diff options
Diffstat (limited to 'rust/kernel/num/bounded.rs')
| -rw-r--r-- | rust/kernel/num/bounded.rs | 1058 |
1 files changed, 1058 insertions, 0 deletions
diff --git a/rust/kernel/num/bounded.rs b/rust/kernel/num/bounded.rs new file mode 100644 index 000000000000..f870080af8ac --- /dev/null +++ b/rust/kernel/num/bounded.rs @@ -0,0 +1,1058 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Implementation of [`Bounded`], a wrapper around integer types limiting the number of bits +//! usable for value representation. + +use core::{ + cmp, + fmt, + ops::{ + self, + Deref, // + }, //, +}; + +use kernel::{ + num::Integer, + prelude::*, // +}; + +/// Evaluates to `true` if `$value` can be represented using at most `$n` bits in a `$type`. +/// +/// `expr` must be of type `type`, or the result will be incorrect. +/// +/// Can be used in const context. +macro_rules! fits_within { + ($value:expr, $type:ty, $n:expr) => {{ + let shift: u32 = <$type>::BITS - $n; + + // `value` fits within `$n` bits if shifting it left by the number of unused bits, then + // right by the same number, doesn't change it. + // + // This method has the benefit of working for both unsigned and signed values. + ($value << shift) >> shift == $value + }}; +} + +/// Returns `true` if `value` can be represented with at most `N` bits in a `T`. +#[inline(always)] +fn fits_within<T: Integer>(value: T, num_bits: u32) -> bool { + fits_within!(value, T, num_bits) +} + +/// An integer value that requires only the `N` less significant bits of the wrapped type to be +/// encoded. +/// +/// This limits the number of usable bits in the wrapped integer type, and thus the stored value to +/// a narrower range, which provides guarantees that can be useful when working with in e.g. +/// bitfields. +/// +/// # Invariants +/// +/// - `N` is greater than `0`. +/// - `N` is less than or equal to `T::BITS`. +/// - Stored values can be represented with at most `N` bits. +/// +/// # Examples +/// +/// The preferred way to create values is through constants and the [`Bounded::new`] family of +/// constructors, as they trigger a build error if the type invariants cannot be withheld. +/// +/// ``` +/// use kernel::num::Bounded; +/// +/// // An unsigned 8-bit integer, of which only the 4 LSBs are used. +/// // The value `15` is statically validated to fit that constraint at build time. +/// let v = Bounded::<u8, 4>::new::<15>(); +/// assert_eq!(v.get(), 15); +/// +/// // Same using signed values. +/// let v = Bounded::<i8, 4>::new::<-8>(); +/// assert_eq!(v.get(), -8); +/// +/// // This doesn't build: a `u8` is smaller than the requested 9 bits. +/// // let _ = Bounded::<u8, 9>::new::<10>(); +/// +/// // This also doesn't build: the requested value doesn't fit within 4 signed bits. +/// // let _ = Bounded::<i8, 4>::new::<8>(); +/// ``` +/// +/// Values can also be validated at runtime with [`Bounded::try_new`]. +/// +/// ``` +/// use kernel::num::Bounded; +/// +/// // This succeeds because `15` can be represented with 4 unsigned bits. +/// assert!(Bounded::<u8, 4>::try_new(15).is_some()); +/// +/// // This fails because `16` cannot be represented with 4 unsigned bits. +/// assert!(Bounded::<u8, 4>::try_new(16).is_none()); +/// ``` +/// +/// Non-constant expressions can be validated at build-time thanks to compiler optimizations. This +/// should be used with caution, on simple expressions only. +/// +/// ``` +/// use kernel::num::Bounded; +/// # fn some_number() -> u32 { 0xffffffff } +/// +/// // Here the compiler can infer from the mask that the type invariants are not violated, even +/// // though the value returned by `some_number` is not statically known. +/// let v = Bounded::<u32, 4>::from_expr(some_number() & 0xf); +/// ``` +/// +/// Comparison and arithmetic operations are supported on [`Bounded`]s with a compatible backing +/// type, regardless of their number of valid bits. +/// +/// ``` +/// use kernel::num::Bounded; +/// +/// let v1 = Bounded::<u32, 8>::new::<4>(); +/// let v2 = Bounded::<u32, 4>::new::<15>(); +/// +/// assert!(v1 != v2); +/// assert!(v1 < v2); +/// assert_eq!(v1 + v2, 19); +/// assert_eq!(v2 % v1, 3); +/// ``` +/// +/// These operations are also supported between a [`Bounded`] and its backing type. +/// +/// ``` +/// use kernel::num::Bounded; +/// +/// let v = Bounded::<u8, 4>::new::<15>(); +/// +/// assert!(v == 15); +/// assert!(v > 12); +/// assert_eq!(v + 5, 20); +/// assert_eq!(v / 3, 5); +/// ``` +/// +/// A change of backing types is possible using [`Bounded::cast`], and the number of valid bits can +/// be extended or reduced with [`Bounded::extend`] and [`Bounded::try_shrink`]. +/// +/// ``` +/// use kernel::num::Bounded; +/// +/// let v = Bounded::<u32, 12>::new::<127>(); +/// +/// // Changes backing type from `u32` to `u16`. +/// let _: Bounded<u16, 12> = v.cast(); +/// +/// // This does not build, as `u8` is smaller than 12 bits. +/// // let _: Bounded<u8, 12> = v.cast(); +/// +/// // We can safely extend the number of bits... +/// let _ = v.extend::<15>(); +/// +/// // ... to the limits of the backing type. This doesn't build as a `u32` cannot contain 33 bits. +/// // let _ = v.extend::<33>(); +/// +/// // Reducing the number of bits is validated at runtime. This works because `127` can be +/// // represented with 8 bits. +/// assert!(v.try_shrink::<8>().is_some()); +/// +/// // ... but not with 6, so this fails. +/// assert!(v.try_shrink::<6>().is_none()); +/// ``` +/// +/// Infallible conversions from a primitive integer to a large-enough [`Bounded`] are supported. +/// +/// ``` +/// use kernel::num::Bounded; +/// +/// // This unsigned `Bounded` has 8 bits, so it can represent any `u8`. +/// let v = Bounded::<u32, 8>::from(128u8); +/// assert_eq!(v.get(), 128); +/// +/// // This signed `Bounded` has 8 bits, so it can represent any `i8`. +/// let v = Bounded::<i32, 8>::from(-128i8); +/// assert_eq!(v.get(), -128); +/// +/// // This doesn't build, as this 6-bit `Bounded` does not have enough capacity to represent a +/// // `u8` (regardless of the passed value). +/// // let _ = Bounded::<u32, 6>::from(10u8); +/// +/// // Booleans can be converted into single-bit `Bounded`s. +/// +/// let v = Bounded::<u64, 1>::from(false); +/// assert_eq!(v.get(), 0); +/// +/// let v = Bounded::<u64, 1>::from(true); +/// assert_eq!(v.get(), 1); +/// ``` +/// +/// Infallible conversions from a [`Bounded`] to a primitive integer are also supported, and +/// dependent on the number of bits used for value representation, not on the backing type. +/// +/// ``` +/// use kernel::num::Bounded; +/// +/// // Even though its backing type is `u32`, this `Bounded` only uses 6 bits and thus can safely +/// // be converted to a `u8`. +/// let v = Bounded::<u32, 6>::new::<63>(); +/// assert_eq!(u8::from(v), 63); +/// +/// // Same using signed values. +/// let v = Bounded::<i32, 8>::new::<-128>(); +/// assert_eq!(i8::from(v), -128); +/// +/// // This however does not build, as 10 bits won't fit into a `u8` (regardless of the actually +/// // contained value). +/// let _v = Bounded::<u32, 10>::new::<10>(); +/// // assert_eq!(u8::from(_v), 10); +/// +/// // Single-bit `Bounded`s can be converted into a boolean. +/// let v = Bounded::<u8, 1>::new::<1>(); +/// assert_eq!(bool::from(v), true); +/// +/// let v = Bounded::<u8, 1>::new::<0>(); +/// assert_eq!(bool::from(v), false); +/// ``` +/// +/// Fallible conversions from any primitive integer to any [`Bounded`] are also supported using the +/// [`TryIntoBounded`] trait. +/// +/// ``` +/// use kernel::num::{Bounded, TryIntoBounded}; +/// +/// // Succeeds because `128` fits into 8 bits. +/// let v: Option<Bounded<u16, 8>> = 128u32.try_into_bounded(); +/// assert_eq!(v.as_deref().copied(), Some(128)); +/// +/// // Fails because `128` doesn't fits into 6 bits. +/// let v: Option<Bounded<u16, 6>> = 128u32.try_into_bounded(); +/// assert_eq!(v, None); +/// ``` +#[repr(transparent)] +#[derive(Clone, Copy, Debug, Default, Hash)] +pub struct Bounded<T: Integer, const N: u32>(T); + +/// Validating the value as a const expression cannot be done as a regular method, as the +/// arithmetic operations we rely on to check the bounds are not const. Thus, implement +/// [`Bounded::new`] using a macro. +macro_rules! impl_const_new { + ($($type:ty)*) => { + $( + impl<const N: u32> Bounded<$type, N> { + /// Creates a [`Bounded`] for the constant `VALUE`. + /// + /// Fails at build time if `VALUE` cannot be represented with `N` bits. + /// + /// This method should be preferred to [`Self::from_expr`] whenever possible. + /// + /// # Examples + /// + /// ``` + /// use kernel::num::Bounded; + /// + #[doc = ::core::concat!( + "let v = Bounded::<", + ::core::stringify!($type), + ", 4>::new::<7>();")] + /// assert_eq!(v.get(), 7); + /// ``` + pub const fn new<const VALUE: $type>() -> Self { + // Statically assert that `VALUE` fits within the set number of bits. + const { + assert!(fits_within!(VALUE, $type, N)); + } + + // INVARIANT: `fits_within` confirmed that `VALUE` can be represented within + // `N` bits. + Self::__new(VALUE) + } + } + )* + }; +} + +impl_const_new!( + u8 u16 u32 u64 usize + i8 i16 i32 i64 isize +); + +impl<T, const N: u32> Bounded<T, N> +where + T: Integer, +{ + /// Private constructor enforcing the type invariants. + /// + /// All instances of [`Bounded`] must be created through this method as it enforces most of the + /// type invariants. + /// + /// The caller remains responsible for checking, either statically or dynamically, that `value` + /// can be represented as a `T` using at most `N` bits. + const fn __new(value: T) -> Self { + // Enforce the type invariants. + const { + // `N` cannot be zero. + assert!(N != 0); + // The backing type is at least as large as `N` bits. + assert!(N <= T::BITS); + } + + Self(value) + } + + /// Attempts to turn `value` into a `Bounded` using `N` bits. + /// + /// Returns [`None`] if `value` doesn't fit within `N` bits. + /// + /// # Examples + /// + /// ``` + /// use kernel::num::Bounded; + /// + /// let v = Bounded::<u8, 1>::try_new(1); + /// assert_eq!(v.as_deref().copied(), Some(1)); + /// + /// let v = Bounded::<i8, 4>::try_new(-2); + /// assert_eq!(v.as_deref().copied(), Some(-2)); + /// + /// // `0x1ff` doesn't fit into 8 unsigned bits. + /// let v = Bounded::<u32, 8>::try_new(0x1ff); + /// assert_eq!(v, None); + /// + /// // The range of values representable with 4 bits is `[-8..=7]`. The following tests these + /// // limits. + /// let v = Bounded::<i8, 4>::try_new(-8); + /// assert_eq!(v.map(Bounded::get), Some(-8)); + /// let v = Bounded::<i8, 4>::try_new(-9); + /// assert_eq!(v, None); + /// let v = Bounded::<i8, 4>::try_new(7); + /// assert_eq!(v.map(Bounded::get), Some(7)); + /// let v = Bounded::<i8, 4>::try_new(8); + /// assert_eq!(v, None); + /// ``` + pub fn try_new(value: T) -> Option<Self> { + fits_within(value, N).then(|| { + // INVARIANT: `fits_within` confirmed that `value` can be represented within `N` bits. + Self::__new(value) + }) + } + + /// Checks that `expr` is valid for this type at compile-time and build a new value. + /// + /// This relies on [`build_assert!`] and guaranteed optimization to perform validation at + /// compile-time. If `expr` cannot be proved to be within the requested bounds at compile-time, + /// use the fallible [`Self::try_new`] instead. + /// + /// Limit this to simple, easily provable expressions, and prefer one of the [`Self::new`] + /// constructors whenever possible as they statically validate the value instead of relying on + /// compiler optimizations. + /// + /// # Examples + /// + /// ``` + /// use kernel::num::Bounded; + /// # fn some_number() -> u32 { 0xffffffff } + /// + /// // Some undefined number. + /// let v: u32 = some_number(); + /// + /// // Triggers a build error as `v` cannot be asserted to fit within 4 bits... + /// // let _ = Bounded::<u32, 4>::from_expr(v); + /// + /// // ... but this works as the compiler can assert the range from the mask. + /// let _ = Bounded::<u32, 4>::from_expr(v & 0xf); + /// + /// // These expressions are simple enough to be proven correct, but since they are static the + /// // `new` constructor should be preferred. + /// assert_eq!(Bounded::<u8, 1>::from_expr(1).get(), 1); + /// assert_eq!(Bounded::<u16, 8>::from_expr(0xff).get(), 0xff); + /// ``` + #[inline(always)] + pub fn from_expr(expr: T) -> Self { + crate::build_assert!( + fits_within(expr, N), + "Requested value larger than maximal representable value." + ); + + // INVARIANT: `fits_within` confirmed that `expr` can be represented within `N` bits. + Self::__new(expr) + } + + /// Returns the wrapped value as the backing type. + /// + /// # Examples + /// + /// ``` + /// use kernel::num::Bounded; + /// + /// let v = Bounded::<u32, 4>::new::<7>(); + /// assert_eq!(v.get(), 7u32); + /// ``` + pub fn get(self) -> T { + *self.deref() + } + + /// Increases the number of bits usable for `self`. + /// + /// This operation cannot fail. + /// + /// # Examples + /// + /// ``` + /// use kernel::num::Bounded; + /// + /// let v = Bounded::<u32, 4>::new::<7>(); + /// let larger_v = v.extend::<12>(); + /// // The contained values are equal even though `larger_v` has a bigger capacity. + /// assert_eq!(larger_v, v); + /// ``` + pub const fn extend<const M: u32>(self) -> Bounded<T, M> { + const { + assert!( + M >= N, + "Requested number of bits is less than the current representation." + ); + } + + // INVARIANT: The value did fit within `N` bits, so it will all the more fit within + // the larger `M` bits. + Bounded::__new(self.0) + } + + /// Attempts to shrink the number of bits usable for `self`. + /// + /// Returns [`None`] if the value of `self` cannot be represented within `M` bits. + /// + /// # Examples + /// + /// ``` + /// use kernel::num::Bounded; + /// + /// let v = Bounded::<u32, 12>::new::<7>(); + /// + /// // `7` can be represented using 3 unsigned bits... + /// let smaller_v = v.try_shrink::<3>(); + /// assert_eq!(smaller_v.as_deref().copied(), Some(7)); + /// + /// // ... but doesn't fit within `2` bits. + /// assert_eq!(v.try_shrink::<2>(), None); + /// ``` + pub fn try_shrink<const M: u32>(self) -> Option<Bounded<T, M>> { + Bounded::<T, M>::try_new(self.get()) + } + + /// Casts `self` into a [`Bounded`] backed by a different storage type, but using the same + /// number of valid bits. + /// + /// Both `T` and `U` must be of same signedness, and `U` must be at least as large as + /// `N` bits, or a build error will occur. + /// + /// # Examples + /// + /// ``` + /// use kernel::num::Bounded; + /// + /// let v = Bounded::<u32, 12>::new::<127>(); + /// + /// let u16_v: Bounded<u16, 12> = v.cast(); + /// assert_eq!(u16_v.get(), 127); + /// + /// // This won't build: a `u8` is smaller than the required 12 bits. + /// // let _: Bounded<u8, 12> = v.cast(); + /// ``` + pub fn cast<U>(self) -> Bounded<U, N> + where + U: TryFrom<T> + Integer, + T: Integer, + U: Integer<Signedness = T::Signedness>, + { + // SAFETY: The converted value is represented using `N` bits, `U` can contain `N` bits, and + // `U` and `T` have the same sign, hence this conversion cannot fail. + let value = unsafe { U::try_from(self.get()).unwrap_unchecked() }; + + // INVARIANT: Although the backing type has changed, the value is still represented within + // `N` bits, and with the same signedness. + Bounded::__new(value) + } +} + +impl<T, const N: u32> Deref for Bounded<T, N> +where + T: Integer, +{ + type Target = T; + + fn deref(&self) -> &Self::Target { + // Enforce the invariant to inform the compiler of the bounds of the value. + if !fits_within(self.0, N) { + // SAFETY: Per the `Bounded` invariants, `fits_within` can never return `false` on the + // value of a valid instance. + unsafe { core::hint::unreachable_unchecked() } + } + + &self.0 + } +} + +/// Trait similar to [`TryInto`] but for [`Bounded`], to avoid conflicting implementations. +/// +/// # Examples +/// +/// ``` +/// use kernel::num::{Bounded, TryIntoBounded}; +/// +/// // Succeeds because `128` fits into 8 bits. +/// let v: Option<Bounded<u16, 8>> = 128u32.try_into_bounded(); +/// assert_eq!(v.as_deref().copied(), Some(128)); +/// +/// // Fails because `128` doesn't fits into 6 bits. +/// let v: Option<Bounded<u16, 6>> = 128u32.try_into_bounded(); +/// assert_eq!(v, None); +/// ``` +pub trait TryIntoBounded<T: Integer, const N: u32> { + /// Attempts to convert `self` into a [`Bounded`] using `N` bits. + /// + /// Returns [`None`] if `self` does not fit into the target type. + fn try_into_bounded(self) -> Option<Bounded<T, N>>; +} + +/// Any integer value can be attempted to be converted into a [`Bounded`] of any size. +impl<T, U, const N: u32> TryIntoBounded<T, N> for U +where + T: Integer, + U: TryInto<T>, +{ + fn try_into_bounded(self) -> Option<Bounded<T, N>> { + self.try_into().ok().and_then(Bounded::try_new) + } +} + +// Comparisons between `Bounded`s. + +impl<T, U, const N: u32, const M: u32> PartialEq<Bounded<U, M>> for Bounded<T, N> +where + T: Integer, + U: Integer, + T: PartialEq<U>, +{ + fn eq(&self, other: &Bounded<U, M>) -> bool { + self.get() == other.get() + } +} + +impl<T, const N: u32> Eq for Bounded<T, N> where T: Integer {} + +impl<T, U, const N: u32, const M: u32> PartialOrd<Bounded<U, M>> for Bounded<T, N> +where + T: Integer, + U: Integer, + T: PartialOrd<U>, +{ + fn partial_cmp(&self, other: &Bounded<U, M>) -> Option<cmp::Ordering> { + self.get().partial_cmp(&other.get()) + } +} + +impl<T, const N: u32> Ord for Bounded<T, N> +where + T: Integer, + T: Ord, +{ + fn cmp(&self, other: &Self) -> cmp::Ordering { + self.get().cmp(&other.get()) + } +} + +// Comparisons between a `Bounded` and its backing type. + +impl<T, const N: u32> PartialEq<T> for Bounded<T, N> +where + T: Integer, + T: PartialEq, +{ + fn eq(&self, other: &T) -> bool { + self.get() == *other + } +} + +impl<T, const N: u32> PartialOrd<T> for Bounded<T, N> +where + T: Integer, + T: PartialOrd, +{ + fn partial_cmp(&self, other: &T) -> Option<cmp::Ordering> { + self.get().partial_cmp(other) + } +} + +// Implementations of `core::ops` for two `Bounded` with the same backing type. + +impl<T, const N: u32, const M: u32> ops::Add<Bounded<T, M>> for Bounded<T, N> +where + T: Integer, + T: ops::Add<Output = T>, +{ + type Output = T; + + fn add(self, rhs: Bounded<T, M>) -> Self::Output { + self.get() + rhs.get() + } +} + +impl<T, const N: u32, const M: u32> ops::BitAnd<Bounded<T, M>> for Bounded<T, N> +where + T: Integer, + T: ops::BitAnd<Output = T>, +{ + type Output = T; + + fn bitand(self, rhs: Bounded<T, M>) -> Self::Output { + self.get() & rhs.get() + } +} + +impl<T, const N: u32, const M: u32> ops::BitOr<Bounded<T, M>> for Bounded<T, N> +where + T: Integer, + T: ops::BitOr<Output = T>, +{ + type Output = T; + + fn bitor(self, rhs: Bounded<T, M>) -> Self::Output { + self.get() | rhs.get() + } +} + +impl<T, const N: u32, const M: u32> ops::BitXor<Bounded<T, M>> for Bounded<T, N> +where + T: Integer, + T: ops::BitXor<Output = T>, +{ + type Output = T; + + fn bitxor(self, rhs: Bounded<T, M>) -> Self::Output { + self.get() ^ rhs.get() + } +} + +impl<T, const N: u32, const M: u32> ops::Div<Bounded<T, M>> for Bounded<T, N> +where + T: Integer, + T: ops::Div<Output = T>, +{ + type Output = T; + + fn div(self, rhs: Bounded<T, M>) -> Self::Output { + self.get() / rhs.get() + } +} + +impl<T, const N: u32, const M: u32> ops::Mul<Bounded<T, M>> for Bounded<T, N> +where + T: Integer, + T: ops::Mul<Output = T>, +{ + type Output = T; + + fn mul(self, rhs: Bounded<T, M>) -> Self::Output { + self.get() * rhs.get() + } +} + +impl<T, const N: u32, const M: u32> ops::Rem<Bounded<T, M>> for Bounded<T, N> +where + T: Integer, + T: ops::Rem<Output = T>, +{ + type Output = T; + + fn rem(self, rhs: Bounded<T, M>) -> Self::Output { + self.get() % rhs.get() + } +} + +impl<T, const N: u32, const M: u32> ops::Sub<Bounded<T, M>> for Bounded<T, N> +where + T: Integer, + T: ops::Sub<Output = T>, +{ + type Output = T; + + fn sub(self, rhs: Bounded<T, M>) -> Self::Output { + self.get() - rhs.get() + } +} + +// Implementations of `core::ops` between a `Bounded` and its backing type. + +impl<T, const N: u32> ops::Add<T> for Bounded<T, N> +where + T: Integer, + T: ops::Add<Output = T>, +{ + type Output = T; + + fn add(self, rhs: T) -> Self::Output { + self.get() + rhs + } +} + +impl<T, const N: u32> ops::BitAnd<T> for Bounded<T, N> +where + T: Integer, + T: ops::BitAnd<Output = T>, +{ + type Output = T; + + fn bitand(self, rhs: T) -> Self::Output { + self.get() & rhs + } +} + +impl<T, const N: u32> ops::BitOr<T> for Bounded<T, N> +where + T: Integer, + T: ops::BitOr<Output = T>, +{ + type Output = T; + + fn bitor(self, rhs: T) -> Self::Output { + self.get() | rhs + } +} + +impl<T, const N: u32> ops::BitXor<T> for Bounded<T, N> +where + T: Integer, + T: ops::BitXor<Output = T>, +{ + type Output = T; + + fn bitxor(self, rhs: T) -> Self::Output { + self.get() ^ rhs + } +} + +impl<T, const N: u32> ops::Div<T> for Bounded<T, N> +where + T: Integer, + T: ops::Div<Output = T>, +{ + type Output = T; + + fn div(self, rhs: T) -> Self::Output { + self.get() / rhs + } +} + +impl<T, const N: u32> ops::Mul<T> for Bounded<T, N> +where + T: Integer, + T: ops::Mul<Output = T>, +{ + type Output = T; + + fn mul(self, rhs: T) -> Self::Output { + self.get() * rhs + } +} + +impl<T, const N: u32> ops::Neg for Bounded<T, N> +where + T: Integer, + T: ops::Neg<Output = T>, +{ + type Output = T; + + fn neg(self) -> Self::Output { + -self.get() + } +} + +impl<T, const N: u32> ops::Not for Bounded<T, N> +where + T: Integer, + T: ops::Not<Output = T>, +{ + type Output = T; + + fn not(self) -> Self::Output { + !self.get() + } +} + +impl<T, const N: u32> ops::Rem<T> for Bounded<T, N> +where + T: Integer, + T: ops::Rem<Output = T>, +{ + type Output = T; + + fn rem(self, rhs: T) -> Self::Output { + self.get() % rhs + } +} + +impl<T, const N: u32> ops::Sub<T> for Bounded<T, N> +where + T: Integer, + T: ops::Sub<Output = T>, +{ + type Output = T; + + fn sub(self, rhs: T) -> Self::Output { + self.get() - rhs + } +} + +// Proxy implementations of `core::fmt`. + +impl<T, const N: u32> fmt::Display for Bounded<T, N> +where + T: Integer, + T: fmt::Display, +{ + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + self.get().fmt(f) + } +} + +impl<T, const N: u32> fmt::Binary for Bounded<T, N> +where + T: Integer, + T: fmt::Binary, +{ + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + self.get().fmt(f) + } +} + +impl<T, const N: u32> fmt::LowerExp for Bounded<T, N> +where + T: Integer, + T: fmt::LowerExp, +{ + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + self.get().fmt(f) + } +} + +impl<T, const N: u32> fmt::LowerHex for Bounded<T, N> +where + T: Integer, + T: fmt::LowerHex, +{ + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + self.get().fmt(f) + } +} + +impl<T, const N: u32> fmt::Octal for Bounded<T, N> +where + T: Integer, + T: fmt::Octal, +{ + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + self.get().fmt(f) + } +} + +impl<T, const N: u32> fmt::UpperExp for Bounded<T, N> +where + T: Integer, + T: fmt::UpperExp, +{ + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + self.get().fmt(f) + } +} + +impl<T, const N: u32> fmt::UpperHex for Bounded<T, N> +where + T: Integer, + T: fmt::UpperHex, +{ + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + self.get().fmt(f) + } +} + +/// Implements `$trait` for all [`Bounded`] types represented using `$num_bits`. +/// +/// This is used to declare size properties as traits that we can constrain against in impl blocks. +macro_rules! impl_size_rule { + ($trait:ty, $($num_bits:literal)*) => { + $( + impl<T> $trait for Bounded<T, $num_bits> where T: Integer {} + )* + }; +} + +/// Local trait expressing the fact that a given [`Bounded`] has at least `N` bits used for value +/// representation. +trait AtLeastXBits<const N: usize> {} + +/// Implementations for infallibly converting a primitive type into a [`Bounded`] that can contain +/// it. +/// +/// Put into their own module for readability, and to avoid cluttering the rustdoc of the parent +/// module. +mod atleast_impls { + use super::*; + + // Number of bits at least as large as 64. + impl_size_rule!(AtLeastXBits<64>, 64); + + // Anything 64 bits or more is also larger than 32. + impl<T> AtLeastXBits<32> for T where T: AtLeastXBits<64> {} + // Other numbers of bits at least as large as 32. + impl_size_rule!(AtLeastXBits<32>, + 32 33 34 35 36 37 38 39 + 40 41 42 43 44 45 46 47 + 48 49 50 51 52 53 54 55 + 56 57 58 59 60 61 62 63 + ); + + // Anything 32 bits or more is also larger than 16. + impl<T> AtLeastXBits<16> for T where T: AtLeastXBits<32> {} + // Other numbers of bits at least as large as 16. + impl_size_rule!(AtLeastXBits<16>, + 16 17 18 19 20 21 22 23 + 24 25 26 27 28 29 30 31 + ); + + // Anything 16 bits or more is also larger than 8. + impl<T> AtLeastXBits<8> for T where T: AtLeastXBits<16> {} + // Other numbers of bits at least as large as 8. + impl_size_rule!(AtLeastXBits<8>, 8 9 10 11 12 13 14 15); +} + +/// Generates `From` implementations from a primitive type into a [`Bounded`] with +/// enough bits to store any value of that type. +/// +/// Note: The only reason for having this macro is that if we pass `$type` as a generic +/// parameter, we cannot use it in the const context of [`AtLeastXBits`]'s generic parameter. This +/// can be fixed once the `generic_const_exprs` feature is usable, and this macro replaced by a +/// regular `impl` block. +macro_rules! impl_from_primitive { + ($($type:ty)*) => { + $( + #[doc = ::core::concat!( + "Conversion from a [`", + ::core::stringify!($type), + "`] into a [`Bounded`] of same signedness with enough bits to store it.")] + impl<T, const N: u32> From<$type> for Bounded<T, N> + where + $type: Integer, + T: Integer<Signedness = <$type as Integer>::Signedness> + From<$type>, + Self: AtLeastXBits<{ <$type as Integer>::BITS as usize }>, + { + fn from(value: $type) -> Self { + // INVARIANT: The trait bound on `Self` guarantees that `N` bits is + // enough to hold any value of the source type. + Self::__new(T::from(value)) + } + } + )* + } +} + +impl_from_primitive!( + u8 u16 u32 u64 usize + i8 i16 i32 i64 isize +); + +/// Local trait expressing the fact that a given [`Bounded`] fits into a primitive type of `N` bits, +/// provided they have the same signedness. +trait FitsInXBits<const N: usize> {} + +/// Implementations for infallibly converting a [`Bounded`] into a primitive type that can contain +/// it. +/// +/// Put into their own module for readability, and to avoid cluttering the rustdoc of the parent +/// module. +mod fits_impls { + use super::*; + + // Number of bits that fit into a 8-bits primitive. + impl_size_rule!(FitsInXBits<8>, 1 2 3 4 5 6 7 8); + + // Anything that fits into 8 bits also fits into 16. + impl<T> FitsInXBits<16> for T where T: FitsInXBits<8> {} + // Other number of bits that fit into a 16-bits primitive. + impl_size_rule!(FitsInXBits<16>, 9 10 11 12 13 14 15 16); + + // Anything that fits into 16 bits also fits into 32. + impl<T> FitsInXBits<32> for T where T: FitsInXBits<16> {} + // Other number of bits that fit into a 32-bits primitive. + impl_size_rule!(FitsInXBits<32>, + 17 18 19 20 21 22 23 24 + 25 26 27 28 29 30 31 32 + ); + + // Anything that fits into 32 bits also fits into 64. + impl<T> FitsInXBits<64> for T where T: FitsInXBits<32> {} + // Other number of bits that fit into a 64-bits primitive. + impl_size_rule!(FitsInXBits<64>, + 33 34 35 36 37 38 39 40 + 41 42 43 44 45 46 47 48 + 49 50 51 52 53 54 55 56 + 57 58 59 60 61 62 63 64 + ); +} + +/// Generates [`From`] implementations from a [`Bounded`] into a primitive type that is +/// guaranteed to contain it. +/// +/// Note: The only reason for having this macro is that if we pass `$type` as a generic +/// parameter, we cannot use it in the const context of `AtLeastXBits`'s generic parameter. This +/// can be fixed once the `generic_const_exprs` feature is usable, and this macro replaced by a +/// regular `impl` block. +macro_rules! impl_into_primitive { + ($($type:ty)*) => { + $( + #[doc = ::core::concat!( + "Conversion from a [`Bounded`] with no more bits than a [`", + ::core::stringify!($type), + "`] and of same signedness into [`", + ::core::stringify!($type), + "`]")] + impl<T, const N: u32> From<Bounded<T, N>> for $type + where + $type: Integer + TryFrom<T>, + T: Integer<Signedness = <$type as Integer>::Signedness>, + Bounded<T, N>: FitsInXBits<{ <$type as Integer>::BITS as usize }>, + { + fn from(value: Bounded<T, N>) -> $type { + // SAFETY: The trait bound on `Bounded` ensures that any value it holds (which + // is constrained to `N` bits) can fit into the destination type, so this + // conversion cannot fail. + unsafe { <$type>::try_from(value.get()).unwrap_unchecked() } + } + } + )* + } +} + +impl_into_primitive!( + u8 u16 u32 u64 usize + i8 i16 i32 i64 isize +); + +// Single-bit `Bounded`s can be converted from/to a boolean. + +impl<T> From<Bounded<T, 1>> for bool +where + T: Integer + Zeroable, +{ + fn from(value: Bounded<T, 1>) -> Self { + value.get() != Zeroable::zeroed() + } +} + +impl<T, const N: u32> From<bool> for Bounded<T, N> +where + T: Integer + From<bool>, +{ + fn from(value: bool) -> Self { + // INVARIANT: A boolean can be represented using a single bit, and thus fits within any + // integer type for any `N` > 0. + Self::__new(T::from(value)) + } +} |
