diff options
Diffstat (limited to 'rust/kernel/time.rs')
-rw-r--r-- | rust/kernel/time.rs | 224 |
1 files changed, 222 insertions, 2 deletions
diff --git a/rust/kernel/time.rs b/rust/kernel/time.rs index 25a896eed468..a8089a98da9e 100644 --- a/rust/kernel/time.rs +++ b/rust/kernel/time.rs @@ -4,12 +4,42 @@ //! //! This module contains the kernel APIs related to time and timers that //! have been ported or wrapped for usage by Rust code in the kernel. +//! +//! There are two types in this module: +//! +//! - The [`Instant`] type represents a specific point in time. +//! - The [`Delta`] type represents a span of time. +//! +//! Note that the C side uses `ktime_t` type to represent both. However, timestamp +//! and timedelta are different. To avoid confusion, we use two different types. +//! +//! A [`Instant`] object can be created by calling the [`Instant::now()`] function. +//! It represents a point in time at which the object was created. +//! By calling the [`Instant::elapsed()`] method, a [`Delta`] object representing +//! the elapsed time can be created. The [`Delta`] object can also be created +//! by subtracting two [`Instant`] objects. +//! +//! A [`Delta`] type supports methods to retrieve the duration in various units. +//! +//! C header: [`include/linux/jiffies.h`](srctree/include/linux/jiffies.h). +//! C header: [`include/linux/ktime.h`](srctree/include/linux/ktime.h). + +pub mod hrtimer; + +/// The number of nanoseconds per microsecond. +pub const NSEC_PER_USEC: i64 = bindings::NSEC_PER_USEC as i64; + +/// The number of nanoseconds per millisecond. +pub const NSEC_PER_MSEC: i64 = bindings::NSEC_PER_MSEC as i64; + +/// The number of nanoseconds per second. +pub const NSEC_PER_SEC: i64 = bindings::NSEC_PER_SEC as i64; /// The time unit of Linux kernel. One jiffy equals (1/HZ) second. -pub type Jiffies = core::ffi::c_ulong; +pub type Jiffies = crate::ffi::c_ulong; /// The millisecond time unit. -pub type Msecs = core::ffi::c_uint; +pub type Msecs = crate::ffi::c_uint; /// Converts milliseconds to jiffies. #[inline] @@ -18,3 +48,193 @@ pub fn msecs_to_jiffies(msecs: Msecs) -> Jiffies { // matter what the argument is. unsafe { bindings::__msecs_to_jiffies(msecs) } } + +/// A specific point in time. +/// +/// # Invariants +/// +/// The `inner` value is in the range from 0 to `KTIME_MAX`. +#[repr(transparent)] +#[derive(Copy, Clone, PartialEq, PartialOrd, Eq, Ord)] +pub struct Instant { + inner: bindings::ktime_t, +} + +impl Instant { + /// Get the current time using `CLOCK_MONOTONIC`. + #[inline] + pub fn now() -> Self { + // INVARIANT: The `ktime_get()` function returns a value in the range + // from 0 to `KTIME_MAX`. + Self { + // SAFETY: It is always safe to call `ktime_get()` outside of NMI context. + inner: unsafe { bindings::ktime_get() }, + } + } + + /// Return the amount of time elapsed since the [`Instant`]. + #[inline] + pub fn elapsed(&self) -> Delta { + Self::now() - *self + } +} + +impl core::ops::Sub for Instant { + type Output = Delta; + + // By the type invariant, it never overflows. + #[inline] + fn sub(self, other: Instant) -> Delta { + Delta { + nanos: self.inner - other.inner, + } + } +} + +/// An identifier for a clock. Used when specifying clock sources. +/// +/// +/// Selection of the clock depends on the use case. In some cases the usage of a +/// particular clock is mandatory, e.g. in network protocols, filesystems.In other +/// cases the user of the clock has to decide which clock is best suited for the +/// purpose. In most scenarios clock [`ClockId::Monotonic`] is the best choice as it +/// provides a accurate monotonic notion of time (leap second smearing ignored). +#[derive(Clone, Copy, PartialEq, Eq, Debug)] +#[repr(u32)] +pub enum ClockId { + /// A settable system-wide clock that measures real (i.e., wall-clock) time. + /// + /// Setting this clock requires appropriate privileges. This clock is + /// affected by discontinuous jumps in the system time (e.g., if the system + /// administrator manually changes the clock), and by frequency adjustments + /// performed by NTP and similar applications via adjtime(3), adjtimex(2), + /// clock_adjtime(2), and ntp_adjtime(3). This clock normally counts the + /// number of seconds since 1970-01-01 00:00:00 Coordinated Universal Time + /// (UTC) except that it ignores leap seconds; near a leap second it may be + /// adjusted by leap second smearing to stay roughly in sync with UTC. Leap + /// second smearing applies frequency adjustments to the clock to speed up + /// or slow down the clock to account for the leap second without + /// discontinuities in the clock. If leap second smearing is not applied, + /// the clock will experience discontinuity around leap second adjustment. + RealTime = bindings::CLOCK_REALTIME, + /// A monotonically increasing clock. + /// + /// A nonsettable system-wide clock that represents monotonic time since—as + /// described by POSIX—"some unspecified point in the past". On Linux, that + /// point corresponds to the number of seconds that the system has been + /// running since it was booted. + /// + /// The CLOCK_MONOTONIC clock is not affected by discontinuous jumps in the + /// CLOCK_REAL (e.g., if the system administrator manually changes the + /// clock), but is affected by frequency adjustments. This clock does not + /// count time that the system is suspended. + Monotonic = bindings::CLOCK_MONOTONIC, + /// A monotonic that ticks while system is suspended. + /// + /// A nonsettable system-wide clock that is identical to CLOCK_MONOTONIC, + /// except that it also includes any time that the system is suspended. This + /// allows applications to get a suspend-aware monotonic clock without + /// having to deal with the complications of CLOCK_REALTIME, which may have + /// discontinuities if the time is changed using settimeofday(2) or similar. + BootTime = bindings::CLOCK_BOOTTIME, + /// International Atomic Time. + /// + /// A system-wide clock derived from wall-clock time but counting leap seconds. + /// + /// This clock is coupled to CLOCK_REALTIME and will be set when CLOCK_REALTIME is + /// set, or when the offset to CLOCK_REALTIME is changed via adjtimex(2). This + /// usually happens during boot and **should** not happen during normal operations. + /// However, if NTP or another application adjusts CLOCK_REALTIME by leap second + /// smearing, this clock will not be precise during leap second smearing. + /// + /// The acronym TAI refers to International Atomic Time. + TAI = bindings::CLOCK_TAI, +} + +impl ClockId { + fn into_c(self) -> bindings::clockid_t { + self as bindings::clockid_t + } +} + +/// A span of time. +/// +/// This struct represents a span of time, with its value stored as nanoseconds. +/// The value can represent any valid i64 value, including negative, zero, and +/// positive numbers. +#[derive(Copy, Clone, PartialEq, PartialOrd, Eq, Ord, Debug)] +pub struct Delta { + nanos: i64, +} + +impl Delta { + /// A span of time equal to zero. + pub const ZERO: Self = Self { nanos: 0 }; + + /// Create a new [`Delta`] from a number of microseconds. + /// + /// The `micros` can range from -9_223_372_036_854_775 to 9_223_372_036_854_775. + /// If `micros` is outside this range, `i64::MIN` is used for negative values, + /// and `i64::MAX` is used for positive values due to saturation. + #[inline] + pub const fn from_micros(micros: i64) -> Self { + Self { + nanos: micros.saturating_mul(NSEC_PER_USEC), + } + } + + /// Create a new [`Delta`] from a number of milliseconds. + /// + /// The `millis` can range from -9_223_372_036_854 to 9_223_372_036_854. + /// If `millis` is outside this range, `i64::MIN` is used for negative values, + /// and `i64::MAX` is used for positive values due to saturation. + #[inline] + pub const fn from_millis(millis: i64) -> Self { + Self { + nanos: millis.saturating_mul(NSEC_PER_MSEC), + } + } + + /// Create a new [`Delta`] from a number of seconds. + /// + /// The `secs` can range from -9_223_372_036 to 9_223_372_036. + /// If `secs` is outside this range, `i64::MIN` is used for negative values, + /// and `i64::MAX` is used for positive values due to saturation. + #[inline] + pub const fn from_secs(secs: i64) -> Self { + Self { + nanos: secs.saturating_mul(NSEC_PER_SEC), + } + } + + /// Return `true` if the [`Delta`] spans no time. + #[inline] + pub fn is_zero(self) -> bool { + self.as_nanos() == 0 + } + + /// Return `true` if the [`Delta`] spans a negative amount of time. + #[inline] + pub fn is_negative(self) -> bool { + self.as_nanos() < 0 + } + + /// Return the number of nanoseconds in the [`Delta`]. + #[inline] + pub const fn as_nanos(self) -> i64 { + self.nanos + } + + /// Return the smallest number of microseconds greater than or equal + /// to the value in the [`Delta`]. + #[inline] + pub const fn as_micros_ceil(self) -> i64 { + self.as_nanos().saturating_add(NSEC_PER_USEC - 1) / NSEC_PER_USEC + } + + /// Return the number of milliseconds in the [`Delta`]. + #[inline] + pub const fn as_millis(self) -> i64 { + self.as_nanos() / NSEC_PER_MSEC + } +} |