mtds == NULL) {
- err = -ENOMEM;
- goto exit_error;
- }
-
- /* initialise all possible chips */
-
- nmtd = info->mtds;
-
- for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) {
- struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
-
- pr_debug("initialising set %d (%p, info %p)\n",
- setno, nmtd, info);
-
- mtd->dev.parent = &pdev->dev;
- s3c2410_nand_init_chip(info, nmtd, sets);
-
- err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1);
- if (err)
- goto exit_error;
-
- s3c2410_nand_add_partition(info, nmtd, sets);
- }
-
- /* initialise the hardware */
- err = s3c2410_nand_inithw(info);
- if (err != 0)
- goto exit_error;
-
- if (allow_clk_suspend(info)) {
- dev_info(&pdev->dev, "clock idle support enabled\n");
- s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
- }
-
- return 0;
-
- exit_error:
- s3c24xx_nand_remove(pdev);
-
- if (err == 0)
- err = -EINVAL;
- return err;
-}
-
-/* PM Support */
-#ifdef CONFIG_PM
-
-static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
-{
- struct s3c2410_nand_info *info = platform_get_drvdata(dev);
-
- if (info) {
- info->save_sel = readl(info->sel_reg);
-
- /* For the moment, we must ensure nFCE is high during
- * the time we are suspended. This really should be
- * handled by suspending the MTDs we are using, but
- * that is currently not the case. */
-
- writel(info->save_sel | info->sel_bit, info->sel_reg);
-
- s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
- }
-
- return 0;
-}
-
-static int s3c24xx_nand_resume(struct platform_device *dev)
-{
- struct s3c2410_nand_info *info = platform_get_drvdata(dev);
- unsigned long sel;
-
- if (info) {
- s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
- s3c2410_nand_inithw(info);
-
- /* Restore the state of the nFCE line. */
-
- sel = readl(info->sel_reg);
- sel &= ~info->sel_bit;
- sel |= info->save_sel & info->sel_bit;
- writel(sel, info->sel_reg);
-
- s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
- }
-
- return 0;
-}
-
-#else
-#define s3c24xx_nand_suspend NULL
-#define s3c24xx_nand_resume NULL
-#endif
-
-/* driver device registration */
-
-static const struct platform_device_id s3c24xx_driver_ids[] = {
- {
- .name = "s3c2410-nand",
- .driver_data = TYPE_S3C2410,
- }, {
- .name = "s3c2440-nand",
- .driver_data = TYPE_S3C2440,
- }, {
- .name = "s3c2412-nand",
- .driver_data = TYPE_S3C2412,
- }, {
- .name = "s3c6400-nand",
- .driver_data = TYPE_S3C2412, /* compatible with 2412 */
- },
- { }
-};
-
-MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
-
-static struct platform_driver s3c24xx_nand_driver = {
- .probe = s3c24xx_nand_probe,
- .remove = s3c24xx_nand_remove,
- .suspend = s3c24xx_nand_suspend,
- .resume = s3c24xx_nand_resume,
- .id_table = s3c24xx_driver_ids,
- .driver = {
- .name = "s3c24xx-nand",
- .of_match_table = s3c24xx_nand_dt_ids,
- },
-};
-
-module_platform_driver(s3c24xx_nand_driver);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
-MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
diff --git a/drivers/mtd/nand/raw/stm32_fmc2_nand.c b/drivers/mtd/nand/raw/stm32_fmc2_nand.c
index d957327fb4fa..c08d6b176372 100644
--- a/drivers/mtd/nand/raw/stm32_fmc2_nand.c
+++ b/drivers/mtd/nand/raw/stm32_fmc2_nand.c
@@ -2158,7 +2158,6 @@ static struct platform_driver stm32_fmc2_nfc_driver = {
};
module_platform_driver(stm32_fmc2_nfc_driver);
-MODULE_ALIAS("platform:stm32_fmc2_nfc");
MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 NFC driver");
MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/raw/sunxi_nand.c b/drivers/mtd/nand/raw/sunxi_nand.c
index 162cd5f4f234..f6a8e8ae819d 100644
--- a/drivers/mtd/nand/raw/sunxi_nand.c
+++ b/drivers/mtd/nand/raw/sunxi_nand.c
@@ -2205,4 +2205,3 @@ module_platform_driver(sunxi_nfc_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Boris BREZILLON");
MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
-MODULE_ALIAS("platform:sunxi_nand");
diff --git a/drivers/mtd/nand/spi/Makefile b/drivers/mtd/nand/spi/Makefile
index 258da42451a4..6d3d203df048 100644
--- a/drivers/mtd/nand/spi/Makefile
+++ b/drivers/mtd/nand/spi/Makefile
@@ -1,5 +1,5 @@
# SPDX-License-Identifier: GPL-2.0
spinand-objs := core.o otp.o
-spinand-objs += alliancememory.o ato.o esmt.o foresee.o gigadevice.o macronix.o
+spinand-objs += alliancememory.o ato.o esmt.o fmsh.o foresee.o gigadevice.o macronix.o
spinand-objs += micron.o paragon.o skyhigh.o toshiba.o winbond.o xtx.o
obj-$(CONFIG_MTD_SPI_NAND) += spinand.o
diff --git a/drivers/mtd/nand/spi/core.c b/drivers/mtd/nand/spi/core.c
index b0898990b2a5..f92133b8e1a6 100644
--- a/drivers/mtd/nand/spi/core.c
+++ b/drivers/mtd/nand/spi/core.c
@@ -430,8 +430,16 @@ static int spinand_read_from_cache_op(struct spinand_device *spinand,
* Dirmap accesses are allowed to toggle the CS.
* Toggling the CS during a continuous read is forbidden.
*/
- if (nbytes && req->continuous)
- return -EIO;
+ if (nbytes && req->continuous) {
+ /*
+ * Spi controller with broken support of continuous
+ * reading was detected. Disable future use of
+ * continuous reading and return -EAGAIN to retry
+ * reading within regular mode.
+ */
+ spinand->cont_read_possible = false;
+ return -EAGAIN;
+ }
}
if (req->datalen)
@@ -899,10 +907,19 @@ static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
old_stats = mtd->ecc_stats;
- if (spinand_use_cont_read(mtd, from, ops))
+ if (spinand_use_cont_read(mtd, from, ops)) {
ret = spinand_mtd_continuous_page_read(mtd, from, ops, &max_bitflips);
- else
+ if (ret == -EAGAIN && !spinand->cont_read_possible) {
+ /*
+ * Spi controller with broken support of continuous
+ * reading was detected (see spinand_read_from_cache_op()),
+ * repeat reading in regular mode.
+ */
+ ret = spinand_mtd_regular_page_read(mtd, from, ops, &max_bitflips);
+ }
+ } else {
ret = spinand_mtd_regular_page_read(mtd, from, ops, &max_bitflips);
+ }
if (ops->stats) {
ops->stats->uncorrectable_errors +=
@@ -1093,22 +1110,50 @@ static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
return ret;
}
+static struct spi_mem_dirmap_desc *spinand_create_rdesc(
+ struct spinand_device *spinand,
+ struct spi_mem_dirmap_info *info)
+{
+ struct nand_device *nand = spinand_to_nand(spinand);
+ struct spi_mem_dirmap_desc *desc = NULL;
+
+ if (spinand->cont_read_possible) {
+ /*
+ * spi controller may return an error if info->length is
+ * too large
+ */
+ info->length = nanddev_eraseblock_size(nand);
+ desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
+ spinand->spimem, info);
+ }
+
+ if (IS_ERR_OR_NULL(desc)) {
+ /*
+ * continuous reading is not supported by flash or
+ * its spi controller, use regular reading
+ */
+ spinand->cont_read_possible = false;
+
+ info->length = nanddev_page_size(nand) +
+ nanddev_per_page_oobsize(nand);
+ desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
+ spinand->spimem, info);
+ }
+
+ return desc;
+}
+
static int spinand_create_dirmap(struct spinand_device *spinand,
unsigned int plane)
{
struct nand_device *nand = spinand_to_nand(spinand);
- struct spi_mem_dirmap_info info = {
- .length = nanddev_page_size(nand) +
- nanddev_per_page_oobsize(nand),
- };
+ struct spi_mem_dirmap_info info = { 0 };
struct spi_mem_dirmap_desc *desc;
- if (spinand->cont_read_possible)
- info.length = nanddev_eraseblock_size(nand);
-
/* The plane number is passed in MSB just above the column address */
info.offset = plane << fls(nand->memorg.pagesize);
+ info.length = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
info.op_tmpl = *spinand->op_templates.update_cache;
desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
spinand->spimem, &info);
@@ -1118,8 +1163,7 @@ static int spinand_create_dirmap(struct spinand_device *spinand,
spinand->dirmaps[plane].wdesc = desc;
info.op_tmpl = *spinand->op_templates.read_cache;
- desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
- spinand->spimem, &info);
+ desc = spinand_create_rdesc(spinand, &info);
if (IS_ERR(desc))
return PTR_ERR(desc);
@@ -1132,6 +1176,7 @@ static int spinand_create_dirmap(struct spinand_device *spinand,
return 0;
}
+ info.length = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
info.op_tmpl = *spinand->op_templates.update_cache;
info.op_tmpl.data.ecc = true;
desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
@@ -1143,8 +1188,7 @@ static int spinand_create_dirmap(struct spinand_device *spinand,
info.op_tmpl = *spinand->op_templates.read_cache;
info.op_tmpl.data.ecc = true;
- desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
- spinand->spimem, &info);
+ desc = spinand_create_rdesc(spinand, &info);
if (IS_ERR(desc))
return PTR_ERR(desc);
@@ -1184,6 +1228,7 @@ static const struct spinand_manufacturer *spinand_manufacturers[] = {
&alliancememory_spinand_manufacturer,
&ato_spinand_manufacturer,
&esmt_c8_spinand_manufacturer,
+ &fmsh_spinand_manufacturer,
&foresee_spinand_manufacturer,
&gigadevice_spinand_manufacturer,
&macronix_spinand_manufacturer,
diff --git a/drivers/mtd/nand/spi/fmsh.c b/drivers/mtd/nand/spi/fmsh.c
new file mode 100644
index 000000000000..8b2097bfc771
--- /dev/null
+++ b/drivers/mtd/nand/spi/fmsh.c
@@ -0,0 +1,74 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2020-2021 Rockchip Electronics Co., Ltd.
+ *
+ * Author: Dingqiang Lin <jon.lin@rock-chips.com>
+ */
+
+#include <linux/device.h>
+#include <linux/kernel.h>
+#include <linux/mtd/spinand.h>
+
+#define SPINAND_MFR_FMSH 0xA1
+
+static SPINAND_OP_VARIANTS(read_cache_variants,
+ SPINAND_PAGE_READ_FROM_CACHE_1S_4S_4S_OP(0, 2, NULL, 0, 0),
+ SPINAND_PAGE_READ_FROM_CACHE_1S_1S_4S_OP(0, 1, NULL, 0, 0),
+ SPINAND_PAGE_READ_FROM_CACHE_1S_2S_2S_OP(0, 1, NULL, 0, 0),
+ SPINAND_PAGE_READ_FROM_CACHE_1S_1S_2S_OP(0, 1, NULL, 0, 0),
+ SPINAND_PAGE_READ_FROM_CACHE_FAST_1S_1S_1S_OP(0, 1, NULL, 0, 0),
+ SPINAND_PAGE_READ_FROM_CACHE_1S_1S_1S_OP(0, 1, NULL, 0, 0));
+
+static SPINAND_OP_VARIANTS(write_cache_variants,
+ SPINAND_PROG_LOAD_1S_1S_4S_OP(true, 0, NULL, 0),
+ SPINAND_PROG_LOAD_1S_1S_1S_OP(true, 0, NULL, 0));
+
+static SPINAND_OP_VARIANTS(update_cache_variants,
+ SPINAND_PROG_LOAD_1S_1S_4S_OP(false, 0, NULL, 0),
+ SPINAND_PROG_LOAD_1S_1S_1S_OP(false, 0, NULL, 0));
+
+static int fm25s01a_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *region)
+{
+ return -ERANGE;
+}
+
+static int fm25s01a_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *region)
+{
+ if (section)
+ return -ERANGE;
+
+ region->offset = 2;
+ region->length = 62;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops fm25s01a_ooblayout = {
+ .ecc = fm25s01a_ooblayout_ecc,
+ .free = fm25s01a_ooblayout_free,
+};
+
+static const struct spinand_info fmsh_spinand_table[] = {
+ SPINAND_INFO("FM25S01A",
+ SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xE4),
+ NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1),
+ NAND_ECCREQ(1, 512),
+ SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+ &write_cache_variants,
+ &update_cache_variants),
+ SPINAND_HAS_QE_BIT,
+ SPINAND_ECCINFO(&fm25s01a_ooblayout, NULL)),
+};
+
+static const struct spinand_manufacturer_ops fmsh_spinand_manuf_ops = {
+};
+
+const struct spinand_manufacturer fmsh_spinand_manufacturer = {
+ .id = SPINAND_MFR_FMSH,
+ .name = "Fudan Micro",
+ .chips = fmsh_spinand_table,
+ .nchips = ARRAY_SIZE(fmsh_spinand_table),
+ .ops = &fmsh_spinand_manuf_ops,
+};
diff --git a/drivers/mtd/nand/spi/gigadevice.c b/drivers/mtd/nand/spi/gigadevice.c
index 93e40431dbe2..72ad36c9a126 100644
--- a/drivers/mtd/nand/spi/gigadevice.c
+++ b/drivers/mtd/nand/spi/gigadevice.c
@@ -4,6 +4,7 @@
* Chuanhong Guo <gch981213@gmail.com>
*/
+#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/mtd/spinand.h>
@@ -23,6 +24,18 @@
#define GD5FXGQ4UXFXXG_STATUS_ECC_1_3_BITFLIPS (1 << 4)
#define GD5FXGQ4UXFXXG_STATUS_ECC_UNCOR_ERROR (7 << 4)
+/* Feature bit definitions */
+#define GD_FEATURE_NR BIT(3) /* Normal Read(1=normal,0=continuous) */
+#define GD_FEATURE_CRDC BIT(2) /* Continuous Read Dummy */
+
+/* ECC status extraction helpers */
+#define GD_ECCSR_LAST_PAGE(eccsr) FIELD_GET(GENMASK(3, 0), eccsr)
+#define GD_ECCSR_ACCUMULATED(eccsr) FIELD_GET(GENMASK(7, 4), eccsr)
+
+struct gigadevice_priv {
+ bool continuous_read;
+};
+
static SPINAND_OP_VARIANTS(read_cache_variants,
SPINAND_PAGE_READ_FROM_CACHE_1S_4S_4S_OP(0, 1, NULL, 0, 0),
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_4S_OP(0, 1, NULL, 0, 0),
@@ -63,6 +76,74 @@ static SPINAND_OP_VARIANTS(update_cache_variants,
SPINAND_PROG_LOAD_1S_1S_4S_OP(false, 0, NULL, 0),
SPINAND_PROG_LOAD_1S_1S_1S_OP(false, 0, NULL, 0));
+static int gd5fxgm9_get_eccsr(struct spinand_device *spinand, u8 *eccsr)
+{
+ struct gigadevice_priv *priv = spinand->priv;
+ struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(0x7c, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_DUMMY(1, 1),
+ SPI_MEM_OP_DATA_IN(1, eccsr, 1));
+ int ret;
+
+ ret = spi_mem_exec_op(spinand->spimem, &op);
+ if (ret)
+ return ret;
+
+ if (priv->continuous_read)
+ *eccsr = GD_ECCSR_ACCUMULATED(*eccsr);
+ else
+ *eccsr = GD_ECCSR_LAST_PAGE(*eccsr);
+
+ return 0;
+}
+
+static int gd5fxgm9_ecc_get_status(struct spinand_device *spinand, u8 status)
+{
+ struct nand_device *nand = spinand_to_nand(spinand);
+ u8 eccsr;
+ int ret;
+
+ switch (status & STATUS_ECC_MASK) {
+ case STATUS_ECC_NO_BITFLIPS:
+ return 0;
+
+ case GD5FXGQ4XA_STATUS_ECC_1_7_BITFLIPS:
+ ret = gd5fxgm9_get_eccsr(spinand, spinand->scratchbuf);
+ if (ret)
+ return nanddev_get_ecc_conf(nand)->strength;
+
+ eccsr = *spinand->scratchbuf;
+ if (WARN_ON(!eccsr || eccsr > nanddev_get_ecc_conf(nand)->strength))
+ return nanddev_get_ecc_conf(nand)->strength;
+
+ return eccsr;
+
+ case GD5FXGQ4XA_STATUS_ECC_8_BITFLIPS:
+ return 8;
+
+ case STATUS_ECC_UNCOR_ERROR:
+ return -EBADMSG;
+
+ default:
+ return -EINVAL;
+ }
+}
+
+static int gd5fxgm9_set_continuous_read(struct spinand_device *spinand, bool enable)
+{
+ struct gigadevice_priv *priv = spinand->priv;
+ int ret;
+
+ ret = spinand_upd_cfg(spinand, GD_FEATURE_NR,
+ enable ? 0 : GD_FEATURE_NR);
+ if (ret)
+ return ret;
+
+ priv->continuous_read = enable;
+
+ return 0;
+}
+
static int gd5fxgq4xa_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
@@ -542,7 +623,8 @@ static const struct spinand_info gigadevice_spinand_table[] = {
&update_cache_variants),
SPINAND_HAS_QE_BIT,
SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout,
- gd5fxgq4uexxg_ecc_get_status)),
+ gd5fxgm9_ecc_get_status),
+ SPINAND_CONT_READ(gd5fxgm9_set_continuous_read)),
SPINAND_INFO("GD5F1GM9RExxG",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x81, 0x01),
NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
@@ -552,10 +634,31 @@ static const struct spinand_info gigadevice_spinand_table[] = {
&update_cache_variants),
SPINAND_HAS_QE_BIT,
SPINAND_ECCINFO(&gd5fxgqx_variant2_ooblayout,
- gd5fxgq4uexxg_ecc_get_status)),
+ gd5fxgm9_ecc_get_status),
+ SPINAND_CONT_READ(gd5fxgm9_set_continuous_read)),
};
+static int gd5fxgm9_spinand_init(struct spinand_device *spinand)
+{
+ struct gigadevice_priv *priv;
+
+ priv = kzalloc(sizeof(*priv), GFP_KERNEL);
+ if (!priv)
+ return -ENOMEM;
+
+ spinand->priv = priv;
+
+ return 0;
+}
+
+static void gd5fxgm9_spinand_cleanup(struct spinand_device *spinand)
+{
+ kfree(spinand->priv);
+}
+
static const struct spinand_manufacturer_ops gigadevice_spinand_manuf_ops = {
+ .init = gd5fxgm9_spinand_init,
+ .cleanup = gd5fxgm9_spinand_cleanup,
};
const struct spinand_manufacturer gigadevice_spinand_manufacturer = {