summaryrefslogtreecommitdiff
path: root/fs/btrfs/raid56.h
diff options
context:
space:
mode:
Diffstat (limited to 'fs/btrfs/raid56.h')
-rw-r--r--fs/btrfs/raid56.h103
1 files changed, 92 insertions, 11 deletions
diff --git a/fs/btrfs/raid56.h b/fs/btrfs/raid56.h
index 84c4d1d29c7a..1f463ecf7e41 100644
--- a/fs/btrfs/raid56.h
+++ b/fs/btrfs/raid56.h
@@ -16,7 +16,6 @@
#include "volumes.h"
struct page;
-struct sector_ptr;
struct btrfs_fs_info;
enum btrfs_rbio_ops {
@@ -25,6 +24,84 @@ enum btrfs_rbio_ops {
BTRFS_RBIO_PARITY_SCRUB,
};
+/*
+ * Overview of btrfs_raid_bio.
+ *
+ * One btrfs_raid_bio represents a full stripe of RAID56, including both data
+ * and P/Q stripes. For now, each data and P/Q stripe is of a fixed length (64K).
+ *
+ * One btrfs_raid_bio can have one or more bios from higher layer, covering
+ * part or all of the data stripes.
+ *
+ * [PAGES FROM HIGHER LAYER BIOS]
+ * Higher layer bios are in the btrfs_raid_bio::bio_list.
+ *
+ * Pages from the bio_list are represented like the following:
+ *
+ * bio_list: |<- Bio 1 ->| |<- Bio 2 ->| ...
+ * bio_paddrs: [0] [1] [2] [3] [4] [5] ...
+ *
+ * If there is a bio covering a sector (one btrfs fs block), the corresponding
+ * pointer in btrfs_raid_bio::bio_paddrs[] will point to the physical address
+ * (with the offset inside the page) of the corresponding bio.
+ *
+ * If there is no bio covering a sector, then btrfs_raid_bio::bio_paddrs[i] will
+ * be INVALID_PADDR.
+ *
+ * The length of each entry in bio_paddrs[] is a step (aka, min(sectorsize, PAGE_SIZE)).
+ *
+ * [PAGES FOR INTERNAL USAGES]
+ * Pages not covered by any bio or belonging to P/Q stripes are stored in
+ * btrfs_raid_bio::stripe_pages[] and stripe_paddrs[], like the following:
+ *
+ * stripe_pages: |<- Page 0 ->|<- Page 1 ->| ...
+ * stripe_paddrs: [0] [1] [2] [3] [4] ...
+ *
+ * stripe_pages[] array stores all the pages covering the full stripe, including
+ * data and P/Q pages.
+ * stripe_pages[0] is the first page of the first data stripe.
+ * stripe_pages[BTRFS_STRIPE_LEN / PAGE_SIZE] is the first page of the second
+ * data stripe.
+ *
+ * Some pointers inside stripe_pages[] can be NULL, e.g. for a full stripe write
+ * (the bio covers all data stripes) there is no need to allocate pages for
+ * data stripes (can grab from bio_paddrs[]).
+ *
+ * If the corresponding page of stripe_paddrs[i] is not allocated, the value of
+ * stripe_paddrs[i] will be INVALID_PADDR.
+ *
+ * The length of each entry in stripe_paddrs[] is a step.
+ *
+ * [LOCATING A SECTOR]
+ * To locate a sector for IO, we need the following info:
+ *
+ * - stripe_nr
+ * Starts from 0 (representing the first data stripe), ends at
+ * @nr_data (RAID5, P stripe) or @nr_data + 1 (RAID6, Q stripe).
+ *
+ * - sector_nr
+ * Starts from 0 (representing the first sector of the stripe), ends
+ * at BTRFS_STRIPE_LEN / sectorsize - 1.
+ *
+ * - step_nr
+ * A step is min(sector_size, PAGE_SIZE).
+ *
+ * Starts from 0 (representing the first step of the sector), ends
+ * at @sector_nsteps - 1.
+ *
+ * For most call sites they do not need to bother this parameter.
+ * It is for bs > ps support and only for vertical stripe related works.
+ * (e.g. RMW/recover)
+ *
+ * - from which array
+ * Whether grabbing from stripe_paddrs[] (aka, internal pages) or from the
+ * bio_paddrs[] (aka, from the higher layer bios).
+ *
+ * For IO, a physical address is returned, so that we can extract the page and
+ * the offset inside the page for IO.
+ * A special value INVALID_PADDR represents when the physical address is invalid,
+ * normally meaning there is no page allocated for the specified sector.
+ */
struct btrfs_raid_bio {
struct btrfs_io_context *bioc;
@@ -82,6 +159,14 @@ struct btrfs_raid_bio {
/* How many sectors there are for each stripe */
u8 stripe_nsectors;
+ /*
+ * How many steps there are for one sector.
+ *
+ * For bs > ps cases, it's sectorsize / PAGE_SIZE.
+ * For bs <= ps cases, it's always 1.
+ */
+ u8 sector_nsteps;
+
/* Stripe number that we're scrubbing */
u8 scrubp;
@@ -116,13 +201,13 @@ struct btrfs_raid_bio {
struct page **stripe_pages;
/* Pointers to the sectors in the bio_list, for faster lookup */
- struct sector_ptr *bio_sectors;
+ phys_addr_t *bio_paddrs;
- /*
- * For subpage support, we need to map each sector to above
- * stripe_pages.
- */
- struct sector_ptr *stripe_sectors;
+ /* Pointers to the sectors in the stripe_pages[]. */
+ phys_addr_t *stripe_paddrs;
+
+ /* Each set bit means the corresponding sector in stripe_sectors[] is uptodate. */
+ unsigned long *stripe_uptodate_bitmap;
/* Allocated with real_stripes-many pointers for finish_*() calls */
void **finish_pointers;
@@ -131,10 +216,6 @@ struct btrfs_raid_bio {
* The bitmap recording where IO errors happened.
* Each bit is corresponding to one sector in either bio_sectors[] or
* stripe_sectors[] array.
- *
- * The reason we don't use another bit in sector_ptr is, we have two
- * arrays of sectors, and a lot of IO can use sectors in both arrays.
- * Thus making it much harder to iterate.
*/
unsigned long *error_bitmap;