diff options
Diffstat (limited to 'mm/memcontrol-v1.c')
-rw-r--r-- | mm/memcontrol-v1.c | 2221 |
1 files changed, 2221 insertions, 0 deletions
diff --git a/mm/memcontrol-v1.c b/mm/memcontrol-v1.c new file mode 100644 index 000000000000..4b94731305b9 --- /dev/null +++ b/mm/memcontrol-v1.c @@ -0,0 +1,2221 @@ +// SPDX-License-Identifier: GPL-2.0-or-later + +#include <linux/memcontrol.h> +#include <linux/swap.h> +#include <linux/mm_inline.h> +#include <linux/pagewalk.h> +#include <linux/backing-dev.h> +#include <linux/swap_cgroup.h> +#include <linux/eventfd.h> +#include <linux/poll.h> +#include <linux/sort.h> +#include <linux/file.h> +#include <linux/seq_buf.h> + +#include "internal.h" +#include "swap.h" +#include "memcontrol-v1.h" + +/* + * Cgroups above their limits are maintained in a RB-Tree, independent of + * their hierarchy representation + */ + +struct mem_cgroup_tree_per_node { + struct rb_root rb_root; + struct rb_node *rb_rightmost; + spinlock_t lock; +}; + +struct mem_cgroup_tree { + struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; +}; + +static struct mem_cgroup_tree soft_limit_tree __read_mostly; + +/* + * Maximum loops in mem_cgroup_soft_reclaim(), used for soft + * limit reclaim to prevent infinite loops, if they ever occur. + */ +#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 +#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 + +/* for OOM */ +struct mem_cgroup_eventfd_list { + struct list_head list; + struct eventfd_ctx *eventfd; +}; + +/* + * cgroup_event represents events which userspace want to receive. + */ +struct mem_cgroup_event { + /* + * memcg which the event belongs to. + */ + struct mem_cgroup *memcg; + /* + * eventfd to signal userspace about the event. + */ + struct eventfd_ctx *eventfd; + /* + * Each of these stored in a list by the cgroup. + */ + struct list_head list; + /* + * register_event() callback will be used to add new userspace + * waiter for changes related to this event. Use eventfd_signal() + * on eventfd to send notification to userspace. + */ + int (*register_event)(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd, const char *args); + /* + * unregister_event() callback will be called when userspace closes + * the eventfd or on cgroup removing. This callback must be set, + * if you want provide notification functionality. + */ + void (*unregister_event)(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd); + /* + * All fields below needed to unregister event when + * userspace closes eventfd. + */ + poll_table pt; + wait_queue_head_t *wqh; + wait_queue_entry_t wait; + struct work_struct remove; +}; + +#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) +#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) +#define MEMFILE_ATTR(val) ((val) & 0xffff) + +enum { + RES_USAGE, + RES_LIMIT, + RES_MAX_USAGE, + RES_FAILCNT, + RES_SOFT_LIMIT, +}; + +#ifdef CONFIG_LOCKDEP +static struct lockdep_map memcg_oom_lock_dep_map = { + .name = "memcg_oom_lock", +}; +#endif + +DEFINE_SPINLOCK(memcg_oom_lock); + +static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, + struct mem_cgroup_tree_per_node *mctz, + unsigned long new_usage_in_excess) +{ + struct rb_node **p = &mctz->rb_root.rb_node; + struct rb_node *parent = NULL; + struct mem_cgroup_per_node *mz_node; + bool rightmost = true; + + if (mz->on_tree) + return; + + mz->usage_in_excess = new_usage_in_excess; + if (!mz->usage_in_excess) + return; + while (*p) { + parent = *p; + mz_node = rb_entry(parent, struct mem_cgroup_per_node, + tree_node); + if (mz->usage_in_excess < mz_node->usage_in_excess) { + p = &(*p)->rb_left; + rightmost = false; + } else { + p = &(*p)->rb_right; + } + } + + if (rightmost) + mctz->rb_rightmost = &mz->tree_node; + + rb_link_node(&mz->tree_node, parent, p); + rb_insert_color(&mz->tree_node, &mctz->rb_root); + mz->on_tree = true; +} + +static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, + struct mem_cgroup_tree_per_node *mctz) +{ + if (!mz->on_tree) + return; + + if (&mz->tree_node == mctz->rb_rightmost) + mctz->rb_rightmost = rb_prev(&mz->tree_node); + + rb_erase(&mz->tree_node, &mctz->rb_root); + mz->on_tree = false; +} + +static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, + struct mem_cgroup_tree_per_node *mctz) +{ + unsigned long flags; + + spin_lock_irqsave(&mctz->lock, flags); + __mem_cgroup_remove_exceeded(mz, mctz); + spin_unlock_irqrestore(&mctz->lock, flags); +} + +static unsigned long soft_limit_excess(struct mem_cgroup *memcg) +{ + unsigned long nr_pages = page_counter_read(&memcg->memory); + unsigned long soft_limit = READ_ONCE(memcg->soft_limit); + unsigned long excess = 0; + + if (nr_pages > soft_limit) + excess = nr_pages - soft_limit; + + return excess; +} + +static void memcg1_update_tree(struct mem_cgroup *memcg, int nid) +{ + unsigned long excess; + struct mem_cgroup_per_node *mz; + struct mem_cgroup_tree_per_node *mctz; + + if (lru_gen_enabled()) { + if (soft_limit_excess(memcg)) + lru_gen_soft_reclaim(memcg, nid); + return; + } + + mctz = soft_limit_tree.rb_tree_per_node[nid]; + if (!mctz) + return; + /* + * Necessary to update all ancestors when hierarchy is used. + * because their event counter is not touched. + */ + for (; memcg; memcg = parent_mem_cgroup(memcg)) { + mz = memcg->nodeinfo[nid]; + excess = soft_limit_excess(memcg); + /* + * We have to update the tree if mz is on RB-tree or + * mem is over its softlimit. + */ + if (excess || mz->on_tree) { + unsigned long flags; + + spin_lock_irqsave(&mctz->lock, flags); + /* if on-tree, remove it */ + if (mz->on_tree) + __mem_cgroup_remove_exceeded(mz, mctz); + /* + * Insert again. mz->usage_in_excess will be updated. + * If excess is 0, no tree ops. + */ + __mem_cgroup_insert_exceeded(mz, mctz, excess); + spin_unlock_irqrestore(&mctz->lock, flags); + } + } +} + +void memcg1_remove_from_trees(struct mem_cgroup *memcg) +{ + struct mem_cgroup_tree_per_node *mctz; + struct mem_cgroup_per_node *mz; + int nid; + + for_each_node(nid) { + mz = memcg->nodeinfo[nid]; + mctz = soft_limit_tree.rb_tree_per_node[nid]; + if (mctz) + mem_cgroup_remove_exceeded(mz, mctz); + } +} + +static struct mem_cgroup_per_node * +__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) +{ + struct mem_cgroup_per_node *mz; + +retry: + mz = NULL; + if (!mctz->rb_rightmost) + goto done; /* Nothing to reclaim from */ + + mz = rb_entry(mctz->rb_rightmost, + struct mem_cgroup_per_node, tree_node); + /* + * Remove the node now but someone else can add it back, + * we will to add it back at the end of reclaim to its correct + * position in the tree. + */ + __mem_cgroup_remove_exceeded(mz, mctz); + if (!soft_limit_excess(mz->memcg) || + !css_tryget(&mz->memcg->css)) + goto retry; +done: + return mz; +} + +static struct mem_cgroup_per_node * +mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) +{ + struct mem_cgroup_per_node *mz; + + spin_lock_irq(&mctz->lock); + mz = __mem_cgroup_largest_soft_limit_node(mctz); + spin_unlock_irq(&mctz->lock); + return mz; +} + +static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, + pg_data_t *pgdat, + gfp_t gfp_mask, + unsigned long *total_scanned) +{ + struct mem_cgroup *victim = NULL; + int total = 0; + int loop = 0; + unsigned long excess; + unsigned long nr_scanned; + struct mem_cgroup_reclaim_cookie reclaim = { + .pgdat = pgdat, + }; + + excess = soft_limit_excess(root_memcg); + + while (1) { + victim = mem_cgroup_iter(root_memcg, victim, &reclaim); + if (!victim) { + loop++; + if (loop >= 2) { + /* + * If we have not been able to reclaim + * anything, it might because there are + * no reclaimable pages under this hierarchy + */ + if (!total) + break; + /* + * We want to do more targeted reclaim. + * excess >> 2 is not to excessive so as to + * reclaim too much, nor too less that we keep + * coming back to reclaim from this cgroup + */ + if (total >= (excess >> 2) || + (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) + break; + } + continue; + } + total += mem_cgroup_shrink_node(victim, gfp_mask, false, + pgdat, &nr_scanned); + *total_scanned += nr_scanned; + if (!soft_limit_excess(root_memcg)) + break; + } + mem_cgroup_iter_break(root_memcg, victim); + return total; +} + +unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, + gfp_t gfp_mask, + unsigned long *total_scanned) +{ + unsigned long nr_reclaimed = 0; + struct mem_cgroup_per_node *mz, *next_mz = NULL; + unsigned long reclaimed; + int loop = 0; + struct mem_cgroup_tree_per_node *mctz; + unsigned long excess; + + if (lru_gen_enabled()) + return 0; + + if (order > 0) + return 0; + + mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; + + /* + * Do not even bother to check the largest node if the root + * is empty. Do it lockless to prevent lock bouncing. Races + * are acceptable as soft limit is best effort anyway. + */ + if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) + return 0; + + /* + * This loop can run a while, specially if mem_cgroup's continuously + * keep exceeding their soft limit and putting the system under + * pressure + */ + do { + if (next_mz) + mz = next_mz; + else + mz = mem_cgroup_largest_soft_limit_node(mctz); + if (!mz) + break; + + reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, + gfp_mask, total_scanned); + nr_reclaimed += reclaimed; + spin_lock_irq(&mctz->lock); + + /* + * If we failed to reclaim anything from this memory cgroup + * it is time to move on to the next cgroup + */ + next_mz = NULL; + if (!reclaimed) + next_mz = __mem_cgroup_largest_soft_limit_node(mctz); + + excess = soft_limit_excess(mz->memcg); + /* + * One school of thought says that we should not add + * back the node to the tree if reclaim returns 0. + * But our reclaim could return 0, simply because due + * to priority we are exposing a smaller subset of + * memory to reclaim from. Consider this as a longer + * term TODO. + */ + /* If excess == 0, no tree ops */ + __mem_cgroup_insert_exceeded(mz, mctz, excess); + spin_unlock_irq(&mctz->lock); + css_put(&mz->memcg->css); + loop++; + /* + * Could not reclaim anything and there are no more + * mem cgroups to try or we seem to be looping without + * reclaiming anything. + */ + if (!nr_reclaimed && + (next_mz == NULL || + loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) + break; + } while (!nr_reclaimed); + if (next_mz) + css_put(&next_mz->memcg->css); + return nr_reclaimed; +} + +static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + return 0; +} + +#ifdef CONFIG_MMU +static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, + struct cftype *cft, u64 val) +{ + pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. " + "Please report your usecase to linux-mm@kvack.org if you " + "depend on this functionality.\n"); + + if (val != 0) + return -EINVAL; + return 0; +} +#else +static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, + struct cftype *cft, u64 val) +{ + return -ENOSYS; +} +#endif + +static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) +{ + struct mem_cgroup_threshold_ary *t; + unsigned long usage; + int i; + + rcu_read_lock(); + if (!swap) + t = rcu_dereference(memcg->thresholds.primary); + else + t = rcu_dereference(memcg->memsw_thresholds.primary); + + if (!t) + goto unlock; + + usage = mem_cgroup_usage(memcg, swap); + + /* + * current_threshold points to threshold just below or equal to usage. + * If it's not true, a threshold was crossed after last + * call of __mem_cgroup_threshold(). + */ + i = t->current_threshold; + + /* + * Iterate backward over array of thresholds starting from + * current_threshold and check if a threshold is crossed. + * If none of thresholds below usage is crossed, we read + * only one element of the array here. + */ + for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) + eventfd_signal(t->entries[i].eventfd); + + /* i = current_threshold + 1 */ + i++; + + /* + * Iterate forward over array of thresholds starting from + * current_threshold+1 and check if a threshold is crossed. + * If none of thresholds above usage is crossed, we read + * only one element of the array here. + */ + for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) + eventfd_signal(t->entries[i].eventfd); + + /* Update current_threshold */ + t->current_threshold = i - 1; +unlock: + rcu_read_unlock(); +} + +static void mem_cgroup_threshold(struct mem_cgroup *memcg) +{ + while (memcg) { + __mem_cgroup_threshold(memcg, false); + if (do_memsw_account()) + __mem_cgroup_threshold(memcg, true); + + memcg = parent_mem_cgroup(memcg); + } +} + +/* Cgroup1: threshold notifications & softlimit tree updates */ + +/* + * Per memcg event counter is incremented at every pagein/pageout. With THP, + * it will be incremented by the number of pages. This counter is used + * to trigger some periodic events. This is straightforward and better + * than using jiffies etc. to handle periodic memcg event. + */ +enum mem_cgroup_events_target { + MEM_CGROUP_TARGET_THRESH, + MEM_CGROUP_TARGET_SOFTLIMIT, + MEM_CGROUP_NTARGETS, +}; + +struct memcg1_events_percpu { + unsigned long nr_page_events; + unsigned long targets[MEM_CGROUP_NTARGETS]; +}; + +static void memcg1_charge_statistics(struct mem_cgroup *memcg, int nr_pages) +{ + /* pagein of a big page is an event. So, ignore page size */ + if (nr_pages > 0) + count_memcg_events(memcg, PGPGIN, 1); + else { + count_memcg_events(memcg, PGPGOUT, 1); + nr_pages = -nr_pages; /* for event */ + } + + __this_cpu_add(memcg->events_percpu->nr_page_events, nr_pages); +} + +#define THRESHOLDS_EVENTS_TARGET 128 +#define SOFTLIMIT_EVENTS_TARGET 1024 + +static bool memcg1_event_ratelimit(struct mem_cgroup *memcg, + enum mem_cgroup_events_target target) +{ + unsigned long val, next; + + val = __this_cpu_read(memcg->events_percpu->nr_page_events); + next = __this_cpu_read(memcg->events_percpu->targets[target]); + /* from time_after() in jiffies.h */ + if ((long)(next - val) < 0) { + switch (target) { + case MEM_CGROUP_TARGET_THRESH: + next = val + THRESHOLDS_EVENTS_TARGET; + break; + case MEM_CGROUP_TARGET_SOFTLIMIT: + next = val + SOFTLIMIT_EVENTS_TARGET; + break; + default: + break; + } + __this_cpu_write(memcg->events_percpu->targets[target], next); + return true; + } + return false; +} + +/* + * Check events in order. + * + */ +static void memcg1_check_events(struct mem_cgroup *memcg, int nid) +{ + if (IS_ENABLED(CONFIG_PREEMPT_RT)) + return; + + /* threshold event is triggered in finer grain than soft limit */ + if (unlikely(memcg1_event_ratelimit(memcg, + MEM_CGROUP_TARGET_THRESH))) { + bool do_softlimit; + + do_softlimit = memcg1_event_ratelimit(memcg, + MEM_CGROUP_TARGET_SOFTLIMIT); + mem_cgroup_threshold(memcg); + if (unlikely(do_softlimit)) + memcg1_update_tree(memcg, nid); + } +} + +void memcg1_commit_charge(struct folio *folio, struct mem_cgroup *memcg) +{ + unsigned long flags; + + local_irq_save(flags); + memcg1_charge_statistics(memcg, folio_nr_pages(folio)); + memcg1_check_events(memcg, folio_nid(folio)); + local_irq_restore(flags); +} + +/** + * memcg1_swapout - transfer a memsw charge to swap + * @folio: folio whose memsw charge to transfer + * @entry: swap entry to move the charge to + * + * Transfer the memsw charge of @folio to @entry. + */ +void memcg1_swapout(struct folio *folio, swp_entry_t entry) +{ + struct mem_cgroup *memcg, *swap_memcg; + unsigned int nr_entries; + + VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); + VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); + + if (mem_cgroup_disabled()) + return; + + if (!do_memsw_account()) + return; + + memcg = folio_memcg(folio); + + VM_WARN_ON_ONCE_FOLIO(!memcg, folio); + if (!memcg) + return; + + /* + * In case the memcg owning these pages has been offlined and doesn't + * have an ID allocated to it anymore, charge the closest online + * ancestor for the swap instead and transfer the memory+swap charge. + */ + swap_memcg = mem_cgroup_id_get_online(memcg); + nr_entries = folio_nr_pages(folio); + /* Get references for the tail pages, too */ + if (nr_entries > 1) + mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); + mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); + + swap_cgroup_record(folio, mem_cgroup_id(swap_memcg), entry); + + folio_unqueue_deferred_split(folio); + folio->memcg_data = 0; + + if (!mem_cgroup_is_root(memcg)) + page_counter_uncharge(&memcg->memory, nr_entries); + + if (memcg != swap_memcg) { + if (!mem_cgroup_is_root(swap_memcg)) + page_counter_charge(&swap_memcg->memsw, nr_entries); + page_counter_uncharge(&memcg->memsw, nr_entries); + } + + /* + * Interrupts should be disabled here because the caller holds the + * i_pages lock which is taken with interrupts-off. It is + * important here to have the interrupts disabled because it is the + * only synchronisation we have for updating the per-CPU variables. + */ + preempt_disable_nested(); + VM_WARN_ON_IRQS_ENABLED(); + memcg1_charge_statistics(memcg, -folio_nr_pages(folio)); + preempt_enable_nested(); + memcg1_check_events(memcg, folio_nid(folio)); + + css_put(&memcg->css); +} + +/* + * memcg1_swapin - uncharge swap slot + * @entry: the first swap entry for which the pages are charged + * @nr_pages: number of pages which will be uncharged + * + * Call this function after successfully adding the charged page to swapcache. + * + * Note: This function assumes the page for which swap slot is being uncharged + * is order 0 page. + */ +void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages) +{ + /* + * Cgroup1's unified memory+swap counter has been charged with the + * new swapcache page, finish the transfer by uncharging the swap + * slot. The swap slot would also get uncharged when it dies, but + * it can stick around indefinitely and we'd count the page twice + * the entire time. + * + * Cgroup2 has separate resource counters for memory and swap, + * so this is a non-issue here. Memory and swap charge lifetimes + * correspond 1:1 to page and swap slot lifetimes: we charge the + * page to memory here, and uncharge swap when the slot is freed. + */ + if (do_memsw_account()) { + /* + * The swap entry might not get freed for a long time, + * let's not wait for it. The page already received a + * memory+swap charge, drop the swap entry duplicate. + */ + mem_cgroup_uncharge_swap(entry, nr_pages); + } +} + +void memcg1_uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, + unsigned long nr_memory, int nid) +{ + unsigned long flags; + + local_irq_save(flags); + count_memcg_events(memcg, PGPGOUT, pgpgout); + __this_cpu_add(memcg->events_percpu->nr_page_events, nr_memory); + memcg1_check_events(memcg, nid); + local_irq_restore(flags); +} + +static int compare_thresholds(const void *a, const void *b) +{ + const struct mem_cgroup_threshold *_a = a; + const struct mem_cgroup_threshold *_b = b; + + if (_a->threshold > _b->threshold) + return 1; + + if (_a->threshold < _b->threshold) + return -1; + + return 0; +} + +static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) +{ + struct mem_cgroup_eventfd_list *ev; + + spin_lock(&memcg_oom_lock); + + list_for_each_entry(ev, &memcg->oom_notify, list) + eventfd_signal(ev->eventfd); + + spin_unlock(&memcg_oom_lock); + return 0; +} + +static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) +{ + struct mem_cgroup *iter; + + for_each_mem_cgroup_tree(iter, memcg) + mem_cgroup_oom_notify_cb(iter); +} + +static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd, const char *args, enum res_type type) +{ + struct mem_cgroup_thresholds *thresholds; + struct mem_cgroup_threshold_ary *new; + unsigned long threshold; + unsigned long usage; + int i, size, ret; + + ret = page_counter_memparse(args, "-1", &threshold); + if (ret) + return ret; + + mutex_lock(&memcg->thresholds_lock); + + if (type == _MEM) { + thresholds = &memcg->thresholds; + usage = mem_cgroup_usage(memcg, false); + } else if (type == _MEMSWAP) { + thresholds = &memcg->memsw_thresholds; + usage = mem_cgroup_usage(memcg, true); + } else + BUG(); + + /* Check if a threshold crossed before adding a new one */ + if (thresholds->primary) + __mem_cgroup_threshold(memcg, type == _MEMSWAP); + + size = thresholds->primary ? thresholds->primary->size + 1 : 1; + + /* Allocate memory for new array of thresholds */ + new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); + if (!new) { + ret = -ENOMEM; + goto unlock; + } + new->size = size; + + /* Copy thresholds (if any) to new array */ + if (thresholds->primary) + memcpy(new->entries, thresholds->primary->entries, + flex_array_size(new, entries, size - 1)); + + /* Add new threshold */ + new->entries[size - 1].eventfd = eventfd; + new->entries[size - 1].threshold = threshold; + + /* Sort thresholds. Registering of new threshold isn't time-critical */ + sort(new->entries, size, sizeof(*new->entries), + compare_thresholds, NULL); + + /* Find current threshold */ + new->current_threshold = -1; + for (i = 0; i < size; i++) { + if (new->entries[i].threshold <= usage) { + /* + * new->current_threshold will not be used until + * rcu_assign_pointer(), so it's safe to increment + * it here. + */ + ++new->current_threshold; + } else + break; + } + + /* Free old spare buffer and save old primary buffer as spare */ + kfree(thresholds->spare); + thresholds->spare = thresholds->primary; + + rcu_assign_pointer(thresholds->primary, new); + + /* To be sure that nobody uses thresholds */ + synchronize_rcu(); + +unlock: + mutex_unlock(&memcg->thresholds_lock); + + return ret; +} + +static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd, const char *args) +{ + return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); +} + +static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd, const char *args) +{ + return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); +} + +static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd, enum res_type type) +{ + struct mem_cgroup_thresholds *thresholds; + struct mem_cgroup_threshold_ary *new; + unsigned long usage; + int i, j, size, entries; + + mutex_lock(&memcg->thresholds_lock); + + if (type == _MEM) { + thresholds = &memcg->thresholds; + usage = mem_cgroup_usage(memcg, false); + } else if (type == _MEMSWAP) { + thresholds = &memcg->memsw_thresholds; + usage = mem_cgroup_usage(memcg, true); + } else + BUG(); + + if (!thresholds->primary) + goto unlock; + + /* Check if a threshold crossed before removing */ + __mem_cgroup_threshold(memcg, type == _MEMSWAP); + + /* Calculate new number of threshold */ + size = entries = 0; + for (i = 0; i < thresholds->primary->size; i++) { + if (thresholds->primary->entries[i].eventfd != eventfd) + size++; + else + entries++; + } + + new = thresholds->spare; + + /* If no items related to eventfd have been cleared, nothing to do */ + if (!entries) + goto unlock; + + /* Set thresholds array to NULL if we don't have thresholds */ + if (!size) { + kfree(new); + new = NULL; + goto swap_buffers; + } + + new->size = size; + + /* Copy thresholds and find current threshold */ + new->current_threshold = -1; + for (i = 0, j = 0; i < thresholds->primary->size; i++) { + if (thresholds->primary->entries[i].eventfd == eventfd) + continue; + + new->entries[j] = thresholds->primary->entries[i]; + if (new->entries[j].threshold <= usage) { + /* + * new->current_threshold will not be used + * until rcu_assign_pointer(), so it's safe to increment + * it here. + */ + ++new->current_threshold; + } + j++; + } + +swap_buffers: + /* Swap primary and spare array */ + thresholds->spare = thresholds->primary; + + rcu_assign_pointer(thresholds->primary, new); + + /* To be sure that nobody uses thresholds */ + synchronize_rcu(); + + /* If all events are unregistered, free the spare array */ + if (!new) { + kfree(thresholds->spare); + thresholds->spare = NULL; + } +unlock: + mutex_unlock(&memcg->thresholds_lock); +} + +static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd) +{ + return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); +} + +static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd) +{ + return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); +} + +static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd, const char *args) +{ + struct mem_cgroup_eventfd_list *event; + + event = kmalloc(sizeof(*event), GFP_KERNEL); + if (!event) + return -ENOMEM; + + spin_lock(&memcg_oom_lock); + + event->eventfd = eventfd; + list_add(&event->list, &memcg->oom_notify); + + /* already in OOM ? */ + if (memcg->under_oom) + eventfd_signal(eventfd); + spin_unlock(&memcg_oom_lock); + + return 0; +} + +static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd) +{ + struct mem_cgroup_eventfd_list *ev, *tmp; + + spin_lock(&memcg_oom_lock); + + list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { + if (ev->eventfd == eventfd) { + list_del(&ev->list); + kfree(ev); + } + } + + spin_unlock(&memcg_oom_lock); +} + +/* + * DO NOT USE IN NEW FILES. + * + * "cgroup.event_control" implementation. + * + * This is way over-engineered. It tries to support fully configurable + * events for each user. Such level of flexibility is completely + * unnecessary especially in the light of the planned unified hierarchy. + * + * Please deprecate this and replace with something simpler if at all + * possible. + */ + +/* + * Unregister event and free resources. + * + * Gets called from workqueue. + */ +static void memcg_event_remove(struct work_struct *work) +{ + struct mem_cgroup_event *event = + container_of(work, struct mem_cgroup_event, remove); + struct mem_cgroup *memcg = event->memcg; + + remove_wait_queue(event->wqh, &event->wait); + + event->unregister_event(memcg, event->eventfd); + + /* Notify userspace the event is going away. */ + eventfd_signal(event->eventfd); + + eventfd_ctx_put(event->eventfd); + kfree(event); + css_put(&memcg->css); +} + +/* + * Gets called on EPOLLHUP on eventfd when user closes it. + * + * Called with wqh->lock held and interrupts disabled. + */ +static int memcg_event_wake(wait_queue_entry_t *wait, unsigned int mode, + int sync, void *key) +{ + struct mem_cgroup_event *event = + container_of(wait, struct mem_cgroup_event, wait); + struct mem_cgroup *memcg = event->memcg; + __poll_t flags = key_to_poll(key); + + if (flags & EPOLLHUP) { + /* + * If the event has been detached at cgroup removal, we + * can simply return knowing the other side will cleanup + * for us. + * + * We can't race against event freeing since the other + * side will require wqh->lock via remove_wait_queue(), + * which we hold. + */ + spin_lock(&memcg->event_list_lock); + if (!list_empty(&event->list)) { + list_del_init(&event->list); + /* + * We are in atomic context, but cgroup_event_remove() + * may sleep, so we have to call it in workqueue. + */ + schedule_work(&event->remove); + } + spin_unlock(&memcg->event_list_lock); + } + + return 0; +} + +static void memcg_event_ptable_queue_proc(struct file *file, + wait_queue_head_t *wqh, poll_table *pt) +{ + struct mem_cgroup_event *event = + container_of(pt, struct mem_cgroup_event, pt); + + event->wqh = wqh; + add_wait_queue(wqh, &event->wait); +} + +/* + * DO NOT USE IN NEW FILES. + * + * Parse input and register new cgroup event handler. + * + * Input must be in format '<event_fd> <control_fd> <args>'. + * Interpretation of args is defined by control file implementation. + */ +static ssize_t memcg_write_event_control(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + struct cgroup_subsys_state *css = of_css(of); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); + struct mem_cgroup_event *event; + struct cgroup_subsys_state *cfile_css; + unsigned int efd, cfd; + struct dentry *cdentry; + const char *name; + char *endp; + int ret; + + if (IS_ENABLED(CONFIG_PREEMPT_RT)) + return -EOPNOTSUPP; + + buf = strstrip(buf); + + efd = simple_strtoul(buf, &endp, 10); + if (*endp != ' ') + return -EINVAL; + buf = endp + 1; + + cfd = simple_strtoul(buf, &endp, 10); + if (*endp == '\0') + buf = endp; + else if (*endp == ' ') + buf = endp + 1; + else + return -EINVAL; + + CLASS(fd, efile)(efd); + if (fd_empty(efile)) + return -EBADF; + + CLASS(fd, cfile)(cfd); + + event = kzalloc(sizeof(*event), GFP_KERNEL); + if (!event) + return -ENOMEM; + + event->memcg = memcg; + INIT_LIST_HEAD(&event->list); + init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); + init_waitqueue_func_entry(&event->wait, memcg_event_wake); + INIT_WORK(&event->remove, memcg_event_remove); + + event->eventfd = eventfd_ctx_fileget(fd_file(efile)); + if (IS_ERR(event->eventfd)) { + ret = PTR_ERR(event->eventfd); + goto out_kfree; + } + + if (fd_empty(cfile)) { + ret = -EBADF; + goto out_put_eventfd; + } + + /* the process need read permission on control file */ + /* AV: shouldn't we check that it's been opened for read instead? */ + ret = file_permission(fd_file(cfile), MAY_READ); + if (ret < 0) + goto out_put_eventfd; + + /* + * The control file must be a regular cgroup1 file. As a regular cgroup + * file can't be renamed, it's safe to access its name afterwards. + */ + cdentry = fd_file(cfile)->f_path.dentry; + if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) { + ret = -EINVAL; + goto out_put_eventfd; + } + + /* + * Determine the event callbacks and set them in @event. This used + * to be done via struct cftype but cgroup core no longer knows + * about these events. The following is crude but the whole thing + * is for compatibility anyway. + * + * DO NOT ADD NEW FILES. + */ + name = cdentry->d_name.name; + + if (!strcmp(name, "memory.usage_in_bytes")) { + event->register_event = mem_cgroup_usage_register_event; + event->unregister_event = mem_cgroup_usage_unregister_event; + } else if (!strcmp(name, "memory.oom_control")) { + pr_warn_once("oom_control is deprecated and will be removed. " + "Please report your usecase to linux-mm-@kvack.org" + " if you depend on this functionality.\n"); + event->register_event = mem_cgroup_oom_register_event; + event->unregister_event = mem_cgroup_oom_unregister_event; + } else if (!strcmp(name, "memory.pressure_level")) { + pr_warn_once("pressure_level is deprecated and will be removed. " + "Please report your usecase to linux-mm-@kvack.org " + "if you depend on this functionality.\n"); + event->register_event = vmpressure_register_event; + event->unregister_event = vmpressure_unregister_event; + } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { + event->register_event = memsw_cgroup_usage_register_event; + event->unregister_event = memsw_cgroup_usage_unregister_event; + } else { + ret = -EINVAL; + goto out_put_eventfd; + } + + /* + * Verify @cfile should belong to @css. Also, remaining events are + * automatically removed on cgroup destruction but the removal is + * asynchronous, so take an extra ref on @css. + */ + cfile_css = css_tryget_online_from_dir(cdentry->d_parent, + &memory_cgrp_subsys); + ret = -EINVAL; + if (IS_ERR(cfile_css)) + goto out_put_eventfd; + if (cfile_css != css) + goto out_put_css; + + ret = event->register_event(memcg, event->eventfd, buf); + if (ret) + goto out_put_css; + + vfs_poll(fd_file(efile), &event->pt); + + spin_lock_irq(&memcg->event_list_lock); + list_add(&event->list, &memcg->event_list); + spin_unlock_irq(&memcg->event_list_lock); + return nbytes; + +out_put_css: + css_put(cfile_css); +out_put_eventfd: + eventfd_ctx_put(event->eventfd); +out_kfree: + kfree(event); + return ret; +} + +void memcg1_memcg_init(struct mem_cgroup *memcg) +{ + INIT_LIST_HEAD(&memcg->oom_notify); + mutex_init(&memcg->thresholds_lock); + INIT_LIST_HEAD(&memcg->event_list); + spin_lock_init(&memcg->event_list_lock); +} + +void memcg1_css_offline(struct mem_cgroup *memcg) +{ + struct mem_cgroup_event *event, *tmp; + + /* + * Unregister events and notify userspace. + * Notify userspace about cgroup removing only after rmdir of cgroup + * directory to avoid race between userspace and kernelspace. + */ + spin_lock_irq(&memcg->event_list_lock); + list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { + list_del_init(&event->list); + schedule_work(&event->remove); + } + spin_unlock_irq(&memcg->event_list_lock); +} + +/* + * Check OOM-Killer is already running under our hierarchy. + * If someone is running, return false. + */ +static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) +{ + struct mem_cgroup *iter, *failed = NULL; + + spin_lock(&memcg_oom_lock); + + for_each_mem_cgroup_tree(iter, memcg) { + if (iter->oom_lock) { + /* + * this subtree of our hierarchy is already locked + * so we cannot give a lock. + */ + failed = iter; + mem_cgroup_iter_break(memcg, iter); + break; + } + iter->oom_lock = true; + } + + if (failed) { + /* + * OK, we failed to lock the whole subtree so we have + * to clean up what we set up to the failing subtree + */ + for_each_mem_cgroup_tree(iter, memcg) { + if (iter == failed) { + mem_cgroup_iter_break(memcg, iter); + break; + } + iter->oom_lock = false; + } + } else + mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); + + spin_unlock(&memcg_oom_lock); + + return !failed; +} + +static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) +{ + struct mem_cgroup *iter; + + spin_lock(&memcg_oom_lock); + mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); + for_each_mem_cgroup_tree(iter, memcg) + iter->oom_lock = false; + spin_unlock(&memcg_oom_lock); +} + +static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) +{ + struct mem_cgroup *iter; + + spin_lock(&memcg_oom_lock); + for_each_mem_cgroup_tree(iter, memcg) + iter->under_oom++; + spin_unlock(&memcg_oom_lock); +} + +static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) +{ + struct mem_cgroup *iter; + + /* + * Be careful about under_oom underflows because a child memcg + * could have been added after mem_cgroup_mark_under_oom. + */ + spin_lock(&memcg_oom_lock); + for_each_mem_cgroup_tree(iter, memcg) + if (iter->under_oom > 0) + iter->under_oom--; + spin_unlock(&memcg_oom_lock); +} + +static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); + +struct oom_wait_info { + struct mem_cgroup *memcg; + wait_queue_entry_t wait; +}; + +static int memcg_oom_wake_function(wait_queue_entry_t *wait, + unsigned int mode, int sync, void *arg) +{ + struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; + struct mem_cgroup *oom_wait_memcg; + struct oom_wait_info *oom_wait_info; + + oom_wait_info = container_of(wait, struct oom_wait_info, wait); + oom_wait_memcg = oom_wait_info->memcg; + + if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && + !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) + return 0; + return autoremove_wake_function(wait, mode, sync, arg); +} + +void memcg1_oom_recover(struct mem_cgroup *memcg) +{ + /* + * For the following lockless ->under_oom test, the only required + * guarantee is that it must see the state asserted by an OOM when + * this function is called as a result of userland actions + * triggered by the notification of the OOM. This is trivially + * achieved by invoking mem_cgroup_mark_under_oom() before + * triggering notification. + */ + if (memcg && memcg->under_oom) + __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); +} + +/** + * mem_cgroup_oom_synchronize - complete memcg OOM handling + * @handle: actually kill/wait or just clean up the OOM state + * + * This has to be called at the end of a page fault if the memcg OOM + * handler was enabled. + * + * Memcg supports userspace OOM handling where failed allocations must + * sleep on a waitqueue until the userspace task resolves the + * situation. Sleeping directly in the charge context with all kinds + * of locks held is not a good idea, instead we remember an OOM state + * in the task and mem_cgroup_oom_synchronize() has to be called at + * the end of the page fault to complete the OOM handling. + * + * Returns %true if an ongoing memcg OOM situation was detected and + * completed, %false otherwise. + */ +bool mem_cgroup_oom_synchronize(bool handle) +{ + struct mem_cgroup *memcg = current->memcg_in_oom; + struct oom_wait_info owait; + bool locked; + + /* OOM is global, do not handle */ + if (!memcg) + return false; + + if (!handle) + goto cleanup; + + owait.memcg = memcg; + owait.wait.flags = 0; + owait.wait.func = memcg_oom_wake_function; + owait.wait.private = current; + INIT_LIST_HEAD(&owait.wait.entry); + + prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); + mem_cgroup_mark_under_oom(memcg); + + locked = mem_cgroup_oom_trylock(memcg); + + if (locked) + mem_cgroup_oom_notify(memcg); + + schedule(); + mem_cgroup_unmark_under_oom(memcg); + finish_wait(&memcg_oom_waitq, &owait.wait); + + if (locked) + mem_cgroup_oom_unlock(memcg); +cleanup: + current->memcg_in_oom = NULL; + css_put(&memcg->css); + return true; +} + + +bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked) +{ + /* + * We are in the middle of the charge context here, so we + * don't want to block when potentially sitting on a callstack + * that holds all kinds of filesystem and mm locks. + * + * cgroup1 allows disabling the OOM killer and waiting for outside + * handling until the charge can succeed; remember the context and put + * the task to sleep at the end of the page fault when all locks are + * released. + * + * On the other hand, in-kernel OOM killer allows for an async victim + * memory reclaim (oom_reaper) and that means that we are not solely + * relying on the oom victim to make a forward progress and we can + * invoke the oom killer here. + * + * Please note that mem_cgroup_out_of_memory might fail to find a + * victim and then we have to bail out from the charge path. + */ + if (READ_ONCE(memcg->oom_kill_disable)) { + if (current->in_user_fault) { + css_get(&memcg->css); + current->memcg_in_oom = memcg; + } + return false; + } + + mem_cgroup_mark_under_oom(memcg); + + *locked = mem_cgroup_oom_trylock(memcg); + + if (*locked) + mem_cgroup_oom_notify(memcg); + + mem_cgroup_unmark_under_oom(memcg); + + return true; +} + +void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked) +{ + if (locked) + mem_cgroup_oom_unlock(memcg); +} + +static DEFINE_MUTEX(memcg_max_mutex); + +static int mem_cgroup_resize_max(struct mem_cgroup *memcg, + unsigned long max, bool memsw) +{ + bool enlarge = false; + bool drained = false; + int ret; + bool limits_invariant; + struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; + + do { + if (signal_pending(current)) { + ret = -EINTR; + break; + } + + mutex_lock(&memcg_max_mutex); + /* + * Make sure that the new limit (memsw or memory limit) doesn't + * break our basic invariant rule memory.max <= memsw.max. + */ + limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : + max <= memcg->memsw.max; + if (!limits_invariant) { + mutex_unlock(&memcg_max_mutex); + ret = -EINVAL; + break; + } + if (max > counter->max) + enlarge = true; + ret = page_counter_set_max(counter, max); + mutex_unlock(&memcg_max_mutex); + + if (!ret) + break; + + if (!drained) { + drain_all_stock(memcg); + drained = true; + continue; + } + + if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, + memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, NULL)) { + ret = -EBUSY; + break; + } + } while (true); + + if (!ret && enlarge) + memcg1_oom_recover(memcg); + + return ret; +} + +/* + * Reclaims as many pages from the given memcg as possible. + * + * Caller is responsible for holding css reference for memcg. + */ +static int mem_cgroup_force_empty(struct mem_cgroup *memcg) +{ + int nr_retries = MAX_RECLAIM_RETRIES; + + /* we call try-to-free pages for make this cgroup empty */ + lru_add_drain_all(); + + drain_all_stock(memcg); + + /* try to free all pages in this cgroup */ + while (nr_retries && page_counter_read(&memcg->memory)) { + if (signal_pending(current)) + return -EINTR; + + if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, + MEMCG_RECLAIM_MAY_SWAP, NULL)) + nr_retries--; + } + + return 0; +} + +static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, + loff_t off) +{ + struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); + + if (mem_cgroup_is_root(memcg)) + return -EINVAL; + return mem_cgroup_force_empty(memcg) ?: nbytes; +} + +static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + return 1; +} + +static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, + struct cftype *cft, u64 val) +{ + if (val == 1) + return 0; + + pr_warn_once("Non-hierarchical mode is deprecated. " + "Please report your usecase to linux-mm@kvack.org if you " + "depend on this functionality.\n"); + + return -EINVAL; +} + +static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + struct mem_cgroup *memcg = mem_cgroup_from_css(css); + struct page_counter *counter; + + switch (MEMFILE_TYPE(cft->private)) { + case _MEM: + counter = &memcg->memory; + break; + case _MEMSWAP: + counter = &memcg->memsw; + break; + case _KMEM: + counter = &memcg->kmem; + break; + case _TCP: + counter = &memcg->tcpmem; + break; + default: + BUG(); + } + + switch (MEMFILE_ATTR(cft->private)) { + case RES_USAGE: + if (counter == &memcg->memory) + return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; + if (counter == &memcg->memsw) + return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; + return (u64)page_counter_read(counter) * PAGE_SIZE; + case RES_LIMIT: + return (u64)counter->max * PAGE_SIZE; + case RES_MAX_USAGE: + return (u64)counter->watermark * PAGE_SIZE; + case RES_FAILCNT: + return counter->failcnt; + case RES_SOFT_LIMIT: + return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE; + default: + BUG(); + } +} + +/* + * This function doesn't do anything useful. Its only job is to provide a read + * handler for a file so that cgroup_file_mode() will add read permissions. + */ +static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m, + __always_unused void *v) +{ + return -EINVAL; +} + +static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) +{ + int ret; + + mutex_lock(&memcg_max_mutex); + + ret = page_counter_set_max(&memcg->tcpmem, max); + if (ret) + goto out; + + if (!memcg->tcpmem_active) { + /* + * The active flag needs to be written after the static_key + * update. This is what guarantees that the socket activation + * function is the last one to run. See mem_cgroup_sk_alloc() + * for details, and note that we don't mark any socket as + * belonging to this memcg until that flag is up. + * + * We need to do this, because static_keys will span multiple + * sites, but we can't control their order. If we mark a socket + * as accounted, but the accounting functions are not patched in + * yet, we'll lose accounting. + * + * We never race with the readers in mem_cgroup_sk_alloc(), + * because when this value change, the code to process it is not + * patched in yet. + */ + static_branch_inc(&memcg_sockets_enabled_key); + memcg->tcpmem_active = true; + } +out: + mutex_unlock(&memcg_max_mutex); + return ret; +} + +/* + * The user of this function is... + * RES_LIMIT. + */ +static ssize_t mem_cgroup_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); + unsigned long nr_pages; + int ret; + + buf = strstrip(buf); + ret = page_counter_memparse(buf, "-1", &nr_pages); + if (ret) + return ret; + + switch (MEMFILE_ATTR(of_cft(of)->private)) { + case RES_LIMIT: + if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ + ret = -EINVAL; + break; + } + switch (MEMFILE_TYPE(of_cft(of)->private)) { + case _MEM: + ret = mem_cgroup_resize_max(memcg, nr_pages, false); + break; + case _MEMSWAP: + ret = mem_cgroup_resize_max(memcg, nr_pages, true); + break; + case _KMEM: + pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " + "Writing any value to this file has no effect. " + "Please report your usecase to linux-mm@kvack.org if you " + "depend on this functionality.\n"); + ret = 0; + break; + case _TCP: + pr_warn_once("kmem.tcp.limit_in_bytes is deprecated and will be removed. " + "Please report your usecase to linux-mm@kvack.org if you " + "depend on this functionality.\n"); + ret = memcg_update_tcp_max(memcg, nr_pages); + break; + } + break; + case RES_SOFT_LIMIT: + if (IS_ENABLED(CONFIG_PREEMPT_RT)) { + ret = -EOPNOTSUPP; + } else { + pr_warn_once("soft_limit_in_bytes is deprecated and will be removed. " + "Please report your usecase to linux-mm@kvack.org if you " + "depend on this functionality.\n"); + WRITE_ONCE(memcg->soft_limit, nr_pages); + ret = 0; + } + break; + } + return ret ?: nbytes; +} + +static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off) +{ + struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); + struct page_counter *counter; + + switch (MEMFILE_TYPE(of_cft(of)->private)) { + case _MEM: + counter = &memcg->memory; + break; + case _MEMSWAP: + counter = &memcg->memsw; + break; + case _KMEM: + counter = &memcg->kmem; + break; + case _TCP: + counter = &memcg->tcpmem; + break; + default: + BUG(); + } + + switch (MEMFILE_ATTR(of_cft(of)->private)) { + case RES_MAX_USAGE: + page_counter_reset_watermark(counter); + break; + case RES_FAILCNT: + counter->failcnt = 0; + break; + default: + BUG(); + } + + return nbytes; +} + +#ifdef CONFIG_NUMA + +#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) +#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) +#define LRU_ALL ((1 << NR_LRU_LISTS) - 1) + +static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, + int nid, unsigned int lru_mask, bool tree) +{ + struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); + unsigned long nr = 0; + enum lru_list lru; + + VM_BUG_ON((unsigned int)nid >= nr_node_ids); + + for_each_lru(lru) { + if (!(BIT(lru) & lru_mask)) + continue; + if (tree) + nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); + else + nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); + } + return nr; +} + +static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, + unsigned int lru_mask, + bool tree) +{ + unsigned long nr = 0; + enum lru_list lru; + + for_each_lru(lru) { + if (!(BIT(lru) & lru_mask)) + continue; + if (tree) + nr += memcg_page_state(memcg, NR_LRU_BASE + lru); + else + nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); + } + return nr; +} + +static int memcg_numa_stat_show(struct seq_file *m, void *v) +{ + struct numa_stat { + const char *name; + unsigned int lru_mask; + }; + + static const struct numa_stat stats[] = { + { "total", LRU_ALL }, + { "file", LRU_ALL_FILE }, + { "anon", LRU_ALL_ANON }, + { "unevictable", BIT(LRU_UNEVICTABLE) }, + }; + const struct numa_stat *stat; + int nid; + struct mem_cgroup *memcg = mem_cgroup_from_seq(m); + + mem_cgroup_flush_stats(memcg); + + for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { + seq_printf(m, "%s=%lu", stat->name, + mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, + false)); + for_each_node_state(nid, N_MEMORY) + seq_printf(m, " N%d=%lu", nid, + mem_cgroup_node_nr_lru_pages(memcg, nid, + stat->lru_mask, false)); + seq_putc(m, '\n'); + } + + for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { + + seq_printf(m, "hierarchical_%s=%lu", stat->name, + mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, + true)); + for_each_node_state(nid, N_MEMORY) + seq_printf(m, " N%d=%lu", nid, + mem_cgroup_node_nr_lru_pages(memcg, nid, + stat->lru_mask, true)); + seq_putc(m, '\n'); + } + + return 0; +} +#endif /* CONFIG_NUMA */ + +static const unsigned int memcg1_stats[] = { + NR_FILE_PAGES, + NR_ANON_MAPPED, +#ifdef CONFIG_TRANSPARENT_HUGEPAGE + NR_ANON_THPS, +#endif + NR_SHMEM, + NR_FILE_MAPPED, + NR_FILE_DIRTY, + NR_WRITEBACK, + WORKINGSET_REFAULT_ANON, + WORKINGSET_REFAULT_FILE, +#ifdef CONFIG_SWAP + MEMCG_SWAP, + NR_SWAPCACHE, +#endif +}; + +static const char *const memcg1_stat_names[] = { + "cache", + "rss", +#ifdef CONFIG_TRANSPARENT_HUGEPAGE + "rss_huge", +#endif + "shmem", + "mapped_file", + "dirty", + "writeback", + "workingset_refault_anon", + "workingset_refault_file", +#ifdef CONFIG_SWAP + "swap", + "swapcached", +#endif +}; + +/* Universal VM events cgroup1 shows, original sort order */ +static const unsigned int memcg1_events[] = { + PGPGIN, + PGPGOUT, + PGFAULT, + PGMAJFAULT, +}; + +void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) +{ + unsigned long memory, memsw; + struct mem_cgroup *mi; + unsigned int i; + + BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); + + mem_cgroup_flush_stats(memcg); + + for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { + unsigned long nr; + + nr = memcg_page_state_local_output(memcg, memcg1_stats[i]); + seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr); + } + + for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) + seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]), + memcg_events_local(memcg, memcg1_events[i])); + + for (i = 0; i < NR_LRU_LISTS; i++) + seq_buf_printf(s, "%s %lu\n", lru_list_name(i), + memcg_page_state_local(memcg, NR_LRU_BASE + i) * + PAGE_SIZE); + + /* Hierarchical information */ + memory = memsw = PAGE_COUNTER_MAX; + for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { + memory = min(memory, READ_ONCE(mi->memory.max)); + memsw = min(memsw, READ_ONCE(mi->memsw.max)); + } + seq_buf_printf(s, "hierarchical_memory_limit %llu\n", + (u64)memory * PAGE_SIZE); + seq_buf_printf(s, "hierarchical_memsw_limit %llu\n", + (u64)memsw * PAGE_SIZE); + + for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { + unsigned long nr; + + nr = memcg_page_state_output(memcg, memcg1_stats[i]); + seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i], + (u64)nr); + } + + for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) + seq_buf_printf(s, "total_%s %llu\n", + vm_event_name(memcg1_events[i]), + (u64)memcg_events(memcg, memcg1_events[i])); + + for (i = 0; i < NR_LRU_LISTS; i++) + seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i), + (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * + PAGE_SIZE); + +#ifdef CONFIG_DEBUG_VM + { + pg_data_t *pgdat; + struct mem_cgroup_per_node *mz; + unsigned long anon_cost = 0; + unsigned long file_cost = 0; + + for_each_online_pgdat(pgdat) { + mz = memcg->nodeinfo[pgdat->node_id]; + + anon_cost += mz->lruvec.anon_cost; + file_cost += mz->lruvec.file_cost; + } + seq_buf_printf(s, "anon_cost %lu\n", anon_cost); + seq_buf_printf(s, "file_cost %lu\n", file_cost); + } +#endif +} + +static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + struct mem_cgroup *memcg = mem_cgroup_from_css(css); + + return mem_cgroup_swappiness(memcg); +} + +static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, + struct cftype *cft, u64 val) +{ + struct mem_cgroup *memcg = mem_cgroup_from_css(css); + + if (val > MAX_SWAPPINESS) + return -EINVAL; + + if (!mem_cgroup_is_root(memcg)) { + pr_info_once("Per memcg swappiness does not exist in cgroup v2. " + "See memory.reclaim or memory.swap.max there\n "); + WRITE_ONCE(memcg->swappiness, val); + } else + WRITE_ONCE(vm_swappiness, val); + + return 0; +} + +static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) +{ + struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); + + seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable)); + seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); + seq_printf(sf, "oom_kill %lu\n", + atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); + return 0; +} + +static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, + struct cftype *cft, u64 val) +{ + struct mem_cgroup *memcg = mem_cgroup_from_css(css); + + pr_warn_once("oom_control is deprecated and will be removed. " + "Please report your usecase to linux-mm-@kvack.org if you " + "depend on this functionality.\n"); + + /* cannot set to root cgroup and only 0 and 1 are allowed */ + if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) + return -EINVAL; + + WRITE_ONCE(memcg->oom_kill_disable, val); + if (!val) + memcg1_oom_recover(memcg); + + return 0; +} + +#ifdef CONFIG_SLUB_DEBUG +static int mem_cgroup_slab_show(struct seq_file *m, void *p) +{ + /* + * Deprecated. + * Please, take a look at tools/cgroup/memcg_slabinfo.py . + */ + return 0; +} +#endif + +struct cftype mem_cgroup_legacy_files[] = { + { + .name = "usage_in_bytes", + .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "max_usage_in_bytes", + .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), + .write = mem_cgroup_reset, + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "limit_in_bytes", + .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), + .write = mem_cgroup_write, + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "soft_limit_in_bytes", + .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), + .write = mem_cgroup_write, + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "failcnt", + .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), + .write = mem_cgroup_reset, + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "stat", + .seq_show = memory_stat_show, + }, + { + .name = "force_empty", + .write = mem_cgroup_force_empty_write, + }, + { + .name = "use_hierarchy", + .write_u64 = mem_cgroup_hierarchy_write, + .read_u64 = mem_cgroup_hierarchy_read, + }, + { + .name = "cgroup.event_control", /* XXX: for compat */ + .write = memcg_write_event_control, + .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, + }, + { + .name = "swappiness", + .read_u64 = mem_cgroup_swappiness_read, + .write_u64 = mem_cgroup_swappiness_write, + }, + { + .name = "move_charge_at_immigrate", + .read_u64 = mem_cgroup_move_charge_read, + .write_u64 = mem_cgroup_move_charge_write, + }, + { + .name = "oom_control", + .seq_show = mem_cgroup_oom_control_read, + .write_u64 = mem_cgroup_oom_control_write, + }, + { + .name = "pressure_level", + .seq_show = mem_cgroup_dummy_seq_show, + }, +#ifdef CONFIG_NUMA + { + .name = "numa_stat", + .seq_show = memcg_numa_stat_show, + }, +#endif + { + .name = "kmem.limit_in_bytes", + .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), + .write = mem_cgroup_write, + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "kmem.usage_in_bytes", + .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "kmem.failcnt", + .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), + .write = mem_cgroup_reset, + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "kmem.max_usage_in_bytes", + .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), + .write = mem_cgroup_reset, + .read_u64 = mem_cgroup_read_u64, + }, +#ifdef CONFIG_SLUB_DEBUG + { + .name = "kmem.slabinfo", + .seq_show = mem_cgroup_slab_show, + }, +#endif + { + .name = "kmem.tcp.limit_in_bytes", + .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), + .write = mem_cgroup_write, + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "kmem.tcp.usage_in_bytes", + .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "kmem.tcp.failcnt", + .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), + .write = mem_cgroup_reset, + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "kmem.tcp.max_usage_in_bytes", + .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), + .write = mem_cgroup_reset, + .read_u64 = mem_cgroup_read_u64, + }, + { }, /* terminate */ +}; + +struct cftype memsw_files[] = { + { + .name = "memsw.usage_in_bytes", + .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "memsw.max_usage_in_bytes", + .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), + .write = mem_cgroup_reset, + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "memsw.limit_in_bytes", + .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), + .write = mem_cgroup_write, + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "memsw.failcnt", + .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), + .write = mem_cgroup_reset, + .read_u64 = mem_cgroup_read_u64, + }, + { }, /* terminate */ +}; + +void memcg1_account_kmem(struct mem_cgroup *memcg, int nr_pages) +{ + if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { + if (nr_pages > 0) + page_counter_charge(&memcg->kmem, nr_pages); + else + page_counter_uncharge(&memcg->kmem, -nr_pages); + } +} + +bool memcg1_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, + gfp_t gfp_mask) +{ + struct page_counter *fail; + + if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { + memcg->tcpmem_pressure = 0; + return true; + } + memcg->tcpmem_pressure = 1; + if (gfp_mask & __GFP_NOFAIL) { + page_counter_charge(&memcg->tcpmem, nr_pages); + return true; + } + return false; +} + +bool memcg1_alloc_events(struct mem_cgroup *memcg) +{ + memcg->events_percpu = alloc_percpu_gfp(struct memcg1_events_percpu, + GFP_KERNEL_ACCOUNT); + return !!memcg->events_percpu; +} + +void memcg1_free_events(struct mem_cgroup *memcg) +{ + free_percpu(memcg->events_percpu); +} + +static int __init memcg1_init(void) +{ + int node; + + for_each_node(node) { + struct mem_cgroup_tree_per_node *rtpn; + + rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node); + + rtpn->rb_root = RB_ROOT; + rtpn->rb_rightmost = NULL; + spin_lock_init(&rtpn->lock); + soft_limit_tree.rb_tree_per_node[node] = rtpn; + } + + return 0; +} +subsys_initcall(memcg1_init); |