diff options
Diffstat (limited to 'rust/kernel/list.rs')
-rw-r--r-- | rust/kernel/list.rs | 1082 |
1 files changed, 1082 insertions, 0 deletions
diff --git a/rust/kernel/list.rs b/rust/kernel/list.rs new file mode 100644 index 000000000000..c391c30b80f8 --- /dev/null +++ b/rust/kernel/list.rs @@ -0,0 +1,1082 @@ +// SPDX-License-Identifier: GPL-2.0 + +// Copyright (C) 2024 Google LLC. + +//! A linked list implementation. + +use crate::sync::ArcBorrow; +use crate::types::Opaque; +use core::iter::{DoubleEndedIterator, FusedIterator}; +use core::marker::PhantomData; +use core::ptr; +use pin_init::PinInit; + +mod impl_list_item_mod; +pub use self::impl_list_item_mod::{ + impl_has_list_links, impl_has_list_links_self_ptr, impl_list_item, HasListLinks, HasSelfPtr, +}; + +mod arc; +pub use self::arc::{impl_list_arc_safe, AtomicTracker, ListArc, ListArcSafe, TryNewListArc}; + +mod arc_field; +pub use self::arc_field::{define_list_arc_field_getter, ListArcField}; + +/// A linked list. +/// +/// All elements in this linked list will be [`ListArc`] references to the value. Since a value can +/// only have one `ListArc` (for each pair of prev/next pointers), this ensures that the same +/// prev/next pointers are not used for several linked lists. +/// +/// # Invariants +/// +/// * If the list is empty, then `first` is null. Otherwise, `first` points at the `ListLinks` +/// field of the first element in the list. +/// * All prev/next pointers in `ListLinks` fields of items in the list are valid and form a cycle. +/// * For every item in the list, the list owns the associated [`ListArc`] reference and has +/// exclusive access to the `ListLinks` field. +/// +/// # Examples +/// +/// ``` +/// use kernel::list::*; +/// +/// #[pin_data] +/// struct BasicItem { +/// value: i32, +/// #[pin] +/// links: ListLinks, +/// } +/// +/// impl BasicItem { +/// fn new(value: i32) -> Result<ListArc<Self>> { +/// ListArc::pin_init(try_pin_init!(Self { +/// value, +/// links <- ListLinks::new(), +/// }), GFP_KERNEL) +/// } +/// } +/// +/// impl_has_list_links! { +/// impl HasListLinks<0> for BasicItem { self.links } +/// } +/// impl_list_arc_safe! { +/// impl ListArcSafe<0> for BasicItem { untracked; } +/// } +/// impl_list_item! { +/// impl ListItem<0> for BasicItem { using ListLinks; } +/// } +/// +/// // Create a new empty list. +/// let mut list = List::new(); +/// { +/// assert!(list.is_empty()); +/// } +/// +/// // Insert 3 elements using `push_back()`. +/// list.push_back(BasicItem::new(15)?); +/// list.push_back(BasicItem::new(10)?); +/// list.push_back(BasicItem::new(30)?); +/// +/// // Iterate over the list to verify the nodes were inserted correctly. +/// // [15, 10, 30] +/// { +/// let mut iter = list.iter(); +/// assert_eq!(iter.next().unwrap().value, 15); +/// assert_eq!(iter.next().unwrap().value, 10); +/// assert_eq!(iter.next().unwrap().value, 30); +/// assert!(iter.next().is_none()); +/// +/// // Verify the length of the list. +/// assert_eq!(list.iter().count(), 3); +/// } +/// +/// // Pop the items from the list using `pop_back()` and verify the content. +/// { +/// assert_eq!(list.pop_back().unwrap().value, 30); +/// assert_eq!(list.pop_back().unwrap().value, 10); +/// assert_eq!(list.pop_back().unwrap().value, 15); +/// } +/// +/// // Insert 3 elements using `push_front()`. +/// list.push_front(BasicItem::new(15)?); +/// list.push_front(BasicItem::new(10)?); +/// list.push_front(BasicItem::new(30)?); +/// +/// // Iterate over the list to verify the nodes were inserted correctly. +/// // [30, 10, 15] +/// { +/// let mut iter = list.iter(); +/// assert_eq!(iter.next().unwrap().value, 30); +/// assert_eq!(iter.next().unwrap().value, 10); +/// assert_eq!(iter.next().unwrap().value, 15); +/// assert!(iter.next().is_none()); +/// +/// // Verify the length of the list. +/// assert_eq!(list.iter().count(), 3); +/// } +/// +/// // Pop the items from the list using `pop_front()` and verify the content. +/// { +/// assert_eq!(list.pop_front().unwrap().value, 30); +/// assert_eq!(list.pop_front().unwrap().value, 10); +/// } +/// +/// // Push `list2` to `list` through `push_all_back()`. +/// // list: [15] +/// // list2: [25, 35] +/// { +/// let mut list2 = List::new(); +/// list2.push_back(BasicItem::new(25)?); +/// list2.push_back(BasicItem::new(35)?); +/// +/// list.push_all_back(&mut list2); +/// +/// // list: [15, 25, 35] +/// // list2: [] +/// let mut iter = list.iter(); +/// assert_eq!(iter.next().unwrap().value, 15); +/// assert_eq!(iter.next().unwrap().value, 25); +/// assert_eq!(iter.next().unwrap().value, 35); +/// assert!(iter.next().is_none()); +/// assert!(list2.is_empty()); +/// } +/// # Result::<(), Error>::Ok(()) +/// ``` +pub struct List<T: ?Sized + ListItem<ID>, const ID: u64 = 0> { + first: *mut ListLinksFields, + _ty: PhantomData<ListArc<T, ID>>, +} + +// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same +// type of access to the `ListArc<T, ID>` elements. +unsafe impl<T, const ID: u64> Send for List<T, ID> +where + ListArc<T, ID>: Send, + T: ?Sized + ListItem<ID>, +{ +} +// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same +// type of access to the `ListArc<T, ID>` elements. +unsafe impl<T, const ID: u64> Sync for List<T, ID> +where + ListArc<T, ID>: Sync, + T: ?Sized + ListItem<ID>, +{ +} + +/// Implemented by types where a [`ListArc<Self>`] can be inserted into a [`List`]. +/// +/// # Safety +/// +/// Implementers must ensure that they provide the guarantees documented on methods provided by +/// this trait. +/// +/// [`ListArc<Self>`]: ListArc +pub unsafe trait ListItem<const ID: u64 = 0>: ListArcSafe<ID> { + /// Views the [`ListLinks`] for this value. + /// + /// # Guarantees + /// + /// If there is a previous call to `prepare_to_insert` and there is no call to `post_remove` + /// since the most recent such call, then this returns the same pointer as the one returned by + /// the most recent call to `prepare_to_insert`. + /// + /// Otherwise, the returned pointer points at a read-only [`ListLinks`] with two null pointers. + /// + /// # Safety + /// + /// The provided pointer must point at a valid value. (It need not be in an `Arc`.) + unsafe fn view_links(me: *const Self) -> *mut ListLinks<ID>; + + /// View the full value given its [`ListLinks`] field. + /// + /// Can only be used when the value is in a list. + /// + /// # Guarantees + /// + /// * Returns the same pointer as the one passed to the most recent call to `prepare_to_insert`. + /// * The returned pointer is valid until the next call to `post_remove`. + /// + /// # Safety + /// + /// * The provided pointer must originate from the most recent call to `prepare_to_insert`, or + /// from a call to `view_links` that happened after the most recent call to + /// `prepare_to_insert`. + /// * Since the most recent call to `prepare_to_insert`, the `post_remove` method must not have + /// been called. + unsafe fn view_value(me: *mut ListLinks<ID>) -> *const Self; + + /// This is called when an item is inserted into a [`List`]. + /// + /// # Guarantees + /// + /// The caller is granted exclusive access to the returned [`ListLinks`] until `post_remove` is + /// called. + /// + /// # Safety + /// + /// * The provided pointer must point at a valid value in an [`Arc`]. + /// * Calls to `prepare_to_insert` and `post_remove` on the same value must alternate. + /// * The caller must own the [`ListArc`] for this value. + /// * The caller must not give up ownership of the [`ListArc`] unless `post_remove` has been + /// called after this call to `prepare_to_insert`. + /// + /// [`Arc`]: crate::sync::Arc + unsafe fn prepare_to_insert(me: *const Self) -> *mut ListLinks<ID>; + + /// This undoes a previous call to `prepare_to_insert`. + /// + /// # Guarantees + /// + /// The returned pointer is the pointer that was originally passed to `prepare_to_insert`. + /// + /// # Safety + /// + /// The provided pointer must be the pointer returned by the most recent call to + /// `prepare_to_insert`. + unsafe fn post_remove(me: *mut ListLinks<ID>) -> *const Self; +} + +#[repr(C)] +#[derive(Copy, Clone)] +struct ListLinksFields { + next: *mut ListLinksFields, + prev: *mut ListLinksFields, +} + +/// The prev/next pointers for an item in a linked list. +/// +/// # Invariants +/// +/// The fields are null if and only if this item is not in a list. +#[repr(transparent)] +pub struct ListLinks<const ID: u64 = 0> { + // This type is `!Unpin` for aliasing reasons as the pointers are part of an intrusive linked + // list. + inner: Opaque<ListLinksFields>, +} + +// SAFETY: The only way to access/modify the pointers inside of `ListLinks<ID>` is via holding the +// associated `ListArc<T, ID>`. Since that type correctly implements `Send`, it is impossible to +// move this an instance of this type to a different thread if the pointees are `!Send`. +unsafe impl<const ID: u64> Send for ListLinks<ID> {} +// SAFETY: The type is opaque so immutable references to a ListLinks are useless. Therefore, it's +// okay to have immutable access to a ListLinks from several threads at once. +unsafe impl<const ID: u64> Sync for ListLinks<ID> {} + +impl<const ID: u64> ListLinks<ID> { + /// Creates a new initializer for this type. + pub fn new() -> impl PinInit<Self> { + // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will + // not be constructed in an `Arc` that already has a `ListArc`. + ListLinks { + inner: Opaque::new(ListLinksFields { + prev: ptr::null_mut(), + next: ptr::null_mut(), + }), + } + } + + /// # Safety + /// + /// `me` must be dereferenceable. + #[inline] + unsafe fn fields(me: *mut Self) -> *mut ListLinksFields { + // SAFETY: The caller promises that the pointer is valid. + unsafe { Opaque::raw_get(ptr::addr_of!((*me).inner)) } + } + + /// # Safety + /// + /// `me` must be dereferenceable. + #[inline] + unsafe fn from_fields(me: *mut ListLinksFields) -> *mut Self { + me.cast() + } +} + +/// Similar to [`ListLinks`], but also contains a pointer to the full value. +/// +/// This type can be used instead of [`ListLinks`] to support lists with trait objects. +#[repr(C)] +pub struct ListLinksSelfPtr<T: ?Sized, const ID: u64 = 0> { + /// The `ListLinks` field inside this value. + /// + /// This is public so that it can be used with `impl_has_list_links!`. + pub inner: ListLinks<ID>, + // UnsafeCell is not enough here because we use `Opaque::uninit` as a dummy value, and + // `ptr::null()` doesn't work for `T: ?Sized`. + self_ptr: Opaque<*const T>, +} + +// SAFETY: The fields of a ListLinksSelfPtr can be moved across thread boundaries. +unsafe impl<T: ?Sized + Send, const ID: u64> Send for ListLinksSelfPtr<T, ID> {} +// SAFETY: The type is opaque so immutable references to a ListLinksSelfPtr are useless. Therefore, +// it's okay to have immutable access to a ListLinks from several threads at once. +// +// Note that `inner` being a public field does not prevent this type from being opaque, since +// `inner` is a opaque type. +unsafe impl<T: ?Sized + Sync, const ID: u64> Sync for ListLinksSelfPtr<T, ID> {} + +impl<T: ?Sized, const ID: u64> ListLinksSelfPtr<T, ID> { + /// The offset from the [`ListLinks`] to the self pointer field. + pub const LIST_LINKS_SELF_PTR_OFFSET: usize = core::mem::offset_of!(Self, self_ptr); + + /// Creates a new initializer for this type. + pub fn new() -> impl PinInit<Self> { + // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will + // not be constructed in an `Arc` that already has a `ListArc`. + Self { + inner: ListLinks { + inner: Opaque::new(ListLinksFields { + prev: ptr::null_mut(), + next: ptr::null_mut(), + }), + }, + self_ptr: Opaque::uninit(), + } + } +} + +impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> { + /// Creates a new empty list. + pub const fn new() -> Self { + Self { + first: ptr::null_mut(), + _ty: PhantomData, + } + } + + /// Returns whether this list is empty. + pub fn is_empty(&self) -> bool { + self.first.is_null() + } + + /// Inserts `item` before `next` in the cycle. + /// + /// Returns a pointer to the newly inserted element. Never changes `self.first` unless the list + /// is empty. + /// + /// # Safety + /// + /// * `next` must be an element in this list or null. + /// * if `next` is null, then the list must be empty. + unsafe fn insert_inner( + &mut self, + item: ListArc<T, ID>, + next: *mut ListLinksFields, + ) -> *mut ListLinksFields { + let raw_item = ListArc::into_raw(item); + // SAFETY: + // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`. + // * Since we have ownership of the `ListArc`, `post_remove` must have been called after + // the most recent call to `prepare_to_insert`, if any. + // * We own the `ListArc`. + // * Removing items from this list is always done using `remove_internal_inner`, which + // calls `post_remove` before giving up ownership. + let list_links = unsafe { T::prepare_to_insert(raw_item) }; + // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid. + let item = unsafe { ListLinks::fields(list_links) }; + + // Check if the list is empty. + if next.is_null() { + // SAFETY: The caller just gave us ownership of these fields. + // INVARIANT: A linked list with one item should be cyclic. + unsafe { + (*item).next = item; + (*item).prev = item; + } + self.first = item; + } else { + // SAFETY: By the type invariant, this pointer is valid or null. We just checked that + // it's not null, so it must be valid. + let prev = unsafe { (*next).prev }; + // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us + // ownership of the fields on `item`. + // INVARIANT: This correctly inserts `item` between `prev` and `next`. + unsafe { + (*item).next = next; + (*item).prev = prev; + (*prev).next = item; + (*next).prev = item; + } + } + + item + } + + /// Add the provided item to the back of the list. + pub fn push_back(&mut self, item: ListArc<T, ID>) { + // SAFETY: + // * `self.first` is null or in the list. + // * `self.first` is only null if the list is empty. + unsafe { self.insert_inner(item, self.first) }; + } + + /// Add the provided item to the front of the list. + pub fn push_front(&mut self, item: ListArc<T, ID>) { + // SAFETY: + // * `self.first` is null or in the list. + // * `self.first` is only null if the list is empty. + let new_elem = unsafe { self.insert_inner(item, self.first) }; + + // INVARIANT: `new_elem` is in the list because we just inserted it. + self.first = new_elem; + } + + /// Removes the last item from this list. + pub fn pop_back(&mut self) -> Option<ListArc<T, ID>> { + if self.is_empty() { + return None; + } + + // SAFETY: We just checked that the list is not empty. + let last = unsafe { (*self.first).prev }; + // SAFETY: The last item of this list is in this list. + Some(unsafe { self.remove_internal(last) }) + } + + /// Removes the first item from this list. + pub fn pop_front(&mut self) -> Option<ListArc<T, ID>> { + if self.is_empty() { + return None; + } + + // SAFETY: The first item of this list is in this list. + Some(unsafe { self.remove_internal(self.first) }) + } + + /// Removes the provided item from this list and returns it. + /// + /// This returns `None` if the item is not in the list. (Note that by the safety requirements, + /// this means that the item is not in any list.) + /// + /// # Safety + /// + /// `item` must not be in a different linked list (with the same id). + pub unsafe fn remove(&mut self, item: &T) -> Option<ListArc<T, ID>> { + // SAFETY: TODO. + let mut item = unsafe { ListLinks::fields(T::view_links(item)) }; + // SAFETY: The user provided a reference, and reference are never dangling. + // + // As for why this is not a data race, there are two cases: + // + // * If `item` is not in any list, then these fields are read-only and null. + // * If `item` is in this list, then we have exclusive access to these fields since we + // have a mutable reference to the list. + // + // In either case, there's no race. + let ListLinksFields { next, prev } = unsafe { *item }; + + debug_assert_eq!(next.is_null(), prev.is_null()); + if !next.is_null() { + // This is really a no-op, but this ensures that `item` is a raw pointer that was + // obtained without going through a pointer->reference->pointer conversion roundtrip. + // This ensures that the list is valid under the more restrictive strict provenance + // ruleset. + // + // SAFETY: We just checked that `next` is not null, and it's not dangling by the + // list invariants. + unsafe { + debug_assert_eq!(item, (*next).prev); + item = (*next).prev; + } + + // SAFETY: We just checked that `item` is in a list, so the caller guarantees that it + // is in this list. The pointers are in the right order. + Some(unsafe { self.remove_internal_inner(item, next, prev) }) + } else { + None + } + } + + /// Removes the provided item from the list. + /// + /// # Safety + /// + /// `item` must point at an item in this list. + unsafe fn remove_internal(&mut self, item: *mut ListLinksFields) -> ListArc<T, ID> { + // SAFETY: The caller promises that this pointer is not dangling, and there's no data race + // since we have a mutable reference to the list containing `item`. + let ListLinksFields { next, prev } = unsafe { *item }; + // SAFETY: The pointers are ok and in the right order. + unsafe { self.remove_internal_inner(item, next, prev) } + } + + /// Removes the provided item from the list. + /// + /// # Safety + /// + /// The `item` pointer must point at an item in this list, and we must have `(*item).next == + /// next` and `(*item).prev == prev`. + unsafe fn remove_internal_inner( + &mut self, + item: *mut ListLinksFields, + next: *mut ListLinksFields, + prev: *mut ListLinksFields, + ) -> ListArc<T, ID> { + // SAFETY: We have exclusive access to the pointers of items in the list, and the prev/next + // pointers are always valid for items in a list. + // + // INVARIANT: There are three cases: + // * If the list has at least three items, then after removing the item, `prev` and `next` + // will be next to each other. + // * If the list has two items, then the remaining item will point at itself. + // * If the list has one item, then `next == prev == item`, so these writes have no + // effect. The list remains unchanged and `item` is still in the list for now. + unsafe { + (*next).prev = prev; + (*prev).next = next; + } + // SAFETY: We have exclusive access to items in the list. + // INVARIANT: `item` is being removed, so the pointers should be null. + unsafe { + (*item).prev = ptr::null_mut(); + (*item).next = ptr::null_mut(); + } + // INVARIANT: There are three cases: + // * If `item` was not the first item, then `self.first` should remain unchanged. + // * If `item` was the first item and there is another item, then we just updated + // `prev->next` to `next`, which is the new first item, and setting `item->next` to null + // did not modify `prev->next`. + // * If `item` was the only item in the list, then `prev == item`, and we just set + // `item->next` to null, so this correctly sets `first` to null now that the list is + // empty. + if self.first == item { + // SAFETY: The `prev` pointer is the value that `item->prev` had when it was in this + // list, so it must be valid. There is no race since `prev` is still in the list and we + // still have exclusive access to the list. + self.first = unsafe { (*prev).next }; + } + + // SAFETY: `item` used to be in the list, so it is dereferenceable by the type invariants + // of `List`. + let list_links = unsafe { ListLinks::from_fields(item) }; + // SAFETY: Any pointer in the list originates from a `prepare_to_insert` call. + let raw_item = unsafe { T::post_remove(list_links) }; + // SAFETY: The above call to `post_remove` guarantees that we can recreate the `ListArc`. + unsafe { ListArc::from_raw(raw_item) } + } + + /// Moves all items from `other` into `self`. + /// + /// The items of `other` are added to the back of `self`, so the last item of `other` becomes + /// the last item of `self`. + pub fn push_all_back(&mut self, other: &mut List<T, ID>) { + // First, we insert the elements into `self`. At the end, we make `other` empty. + if self.is_empty() { + // INVARIANT: All of the elements in `other` become elements of `self`. + self.first = other.first; + } else if !other.is_empty() { + let other_first = other.first; + // SAFETY: The other list is not empty, so this pointer is valid. + let other_last = unsafe { (*other_first).prev }; + let self_first = self.first; + // SAFETY: The self list is not empty, so this pointer is valid. + let self_last = unsafe { (*self_first).prev }; + + // SAFETY: We have exclusive access to both lists, so we can update the pointers. + // INVARIANT: This correctly sets the pointers to merge both lists. We do not need to + // update `self.first` because the first element of `self` does not change. + unsafe { + (*self_first).prev = other_last; + (*other_last).next = self_first; + (*self_last).next = other_first; + (*other_first).prev = self_last; + } + } + + // INVARIANT: The other list is now empty, so update its pointer. + other.first = ptr::null_mut(); + } + + /// Returns a cursor that points before the first element of the list. + pub fn cursor_front(&mut self) -> Cursor<'_, T, ID> { + // INVARIANT: `self.first` is in this list. + Cursor { + next: self.first, + list: self, + } + } + + /// Returns a cursor that points after the last element in the list. + pub fn cursor_back(&mut self) -> Cursor<'_, T, ID> { + // INVARIANT: `next` is allowed to be null. + Cursor { + next: core::ptr::null_mut(), + list: self, + } + } + + /// Creates an iterator over the list. + pub fn iter(&self) -> Iter<'_, T, ID> { + // INVARIANT: If the list is empty, both pointers are null. Otherwise, both pointers point + // at the first element of the same list. + Iter { + current: self.first, + stop: self.first, + _ty: PhantomData, + } + } +} + +impl<T: ?Sized + ListItem<ID>, const ID: u64> Default for List<T, ID> { + fn default() -> Self { + List::new() + } +} + +impl<T: ?Sized + ListItem<ID>, const ID: u64> Drop for List<T, ID> { + fn drop(&mut self) { + while let Some(item) = self.pop_front() { + drop(item); + } + } +} + +/// An iterator over a [`List`]. +/// +/// # Invariants +/// +/// * There must be a [`List`] that is immutably borrowed for the duration of `'a`. +/// * The `current` pointer is null or points at a value in that [`List`]. +/// * The `stop` pointer is equal to the `first` field of that [`List`]. +#[derive(Clone)] +pub struct Iter<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> { + current: *mut ListLinksFields, + stop: *mut ListLinksFields, + _ty: PhantomData<&'a ListArc<T, ID>>, +} + +impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Iterator for Iter<'a, T, ID> { + type Item = ArcBorrow<'a, T>; + + fn next(&mut self) -> Option<ArcBorrow<'a, T>> { + if self.current.is_null() { + return None; + } + + let current = self.current; + + // SAFETY: We just checked that `current` is not null, so it is in a list, and hence not + // dangling. There's no race because the iterator holds an immutable borrow to the list. + let next = unsafe { (*current).next }; + // INVARIANT: If `current` was the last element of the list, then this updates it to null. + // Otherwise, we update it to the next element. + self.current = if next != self.stop { + next + } else { + ptr::null_mut() + }; + + // SAFETY: The `current` pointer points at a value in the list. + let item = unsafe { T::view_value(ListLinks::from_fields(current)) }; + // SAFETY: + // * All values in a list are stored in an `Arc`. + // * The value cannot be removed from the list for the duration of the lifetime annotated + // on the returned `ArcBorrow`, because removing it from the list would require mutable + // access to the list. However, the `ArcBorrow` is annotated with the iterator's + // lifetime, and the list is immutably borrowed for that lifetime. + // * Values in a list never have a `UniqueArc` reference. + Some(unsafe { ArcBorrow::from_raw(item) }) + } +} + +/// A cursor into a [`List`]. +/// +/// A cursor always rests between two elements in the list. This means that a cursor has a previous +/// and next element, but no current element. It also means that it's possible to have a cursor +/// into an empty list. +/// +/// # Examples +/// +/// ``` +/// use kernel::prelude::*; +/// use kernel::list::{List, ListArc, ListLinks}; +/// +/// #[pin_data] +/// struct ListItem { +/// value: u32, +/// #[pin] +/// links: ListLinks, +/// } +/// +/// impl ListItem { +/// fn new(value: u32) -> Result<ListArc<Self>> { +/// ListArc::pin_init(try_pin_init!(Self { +/// value, +/// links <- ListLinks::new(), +/// }), GFP_KERNEL) +/// } +/// } +/// +/// kernel::list::impl_has_list_links! { +/// impl HasListLinks<0> for ListItem { self.links } +/// } +/// kernel::list::impl_list_arc_safe! { +/// impl ListArcSafe<0> for ListItem { untracked; } +/// } +/// kernel::list::impl_list_item! { +/// impl ListItem<0> for ListItem { using ListLinks; } +/// } +/// +/// // Use a cursor to remove the first element with the given value. +/// fn remove_first(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> { +/// let mut cursor = list.cursor_front(); +/// while let Some(next) = cursor.peek_next() { +/// if next.value == value { +/// return Some(next.remove()); +/// } +/// cursor.move_next(); +/// } +/// None +/// } +/// +/// // Use a cursor to remove the last element with the given value. +/// fn remove_last(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> { +/// let mut cursor = list.cursor_back(); +/// while let Some(prev) = cursor.peek_prev() { +/// if prev.value == value { +/// return Some(prev.remove()); +/// } +/// cursor.move_prev(); +/// } +/// None +/// } +/// +/// // Use a cursor to remove all elements with the given value. The removed elements are moved to +/// // a new list. +/// fn remove_all(list: &mut List<ListItem>, value: u32) -> List<ListItem> { +/// let mut out = List::new(); +/// let mut cursor = list.cursor_front(); +/// while let Some(next) = cursor.peek_next() { +/// if next.value == value { +/// out.push_back(next.remove()); +/// } else { +/// cursor.move_next(); +/// } +/// } +/// out +/// } +/// +/// // Use a cursor to insert a value at a specific index. Returns an error if the index is out of +/// // bounds. +/// fn insert_at(list: &mut List<ListItem>, new: ListArc<ListItem>, idx: usize) -> Result { +/// let mut cursor = list.cursor_front(); +/// for _ in 0..idx { +/// if !cursor.move_next() { +/// return Err(EINVAL); +/// } +/// } +/// cursor.insert_next(new); +/// Ok(()) +/// } +/// +/// // Merge two sorted lists into a single sorted list. +/// fn merge_sorted(list: &mut List<ListItem>, merge: List<ListItem>) { +/// let mut cursor = list.cursor_front(); +/// for to_insert in merge { +/// while let Some(next) = cursor.peek_next() { +/// if to_insert.value < next.value { +/// break; +/// } +/// cursor.move_next(); +/// } +/// cursor.insert_prev(to_insert); +/// } +/// } +/// +/// let mut list = List::new(); +/// list.push_back(ListItem::new(14)?); +/// list.push_back(ListItem::new(12)?); +/// list.push_back(ListItem::new(10)?); +/// list.push_back(ListItem::new(12)?); +/// list.push_back(ListItem::new(15)?); +/// list.push_back(ListItem::new(14)?); +/// assert_eq!(remove_all(&mut list, 12).iter().count(), 2); +/// // [14, 10, 15, 14] +/// assert!(remove_first(&mut list, 14).is_some()); +/// // [10, 15, 14] +/// insert_at(&mut list, ListItem::new(12)?, 2)?; +/// // [10, 15, 12, 14] +/// assert!(remove_last(&mut list, 15).is_some()); +/// // [10, 12, 14] +/// +/// let mut list2 = List::new(); +/// list2.push_back(ListItem::new(11)?); +/// list2.push_back(ListItem::new(13)?); +/// merge_sorted(&mut list, list2); +/// +/// let mut items = list.into_iter(); +/// assert_eq!(items.next().unwrap().value, 10); +/// assert_eq!(items.next().unwrap().value, 11); +/// assert_eq!(items.next().unwrap().value, 12); +/// assert_eq!(items.next().unwrap().value, 13); +/// assert_eq!(items.next().unwrap().value, 14); +/// assert!(items.next().is_none()); +/// # Result::<(), Error>::Ok(()) +/// ``` +/// +/// # Invariants +/// +/// The `next` pointer is null or points a value in `list`. +pub struct Cursor<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> { + list: &'a mut List<T, ID>, + /// Points at the element after this cursor, or null if the cursor is after the last element. + next: *mut ListLinksFields, +} + +impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Cursor<'a, T, ID> { + /// Returns a pointer to the element before the cursor. + /// + /// Returns null if there is no element before the cursor. + fn prev_ptr(&self) -> *mut ListLinksFields { + let mut next = self.next; + let first = self.list.first; + if next == first { + // We are before the first element. + return core::ptr::null_mut(); + } + + if next.is_null() { + // We are after the last element, so we need a pointer to the last element, which is + // the same as `(*first).prev`. + next = first; + } + + // SAFETY: `next` can't be null, because then `first` must also be null, but in that case + // we would have exited at the `next == first` check. Thus, `next` is an element in the + // list, so we can access its `prev` pointer. + unsafe { (*next).prev } + } + + /// Access the element after this cursor. + pub fn peek_next(&mut self) -> Option<CursorPeek<'_, 'a, T, true, ID>> { + if self.next.is_null() { + return None; + } + + // INVARIANT: + // * We just checked that `self.next` is non-null, so it must be in `self.list`. + // * `ptr` is equal to `self.next`. + Some(CursorPeek { + ptr: self.next, + cursor: self, + }) + } + + /// Access the element before this cursor. + pub fn peek_prev(&mut self) -> Option<CursorPeek<'_, 'a, T, false, ID>> { + let prev = self.prev_ptr(); + + if prev.is_null() { + return None; + } + + // INVARIANT: + // * We just checked that `prev` is non-null, so it must be in `self.list`. + // * `self.prev_ptr()` never returns `self.next`. + Some(CursorPeek { + ptr: prev, + cursor: self, + }) + } + + /// Move the cursor one element forward. + /// + /// If the cursor is after the last element, then this call does nothing. This call returns + /// `true` if the cursor's position was changed. + pub fn move_next(&mut self) -> bool { + if self.next.is_null() { + return false; + } + + // SAFETY: `self.next` is an element in the list and we borrow the list mutably, so we can + // access the `next` field. + let mut next = unsafe { (*self.next).next }; + + if next == self.list.first { + next = core::ptr::null_mut(); + } + + // INVARIANT: `next` is either null or the next element after an element in the list. + self.next = next; + true + } + + /// Move the cursor one element backwards. + /// + /// If the cursor is before the first element, then this call does nothing. This call returns + /// `true` if the cursor's position was changed. + pub fn move_prev(&mut self) -> bool { + if self.next == self.list.first { + return false; + } + + // INVARIANT: `prev_ptr()` always returns a pointer that is null or in the list. + self.next = self.prev_ptr(); + true + } + + /// Inserts an element where the cursor is pointing and get a pointer to the new element. + fn insert_inner(&mut self, item: ListArc<T, ID>) -> *mut ListLinksFields { + let ptr = if self.next.is_null() { + self.list.first + } else { + self.next + }; + // SAFETY: + // * `ptr` is an element in the list or null. + // * if `ptr` is null, then `self.list.first` is null so the list is empty. + let item = unsafe { self.list.insert_inner(item, ptr) }; + if self.next == self.list.first { + // INVARIANT: We just inserted `item`, so it's a member of list. + self.list.first = item; + } + item + } + + /// Insert an element at this cursor's location. + pub fn insert(mut self, item: ListArc<T, ID>) { + // This is identical to `insert_prev`, but consumes the cursor. This is helpful because it + // reduces confusion when the last operation on the cursor is an insertion; in that case, + // you just want to insert the element at the cursor, and it is confusing that the call + // involves the word prev or next. + self.insert_inner(item); + } + + /// Inserts an element after this cursor. + /// + /// After insertion, the new element will be after the cursor. + pub fn insert_next(&mut self, item: ListArc<T, ID>) { + self.next = self.insert_inner(item); + } + + /// Inserts an element before this cursor. + /// + /// After insertion, the new element will be before the cursor. + pub fn insert_prev(&mut self, item: ListArc<T, ID>) { + self.insert_inner(item); + } + + /// Remove the next element from the list. + pub fn remove_next(&mut self) -> Option<ListArc<T, ID>> { + self.peek_next().map(|v| v.remove()) + } + + /// Remove the previous element from the list. + pub fn remove_prev(&mut self) -> Option<ListArc<T, ID>> { + self.peek_prev().map(|v| v.remove()) + } +} + +/// References the element in the list next to the cursor. +/// +/// # Invariants +/// +/// * `ptr` is an element in `self.cursor.list`. +/// * `ISNEXT == (self.ptr == self.cursor.next)`. +pub struct CursorPeek<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> { + cursor: &'a mut Cursor<'b, T, ID>, + ptr: *mut ListLinksFields, +} + +impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> + CursorPeek<'a, 'b, T, ISNEXT, ID> +{ + /// Remove the element from the list. + pub fn remove(self) -> ListArc<T, ID> { + if ISNEXT { + self.cursor.move_next(); + } + + // INVARIANT: `self.ptr` is not equal to `self.cursor.next` due to the above `move_next` + // call. + // SAFETY: By the type invariants of `Self`, `next` is not null, so `next` is an element of + // `self.cursor.list` by the type invariants of `Cursor`. + unsafe { self.cursor.list.remove_internal(self.ptr) } + } + + /// Access this value as an [`ArcBorrow`]. + pub fn arc(&self) -> ArcBorrow<'_, T> { + // SAFETY: `self.ptr` points at an element in `self.cursor.list`. + let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) }; + // SAFETY: + // * All values in a list are stored in an `Arc`. + // * The value cannot be removed from the list for the duration of the lifetime annotated + // on the returned `ArcBorrow`, because removing it from the list would require mutable + // access to the `CursorPeek`, the `Cursor` or the `List`. However, the `ArcBorrow` holds + // an immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the + // `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable + // access requires first releasing the immutable borrow on the `CursorPeek`. + // * Values in a list never have a `UniqueArc` reference, because the list has a `ListArc` + // reference, and `UniqueArc` references must be unique. + unsafe { ArcBorrow::from_raw(me) } + } +} + +impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> core::ops::Deref + for CursorPeek<'a, 'b, T, ISNEXT, ID> +{ + // If you change the `ptr` field to have type `ArcBorrow<'a, T>`, it might seem like you could + // get rid of the `CursorPeek::arc` method and change the deref target to `ArcBorrow<'a, T>`. + // However, that doesn't work because 'a is too long. You could obtain an `ArcBorrow<'a, T>` + // and then call `CursorPeek::remove` without giving up the `ArcBorrow<'a, T>`, which would be + // unsound. + type Target = T; + + fn deref(&self) -> &T { + // SAFETY: `self.ptr` points at an element in `self.cursor.list`. + let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) }; + + // SAFETY: The value cannot be removed from the list for the duration of the lifetime + // annotated on the returned `&T`, because removing it from the list would require mutable + // access to the `CursorPeek`, the `Cursor` or the `List`. However, the `&T` holds an + // immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the + // `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable access + // requires first releasing the immutable borrow on the `CursorPeek`. + unsafe { &*me } + } +} + +impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for Iter<'a, T, ID> {} + +impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for &'a List<T, ID> { + type IntoIter = Iter<'a, T, ID>; + type Item = ArcBorrow<'a, T>; + + fn into_iter(self) -> Iter<'a, T, ID> { + self.iter() + } +} + +/// An owning iterator into a [`List`]. +pub struct IntoIter<T: ?Sized + ListItem<ID>, const ID: u64 = 0> { + list: List<T, ID>, +} + +impl<T: ?Sized + ListItem<ID>, const ID: u64> Iterator for IntoIter<T, ID> { + type Item = ListArc<T, ID>; + + fn next(&mut self) -> Option<ListArc<T, ID>> { + self.list.pop_front() + } +} + +impl<T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for IntoIter<T, ID> {} + +impl<T: ?Sized + ListItem<ID>, const ID: u64> DoubleEndedIterator for IntoIter<T, ID> { + fn next_back(&mut self) -> Option<ListArc<T, ID>> { + self.list.pop_back() + } +} + +impl<T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for List<T, ID> { + type IntoIter = IntoIter<T, ID>; + type Item = ListArc<T, ID>; + + fn into_iter(self) -> IntoIter<T, ID> { + IntoIter { list: self } + } +} |