summaryrefslogtreecommitdiff
path: root/rust/kernel/regulator.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/kernel/regulator.rs')
-rw-r--r--rust/kernel/regulator.rs418
1 files changed, 418 insertions, 0 deletions
diff --git a/rust/kernel/regulator.rs b/rust/kernel/regulator.rs
new file mode 100644
index 000000000000..65f3a125348f
--- /dev/null
+++ b/rust/kernel/regulator.rs
@@ -0,0 +1,418 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Regulator abstractions, providing a standard kernel interface to control
+//! voltage and current regulators.
+//!
+//! The intention is to allow systems to dynamically control regulator power
+//! output in order to save power and prolong battery life. This applies to both
+//! voltage regulators (where voltage output is controllable) and current sinks
+//! (where current limit is controllable).
+//!
+//! C header: [`include/linux/regulator/consumer.h`](srctree/include/linux/regulator/consumer.h)
+//!
+//! Regulators are modeled in Rust with a collection of states. Each state may
+//! enforce a given invariant, and they may convert between each other where applicable.
+//!
+//! See [Voltage and current regulator API](https://docs.kernel.org/driver-api/regulator.html)
+//! for more information.
+
+use crate::{
+ bindings,
+ device::Device,
+ error::{from_err_ptr, to_result, Result},
+ prelude::*,
+};
+
+use core::{marker::PhantomData, mem::ManuallyDrop, ptr::NonNull};
+
+mod private {
+ pub trait Sealed {}
+
+ impl Sealed for super::Enabled {}
+ impl Sealed for super::Disabled {}
+ impl Sealed for super::Dynamic {}
+}
+
+/// A trait representing the different states a [`Regulator`] can be in.
+pub trait RegulatorState: private::Sealed + 'static {
+ /// Whether the regulator should be disabled when dropped.
+ const DISABLE_ON_DROP: bool;
+}
+
+/// A state where the [`Regulator`] is known to be enabled.
+///
+/// The `enable` reference count held by this state is decremented when it is
+/// dropped.
+pub struct Enabled;
+
+/// A state where this [`Regulator`] handle has not specifically asked for the
+/// underlying regulator to be enabled. This means that this reference does not
+/// own an `enable` reference count, but the regulator may still be on.
+pub struct Disabled;
+
+/// A state that models the C API. The [`Regulator`] can be either enabled or
+/// disabled, and the user is in control of the reference count. This is also
+/// the default state.
+///
+/// Use [`Regulator::is_enabled`] to check the regulator's current state.
+pub struct Dynamic;
+
+impl RegulatorState for Enabled {
+ const DISABLE_ON_DROP: bool = true;
+}
+
+impl RegulatorState for Disabled {
+ const DISABLE_ON_DROP: bool = false;
+}
+
+impl RegulatorState for Dynamic {
+ const DISABLE_ON_DROP: bool = false;
+}
+
+/// A trait that abstracts the ability to check if a [`Regulator`] is enabled.
+pub trait IsEnabled: RegulatorState {}
+impl IsEnabled for Disabled {}
+impl IsEnabled for Dynamic {}
+
+/// An error that can occur when trying to convert a [`Regulator`] between states.
+pub struct Error<State: RegulatorState> {
+ /// The error that occurred.
+ pub error: kernel::error::Error,
+
+ /// The regulator that caused the error, so that the operation may be retried.
+ pub regulator: Regulator<State>,
+}
+
+/// A `struct regulator` abstraction.
+///
+/// # Examples
+///
+/// ## Enabling a regulator
+///
+/// This example uses [`Regulator<Enabled>`], which is suitable for drivers that
+/// enable a regulator at probe time and leave them on until the device is
+/// removed or otherwise shutdown.
+///
+/// These users can store [`Regulator<Enabled>`] directly in their driver's
+/// private data struct.
+///
+/// ```
+/// # use kernel::prelude::*;
+/// # use kernel::c_str;
+/// # use kernel::device::Device;
+/// # use kernel::regulator::{Voltage, Regulator, Disabled, Enabled};
+/// fn enable(dev: &Device, min_voltage: Voltage, max_voltage: Voltage) -> Result {
+/// // Obtain a reference to a (fictitious) regulator.
+/// let regulator: Regulator<Disabled> = Regulator::<Disabled>::get(dev, c_str!("vcc"))?;
+///
+/// // The voltage can be set before enabling the regulator if needed, e.g.:
+/// regulator.set_voltage(min_voltage, max_voltage)?;
+///
+/// // The same applies for `get_voltage()`, i.e.:
+/// let voltage: Voltage = regulator.get_voltage()?;
+///
+/// // Enables the regulator, consuming the previous value.
+/// //
+/// // From now on, the regulator is known to be enabled because of the type
+/// // `Enabled`.
+/// //
+/// // If this operation fails, the `Error` will contain the regulator
+/// // reference, so that the operation may be retried.
+/// let regulator: Regulator<Enabled> =
+/// regulator.try_into_enabled().map_err(|error| error.error)?;
+///
+/// // The voltage can also be set after enabling the regulator, e.g.:
+/// regulator.set_voltage(min_voltage, max_voltage)?;
+///
+/// // The same applies for `get_voltage()`, i.e.:
+/// let voltage: Voltage = regulator.get_voltage()?;
+///
+/// // Dropping an enabled regulator will disable it. The refcount will be
+/// // decremented.
+/// drop(regulator);
+///
+/// // ...
+///
+/// Ok(())
+/// }
+/// ```
+///
+/// A more concise shortcut is available for enabling a regulator. This is
+/// equivalent to `regulator_get_enable()`:
+///
+/// ```
+/// # use kernel::prelude::*;
+/// # use kernel::c_str;
+/// # use kernel::device::Device;
+/// # use kernel::regulator::{Voltage, Regulator, Enabled};
+/// fn enable(dev: &Device) -> Result {
+/// // Obtain a reference to a (fictitious) regulator and enable it.
+/// let regulator: Regulator<Enabled> = Regulator::<Enabled>::get(dev, c_str!("vcc"))?;
+///
+/// // Dropping an enabled regulator will disable it. The refcount will be
+/// // decremented.
+/// drop(regulator);
+///
+/// // ...
+///
+/// Ok(())
+/// }
+/// ```
+///
+/// ## Disabling a regulator
+///
+/// ```
+/// # use kernel::prelude::*;
+/// # use kernel::device::Device;
+/// # use kernel::regulator::{Regulator, Enabled, Disabled};
+/// fn disable(dev: &Device, regulator: Regulator<Enabled>) -> Result {
+/// // We can also disable an enabled regulator without reliquinshing our
+/// // refcount:
+/// //
+/// // If this operation fails, the `Error` will contain the regulator
+/// // reference, so that the operation may be retried.
+/// let regulator: Regulator<Disabled> =
+/// regulator.try_into_disabled().map_err(|error| error.error)?;
+///
+/// // The refcount will be decremented when `regulator` is dropped.
+/// drop(regulator);
+///
+/// // ...
+///
+/// Ok(())
+/// }
+/// ```
+///
+/// ## Using [`Regulator<Dynamic>`]
+///
+/// This example mimics the behavior of the C API, where the user is in
+/// control of the enabled reference count. This is useful for drivers that
+/// might call enable and disable to manage the `enable` reference count at
+/// runtime, perhaps as a result of `open()` and `close()` calls or whatever
+/// other driver-specific or subsystem-specific hooks.
+///
+/// ```
+/// # use kernel::prelude::*;
+/// # use kernel::c_str;
+/// # use kernel::device::Device;
+/// # use kernel::regulator::{Regulator, Dynamic};
+/// struct PrivateData {
+/// regulator: Regulator<Dynamic>,
+/// }
+///
+/// // A fictictious probe function that obtains a regulator and sets it up.
+/// fn probe(dev: &Device) -> Result<PrivateData> {
+/// // Obtain a reference to a (fictitious) regulator.
+/// let mut regulator = Regulator::<Dynamic>::get(dev, c_str!("vcc"))?;
+///
+/// Ok(PrivateData { regulator })
+/// }
+///
+/// // A fictictious function that indicates that the device is going to be used.
+/// fn open(dev: &Device, data: &mut PrivateData) -> Result {
+/// // Increase the `enabled` reference count.
+/// data.regulator.enable()?;
+///
+/// Ok(())
+/// }
+///
+/// fn close(dev: &Device, data: &mut PrivateData) -> Result {
+/// // Decrease the `enabled` reference count.
+/// data.regulator.disable()?;
+///
+/// Ok(())
+/// }
+///
+/// fn remove(dev: &Device, data: PrivateData) -> Result {
+/// // `PrivateData` is dropped here, which will drop the
+/// // `Regulator<Dynamic>` in turn.
+/// //
+/// // The reference that was obtained by `regulator_get()` will be
+/// // released, but it is up to the user to make sure that the number of calls
+/// // to `enable()` and `disabled()` are balanced before this point.
+/// Ok(())
+/// }
+/// ```
+///
+/// # Invariants
+///
+/// - `inner` is a non-null wrapper over a pointer to a `struct
+/// regulator` obtained from [`regulator_get()`].
+///
+/// [`regulator_get()`]: https://docs.kernel.org/driver-api/regulator.html#c.regulator_get
+pub struct Regulator<State = Dynamic>
+where
+ State: RegulatorState,
+{
+ inner: NonNull<bindings::regulator>,
+ _phantom: PhantomData<State>,
+}
+
+impl<T: RegulatorState> Regulator<T> {
+ /// Sets the voltage for the regulator.
+ ///
+ /// This can be used to ensure that the device powers up cleanly.
+ pub fn set_voltage(&self, min_voltage: Voltage, max_voltage: Voltage) -> Result {
+ // SAFETY: Safe as per the type invariants of `Regulator`.
+ to_result(unsafe {
+ bindings::regulator_set_voltage(
+ self.inner.as_ptr(),
+ min_voltage.as_microvolts(),
+ max_voltage.as_microvolts(),
+ )
+ })
+ }
+
+ /// Gets the current voltage of the regulator.
+ pub fn get_voltage(&self) -> Result<Voltage> {
+ // SAFETY: Safe as per the type invariants of `Regulator`.
+ let voltage = unsafe { bindings::regulator_get_voltage(self.inner.as_ptr()) };
+ if voltage < 0 {
+ Err(kernel::error::Error::from_errno(voltage))
+ } else {
+ Ok(Voltage::from_microvolts(voltage))
+ }
+ }
+
+ fn get_internal(dev: &Device, name: &CStr) -> Result<Regulator<T>> {
+ // SAFETY: It is safe to call `regulator_get()`, on a device pointer
+ // received from the C code.
+ let inner = from_err_ptr(unsafe { bindings::regulator_get(dev.as_raw(), name.as_ptr()) })?;
+
+ // SAFETY: We can safely trust `inner` to be a pointer to a valid
+ // regulator if `ERR_PTR` was not returned.
+ let inner = unsafe { NonNull::new_unchecked(inner) };
+
+ Ok(Self {
+ inner,
+ _phantom: PhantomData,
+ })
+ }
+
+ fn enable_internal(&mut self) -> Result {
+ // SAFETY: Safe as per the type invariants of `Regulator`.
+ to_result(unsafe { bindings::regulator_enable(self.inner.as_ptr()) })
+ }
+
+ fn disable_internal(&mut self) -> Result {
+ // SAFETY: Safe as per the type invariants of `Regulator`.
+ to_result(unsafe { bindings::regulator_disable(self.inner.as_ptr()) })
+ }
+}
+
+impl Regulator<Disabled> {
+ /// Obtains a [`Regulator`] instance from the system.
+ pub fn get(dev: &Device, name: &CStr) -> Result<Self> {
+ Regulator::get_internal(dev, name)
+ }
+
+ /// Attempts to convert the regulator to an enabled state.
+ pub fn try_into_enabled(self) -> Result<Regulator<Enabled>, Error<Disabled>> {
+ // We will be transferring the ownership of our `regulator_get()` count to
+ // `Regulator<Enabled>`.
+ let mut regulator = ManuallyDrop::new(self);
+
+ regulator
+ .enable_internal()
+ .map(|()| Regulator {
+ inner: regulator.inner,
+ _phantom: PhantomData,
+ })
+ .map_err(|error| Error {
+ error,
+ regulator: ManuallyDrop::into_inner(regulator),
+ })
+ }
+}
+
+impl Regulator<Enabled> {
+ /// Obtains a [`Regulator`] instance from the system and enables it.
+ ///
+ /// This is equivalent to calling `regulator_get_enable()` in the C API.
+ pub fn get(dev: &Device, name: &CStr) -> Result<Self> {
+ Regulator::<Disabled>::get_internal(dev, name)?
+ .try_into_enabled()
+ .map_err(|error| error.error)
+ }
+
+ /// Attempts to convert the regulator to a disabled state.
+ pub fn try_into_disabled(self) -> Result<Regulator<Disabled>, Error<Enabled>> {
+ // We will be transferring the ownership of our `regulator_get()` count
+ // to `Regulator<Disabled>`.
+ let mut regulator = ManuallyDrop::new(self);
+
+ regulator
+ .disable_internal()
+ .map(|()| Regulator {
+ inner: regulator.inner,
+ _phantom: PhantomData,
+ })
+ .map_err(|error| Error {
+ error,
+ regulator: ManuallyDrop::into_inner(regulator),
+ })
+ }
+}
+
+impl Regulator<Dynamic> {
+ /// Obtains a [`Regulator`] instance from the system. The current state of
+ /// the regulator is unknown and it is up to the user to manage the enabled
+ /// reference count.
+ ///
+ /// This closely mimics the behavior of the C API and can be used to
+ /// dynamically manage the enabled reference count at runtime.
+ pub fn get(dev: &Device, name: &CStr) -> Result<Self> {
+ Regulator::get_internal(dev, name)
+ }
+
+ /// Increases the `enabled` reference count.
+ pub fn enable(&mut self) -> Result {
+ self.enable_internal()
+ }
+
+ /// Decreases the `enabled` reference count.
+ pub fn disable(&mut self) -> Result {
+ self.disable_internal()
+ }
+}
+
+impl<T: IsEnabled> Regulator<T> {
+ /// Checks if the regulator is enabled.
+ pub fn is_enabled(&self) -> bool {
+ // SAFETY: Safe as per the type invariants of `Regulator`.
+ unsafe { bindings::regulator_is_enabled(self.inner.as_ptr()) != 0 }
+ }
+}
+
+impl<T: RegulatorState> Drop for Regulator<T> {
+ fn drop(&mut self) {
+ if T::DISABLE_ON_DROP {
+ // SAFETY: By the type invariants, we know that `self` owns a
+ // reference on the enabled refcount, so it is safe to relinquish it
+ // now.
+ unsafe { bindings::regulator_disable(self.inner.as_ptr()) };
+ }
+ // SAFETY: By the type invariants, we know that `self` owns a reference,
+ // so it is safe to relinquish it now.
+ unsafe { bindings::regulator_put(self.inner.as_ptr()) };
+ }
+}
+
+/// A voltage.
+///
+/// This type represents a voltage value in microvolts.
+#[repr(transparent)]
+#[derive(Copy, Clone, PartialEq, Eq)]
+pub struct Voltage(i32);
+
+impl Voltage {
+ /// Creates a new `Voltage` from a value in microvolts.
+ pub fn from_microvolts(uv: i32) -> Self {
+ Self(uv)
+ }
+
+ /// Returns the value of the voltage in microvolts as an [`i32`].
+ pub fn as_microvolts(self) -> i32 {
+ self.0
+ }
+}