diff options
Diffstat (limited to 'rust/kernel/regulator.rs')
-rw-r--r-- | rust/kernel/regulator.rs | 418 |
1 files changed, 418 insertions, 0 deletions
diff --git a/rust/kernel/regulator.rs b/rust/kernel/regulator.rs new file mode 100644 index 000000000000..65f3a125348f --- /dev/null +++ b/rust/kernel/regulator.rs @@ -0,0 +1,418 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Regulator abstractions, providing a standard kernel interface to control +//! voltage and current regulators. +//! +//! The intention is to allow systems to dynamically control regulator power +//! output in order to save power and prolong battery life. This applies to both +//! voltage regulators (where voltage output is controllable) and current sinks +//! (where current limit is controllable). +//! +//! C header: [`include/linux/regulator/consumer.h`](srctree/include/linux/regulator/consumer.h) +//! +//! Regulators are modeled in Rust with a collection of states. Each state may +//! enforce a given invariant, and they may convert between each other where applicable. +//! +//! See [Voltage and current regulator API](https://docs.kernel.org/driver-api/regulator.html) +//! for more information. + +use crate::{ + bindings, + device::Device, + error::{from_err_ptr, to_result, Result}, + prelude::*, +}; + +use core::{marker::PhantomData, mem::ManuallyDrop, ptr::NonNull}; + +mod private { + pub trait Sealed {} + + impl Sealed for super::Enabled {} + impl Sealed for super::Disabled {} + impl Sealed for super::Dynamic {} +} + +/// A trait representing the different states a [`Regulator`] can be in. +pub trait RegulatorState: private::Sealed + 'static { + /// Whether the regulator should be disabled when dropped. + const DISABLE_ON_DROP: bool; +} + +/// A state where the [`Regulator`] is known to be enabled. +/// +/// The `enable` reference count held by this state is decremented when it is +/// dropped. +pub struct Enabled; + +/// A state where this [`Regulator`] handle has not specifically asked for the +/// underlying regulator to be enabled. This means that this reference does not +/// own an `enable` reference count, but the regulator may still be on. +pub struct Disabled; + +/// A state that models the C API. The [`Regulator`] can be either enabled or +/// disabled, and the user is in control of the reference count. This is also +/// the default state. +/// +/// Use [`Regulator::is_enabled`] to check the regulator's current state. +pub struct Dynamic; + +impl RegulatorState for Enabled { + const DISABLE_ON_DROP: bool = true; +} + +impl RegulatorState for Disabled { + const DISABLE_ON_DROP: bool = false; +} + +impl RegulatorState for Dynamic { + const DISABLE_ON_DROP: bool = false; +} + +/// A trait that abstracts the ability to check if a [`Regulator`] is enabled. +pub trait IsEnabled: RegulatorState {} +impl IsEnabled for Disabled {} +impl IsEnabled for Dynamic {} + +/// An error that can occur when trying to convert a [`Regulator`] between states. +pub struct Error<State: RegulatorState> { + /// The error that occurred. + pub error: kernel::error::Error, + + /// The regulator that caused the error, so that the operation may be retried. + pub regulator: Regulator<State>, +} + +/// A `struct regulator` abstraction. +/// +/// # Examples +/// +/// ## Enabling a regulator +/// +/// This example uses [`Regulator<Enabled>`], which is suitable for drivers that +/// enable a regulator at probe time and leave them on until the device is +/// removed or otherwise shutdown. +/// +/// These users can store [`Regulator<Enabled>`] directly in their driver's +/// private data struct. +/// +/// ``` +/// # use kernel::prelude::*; +/// # use kernel::c_str; +/// # use kernel::device::Device; +/// # use kernel::regulator::{Voltage, Regulator, Disabled, Enabled}; +/// fn enable(dev: &Device, min_voltage: Voltage, max_voltage: Voltage) -> Result { +/// // Obtain a reference to a (fictitious) regulator. +/// let regulator: Regulator<Disabled> = Regulator::<Disabled>::get(dev, c_str!("vcc"))?; +/// +/// // The voltage can be set before enabling the regulator if needed, e.g.: +/// regulator.set_voltage(min_voltage, max_voltage)?; +/// +/// // The same applies for `get_voltage()`, i.e.: +/// let voltage: Voltage = regulator.get_voltage()?; +/// +/// // Enables the regulator, consuming the previous value. +/// // +/// // From now on, the regulator is known to be enabled because of the type +/// // `Enabled`. +/// // +/// // If this operation fails, the `Error` will contain the regulator +/// // reference, so that the operation may be retried. +/// let regulator: Regulator<Enabled> = +/// regulator.try_into_enabled().map_err(|error| error.error)?; +/// +/// // The voltage can also be set after enabling the regulator, e.g.: +/// regulator.set_voltage(min_voltage, max_voltage)?; +/// +/// // The same applies for `get_voltage()`, i.e.: +/// let voltage: Voltage = regulator.get_voltage()?; +/// +/// // Dropping an enabled regulator will disable it. The refcount will be +/// // decremented. +/// drop(regulator); +/// +/// // ... +/// +/// Ok(()) +/// } +/// ``` +/// +/// A more concise shortcut is available for enabling a regulator. This is +/// equivalent to `regulator_get_enable()`: +/// +/// ``` +/// # use kernel::prelude::*; +/// # use kernel::c_str; +/// # use kernel::device::Device; +/// # use kernel::regulator::{Voltage, Regulator, Enabled}; +/// fn enable(dev: &Device) -> Result { +/// // Obtain a reference to a (fictitious) regulator and enable it. +/// let regulator: Regulator<Enabled> = Regulator::<Enabled>::get(dev, c_str!("vcc"))?; +/// +/// // Dropping an enabled regulator will disable it. The refcount will be +/// // decremented. +/// drop(regulator); +/// +/// // ... +/// +/// Ok(()) +/// } +/// ``` +/// +/// ## Disabling a regulator +/// +/// ``` +/// # use kernel::prelude::*; +/// # use kernel::device::Device; +/// # use kernel::regulator::{Regulator, Enabled, Disabled}; +/// fn disable(dev: &Device, regulator: Regulator<Enabled>) -> Result { +/// // We can also disable an enabled regulator without reliquinshing our +/// // refcount: +/// // +/// // If this operation fails, the `Error` will contain the regulator +/// // reference, so that the operation may be retried. +/// let regulator: Regulator<Disabled> = +/// regulator.try_into_disabled().map_err(|error| error.error)?; +/// +/// // The refcount will be decremented when `regulator` is dropped. +/// drop(regulator); +/// +/// // ... +/// +/// Ok(()) +/// } +/// ``` +/// +/// ## Using [`Regulator<Dynamic>`] +/// +/// This example mimics the behavior of the C API, where the user is in +/// control of the enabled reference count. This is useful for drivers that +/// might call enable and disable to manage the `enable` reference count at +/// runtime, perhaps as a result of `open()` and `close()` calls or whatever +/// other driver-specific or subsystem-specific hooks. +/// +/// ``` +/// # use kernel::prelude::*; +/// # use kernel::c_str; +/// # use kernel::device::Device; +/// # use kernel::regulator::{Regulator, Dynamic}; +/// struct PrivateData { +/// regulator: Regulator<Dynamic>, +/// } +/// +/// // A fictictious probe function that obtains a regulator and sets it up. +/// fn probe(dev: &Device) -> Result<PrivateData> { +/// // Obtain a reference to a (fictitious) regulator. +/// let mut regulator = Regulator::<Dynamic>::get(dev, c_str!("vcc"))?; +/// +/// Ok(PrivateData { regulator }) +/// } +/// +/// // A fictictious function that indicates that the device is going to be used. +/// fn open(dev: &Device, data: &mut PrivateData) -> Result { +/// // Increase the `enabled` reference count. +/// data.regulator.enable()?; +/// +/// Ok(()) +/// } +/// +/// fn close(dev: &Device, data: &mut PrivateData) -> Result { +/// // Decrease the `enabled` reference count. +/// data.regulator.disable()?; +/// +/// Ok(()) +/// } +/// +/// fn remove(dev: &Device, data: PrivateData) -> Result { +/// // `PrivateData` is dropped here, which will drop the +/// // `Regulator<Dynamic>` in turn. +/// // +/// // The reference that was obtained by `regulator_get()` will be +/// // released, but it is up to the user to make sure that the number of calls +/// // to `enable()` and `disabled()` are balanced before this point. +/// Ok(()) +/// } +/// ``` +/// +/// # Invariants +/// +/// - `inner` is a non-null wrapper over a pointer to a `struct +/// regulator` obtained from [`regulator_get()`]. +/// +/// [`regulator_get()`]: https://docs.kernel.org/driver-api/regulator.html#c.regulator_get +pub struct Regulator<State = Dynamic> +where + State: RegulatorState, +{ + inner: NonNull<bindings::regulator>, + _phantom: PhantomData<State>, +} + +impl<T: RegulatorState> Regulator<T> { + /// Sets the voltage for the regulator. + /// + /// This can be used to ensure that the device powers up cleanly. + pub fn set_voltage(&self, min_voltage: Voltage, max_voltage: Voltage) -> Result { + // SAFETY: Safe as per the type invariants of `Regulator`. + to_result(unsafe { + bindings::regulator_set_voltage( + self.inner.as_ptr(), + min_voltage.as_microvolts(), + max_voltage.as_microvolts(), + ) + }) + } + + /// Gets the current voltage of the regulator. + pub fn get_voltage(&self) -> Result<Voltage> { + // SAFETY: Safe as per the type invariants of `Regulator`. + let voltage = unsafe { bindings::regulator_get_voltage(self.inner.as_ptr()) }; + if voltage < 0 { + Err(kernel::error::Error::from_errno(voltage)) + } else { + Ok(Voltage::from_microvolts(voltage)) + } + } + + fn get_internal(dev: &Device, name: &CStr) -> Result<Regulator<T>> { + // SAFETY: It is safe to call `regulator_get()`, on a device pointer + // received from the C code. + let inner = from_err_ptr(unsafe { bindings::regulator_get(dev.as_raw(), name.as_ptr()) })?; + + // SAFETY: We can safely trust `inner` to be a pointer to a valid + // regulator if `ERR_PTR` was not returned. + let inner = unsafe { NonNull::new_unchecked(inner) }; + + Ok(Self { + inner, + _phantom: PhantomData, + }) + } + + fn enable_internal(&mut self) -> Result { + // SAFETY: Safe as per the type invariants of `Regulator`. + to_result(unsafe { bindings::regulator_enable(self.inner.as_ptr()) }) + } + + fn disable_internal(&mut self) -> Result { + // SAFETY: Safe as per the type invariants of `Regulator`. + to_result(unsafe { bindings::regulator_disable(self.inner.as_ptr()) }) + } +} + +impl Regulator<Disabled> { + /// Obtains a [`Regulator`] instance from the system. + pub fn get(dev: &Device, name: &CStr) -> Result<Self> { + Regulator::get_internal(dev, name) + } + + /// Attempts to convert the regulator to an enabled state. + pub fn try_into_enabled(self) -> Result<Regulator<Enabled>, Error<Disabled>> { + // We will be transferring the ownership of our `regulator_get()` count to + // `Regulator<Enabled>`. + let mut regulator = ManuallyDrop::new(self); + + regulator + .enable_internal() + .map(|()| Regulator { + inner: regulator.inner, + _phantom: PhantomData, + }) + .map_err(|error| Error { + error, + regulator: ManuallyDrop::into_inner(regulator), + }) + } +} + +impl Regulator<Enabled> { + /// Obtains a [`Regulator`] instance from the system and enables it. + /// + /// This is equivalent to calling `regulator_get_enable()` in the C API. + pub fn get(dev: &Device, name: &CStr) -> Result<Self> { + Regulator::<Disabled>::get_internal(dev, name)? + .try_into_enabled() + .map_err(|error| error.error) + } + + /// Attempts to convert the regulator to a disabled state. + pub fn try_into_disabled(self) -> Result<Regulator<Disabled>, Error<Enabled>> { + // We will be transferring the ownership of our `regulator_get()` count + // to `Regulator<Disabled>`. + let mut regulator = ManuallyDrop::new(self); + + regulator + .disable_internal() + .map(|()| Regulator { + inner: regulator.inner, + _phantom: PhantomData, + }) + .map_err(|error| Error { + error, + regulator: ManuallyDrop::into_inner(regulator), + }) + } +} + +impl Regulator<Dynamic> { + /// Obtains a [`Regulator`] instance from the system. The current state of + /// the regulator is unknown and it is up to the user to manage the enabled + /// reference count. + /// + /// This closely mimics the behavior of the C API and can be used to + /// dynamically manage the enabled reference count at runtime. + pub fn get(dev: &Device, name: &CStr) -> Result<Self> { + Regulator::get_internal(dev, name) + } + + /// Increases the `enabled` reference count. + pub fn enable(&mut self) -> Result { + self.enable_internal() + } + + /// Decreases the `enabled` reference count. + pub fn disable(&mut self) -> Result { + self.disable_internal() + } +} + +impl<T: IsEnabled> Regulator<T> { + /// Checks if the regulator is enabled. + pub fn is_enabled(&self) -> bool { + // SAFETY: Safe as per the type invariants of `Regulator`. + unsafe { bindings::regulator_is_enabled(self.inner.as_ptr()) != 0 } + } +} + +impl<T: RegulatorState> Drop for Regulator<T> { + fn drop(&mut self) { + if T::DISABLE_ON_DROP { + // SAFETY: By the type invariants, we know that `self` owns a + // reference on the enabled refcount, so it is safe to relinquish it + // now. + unsafe { bindings::regulator_disable(self.inner.as_ptr()) }; + } + // SAFETY: By the type invariants, we know that `self` owns a reference, + // so it is safe to relinquish it now. + unsafe { bindings::regulator_put(self.inner.as_ptr()) }; + } +} + +/// A voltage. +/// +/// This type represents a voltage value in microvolts. +#[repr(transparent)] +#[derive(Copy, Clone, PartialEq, Eq)] +pub struct Voltage(i32); + +impl Voltage { + /// Creates a new `Voltage` from a value in microvolts. + pub fn from_microvolts(uv: i32) -> Self { + Self(uv) + } + + /// Returns the value of the voltage in microvolts as an [`i32`]. + pub fn as_microvolts(self) -> i32 { + self.0 + } +} |