summaryrefslogtreecommitdiff
path: root/arch/arm64/kvm/hyp
AgeCommit message (Collapse)Author
11 hoursMerge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull kvm updates from Paolo Bonzini: "ARM: - Host driver for GICv5, the next generation interrupt controller for arm64, including support for interrupt routing, MSIs, interrupt translation and wired interrupts - Use FEAT_GCIE_LEGACY on GICv5 systems to virtualize GICv3 VMs on GICv5 hardware, leveraging the legacy VGIC interface - Userspace control of the 'nASSGIcap' GICv3 feature, allowing userspace to disable support for SGIs w/o an active state on hardware that previously advertised it unconditionally - Map supporting endpoints with cacheable memory attributes on systems with FEAT_S2FWB and DIC where KVM no longer needs to perform cache maintenance on the address range - Nested support for FEAT_RAS and FEAT_DoubleFault2, allowing the guest hypervisor to inject external aborts into an L2 VM and take traps of masked external aborts to the hypervisor - Convert more system register sanitization to the config-driven implementation - Fixes to the visibility of EL2 registers, namely making VGICv3 system registers accessible through the VGIC device instead of the ONE_REG vCPU ioctls - Various cleanups and minor fixes LoongArch: - Add stat information for in-kernel irqchip - Add tracepoints for CPUCFG and CSR emulation exits - Enhance in-kernel irqchip emulation - Various cleanups RISC-V: - Enable ring-based dirty memory tracking - Improve perf kvm stat to report interrupt events - Delegate illegal instruction trap to VS-mode - MMU improvements related to upcoming nested virtualization s390x - Fixes x86: - Add CONFIG_KVM_IOAPIC for x86 to allow disabling support for I/O APIC, PIC, and PIT emulation at compile time - Share device posted IRQ code between SVM and VMX and harden it against bugs and runtime errors - Use vcpu_idx, not vcpu_id, for GA log tag/metadata, to make lookups O(1) instead of O(n) - For MMIO stale data mitigation, track whether or not a vCPU has access to (host) MMIO based on whether the page tables have MMIO pfns mapped; using VFIO is prone to false negatives - Rework the MSR interception code so that the SVM and VMX APIs are more or less identical - Recalculate all MSR intercepts from scratch on MSR filter changes, instead of maintaining shadow bitmaps - Advertise support for LKGS (Load Kernel GS base), a new instruction that's loosely related to FRED, but is supported and enumerated independently - Fix a user-triggerable WARN that syzkaller found by setting the vCPU in INIT_RECEIVED state (aka wait-for-SIPI), and then putting the vCPU into VMX Root Mode (post-VMXON). Trying to detect every possible path leading to architecturally forbidden states is hard and even risks breaking userspace (if it goes from valid to valid state but passes through invalid states), so just wait until KVM_RUN to detect that the vCPU state isn't allowed - Add KVM_X86_DISABLE_EXITS_APERFMPERF to allow disabling interception of APERF/MPERF reads, so that a "properly" configured VM can access APERF/MPERF. This has many caveats (APERF/MPERF cannot be zeroed on vCPU creation or saved/restored on suspend and resume, or preserved over thread migration let alone VM migration) but can be useful whenever you're interested in letting Linux guests see the effective physical CPU frequency in /proc/cpuinfo - Reject KVM_SET_TSC_KHZ for vm file descriptors if vCPUs have been created, as there's no known use case for changing the default frequency for other VM types and it goes counter to the very reason why the ioctl was added to the vm file descriptor. And also, there would be no way to make it work for confidential VMs with a "secure" TSC, so kill two birds with one stone - Dynamically allocation the shadow MMU's hashed page list, and defer allocating the hashed list until it's actually needed (the TDP MMU doesn't use the list) - Extract many of KVM's helpers for accessing architectural local APIC state to common x86 so that they can be shared by guest-side code for Secure AVIC - Various cleanups and fixes x86 (Intel): - Preserve the host's DEBUGCTL.FREEZE_IN_SMM when running the guest. Failure to honor FREEZE_IN_SMM can leak host state into guests - Explicitly check vmcs12.GUEST_DEBUGCTL on nested VM-Enter to prevent L1 from running L2 with features that KVM doesn't support, e.g. BTF x86 (AMD): - WARN and reject loading kvm-amd.ko instead of panicking the kernel if the nested SVM MSRPM offsets tracker can't handle an MSR (which is pretty much a static condition and therefore should never happen, but still) - Fix a variety of flaws and bugs in the AVIC device posted IRQ code - Inhibit AVIC if a vCPU's ID is too big (relative to what hardware supports) instead of rejecting vCPU creation - Extend enable_ipiv module param support to SVM, by simply leaving IsRunning clear in the vCPU's physical ID table entry - Disable IPI virtualization, via enable_ipiv, if the CPU is affected by erratum #1235, to allow (safely) enabling AVIC on such CPUs - Request GA Log interrupts if and only if the target vCPU is blocking, i.e. only if KVM needs a notification in order to wake the vCPU - Intercept SPEC_CTRL on AMD if the MSR shouldn't exist according to the vCPU's CPUID model - Accept any SNP policy that is accepted by the firmware with respect to SMT and single-socket restrictions. An incompatible policy doesn't put the kernel at risk in any way, so there's no reason for KVM to care - Drop a superfluous WBINVD (on all CPUs!) when destroying a VM and use WBNOINVD instead of WBINVD when possible for SEV cache maintenance - When reclaiming memory from an SEV guest, only do cache flushes on CPUs that have ever run a vCPU for the guest, i.e. don't flush the caches for CPUs that can't possibly have cache lines with dirty, encrypted data Generic: - Rework irqbypass to track/match producers and consumers via an xarray instead of a linked list. Using a linked list leads to O(n^2) insertion times, which is hugely problematic for use cases that create large numbers of VMs. Such use cases typically don't actually use irqbypass, but eliminating the pointless registration is a future problem to solve as it likely requires new uAPI - Track irqbypass's "token" as "struct eventfd_ctx *" instead of a "void *", to avoid making a simple concept unnecessarily difficult to understand - Decouple device posted IRQs from VFIO device assignment, as binding a VM to a VFIO group is not a requirement for enabling device posted IRQs - Clean up and document/comment the irqfd assignment code - Disallow binding multiple irqfds to an eventfd with a priority waiter, i.e. ensure an eventfd is bound to at most one irqfd through the entire host, and add a selftest to verify eventfd:irqfd bindings are globally unique - Add a tracepoint for KVM_SET_MEMORY_ATTRIBUTES to help debug issues related to private <=> shared memory conversions - Drop guest_memfd's .getattr() implementation as the VFS layer will call generic_fillattr() if inode_operations.getattr is NULL - Fix issues with dirty ring harvesting where KVM doesn't bound the processing of entries in any way, which allows userspace to keep KVM in a tight loop indefinitely - Kill off kvm_arch_{start,end}_assignment() and x86's associated tracking, now that KVM no longer uses assigned_device_count as a heuristic for either irqbypass usage or MDS mitigation Selftests: - Fix a comment typo - Verify KVM is loaded when getting any KVM module param so that attempting to run a selftest without kvm.ko loaded results in a SKIP message about KVM not being loaded/enabled (versus some random parameter not existing) - Skip tests that hit EACCES when attempting to access a file, and print a "Root required?" help message. In most cases, the test just needs to be run with elevated permissions" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (340 commits) Documentation: KVM: Use unordered list for pre-init VGIC registers RISC-V: KVM: Avoid re-acquiring memslot in kvm_riscv_gstage_map() RISC-V: KVM: Use find_vma_intersection() to search for intersecting VMAs RISC-V: perf/kvm: Add reporting of interrupt events RISC-V: KVM: Enable ring-based dirty memory tracking RISC-V: KVM: Fix inclusion of Smnpm in the guest ISA bitmap RISC-V: KVM: Delegate illegal instruction fault to VS mode RISC-V: KVM: Pass VMID as parameter to kvm_riscv_hfence_xyz() APIs RISC-V: KVM: Factor-out g-stage page table management RISC-V: KVM: Add vmid field to struct kvm_riscv_hfence RISC-V: KVM: Introduce struct kvm_gstage_mapping RISC-V: KVM: Factor-out MMU related declarations into separate headers RISC-V: KVM: Use ncsr_xyz() in kvm_riscv_vcpu_trap_redirect() RISC-V: KVM: Implement kvm_arch_flush_remote_tlbs_range() RISC-V: KVM: Don't flush TLB when PTE is unchanged RISC-V: KVM: Replace KVM_REQ_HFENCE_GVMA_VMID_ALL with KVM_REQ_TLB_FLUSH RISC-V: KVM: Rename and move kvm_riscv_local_tlb_sanitize() RISC-V: KVM: Drop the return value of kvm_riscv_vcpu_aia_init() RISC-V: KVM: Check kvm_riscv_vcpu_alloc_vector_context() return value KVM: arm64: selftests: Add FEAT_RAS EL2 registers to get-reg-list ...
32 hoursMerge tag 'arm64-upstream' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: "A quick summary: perf support for Branch Record Buffer Extensions (BRBE), typical PMU hardware updates, small additions to MTE for store-only tag checking and exposing non-address bits to signal handlers, HAVE_LIVEPATCH enabled on arm64, VMAP_STACK forced on. There is also a TLBI optimisation on hardware that does not require break-before-make when changing the user PTEs between contiguous and non-contiguous. More details: Perf and PMU updates: - Add support for new (v3) Hisilicon SLLC and DDRC PMUs - Add support for Arm-NI PMU integrations that share interrupts between clock domains within a given instance - Allow SPE to be configured with a lower sample period than the minimum recommendation advertised by PMSIDR_EL1.Interval - Add suppport for Arm's "Branch Record Buffer Extension" (BRBE) - Adjust the perf watchdog period according to cpu frequency changes - Minor driver fixes and cleanups Hardware features: - Support for MTE store-only checking (FEAT_MTE_STORE_ONLY) - Support for reporting the non-address bits during a synchronous MTE tag check fault (FEAT_MTE_TAGGED_FAR) - Optimise the TLBI when folding/unfolding contiguous PTEs on hardware with FEAT_BBM (break-before-make) level 2 and no TLB conflict aborts Software features: - Enable HAVE_LIVEPATCH after implementing arch_stack_walk_reliable() and using the text-poke API for late module relocations - Force VMAP_STACK always on and change arm64_efi_rt_init() to use arch_alloc_vmap_stack() in order to avoid KASAN false positives ACPI: - Improve SPCR handling and messaging on systems lacking an SPCR table Debug: - Simplify the debug exception entry path - Drop redundant DBG_MDSCR_* macros Kselftests: - Cleanups and improvements for SME, SVE and FPSIMD tests Miscellaneous: - Optimise loop to reduce redundant operations in contpte_ptep_get() - Remove ISB when resetting POR_EL0 during signal handling - Mark the kernel as tainted on SEA and SError panic - Remove redundant gcs_free() call" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (93 commits) arm64/gcs: task_gcs_el0_enable() should use passed task arm64: Kconfig: Keep selects somewhat alphabetically ordered arm64: signal: Remove ISB when resetting POR_EL0 kselftest/arm64: Handle attempts to disable SM on SME only systems kselftest/arm64: Fix SVE write data generation for SME only systems kselftest/arm64: Test SME on SME only systems in fp-ptrace kselftest/arm64: Test FPSIMD format data writes via NT_ARM_SVE in fp-ptrace kselftest/arm64: Allow sve-ptrace to run on SME only systems arm64/mm: Drop redundant addr increment in set_huge_pte_at() kselftest/arm4: Provide local defines for AT_HWCAP3 arm64: Mark kernel as tainted on SAE and SError panic arm64/gcs: Don't call gcs_free() when releasing task_struct drivers/perf: hisi: Support PMUs with no interrupt drivers/perf: hisi: Relax the event number check of v2 PMUs drivers/perf: hisi: Add support for HiSilicon SLLC v3 PMU driver drivers/perf: hisi: Use ACPI driver_data to retrieve SLLC PMU information drivers/perf: hisi: Add support for HiSilicon DDRC v3 PMU driver drivers/perf: hisi: Simplify the probe process for each DDRC version perf/arm-ni: Support sharing IRQs within an NI instance perf/arm-ni: Consolidate CPU affinity handling ...
43 hoursMerge tag 'kvmarm-6.17' of ↵Paolo Bonzini
https://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 changes for 6.17, round #1 - Host driver for GICv5, the next generation interrupt controller for arm64, including support for interrupt routing, MSIs, interrupt translation and wired interrupts. - Use FEAT_GCIE_LEGACY on GICv5 systems to virtualize GICv3 VMs on GICv5 hardware, leveraging the legacy VGIC interface. - Userspace control of the 'nASSGIcap' GICv3 feature, allowing userspace to disable support for SGIs w/o an active state on hardware that previously advertised it unconditionally. - Map supporting endpoints with cacheable memory attributes on systems with FEAT_S2FWB and DIC where KVM no longer needs to perform cache maintenance on the address range. - Nested support for FEAT_RAS and FEAT_DoubleFault2, allowing the guest hypervisor to inject external aborts into an L2 VM and take traps of masked external aborts to the hypervisor. - Convert more system register sanitization to the config-driven implementation. - Fixes to the visibility of EL2 registers, namely making VGICv3 system registers accessible through the VGIC device instead of the ONE_REG vCPU ioctls. - Various cleanups and minor fixes.
2 daysMerge tag 'hardening-v6.17-rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull hardening updates from Kees Cook: - Introduce and start using TRAILING_OVERLAP() helper for fixing embedded flex array instances (Gustavo A. R. Silva) - mux: Convert mux_control_ops to a flex array member in mux_chip (Thorsten Blum) - string: Group str_has_prefix() and strstarts() (Andy Shevchenko) - Remove KCOV instrumentation from __init and __head (Ritesh Harjani, Kees Cook) - Refactor and rename stackleak feature to support Clang - Add KUnit test for seq_buf API - Fix KUnit fortify test under LTO * tag 'hardening-v6.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (22 commits) sched/task_stack: Add missing const qualifier to end_of_stack() kstack_erase: Support Clang stack depth tracking kstack_erase: Add -mgeneral-regs-only to silence Clang warnings init.h: Disable sanitizer coverage for __init and __head kstack_erase: Disable kstack_erase for all of arm compressed boot code x86: Handle KCOV __init vs inline mismatches arm64: Handle KCOV __init vs inline mismatches s390: Handle KCOV __init vs inline mismatches arm: Handle KCOV __init vs inline mismatches mips: Handle KCOV __init vs inline mismatch powerpc/mm/book3s64: Move kfence and debug_pagealloc related calls to __init section configs/hardening: Enable CONFIG_INIT_ON_FREE_DEFAULT_ON configs/hardening: Enable CONFIG_KSTACK_ERASE stackleak: Split KSTACK_ERASE_CFLAGS from GCC_PLUGINS_CFLAGS stackleak: Rename stackleak_track_stack to __sanitizer_cov_stack_depth stackleak: Rename STACKLEAK to KSTACK_ERASE seq_buf: Introduce KUnit tests string: Group str_has_prefix() and strstarts() kunit/fortify: Add back "volatile" for sizeof() constants acpi: nfit: intel: avoid multiple -Wflex-array-member-not-at-end warnings ...
5 daysMerge branch 'kvm-arm64/gcie-legacy' into kvmarm/nextOliver Upton
* kvm-arm64/gcie-legacy: : Support for GICv3 emulation on GICv5, courtesy of Sascha Bischoff : : FEAT_GCIE_LEGACY adds the necessary hardware for GICv5 systems to : support the legacy GICv3 for VMs, including a backwards-compatible VGIC : implementation that we all know and love. : : As a starting point for GICv5 enablement in KVM, enable + use the : GICv3-compatible feature when running VMs on GICv5 hardware. KVM: arm64: gic-v5: Probe for GICv5 KVM: arm64: gic-v5: Support GICv3 compat arm64/sysreg: Add ICH_VCTLR_EL2 irqchip/gic-v5: Populate struct gic_kvm_info irqchip/gic-v5: Skip deactivate for forwarded PPI interrupts Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
9 daysstackleak: Rename STACKLEAK to KSTACK_ERASEKees Cook
In preparation for adding Clang sanitizer coverage stack depth tracking that can support stack depth callbacks: - Add the new top-level CONFIG_KSTACK_ERASE option which will be implemented either with the stackleak GCC plugin, or with the Clang stack depth callback support. - Rename CONFIG_GCC_PLUGIN_STACKLEAK as needed to CONFIG_KSTACK_ERASE, but keep it for anything specific to the GCC plugin itself. - Rename all exposed "STACKLEAK" names and files to "KSTACK_ERASE" (named for what it does rather than what it protects against), but leave as many of the internals alone as possible to avoid even more churn. While here, also split "prev_lowest_stack" into CONFIG_KSTACK_ERASE_METRICS, since that's the only place it is referenced from. Suggested-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20250717232519.2984886-1-kees@kernel.org Signed-off-by: Kees Cook <kees@kernel.org>
10 daysKVM: arm64: Filter out HCR_EL2 bits when running in hypervisor contextMarc Zyngier
Most HCR_EL2 bits are not supposed to affect EL2 at all, but only the guest. However, we gladly merge these bits with the host's HCR_EL2 configuration, irrespective of entering L1 or L2. This leads to some funky behaviour, such as L1 trying to inject a virtual SError for L2, and getting a taste of its own medecine. Not quite what the architecture anticipated. In the end, the only bits that matter are those we have defined as invariants, either because we've made them RESx (E2H, HCD...), or that we actively refuse to merge because the mess with KVM's own logic. Use the sanitisation infrastructure to get the RES1 bits, and let things rip in a safer way. Fixes: 04ab519bb86df ("KVM: arm64: nv: Configure HCR_EL2 for FEAT_NV2") Signed-off-by: Marc Zyngier <maz@kernel.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20250721101955.535159-3-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
10 daysKVM: arm64: Check for SYSREGS_ON_CPU before accessing the CPU stateMarc Zyngier
Mark Brown reports that since we commit to making exceptions visible without the vcpu being loaded, the external abort selftest fails. Upon investigation, it turns out that the code that makes registers affected by an exception visible to the guest is completely broken on VHE, as we don't check whether the system registers are loaded on the CPU at this point. We managed to get away with this so far, but that's obviously as bad as it gets, Add the required checksm and document the absolute need to check for the SYSREGS_ON_CPU flag before calling into any of the __vcpu_write_sys_reg_to_cpu()__vcpu_read_sys_reg_from_cpu() helpers. Reported-by: Mark Brown <broonie@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/18535df8-e647-4643-af9a-bb780af03a70@sirena.org.uk Link: https://lore.kernel.org/r/20250720102229.179114-1-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2025-07-08KVM: arm64: gic-v5: Support GICv3 compatSascha Bischoff
Add support for GICv3 compat mode (FEAT_GCIE_LEGACY) which allows a GICv5 host to run GICv3-based VMs. This change enables the VHE/nVHE/hVHE/protected modes, but does not support nested virtualization. A lazy-disable approach is taken for compat mode; it is enabled on the vgic_v3_load path but not disabled on the vgic_v3_put path. A non-GICv3 VM, i.e., one based on GICv5, is responsible for disabling compat mode on the corresponding vgic_v5_load path. Currently, GICv5 is not supported, and hence compat mode is not disabled again once it is enabled, and this function is intentionally omitted from the code. Co-authored-by: Timothy Hayes <timothy.hayes@arm.com> Signed-off-by: Timothy Hayes <timothy.hayes@arm.com> Signed-off-by: Sascha Bischoff <sascha.bischoff@arm.com> Link: https://lore.kernel.org/r/20250627100847.1022515-5-sascha.bischoff@arm.com Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2025-07-08KVM: arm64: Route SEAs to the SError vector when EASE is setOliver Upton
One of the finest additions of FEAT_DoubleFault2 is the ability for software to request *synchronous* external aborts be taken to the SError vector, which of coure are *asynchronous* in nature. Opinions be damned, implement the architecture and send SEAs to the SError vector if EASE is set for the target context. Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20250708172532.1699409-18-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2025-07-08KVM: arm64: Context switch SCTLR2_ELx when advertised to the guestOliver Upton
Restore SCTLR2_EL1 with the correct value for the given context when FEAT_SCTLR2 is advertised to the guest. Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20250708172532.1699409-13-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2025-07-08KVM: arm64: nv: Use guest hypervisor's vSError stateOliver Upton
When HCR_EL2.AMO is set, physical SErrors are routed to EL2 and virtual SError injection is enabled for EL1. Conceptually treating host-initiated SErrors as 'physical', this means we can delegate control of the vSError injection context to the guest hypervisor when nesting && AMO is set. Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20250708172532.1699409-9-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2025-07-08KVM: arm64: nv: Honor SError exception routing / maskingOliver Upton
To date KVM has used HCR_EL2.VSE to track the state of a pending SError for the guest. With this bit set, hardware respects the EL1 exception routing / masking rules and injects the vSError when appropriate. This isn't correct for NV guests as hardware is oblivious to vEL2's intentions for SErrors. Better yet, with FEAT_NV2 the guest can change the routing behind our back as HCR_EL2 is redirected to memory. Cope with this mess by: - Using a flag (instead of HCR_EL2.VSE) to track the pending SError state when SErrors are unconditionally masked for the current context - Resampling the routing / masking of a pending SError on every guest entry/exit - Emulating exception entry when SError routing implies a translation regime change Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20250708172532.1699409-7-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2025-07-08KVM: arm64: Add helper to identify a nested contextMarc Zyngier
A common idiom in the KVM code is to check if we are currently dealing with a "nested" context, defined as having NV enabled, but being in the EL1&0 translation regime. This is usually expressed as: if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu) ... ) which is a mouthful and a bit hard to read, specially when followed by additional conditions. Introduce a new helper that encapsulate these two terms, allowing the above to be written as if (is_nested_context(vcpu) ... ) which is both shorter and easier to read, and makes more obvious the potential for simplification on some code paths. Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20250708172532.1699409-4-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2025-07-08KVM: arm64: nvhe: Disable branch generation in nVHE guestsAnshuman Khandual
While BRBE can record branches within guests, the host recording branches in guests is not supported by perf (though events are). Support for BRBE in guests will supported by providing direct access to BRBE within the guests. That is how x86 LBR works for guests. Therefore, BRBE needs to be disabled on guest entry and restored on exit. For nVHE, this requires explicit handling for guests. Before entering a guest, save the BRBE state and disable the it. When returning to the host, restore the state. For VHE, it is not necessary. We initialize BRBCR_EL1.{E1BRE,E0BRE}=={0,0} at boot time, and HCR_EL2.TGE==1 while running in the host. We configure BRBCR_EL2.{E2BRE,E0HBRE} to enable branch recording in the host. When entering the guest, we set HCR_EL2.TGE==0 which means BRBCR_EL1 is used instead of BRBCR_EL2. Consequently for VHE, BRBE recording is disabled at EL1 and EL0 when running a guest. Should recording in guests (by the host) ever be desired, the perf ABI will need to be extended to distinguish guest addresses (struct perf_branch_entry.priv) for starters. BRBE records would also need to be invalidated on guest entry/exit as guest/host EL1 and EL0 records can't be distinguished. Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Co-developed-by: Rob Herring (Arm) <robh@kernel.org> Signed-off-by: Rob Herring (Arm) <robh@kernel.org> Tested-by: James Clark <james.clark@linaro.org> Reviewed-by: Leo Yan <leo.yan@arm.com> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Acked-by: Marc Zyngier <maz@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20250611-arm-brbe-v19-v23-3-e7775563036e@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2025-06-26KVM: arm64: Adjust range correctly during host stage-2 faultsQuentin Perret
host_stage2_adjust_range() tries to find the largest block mapping that fits within a memory or mmio region (represented by a kvm_mem_range in this function) during host stage-2 faults under pKVM. To do so, it walks the host stage-2 page-table, finds the faulting PTE and its level, and then progressively increments the level until it finds a granule of the appropriate size. However, the condition in the loop implementing the above is broken as it checks kvm_level_supports_block_mapping() for the next level instead of the current, so pKVM may attempt to map a region larger than can be covered with a single block. This is not a security problem and is quite rare in practice (the kvm_mem_range check usually forces host_stage2_adjust_range() to choose a smaller granule), but this is clearly not the expected behaviour. Refactor the loop to fix the bug and improve readability. Fixes: c4f0935e4d95 ("KVM: arm64: Optimize host memory aborts") Signed-off-by: Quentin Perret <qperret@google.com> Link: https://lore.kernel.org/r/20250625105548.984572-1-qperret@google.com Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-06-19KVM: arm64: VHE: Centralize ISBs when returning to hostMark Rutland
The VHE hyp code has recently gained a few ISBs. Simplify this to one unconditional ISB in __kvm_vcpu_run_vhe(), and remove the unnecessary ISB from the kvm_call_hyp_ret() macro. While kvm_call_hyp_ret() is also used to invoke __vgic_v3_get_gic_config(), but no ISB is necessary in that case either. For the moment, an ISB is left in kvm_call_hyp(), as there are many more users, and removing the ISB would require a more thorough audit. Suggested-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Fuad Tabba <tabba@google.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Oliver Upton <oliver.upton@linux.dev> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20250617133718.4014181-8-mark.rutland@arm.com Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-06-19KVM: arm64: Remove ad-hoc CPTR manipulation from kvm_hyp_handle_fpsimd()Mark Rutland
The hyp code FPSIMD/SVE/SME trap handling logic has some rather messy open-coded manipulation of CPTR/CPACR. This is benign for non-nested guests, but broken for nested guests, as the guest hypervisor's CPTR configuration is not taken into account. Consider the case where L0 provides FPSIMD+SVE to an L1 guest hypervisor, and the L1 guest hypervisor only provides FPSIMD to an L2 guest (with L1 configuring CPTR/CPACR to trap SVE usage from L2). If the L2 guest triggers an FPSIMD trap to the L0 hypervisor, kvm_hyp_handle_fpsimd() will see that the vCPU supports FPSIMD+SVE, and will configure CPTR/CPACR to NOT trap FPSIMD+SVE before returning to the L2 guest. Consequently the L2 guest would be able to manipulate SVE state even though the L1 hypervisor had configured CPTR/CPACR to forbid this. Clean this up, and fix the nested virt issue by always using __deactivate_cptr_traps() and __activate_cptr_traps() to manage the CPTR traps. This removes the need for the ad-hoc fixup in kvm_hyp_save_fpsimd_host(), and ensures that any guest hypervisor configuration of CPTR/CPACR is taken into account. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Fuad Tabba <tabba@google.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Oliver Upton <oliver.upton@linux.dev> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20250617133718.4014181-6-mark.rutland@arm.com Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-06-19KVM: arm64: Remove ad-hoc CPTR manipulation from fpsimd_sve_sync()Mark Rutland
There's no need for fpsimd_sve_sync() to write to CPTR/CPACR. All relevant traps are always disabled earlier within __kvm_vcpu_run(), when __deactivate_cptr_traps() configures CPTR/CPACR. With irrelevant details elided, the flow is: handle___kvm_vcpu_run(...) { flush_hyp_vcpu(...) { fpsimd_sve_flush(...); } __kvm_vcpu_run(...) { __activate_traps(...) { __activate_cptr_traps(...); } do { __guest_enter(...); } while (...); __deactivate_traps(....) { __deactivate_cptr_traps(...); } } sync_hyp_vcpu(...) { fpsimd_sve_sync(...); } } Remove the unnecessary write to CPTR/CPACR. An ISB is still necessary, so a comment is added to describe this requirement. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Fuad Tabba <tabba@google.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Oliver Upton <oliver.upton@linux.dev> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20250617133718.4014181-5-mark.rutland@arm.com Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-06-19KVM: arm64: Reorganise CPTR trap manipulationMark Rutland
The NVHE/HVHE and VHE modes have separate implementations of __activate_cptr_traps() and __deactivate_cptr_traps() in their respective switch.c files. There's some duplication of logic, and it's not currently possible to reuse this logic elsewhere. Move the logic into the common switch.h header so that it can be reused, and de-duplicate the common logic. This rework changes the way SVE traps are deactivated in VHE mode, aligning it with NVHE/HVHE modes: * Before this patch, VHE's __deactivate_cptr_traps() would unconditionally enable SVE for host EL2 (but not EL0), regardless of whether the ARM64_SVE cpucap was set. * After this patch, VHE's __deactivate_cptr_traps() will take the ARM64_SVE cpucap into account. When ARM64_SVE is not set, SVE will be trapped from EL2 and below. The old and new behaviour are both benign: * When ARM64_SVE is not set, the host will not touch SVE state, and will not reconfigure SVE traps. Host EL0 access to SVE will be trapped as expected. * When ARM64_SVE is set, the host will configure EL0 SVE traps before returning to EL0 as part of reloading the EL0 FPSIMD/SVE/SME state. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Fuad Tabba <tabba@google.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Oliver Upton <oliver.upton@linux.dev> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20250617133718.4014181-4-mark.rutland@arm.com Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-06-19KVM: arm64: VHE: Synchronize CPTR trap deactivationMark Rutland
Currently there is no ISB between __deactivate_cptr_traps() disabling traps that affect EL2 and fpsimd_lazy_switch_to_host() manipulating registers potentially affected by CPTR traps. When NV is not in use, this is safe because the relevant registers are only accessed when guest_owns_fp_regs() && vcpu_has_sve(vcpu), and this also implies that SVE traps affecting EL2 have been deactivated prior to __guest_entry(). When NV is in use, a guest hypervisor may have configured SVE traps for a nested context, and so it is necessary to have an ISB between __deactivate_cptr_traps() and fpsimd_lazy_switch_to_host(). Due to the current lack of an ISB, when a guest hypervisor enables SVE traps in CPTR, the host can take an unexpected SVE trap from within fpsimd_lazy_switch_to_host(), e.g. | Unhandled 64-bit el1h sync exception on CPU1, ESR 0x0000000066000000 -- SVE | CPU: 1 UID: 0 PID: 164 Comm: kvm-vcpu-0 Not tainted 6.15.0-rc4-00138-ga05e0f012c05 #3 PREEMPT | Hardware name: FVP Base RevC (DT) | pstate: 604023c9 (nZCv DAIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) | pc : __kvm_vcpu_run+0x6f4/0x844 | lr : __kvm_vcpu_run+0x150/0x844 | sp : ffff800083903a60 | x29: ffff800083903a90 x28: ffff000801f4a300 x27: 0000000000000000 | x26: 0000000000000000 x25: ffff000801f90000 x24: ffff000801f900f0 | x23: ffff800081ff7720 x22: 0002433c807d623f x21: ffff000801f90000 | x20: ffff00087f730730 x19: 0000000000000000 x18: 0000000000000000 | x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 | x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 | x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000 | x8 : 0000000000000000 x7 : 0000000000000000 x6 : ffff000801f90d70 | x5 : 0000000000001000 x4 : ffff8007fd739000 x3 : ffff000801f90000 | x2 : 0000000000000000 x1 : 00000000000003cc x0 : ffff800082f9d000 | Kernel panic - not syncing: Unhandled exception | CPU: 1 UID: 0 PID: 164 Comm: kvm-vcpu-0 Not tainted 6.15.0-rc4-00138-ga05e0f012c05 #3 PREEMPT | Hardware name: FVP Base RevC (DT) | Call trace: | show_stack+0x18/0x24 (C) | dump_stack_lvl+0x60/0x80 | dump_stack+0x18/0x24 | panic+0x168/0x360 | __panic_unhandled+0x68/0x74 | el1h_64_irq_handler+0x0/0x24 | el1h_64_sync+0x6c/0x70 | __kvm_vcpu_run+0x6f4/0x844 (P) | kvm_arm_vcpu_enter_exit+0x64/0xa0 | kvm_arch_vcpu_ioctl_run+0x21c/0x870 | kvm_vcpu_ioctl+0x1a8/0x9d0 | __arm64_sys_ioctl+0xb4/0xf4 | invoke_syscall+0x48/0x104 | el0_svc_common.constprop.0+0x40/0xe0 | do_el0_svc+0x1c/0x28 | el0_svc+0x30/0xcc | el0t_64_sync_handler+0x10c/0x138 | el0t_64_sync+0x198/0x19c | SMP: stopping secondary CPUs | Kernel Offset: disabled | CPU features: 0x0000,000002c0,02df4fb9,97ee773f | Memory Limit: none | ---[ end Kernel panic - not syncing: Unhandled exception ]--- Fix this by adding an ISB between __deactivate_traps() and fpsimd_lazy_switch_to_host(). Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Fuad Tabba <tabba@google.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Oliver Upton <oliver.upton@linux.dev> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20250617133718.4014181-3-mark.rutland@arm.com Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-06-19KVM: arm64: VHE: Synchronize restore of host debug registersMark Rutland
When KVM runs in non-protected VHE mode, there's no context synchronization event between __debug_switch_to_host() restoring the host debug registers and __kvm_vcpu_run() unmasking debug exceptions. Due to this, it's theoretically possible for the host to take an unexpected debug exception due to the stale guest configuration. This cannot happen in NVHE/HVHE mode as debug exceptions are masked in the hyp code, and the exception return to the host will provide the necessary context synchronization before debug exceptions can be taken. For now, avoid the problem by adding an ISB after VHE hyp code restores the host debug registers. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Fuad Tabba <tabba@google.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Oliver Upton <oliver.upton@linux.dev> Cc: Will Deacon <will@kernel.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20250617133718.4014181-2-mark.rutland@arm.com Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-06-11Merge tag 'kvmarm-fixes-6.16-2' of ↵Paolo Bonzini
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 fixes for 6.16, take #2 - Rework of system register accessors for system registers that are directly writen to memory, so that sanitisation of the in-memory value happens at the correct time (after the read, or before the write). For convenience, RMW-style accessors are also provided. - Multiple fixes for the so-called "arch-timer-edge-cases' selftest, which was always broken.
2025-06-05KVM: arm64: Add RMW specific sysreg accessorMarc Zyngier
In a number of cases, we perform a Read-Modify-Write operation on a system register, meaning that we would apply the RESx masks twice. Instead, provide a new accessor that performs this RMW operation, allowing the masks to be applied exactly once per operation. Reviewed-by: Miguel Luis <miguel.luis@oracle.com> Reviewed-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20250603070824.1192795-3-maz@kernel.org Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-06-05KVM: arm64: Add assignment-specific sysreg accessorMarc Zyngier
Assigning a value to a system register doesn't do what it is supposed to be doing if that register is one that has RESx bits. The main problem is that we use __vcpu_sys_reg(), which can be used both as a lvalue and rvalue. When used as a lvalue, the bit masking occurs *before* the new value is assigned, meaning that we (1) do pointless work on the old cvalue, and (2) potentially assign an invalid value as we fail to apply the masks to it. Fix this by providing a new __vcpu_assign_sys_reg() that does what it says on the tin, and sanitises the *new* value instead of the old one. This comes with a significant amount of churn. Reviewed-by: Miguel Luis <miguel.luis@oracle.com> Reviewed-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20250603070824.1192795-2-maz@kernel.org Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-26Merge tag 'kvmarm-6.16' of ↵Paolo Bonzini
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 updates for 6.16 * New features: - Add large stage-2 mapping support for non-protected pKVM guests, clawing back some performance. - Add UBSAN support to the standalone EL2 object used in nVHE/hVHE and protected modes. - Enable nested virtualisation support on systems that support it (yes, it has been a long time coming), though it is disabled by default. * Improvements, fixes and cleanups: - Large rework of the way KVM tracks architecture features and links them with the effects of control bits. This ensures correctness of emulation (the data is automatically extracted from the published JSON files), and helps dealing with the evolution of the architecture. - Significant changes to the way pKVM tracks ownership of pages, avoiding page table walks by storing the state in the hypervisor's vmemmap. This in turn enables the THP support described above. - New selftest checking the pKVM ownership transition rules - Fixes for FEAT_MTE_ASYNC being accidentally advertised to guests even if the host didn't have it. - Fixes for the address translation emulation, which happened to be rather buggy in some specific contexts. - Fixes for the PMU emulation in NV contexts, decoupling PMCR_EL0.N from the number of counters exposed to a guest and addressing a number of issues in the process. - Add a new selftest for the SVE host state being corrupted by a guest. - Keep HCR_EL2.xMO set at all times for systems running with the kernel at EL2, ensuring that the window for interrupts is slightly bigger, and avoiding a pretty bad erratum on the AmpereOne HW. - Add workaround for AmpereOne's erratum AC04_CPU_23, which suffers from a pretty bad case of TLB corruption unless accesses to HCR_EL2 are heavily synchronised. - Add a per-VM, per-ITS debugfs entry to dump the state of the ITS tables in a human-friendly fashion. - and the usual random cleanups.
2025-05-23Merge branch kvm-arm64/misc-6.16 into kvmarm-master/nextMarc Zyngier
* kvm-arm64/misc-6.16: : . : Misc changes and improvements for 6.16: : : - Add a new selftest for the SVE host state being corrupted by a guest : : - Keep HCR_EL2.xMO set at all times for systems running with the kernel at EL2, : ensuring that the window for interrupts is slightly bigger, and avoiding : a pretty bad erratum on the AmpereOne HW : : - Replace a couple of open-coded on/off strings with str_on_off() : : - Get rid of the pKVM memblock sorting, which now appears to be superflous : : - Drop superflous clearing of ICH_LR_EOI in the LR when nesting : : - Add workaround for AmpereOne's erratum AC04_CPU_23, which suffers from : a pretty bad case of TLB corruption unless accesses to HCR_EL2 are : heavily synchronised : : - Add a per-VM, per-ITS debugfs entry to dump the state of the ITS tables : in a human-friendly fashion : . KVM: arm64: Fix documentation for vgic_its_iter_next() KVM: arm64: vgic-its: Add debugfs interface to expose ITS tables arm64: errata: Work around AmpereOne's erratum AC04_CPU_23 KVM: arm64: nv: Remove clearing of ICH_LR<n>.EOI if ICH_LR<n>.HW == 1 KVM: arm64: Drop sort_memblock_regions() KVM: arm64: selftests: Add test for SVE host corruption KVM: arm64: Force HCR_EL2.xMO to 1 at all times in VHE mode KVM: arm64: Replace ternary flags with str_on_off() helper Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-23Merge branch kvm-arm64/nv-nv into kvmarm-master/nextMarc Zyngier
* kvm-arm64/nv-nv: : . : Flick the switch on the NV support by adding the missing piece : in the form of the VNCR page management. From the cover letter: : : "This is probably the most interesting bit of the whole NV adventure. : So far, everything else has been a walk in the park, but this one is : where the real fun takes place. : : With FEAT_NV2, most of the NV support revolves around tricking a guest : into accessing memory while it tries to access system registers. The : hypervisor's job is to handle the context switch of the actual : registers with the state in memory as needed." : . KVM: arm64: nv: Release faulted-in VNCR page from mmu_lock critical section KVM: arm64: nv: Handle TLBI S1E2 for VNCR invalidation with mmu_lock held KVM: arm64: nv: Hold mmu_lock when invalidating VNCR SW-TLB before translating KVM: arm64: Document NV caps and vcpu flags KVM: arm64: Allow userspace to request KVM_ARM_VCPU_EL2* KVM: arm64: nv: Remove dead code from ERET handling KVM: arm64: nv: Plumb TLBI S1E2 into system instruction dispatch KVM: arm64: nv: Add S1 TLB invalidation primitive for VNCR_EL2 KVM: arm64: nv: Program host's VNCR_EL2 to the fixmap address KVM: arm64: nv: Handle VNCR_EL2 invalidation from MMU notifiers KVM: arm64: nv: Handle mapping of VNCR_EL2 at EL2 KVM: arm64: nv: Handle VNCR_EL2-triggered faults KVM: arm64: nv: Add userspace and guest handling of VNCR_EL2 KVM: arm64: nv: Add pseudo-TLB backing VNCR_EL2 KVM: arm64: nv: Don't adjust PSTATE.M when L2 is nesting KVM: arm64: nv: Move TLBI range decoding to a helper KVM: arm64: nv: Snapshot S1 ASID tagging information during walk KVM: arm64: nv: Extract translation helper from the AT code KVM: arm64: nv: Allocate VNCR page when required arm64: sysreg: Add layout for VNCR_EL2 Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-23Merge branch kvm-arm64/fgt-masks into kvmarm-master/nextMarc Zyngier
* kvm-arm64/fgt-masks: (43 commits) : . : Large rework of the way KVM deals with trap bits in conjunction with : the CPU feature registers. It now draws a direct link between which : the feature set, the system registers that need to UNDEF to match : the configuration and bits that need to behave as RES0 or RES1 in : the trap registers that are visible to the guest. : : Best of all, these definitions are mostly automatically generated : from the JSON description published by ARM under a permissive : license. : . KVM: arm64: Handle TSB CSYNC traps KVM: arm64: Add FGT descriptors for FEAT_FGT2 KVM: arm64: Allow sysreg ranges for FGT descriptors KVM: arm64: Add context-switch for FEAT_FGT2 registers KVM: arm64: Add trap routing for FEAT_FGT2 registers KVM: arm64: Add sanitisation for FEAT_FGT2 registers KVM: arm64: Add FEAT_FGT2 registers to the VNCR page KVM: arm64: Use HCR_EL2 feature map to drive fixed-value bits KVM: arm64: Use HCRX_EL2 feature map to drive fixed-value bits KVM: arm64: Allow kvm_has_feat() to take variable arguments KVM: arm64: Use FGT feature maps to drive RES0 bits KVM: arm64: Validate FGT register descriptions against RES0 masks KVM: arm64: Switch to table-driven FGU configuration KVM: arm64: Handle PSB CSYNC traps KVM: arm64: Use KVM-specific HCRX_EL2 RES0 mask KVM: arm64: Remove hand-crafted masks for FGT registers KVM: arm64: Use computed FGT masks to setup FGT registers KVM: arm64: Propagate FGT masks to the nVHE hypervisor KVM: arm64: Unconditionally configure fine-grain traps KVM: arm64: Use computed masks as sanitisers for FGT registers ... Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-23Merge branch kvm-arm64/ubsan-el2 into kvmarm-master/nextMarc Zyngier
* kvm-arm64/ubsan-el2: : . : Add UBSAN support to the EL2 portion of KVM, reusing most of the : existing logic provided by CONFIG_IBSAN_TRAP. : : Patches courtesy of Mostafa Saleh. : . KVM: arm64: Handle UBSAN faults KVM: arm64: Introduce CONFIG_UBSAN_KVM_EL2 ubsan: Remove regs from report_ubsan_failure() arm64: Introduce esr_is_ubsan_brk() Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-21KVM: arm64: np-guest CMOs with PMD_SIZE fixmapVincent Donnefort
With the introduction of stage-2 huge mappings in the pKVM hypervisor, guest pages CMO is needed for PMD_SIZE size. Fixmap only supports PAGE_SIZE and iterating over the huge-page is time consuming (mostly due to TLBI on hyp_fixmap_unmap) which is a problem for EL2 latency. Introduce a shared PMD_SIZE fixmap (hyp_fixblock_map/hyp_fixblock_unmap) to improve guest page CMOs when stage-2 huge mappings are installed. On a Pixel6, the iterative solution resulted in a latency of ~700us, while the PMD_SIZE fixmap reduces it to ~100us. Because of the horrendous private range allocation that would be necessary, this is disabled for 64KiB pages systems. Suggested-by: Quentin Perret <qperret@google.com> Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Quentin Perret <qperret@google.com> Link: https://lore.kernel.org/r/20250521124834.1070650-11-vdonnefort@google.com Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-21KVM: arm64: Stage-2 huge mappings for np-guestsVincent Donnefort
Now np-guests hypercalls with range are supported, we can let the hypervisor to install block mappings whenever the Stage-1 allows it, that is when backed by either Hugetlbfs or THPs. The size of those block mappings is limited to PMD_SIZE. Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Link: https://lore.kernel.org/r/20250521124834.1070650-10-vdonnefort@google.com Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-21KVM: arm64: Add a range to __pkvm_host_test_clear_young_guest()Vincent Donnefort
In preparation for supporting stage-2 huge mappings for np-guest. Add a nr_pages argument to the __pkvm_host_test_clear_young_guest hypercall. This range supports only two values: 1 or PMD_SIZE / PAGE_SIZE (that is 512 on a 4K-pages system). Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Link: https://lore.kernel.org/r/20250521124834.1070650-7-vdonnefort@google.com Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-21KVM: arm64: Add a range to __pkvm_host_wrprotect_guest()Vincent Donnefort
In preparation for supporting stage-2 huge mappings for np-guest. Add a nr_pages argument to the __pkvm_host_wrprotect_guest hypercall. This range supports only two values: 1 or PMD_SIZE / PAGE_SIZE (that is 512 on a 4K-pages system). Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Link: https://lore.kernel.org/r/20250521124834.1070650-6-vdonnefort@google.com Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-21KVM: arm64: Add a range to __pkvm_host_unshare_guest()Vincent Donnefort
In preparation for supporting stage-2 huge mappings for np-guest. Add a nr_pages argument to the __pkvm_host_unshare_guest hypercall. This range supports only two values: 1 or PMD_SIZE / PAGE_SIZE (that is 512 on a 4K-pages system). Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Link: https://lore.kernel.org/r/20250521124834.1070650-5-vdonnefort@google.com Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-21KVM: arm64: Add a range to __pkvm_host_share_guest()Vincent Donnefort
In preparation for supporting stage-2 huge mappings for np-guest. Add a nr_pages argument to the __pkvm_host_share_guest hypercall. This range supports only two values: 1 or PMD_SIZE / PAGE_SIZE (that is 512 on a 4K-pages system). Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Link: https://lore.kernel.org/r/20250521124834.1070650-4-vdonnefort@google.com Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-21KVM: arm64: Introduce for_each_hyp_pageVincent Donnefort
Add a helper to iterate over the hypervisor vmemmap. This will be particularly handy with the introduction of huge mapping support for the np-guest stage-2. Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Link: https://lore.kernel.org/r/20250521124834.1070650-3-vdonnefort@google.com Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-21KVM: arm64: Handle huge mappings for np-guest CMOsVincent Donnefort
clean_dcache_guest_page() and invalidate_icache_guest_page() accept a size as an argument. But they also rely on fixmap, which can only map a single PAGE_SIZE page. With the upcoming stage-2 huge mappings for pKVM np-guests, those callbacks will get size > PAGE_SIZE. Loop the CMOs on a PAGE_SIZE basis until the whole range is done. Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Link: https://lore.kernel.org/r/20250521124834.1070650-2-vdonnefort@google.com Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-21Merge branch kvm-arm64/pkvm-selftest-6.16 into kvm-arm64/pkvm-np-thp-6.16Marc Zyngier
* kvm-arm64/pkvm-selftest-6.16: : . : pKVM selftests covering the memory ownership transitions by : Quentin Perret. From the initial cover letter: : : "We have recently found a bug [1] in the pKVM memory ownership : transitions by code inspection, but it could have been caught with a : test. : : Introduce a boot-time selftest exercising all the known pKVM memory : transitions and importantly checks the rejection of illegal transitions. : : The new test is hidden behind a new Kconfig option separate from : CONFIG_EL2_NVHE_DEBUG on purpose as that has side effects on the : transition checks ([1] doesn't reproduce with EL2 debug enabled). : : [1] https://lore.kernel.org/kvmarm/20241128154406.602875-1-qperret@google.com/" : . KVM: arm64: Extend pKVM selftest for np-guests KVM: arm64: Selftest for pKVM transitions KVM: arm64: Don't WARN from __pkvm_host_share_guest() KVM: arm64: Add .hyp.data section Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-19arm64: errata: Work around AmpereOne's erratum AC04_CPU_23D Scott Phillips
On AmpereOne AC04, updates to HCR_EL2 can rarely corrupt simultaneous translations for data addresses initiated by load/store instructions. Only instruction initiated translations are vulnerable, not translations from prefetches for example. A DSB before the store to HCR_EL2 is sufficient to prevent older instructions from hitting the window for corruption, and an ISB after is sufficient to prevent younger instructions from hitting the window for corruption. Signed-off-by: D Scott Phillips <scott@os.amperecomputing.com> Reviewed-by: Oliver Upton <oliver.upton@linux.dev> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20250513184514.2678288-1-scott@os.amperecomputing.com Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-19KVM: arm64: Add context-switch for FEAT_FGT2 registersMarc Zyngier
Just like the rest of the FGT registers, perform a switch of the FGT2 equivalent. This avoids the host configuration leaking into the guest... Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-19KVM: arm64: Add sanitisation for FEAT_FGT2 registersMarc Zyngier
Just like the FEAT_FGT registers, treat the FGT2 variant the same way. THis is a large update, but a fairly mechanical one. The config dependencies are extracted from the 2025-03 JSON drop. Reviewed-by: Joey Gouly <joey.gouly@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-19KVM: arm64: nv: Add S1 TLB invalidation primitive for VNCR_EL2Marc Zyngier
A TLBI by VA for S1 must take effect on our pseudo-TLB for VNCR and potentially knock the fixmap mapping. Even worse, that TLBI must be able to work cross-vcpu. For that, we track on a per-VM basis if any VNCR is mapped, using an atomic counter. Whenever a TLBI S1E2 occurs and that this counter is non-zero, we take the long road all the way back to the core code. There, we iterate over all vcpus and check whether this particular invalidation has any damaging effect. If it does, we nuke the pseudo TLB and the corresponding fixmap. Yes, this is costly. Reviewed-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20250514103501.2225951-14-maz@kernel.org Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-19KVM: arm64: nv: Program host's VNCR_EL2 to the fixmap addressMarc Zyngier
Since we now have a way to map the guest's VNCR_EL2 on the host, we can point the host's VNCR_EL2 to it and go full circle! Note that we unconditionally assign the fixmap to VNCR_EL2, irrespective of the guest's version being mapped or not. We want to take a fault on first access, so the fixmap either contains something guranteed to be either invalid or a guest mapping. Reviewed-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20250514103501.2225951-13-maz@kernel.org Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-19KVM: arm64: nv: Don't adjust PSTATE.M when L2 is nestingMarc Zyngier
We currently check for HCR_EL2.NV being set to decide whether we need to repaint PSTATE.M to say EL2 instead of EL1 on exit. However, this isn't correct when L2 is itself a hypervisor, and that L1 as set its own HCR_EL2.NV. That's because we "flatten" the state and inherit parts of the guest's own setup. In that case, we shouldn't adjust PSTATE.M, as this is really EL1 for both us and the guest. Instead of trying to try and work out how we ended-up with HCR_EL2.NV being set by introspecting both the host and guest states, use a per-CPU flag to remember the context (HYP or not), and use that information to decide whether PSTATE needs tweaking. Reviewed-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20250514103501.2225951-7-maz@kernel.org Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-10KVM: arm64: Remove hand-crafted masks for FGT registersMarc Zyngier
These masks are now useless, and can be removed. Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-10KVM: arm64: Use computed FGT masks to setup FGT registersMarc Zyngier
Flip the hyervisor FGT configuration over to the computed FGT masks. Reviewed-by: Joey Gouly <joey.gouly@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-07KVM: arm64: Introduce CONFIG_UBSAN_KVM_EL2Mostafa Saleh
Add a new Kconfig CONFIG_UBSAN_KVM_EL2 for KVM which enables UBSAN for EL2 code (in protected/nvhe/hvhe) modes. This will re-use the same checks enabled for the kernel for the hypervisor. The only difference is that for EL2 it always emits a "brk" instead of implementing hooks as the hypervisor can't print reports. The KVM code will re-use the same code for the kernel "report_ubsan_failure()" so #ifdefs are changed to also have this code for CONFIG_UBSAN_KVM_EL2 Signed-off-by: Mostafa Saleh <smostafa@google.com> Reviewed-by: Kees Cook <kees@kernel.org> Link: https://lore.kernel.org/r/20250430162713.1997569-4-smostafa@google.com Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-07KVM: arm64: Fix memory check in host_stage2_set_owner_locked()Mostafa Saleh
I found this simple bug while preparing some patches for pKVM. AFAICT, it should be harmless (besides crashing the kernel if it was misbehaving) Fixes: e94a7dea2972 ("KVM: arm64: Move host page ownership tracking to the hyp vmemmap") Signed-off-by: Mostafa Saleh <smostafa@google.com> Link: https://lore.kernel.org/r/20250501162450.2784043-1-smostafa@google.com Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2025-05-07KVM: arm64: Properly save/restore HCRX_EL2Marc Zyngier
Rather than restoring HCRX_EL2 to a fixed value on vcpu exit, perform a full save/restore of the register, ensuring that we don't lose bits that would have been set at some point in the host kernel lifetime, such as the GCSEn bit. Fixes: ff5181d8a2a82 ("arm64/gcs: Provide basic EL2 setup to allow GCS usage at EL0 and EL1") Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20250430105916.3815157-2-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>