diff options
Diffstat (limited to 'rust/kernel/time.rs')
-rw-r--r-- | rust/kernel/time.rs | 233 |
1 files changed, 154 insertions, 79 deletions
diff --git a/rust/kernel/time.rs b/rust/kernel/time.rs index a8089a98da9e..64c8dcf548d6 100644 --- a/rust/kernel/time.rs +++ b/rust/kernel/time.rs @@ -24,6 +24,9 @@ //! C header: [`include/linux/jiffies.h`](srctree/include/linux/jiffies.h). //! C header: [`include/linux/ktime.h`](srctree/include/linux/ktime.h). +use core::marker::PhantomData; + +pub mod delay; pub mod hrtimer; /// The number of nanoseconds per microsecond. @@ -49,26 +52,141 @@ pub fn msecs_to_jiffies(msecs: Msecs) -> Jiffies { unsafe { bindings::__msecs_to_jiffies(msecs) } } +/// Trait for clock sources. +/// +/// Selection of the clock source depends on the use case. In some cases the usage of a +/// particular clock is mandatory, e.g. in network protocols, filesystems. In other +/// cases the user of the clock has to decide which clock is best suited for the +/// purpose. In most scenarios clock [`Monotonic`] is the best choice as it +/// provides a accurate monotonic notion of time (leap second smearing ignored). +pub trait ClockSource { + /// The kernel clock ID associated with this clock source. + /// + /// This constant corresponds to the C side `clockid_t` value. + const ID: bindings::clockid_t; + + /// Get the current time from the clock source. + /// + /// The function must return a value in the range from 0 to `KTIME_MAX`. + fn ktime_get() -> bindings::ktime_t; +} + +/// A monotonically increasing clock. +/// +/// A nonsettable system-wide clock that represents monotonic time since as +/// described by POSIX, "some unspecified point in the past". On Linux, that +/// point corresponds to the number of seconds that the system has been +/// running since it was booted. +/// +/// The CLOCK_MONOTONIC clock is not affected by discontinuous jumps in the +/// CLOCK_REAL (e.g., if the system administrator manually changes the +/// clock), but is affected by frequency adjustments. This clock does not +/// count time that the system is suspended. +pub struct Monotonic; + +impl ClockSource for Monotonic { + const ID: bindings::clockid_t = bindings::CLOCK_MONOTONIC as bindings::clockid_t; + + fn ktime_get() -> bindings::ktime_t { + // SAFETY: It is always safe to call `ktime_get()` outside of NMI context. + unsafe { bindings::ktime_get() } + } +} + +/// A settable system-wide clock that measures real (i.e., wall-clock) time. +/// +/// Setting this clock requires appropriate privileges. This clock is +/// affected by discontinuous jumps in the system time (e.g., if the system +/// administrator manually changes the clock), and by frequency adjustments +/// performed by NTP and similar applications via adjtime(3), adjtimex(2), +/// clock_adjtime(2), and ntp_adjtime(3). This clock normally counts the +/// number of seconds since 1970-01-01 00:00:00 Coordinated Universal Time +/// (UTC) except that it ignores leap seconds; near a leap second it may be +/// adjusted by leap second smearing to stay roughly in sync with UTC. Leap +/// second smearing applies frequency adjustments to the clock to speed up +/// or slow down the clock to account for the leap second without +/// discontinuities in the clock. If leap second smearing is not applied, +/// the clock will experience discontinuity around leap second adjustment. +pub struct RealTime; + +impl ClockSource for RealTime { + const ID: bindings::clockid_t = bindings::CLOCK_REALTIME as bindings::clockid_t; + + fn ktime_get() -> bindings::ktime_t { + // SAFETY: It is always safe to call `ktime_get_real()` outside of NMI context. + unsafe { bindings::ktime_get_real() } + } +} + +/// A monotonic that ticks while system is suspended. +/// +/// A nonsettable system-wide clock that is identical to CLOCK_MONOTONIC, +/// except that it also includes any time that the system is suspended. This +/// allows applications to get a suspend-aware monotonic clock without +/// having to deal with the complications of CLOCK_REALTIME, which may have +/// discontinuities if the time is changed using settimeofday(2) or similar. +pub struct BootTime; + +impl ClockSource for BootTime { + const ID: bindings::clockid_t = bindings::CLOCK_BOOTTIME as bindings::clockid_t; + + fn ktime_get() -> bindings::ktime_t { + // SAFETY: It is always safe to call `ktime_get_boottime()` outside of NMI context. + unsafe { bindings::ktime_get_boottime() } + } +} + +/// International Atomic Time. +/// +/// A system-wide clock derived from wall-clock time but counting leap seconds. +/// +/// This clock is coupled to CLOCK_REALTIME and will be set when CLOCK_REALTIME is +/// set, or when the offset to CLOCK_REALTIME is changed via adjtimex(2). This +/// usually happens during boot and **should** not happen during normal operations. +/// However, if NTP or another application adjusts CLOCK_REALTIME by leap second +/// smearing, this clock will not be precise during leap second smearing. +/// +/// The acronym TAI refers to International Atomic Time. +pub struct Tai; + +impl ClockSource for Tai { + const ID: bindings::clockid_t = bindings::CLOCK_TAI as bindings::clockid_t; + + fn ktime_get() -> bindings::ktime_t { + // SAFETY: It is always safe to call `ktime_get_tai()` outside of NMI context. + unsafe { bindings::ktime_get_clocktai() } + } +} + /// A specific point in time. /// /// # Invariants /// /// The `inner` value is in the range from 0 to `KTIME_MAX`. #[repr(transparent)] -#[derive(Copy, Clone, PartialEq, PartialOrd, Eq, Ord)] -pub struct Instant { +#[derive(PartialEq, PartialOrd, Eq, Ord)] +pub struct Instant<C: ClockSource> { inner: bindings::ktime_t, + _c: PhantomData<C>, +} + +impl<C: ClockSource> Clone for Instant<C> { + fn clone(&self) -> Self { + *self + } } -impl Instant { - /// Get the current time using `CLOCK_MONOTONIC`. +impl<C: ClockSource> Copy for Instant<C> {} + +impl<C: ClockSource> Instant<C> { + /// Get the current time from the clock source. #[inline] pub fn now() -> Self { - // INVARIANT: The `ktime_get()` function returns a value in the range + // INVARIANT: The `ClockSource::ktime_get()` function returns a value in the range // from 0 to `KTIME_MAX`. Self { - // SAFETY: It is always safe to call `ktime_get()` outside of NMI context. - inner: unsafe { bindings::ktime_get() }, + inner: C::ktime_get(), + _c: PhantomData, } } @@ -77,86 +195,25 @@ impl Instant { pub fn elapsed(&self) -> Delta { Self::now() - *self } + + #[inline] + pub(crate) fn as_nanos(&self) -> i64 { + self.inner + } } -impl core::ops::Sub for Instant { +impl<C: ClockSource> core::ops::Sub for Instant<C> { type Output = Delta; // By the type invariant, it never overflows. #[inline] - fn sub(self, other: Instant) -> Delta { + fn sub(self, other: Instant<C>) -> Delta { Delta { nanos: self.inner - other.inner, } } } -/// An identifier for a clock. Used when specifying clock sources. -/// -/// -/// Selection of the clock depends on the use case. In some cases the usage of a -/// particular clock is mandatory, e.g. in network protocols, filesystems.In other -/// cases the user of the clock has to decide which clock is best suited for the -/// purpose. In most scenarios clock [`ClockId::Monotonic`] is the best choice as it -/// provides a accurate monotonic notion of time (leap second smearing ignored). -#[derive(Clone, Copy, PartialEq, Eq, Debug)] -#[repr(u32)] -pub enum ClockId { - /// A settable system-wide clock that measures real (i.e., wall-clock) time. - /// - /// Setting this clock requires appropriate privileges. This clock is - /// affected by discontinuous jumps in the system time (e.g., if the system - /// administrator manually changes the clock), and by frequency adjustments - /// performed by NTP and similar applications via adjtime(3), adjtimex(2), - /// clock_adjtime(2), and ntp_adjtime(3). This clock normally counts the - /// number of seconds since 1970-01-01 00:00:00 Coordinated Universal Time - /// (UTC) except that it ignores leap seconds; near a leap second it may be - /// adjusted by leap second smearing to stay roughly in sync with UTC. Leap - /// second smearing applies frequency adjustments to the clock to speed up - /// or slow down the clock to account for the leap second without - /// discontinuities in the clock. If leap second smearing is not applied, - /// the clock will experience discontinuity around leap second adjustment. - RealTime = bindings::CLOCK_REALTIME, - /// A monotonically increasing clock. - /// - /// A nonsettable system-wide clock that represents monotonic time since—as - /// described by POSIX—"some unspecified point in the past". On Linux, that - /// point corresponds to the number of seconds that the system has been - /// running since it was booted. - /// - /// The CLOCK_MONOTONIC clock is not affected by discontinuous jumps in the - /// CLOCK_REAL (e.g., if the system administrator manually changes the - /// clock), but is affected by frequency adjustments. This clock does not - /// count time that the system is suspended. - Monotonic = bindings::CLOCK_MONOTONIC, - /// A monotonic that ticks while system is suspended. - /// - /// A nonsettable system-wide clock that is identical to CLOCK_MONOTONIC, - /// except that it also includes any time that the system is suspended. This - /// allows applications to get a suspend-aware monotonic clock without - /// having to deal with the complications of CLOCK_REALTIME, which may have - /// discontinuities if the time is changed using settimeofday(2) or similar. - BootTime = bindings::CLOCK_BOOTTIME, - /// International Atomic Time. - /// - /// A system-wide clock derived from wall-clock time but counting leap seconds. - /// - /// This clock is coupled to CLOCK_REALTIME and will be set when CLOCK_REALTIME is - /// set, or when the offset to CLOCK_REALTIME is changed via adjtimex(2). This - /// usually happens during boot and **should** not happen during normal operations. - /// However, if NTP or another application adjusts CLOCK_REALTIME by leap second - /// smearing, this clock will not be precise during leap second smearing. - /// - /// The acronym TAI refers to International Atomic Time. - TAI = bindings::CLOCK_TAI, -} - -impl ClockId { - fn into_c(self) -> bindings::clockid_t { - self as bindings::clockid_t - } -} - /// A span of time. /// /// This struct represents a span of time, with its value stored as nanoseconds. @@ -228,13 +285,31 @@ impl Delta { /// Return the smallest number of microseconds greater than or equal /// to the value in the [`Delta`]. #[inline] - pub const fn as_micros_ceil(self) -> i64 { - self.as_nanos().saturating_add(NSEC_PER_USEC - 1) / NSEC_PER_USEC + pub fn as_micros_ceil(self) -> i64 { + #[cfg(CONFIG_64BIT)] + { + self.as_nanos().saturating_add(NSEC_PER_USEC - 1) / NSEC_PER_USEC + } + + #[cfg(not(CONFIG_64BIT))] + // SAFETY: It is always safe to call `ktime_to_us()` with any value. + unsafe { + bindings::ktime_to_us(self.as_nanos().saturating_add(NSEC_PER_USEC - 1)) + } } /// Return the number of milliseconds in the [`Delta`]. #[inline] - pub const fn as_millis(self) -> i64 { - self.as_nanos() / NSEC_PER_MSEC + pub fn as_millis(self) -> i64 { + #[cfg(CONFIG_64BIT)] + { + self.as_nanos() / NSEC_PER_MSEC + } + + #[cfg(not(CONFIG_64BIT))] + // SAFETY: It is always safe to call `ktime_to_ms()` with any value. + unsafe { + bindings::ktime_to_ms(self.as_nanos()) + } } } |